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Abstract 

Graphene’s extraordinary physical properties and its planar geometry make it an ideal candidate for a wide 

array of applications, many of which require controlled chemical modification and the spatial organization 

of molecules on its surface. In particular, the ability to functionalize and micropattern graphene with 

proteins is relevant to bioscience applications such as biomolecular sensors, single-cell sensors, and tissue 

engineering.Wereport a general strategy for the noncovalent chemical modification of epitaxial graphene 

for protein immobilization and micropatterning. We show that bifunctional molecule pyrenebutanoic acid-

succinimidyl ester (PYR-NHS), composed of the hydrophobic pyrene and the reactive succinimide ester 

group, binds to graphene noncovalently but irreversibly. We investigate whether the chemical treatment 

perturbs the electronic band structure of graphene using X-ray photoemission (XPS) and Raman 

spectroscopy. Our results show that the sp2 hybridization remains intact and that the π band maintains its 

characteristic Lorentzian shape in the Raman spectra. The modified graphene surfaces, which bind 

specifically to amines in proteins, are micropatterned with arrays of fluorescently labeled proteins that are 

relevant to glucose sensors (glucose oxidase) and cell sensor and tissue engineering applications (laminin).  

 

 

 

 

 

  



The extraordinary physical properties of graphene and its planar geometry make graphene an ideal 

candidate for many device technologies.1 This includes applications in the bioscience arena where closely 

related carbon nanotube devices have already been used for biomolecular sensors,2 single-cell sensors,3 

and tissue engineering.4,5 Recent developments have enabled the fabrication of extremely pure, large-area 

graphene samples that extend over millimeters in the form of epitaxial graphene (EG).6 Standard 

fabrication techniques can be used to pattern graphene lithographically,7,8 permitting a degree of control 

and versatility not accessible to the potential devices constructed from graphene’s counterpart, the carbon 

nanotube. The controlled chemical and spatial assembly of molecules on the surface of graphene will be a 

key element in future optimized graphene devices. Many studies report tuning the electronic properties of 

graphene using chemical,9,10 lithographic,11 and external field approaches.12 Fewer efforts focus on the 

functionalization and patterning of EG for the specific self-assembly of biomolecules or other objects such 

as nanoparticles.13 In this letter, we establish a simple approach to functionalizing graphene non covalently 

for subsequent immobilization and micrometer-resolution spatial patterning of proteins (Figure 1). The 

chemical scheme presented here allows for robust, spatially resolved protein anchoring to the surface and 

has the important feature that it does not perturb the desirable electronic properties of graphene   

. 

The chemical modification of graphene for protein crosslinking is achieved using bifunctional molecule 1-

pyrenebutanoic acid succinimidyl ester (PYR-NHS) (Anaspec, Inc. USA). The aromatic pyrenyl group in 

PYR-NHS interacts strongly with the basal plane of graphene via π stacking,14 without perturbing the sp2 

bond structure of the carbon honeycomb lattice, or the π band responsible for graphene’s characteristic 

electronic properties. This is confirmed here using X-ray photoelectron spectroscopy (XPS) and Raman 

spectroscopy. We subsequently demonstrate that proteins can be precisely anchored via the succinimidyl 

ester group and patterned on graphene with micrometer-scale resolution. All graphene samples used in this 

work were produced  following well-established protocols6 and consist of epitaxial graphene (EG) grown 

on the C face of 4H silicon carbide in an induction furnace. Each sample has a surface area of 3.5 x4.5 

mm2 and is about three atomic layers thick, as verified by ellipsometry. 

