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Abstract 

We characterize multilayer graphene grown on C-face SiC before and after exposure to a total 

ionizing dose (TID) of 12 Mrad(SiO2) using a 10 keV X-ray source.  While we observe the 

partial peeling of the top graphene layer and the appearance of a modest Raman D-peak, we find 

that the electrical characteristics (mobility, sheet resistivity, free carrier concentration) of the 

material are mostly unaffected by radiation exposure.  Combined with X-ray photoelectron 

spectroscopy (XPS) data showing numerous carbon-oxygen bonds after irradiation, we conclude 

that the primary damage mechanism is through surface etching from reactive oxygen species 

created by the X-rays.  
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Graphene has recently made great strides as a high-performance electronic material [1], with 

several groups demonstrating devices for potential radio-frequency (RF) applications [2-4].  Like 

other carbon allotropes, graphene is appealing as a radiation-hardened material, owing to its low 

atomic number and consequent low capture cross section.  Epitaxial graphene grown from silicon 

carbide (SiC) has the added advantage of being naturally integrated with a wide-bandgap 

semiconductor, reducing the potential effects of particle-induced substrate damage.  Together, 

these factors suggest that epitaxial graphene is an attractive material for use in electronics for 

radiation-rich environments. 

In this study, we focus on the effects of X-rays, which are typically not energetic enough to 

cause direct lattice damage, but may create other long-term defects such as charge traps [5].  

Prior studies of high-energy photon dose effects in single-walled carbon nanotubes (SWCNTs), a 

graphene derivative, have suggested that effects extrinsic to the SWCNTs, such as increased 

impurity adsorption and the formation of oxide traps, are the main cause of changes in FET 

device properties [6,7].  By contrast, Zhou et al., concluded that even soft X-rays are enough to 

perturb the sp
2
 bond structure of graphene that is weakly-bound to a substrate but that epitaxial 

graphene on SiC  is largely unaffected [8]. 

Epitaxial graphene samples in the present investigation were grown at 1550 °C from insulating 

4H-SiC , using the confinement-controlled sublimation (CCS) method, which involves 

using an enclosure to limit the rate of silicon sublimation from the SiC surface [9].  The average 

sample thickness was measured by ellipsometry to be 7 layers.  Half of each 3.5 x 4.5 mm 

sample was patterned into several 8-armed Hall Bar structures while the other half was left with 

bulk epitaxial graphene for characterization by X-ray photoelectron spectroscopy (XPS, hν ≈ 1.5 

keV) and Raman spectroscopy (λ ≈ 532 nm).  Prior to any measurements, the samples were 
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cleaned with 10 cc/s of forming gas (3% H2, 97% Ar) at 250 °C for 3 hours to eliminate 

photoresist residue.  Irradiation was carried out in air in an Aracor 4100 X-ray irradiator, which 

is equipped with a tungsten source (hν ≈ 10 keV), at a dose rate of 31.5 krad (SiO2)/min to a total 

ionizing dose (TID) of 12 Mrad(SiO2).  We note that a TID of 12 Mrad(SiO2) is significantly 

larger than that encountered in most orbital applications, and thus it can be considered a worst 

case exposure for most space systems. 

After irradiation, we found in many samples that the graphene had partly peeled, exemplified by 

the faint depressed region seen in atomic force microscopy (AFM) of a Hall bar (dashed lines) 

structure in Fig. 1(b).  Regions of high topography, pointed to by arrows, suggest that narrow 

strips of graphene have been cut from the surface and have rolled up like a scroll.  A height 

profile of this region before and after irradiation, shown in Fig. 1(c), suggests that the top layers 

have peeled, although the exact number of sheets cannot be determined from AFM due to X-ray 

induced chemical changes in the top layer (differences in material properties are well-known to 

affect the apparent height of objects at the atomic scale in AFM [10]).   

Interestingly, Fig. 1(d), which shows the electrical transport characteristics, measured by average 

resistivity and carrier mobility/concentration using various arms of Hall bar structures, are 

essentially unchanged despite obvious physical damage to the surface.  Specifically, we found 

the median carrier mobility/concentrations to be 3% lower each while the median resistivity were 

4% higher after irradiation – changes that we consider statistically insignificant given the spread 

in the data points.  Prior to irradiation, the 4 samples were of varying quality, with resistivities 

ranging from 100-800 Ω/sq, mobilities from 400-4000 cm
2
/V-s, and carrier concentrations from 

1-3×10
13

 cm
-2

.  The properties of the Hall bars on a particular sample, however, were relatively 



4 

uniform.  We observed the same unchanged electrical properties in each individual sample 

regardless of quality. 