 

The irreversible binding of PYR-NHS to the epitaxial graphene is critical to ensuring the immobilization of 

proteins onto the surface. Because the PYR-NHS interaction is noncovalent, the robustness of the 

attachment was confirmed using XPS. The innate hydrophobicity of both graphene and PYR-NHS is 

expected to facilitate the adsorption of the molecule fromsolution to the graphene surface and make it 

inherently stable against desorption under aqueous conditions. Graphene samples were incubated in PYR-

NHS (6 mM in dimethylformamide (DMF)) for 1 h at room temperature and then thoroughly rinsed three 

times with DMF. The comparison of spectra from pristine EG and PYR-EG shows little difference. To 

increase the signal corresponding to PYR-NHS, it was reacted, after incubation with EG, with fluorinated 

molecule 1H,1H-perfluorooctylamine (PFOA, incubation for 1 h followed by rinsing with DMF and then 

with DI water). The recorded spectrum (Figure 2) shows a strong fluorine F 1s peak. Controls demonstrate 

that the nonspecific binding of PFOA to EG is negligible, with a minimal signal in F 1s (Figure 2a). Hence, 

even after harsh washing, XPS confirms that strong interactions of PYR with graphene anchor the 

molecules to the surface.   

 

Measurements at multiple points on the same sample consistently showed F 1s signals for the PYR-PFOA 

complexes, indicating that PYR covers EGrelatively uniformly. The successful binding of PFOAonly in the 

presence of PYR-NHS also demonstrates the flexibility of the molecule in cross-linking amines, indicating 

that awide range of proteins and other nanoobjects can in principle be bound to the graphene.   

 

The chemical modification of graphene can change its band structure, an approach that is currently of great 

interest for tailoring the electronic properties of graphene. For future applications in molecular and cell 

biosensing, however, it may be desirable to maintain graphene’s highly sensitive conductive nature after 

the chemical preparation of the surface with an NHS cross-linker. Here,we showthat the noncovalent 

interaction of PYRwith EGdoes not disrupt graphene’s sp2 hybridization or perturb its π-band structure. 

Raman spectroscopy of PYRtreated graphene shows an absence of theD peak that is expected to arise at 

∼1350 cm-1 with the formation of sp3 structure (Figure 2b).15 This observation is corroborated by XPS 

measurements that show that the C 1s peak corresponding to sp2 hybridization remains unmodified after 

PYR treatment (SI). Previous XPS studies demonstrated that the transformation of carbon centers from sp2 

to sp3 changes the C 1s peak to a broad envelope, which is not observed here.9   



 

The Raman data also show a 2D Lorentzian peak at ∼2716 cm-1 before and after the PYR treatment. A 

single Lorentzian peak at this wavenumber is consistent with an unperturbed π band, indicating that 

graphene’s key electronic properties remain intact after its chemical functionalization with PYR.16,17   

 

The immobilization of proteins onto graphene is achieved by reacting the NHS group on the graphene-

bound PYR with the amines in the lysine residues present in most proteins. The same strategy has been 

demonstrated previously on graphite18,19 and carbon nanotubes.14    

 

Micrometer-resolution spatial patterning of proteins onto graphene was accomplished using microcontact 

printing.20 Figure 1a shows a fluorescent image of PYR-treated EG micropatternedwith glucose 

oxidase.Glucose oxidase is a small 144kDa enzyme and a critical component of electrochemical glucose 

biosensor designs.21 Graphene-based glucose biosensors should be extremely sensitive to minute 

concentrations of glucose, similar to the sensitivity of carbon nanotube glucose sensors.2,3 Microcontact 

printingwas achieved using a PDMS stamp incubated for 15 min with fluorescently labeled glucose oxidase 

in solution  (Supporting Information). The resultant large-scalemicropattern has rings of circular microareas 

approximately ∼5.5 µm in diameter (Figure 2a). Similar patterns have also been produced on non-PYR-

treated graphene via nonspecific binding; however, for many applications, the stability of the immobilized 

protein is critical, making irreversible binding using PYR-NHS a valuable alternative.   

 

To measure the typical height of the printed protein areas, the PYR-treated graphene was imaged with 

atomic forcemicroscopy (AFM). The topographical images were collected using an Agilent 5600 LS 

working in contact mode in liquid at a scan rate of 0.3 Hz using a silicon tip coated with Cr and Au with a 

small spring constant of ∼3.5 N/m. Figure 3 shows a line profile of a surface printed with glucose oxidase 

using a stamp with∼2.5-µmdiameter circles spaced ∼5 µm apart. Each of the three regions’ profiles has an 

average height of between 4 and 8 nm. This is consistent with the molecular weight of glucose oxidase, 

which has a hydrodynamic radius of 4.3 nm,22 as well as with electron microscopy studies that have shown 

that it has dimensions of 5 nm_8 nm.23 Hence, the bound protein likely constitutes a monolayer.   

 

The detection of the fluorescently labeled proteins on the surface of graphene is somewhat surprising. 

Recent work has shown theoretically and experimentally that dyes24,25 as well as semiconductor 

nanocrystals26 are fluorescently quenched when bound to graphene. These reports include a detailed study 

of PYR-NHS, the aromatic dye used here, which shows that PYR is fluorescently quenched via electron 

transfer when covalently bound to amine-deritivatized graphene. In our studies, imaging the fluorescent 

patterns required much longer exposure times than for micropatterns made on glass slides (2-10 s), and the 

resultant images were still very dim. Further investigation is necessary to clarify whether this is due to a 

difference in the protein concentation, fluorescence quenching, or some other effect.   

 

Another potential application of graphene lies in the arena of tissue engineering, where it is desirable to use 

combined chemical and electrical signaling to orchestrate the formation of complex cellular 

networks.4,5,27 We demonstrate the micropatterning of laminin, an ∼800 kDa extracellular matrix protein 

used for neuronal guidance, on graphene. The PDMS stamp was incubated with a 100 µg/mL fluorescently 

labeled laminin solution (Trevigen, Inc., diluted in 10mMPBS atpH7.4with 5%glycerol) and then pressed 

onto the graphene surface.The resultant laminin pattern is shown in Figure 1b. Micropatterning approaches 

such as those shown here could be used to build a massively parallel single-cell analysis device,3,28 

wheremicropatterned proteins integrated with electrical circuits would mediate the specific binding of 

single cells to designated areas, followed by electrical measurements to distinguish one cell type from 

another.   

 

In summary, we have noncovalently functionalized epitaxial graphene, having a small number of layers, 

with PYR-NHS without disrupting graphene’s electronic structure. Furthermore, we have demonstrated that 

PYR-functionalized graphene can be micropatterned with immobilized proteins using microcontact 

printing. The immobilization strategy used here can further be extended to attach other types of nanoobjects 

such as inorganic nanoparticles and synthetic polymers. The ability to dictate the location of proteins 

spatially with high resolution complements established lithographymethods that are currently used to 

control the physical layout of graphene. Future graphene-based technologies, such as massively parallel 



sensors, will benefit from spatially coordinated, high-resolution sensitive electronics and molecular 

patterning.   
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Figure 1. Micropatterned proteins (a) glucose oxidase and (b) laminin on epitaxial graphene treated with 

PYR-NHS. Scale bars are 20 and 10 µm, respectively. 
 

 

 



 
 

Figure 2. (a) XPS spectra of PFOA-PYR and PFOA-treated epitaxial graphene (EG). Only PFOA-PYR-

treated samples have an F 1s peak (689 eV), indicating that PYR irreversibly binds to epitaxial graphene. 

(b) Raman spectra of PYR-EG and pristine EG. The absence of a D peak at ∼1350 cm-1 confirms that the 

sp2 hybridization remains unperturbed. The 2D Lorentzian peak at 2716 cm-1 before and after treatment 

indicates that the π band remains intact. Non-labeled peaks are 4H-SiC. 

 



 
Figure 3. Topographical line profile of three protein areas located on a micropatterned array of glucose 

oxidase on PYR-treated graphene. 