The seemingly-conflicting electrical and topographical observations presented here can be 

reconciled by the supposition that the observed peeling does not affect the bottom-most graphene 

layers.  It is well-known that the epitaxial graphene layers closest to the SiC are highly-doped 

[11,12], and it was stated in the former reference that transport should be dominated by those 

closest layers as a result.  Although this statement, which essentially says that the most 

conductive graphene layers should dominate the film’s electrical properties, is intuitive, it has 

been difficult to confirm directly.  By our supposition, despite either constricting or severing the 

electrical transport of the top graphene layers after irradiation, there is a minimal effect on the 

film’s electrical properties.  We conclude, therefore, both that the bottom-most layers were 

unaffected by the irradiation and that they further dominate the electrical transport in the film, 

making our results a direct confirmation of the statement made in Reference [11]. 

Raman spectroscopy of the samples after irradiation in Fig. 2(a) shows the appearance of small D 

and D’ peaks around 1350 cm
-1

 and 1620 cm
-1

, respectively, indicating that a small number of 

edges were created in the graphene lattice [13,14].  The spectrum otherwise has features typical 

of multilayer graphene such as a single-component 2D peak with a FWHM of 30 cm
-1

 located 

near 2700 cm
-1

 [15].  Aside from the typical spot-to-spot variations in a single sample, we noted 

no shifts or broadening of either the G (1570 cm
-1

) or 2D (2700 cm
-1

) peaks after irradiation. 

C1s XPS data in Fig. 2(b) reveals that the graphene peak (284.5 eV) has widened by about 20% 

(1.1 eV to 1.3 eV, FWHM) after irradiation.  Beforehand, the C1s spectrum was well-described 

by only two symmetric Lorentzian peaks: one for graphene (284.5 eV) and one for SiC (282.1 
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eV).  In our case, the energy bandwidth of the X-ray beam largely determined the widths of the 

peaks.  After irradiation, the graphene peak became asymmetric, which we found can be 

represented by adding a new symmetric peak at 285.3 eV to reflect surface damage [16].  

Although it is not shown, rigid shifts to higher binding energy of 0.5 to 1.5 eV were observed in 

the spectra of all samples due to work function changes at the surface.  We note that this data is 

far more surface-sensitive than the Raman data in Fig. 2(a); we estimate from the intensity ratio 

between the C1s SiC and graphene peaks that the mean photoelectron escape depth is only about 

1.5 nm.  In addition to the graphene being peak asymmetric, a broad shoulder extending from it 

to 290 eV formed, which we took to be the sum of three non-graphitic peaks centered at around 

286 eV, 287.5 eV, and 288.9 eV.  These peaks have been commonly attributed to particular 

carbon-oxygen bond configurations, namely C–O, C=O, and –COO, respectively, and have been 

seen after subjecting CNTs to strong oxidation reactions [17,18].  Based on the reported stability 

of epitaxial graphene to soft X-rays in vacuum [8], we conclude that these oxygen functional 

groups were created during irradiation rather than after irradiation.  In light of this, the peeling 

seen in Fig. 1(b) is likely mediated by reactive oxygen species that form when subjecting 

ambient O2 to X-rays. 

In summary, we have irradiated multilayer epitaxial graphene samples grown from SiC  

with a TID of 12 Mrad(SiO2).  While we find that the topmost layer or two has partly peeled 

away due to X-ray-assisted oxygen etching in air, the impact to carrier transport is small because 

the charge transport is dominated by layers far from the surface.  These results suggest that 

epitaxial graphene could well be suitable for ionizing radiation environments through the use of a 

capping layer to prevent radiation-induced oxidation. 
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Figure Captions 

Figure 1. Non-contact AFM image of a Hall bar (dashed line outline) before (a) and after (b) 

irradiation.  The arrows point to an areas where the top layers of graphene peeled from the 

surface along a narrow path.  The Hall bars are 10 µm wide.  (c) Height profile of the solid bar in 
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Fig.’s 1(a) and (b), which goes over one such peeled path in the latter case.  (d) Ratio of mobility 

(µ), carrier density (n) and resistivity (ρ) values of all Hall bars tested before and after irradiation 

with the vertical line repsenting the median value. Figure 2. (a) Background-subtracted Raman 

spectroscopy of bulk epitaxial graphene before (top) and after (bottom) irradiation.  The G and 

2D peaks are normalized independently to be the same integrated intensity.  (b) C1s XPS of the 

same general area before (top) and after (bottom) irradiation, the former being fitted to two 

Lorentzians and the latter being fitted to six.  The curves are normalized to have the same 

integrated graphene intensity and shifted to have the same graphene peak position (284.5 eV).  
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