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Abstract This paper deals with a symmetric regularized variational boundary/ domain 
formulation for quasi-static 3D elastoplasticity, which is shown to ex­
press the stationarity of a certain energy functional. An implicit consti­
tutive integration scheme is implemented. The global consistent tangent 
operator associated with the non-linear algebraic system of equations is 
shown to be symmetric. 
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1. THE QUASI-STATIC ELASTOPLASTIC 
MODEL 

Mechanical problems with material or geometrical non-linearities can 
be solved with BEM. In that case, the boundary integrals are sup­
plemented with domain integrals containing plastic strains treated as 
unknown distributions of initial strains. Non-linear domain-BEM for­
mulations are attractive in some specific situations like infinite media, 
fracture mechanics problems, . .. This paper addresses the formulation 
and numerical implementation of a symmetric Galerkin boundary in­
tegral equation (SGBIE) method for solving three-dimensional small­
strain quasi-static elastic-plastic problems. 

Consider a homogeneous body occupying the open domain n, referred 
to a Cartesian orthogonal system. Its piecewise smooth boundary S is 
split into two disjoint open subsets Su and St , over which histories of 
boundary data (displacement u 0 ( ·, t) and traction t 0 ( ·, t) , respectively) 
are prescribed in a quasi-static manner, t denoting a montonically in-



creasing time-like parameter hereafter referred to simply as 'time'. Let 
Op denote the potentially plastic region, i.e. an open bounded subset of 
n outside of which plastic stains gP and internal variables a are assumed 
to vanish. 

Assuming small displacements and strains, the quasi-static evolution 
of the considered solid from the initial state is governed (see [9]) by 
(i) mechanical field equations (equilibrum, compatibility) and boundary 
conditions, (ii) state laws (generalized Hooke's laws) and (iii) evolution 
laws (plastic flow rules, consistency condition). The latter equations im­
ply that any numerical solution procedure should involve a time-stepping 
scheme. In this paper, a single-step integration method [21], namely the 
well-known backward difference method, is used; it consists in solving 
an increment problem for every time step with enforcement of the con­
stitutive equations at the step end. This procedure is nowadays quite 
popular and some interesting results about consistency, convergence and 
stability are known [18]. After discretization in time, the equations of 
the evolutive problem are: 

(field equations) 

(boundary con d.) 

(state laws) 

(evolution laws) 

div O"n+I = 0 

En+I = ~(V + VT)un+I = V' 5 Un+I 

Un+l = u~+l on Su 

O"n+l ·n = t~+l on St 

p - p 8¢ ( ) en+l - En+ An+l a O"n+l, qn+l 

Y¢ 
On+l =On- .An+l f)q (un+l, qn+l) 

with .An+l <j;(un+l , qn+d = 0 

.An+l 2: 0 </J(O"n+J , qn+I) ~ 0 

(1) 

(2) 

(3) 

(4) 

where u and e: denote stresses and total strains, n the unit normal to 
s outward to n, c the elastic stiffness tensor' q the thermodynamical 
force associated to a , 8 the hardening potential and¢ the yield surface. 

This set of relations can be solved by a FEM scheme (based on vari­
ational principles in either displacement [20], mixed [19] or Hu-Washizu 
[21] forms), but also by means of boundary /domain formulations. 



2. VARIATIONAL INTEGRAL 
FORMULATION 

Boundary element methods for quasi-static elastoplasticity based on 
variational principles were proposed in the late eighties (12, 14] and 
have since seen several implementations for two-dimensional problems 
[3]. Weakly singular SGBIE formulations for three-dimensional elastic­
ity are expounded in [2] (as stationarity equations of the elastic potential 
energy for displacement fields in elastic equilibrium) and [10]. The for­
mer formulation is here extended to small-strain elastoplasticity. 

Let 'n+l = (un+l , O"n+l , en+l,e~+l ' qn+l , an+d denote the solution 
to the governing relations at time tn+ 1 . The following representation 
formula holds for any displacement solving the field equations (1) and 
Hooke's law: 

Uk(x) =Is ii(Y) uik(y-x) dSy- Is :Et(y-x)nj(y) Ui(Y) dSy 

+In :Et(y-x) c:fi(y) dVy (5) 

where u, t are the boundary displacement and traction associated with 
u, respectively, U(r) and :E(r) = C: VU(r) the Kelvin fundamental 
displacement and elastic stress, respectively; strains and stresses at x 
are then obtained upon differentiation of the above formula with respect 
to x, considering eP as initial strains. 

Following [2] and [16], the variational equation on the submanifold 
X~+l = ((u,t) ,u , eP ,q,a)n+l of'n+l· 

{ u.(C:V5 6u ].ndS+ { u 0.(C:V8 6u].ndS 
1st 1s, 

- f t 0 .ro6udS- f t.ro6udS -1 V'b"u:C:ePdV 1st 1s, np 
+ { b"a.[~~ (a)- q] dV + { b"eP: (u- C: (V 5u- eP)J dV 1np 1np 
- { b"u:(eP- e~-). 8u¢]dV- { 6>. ¢ dV 

1np 1np 
+ { b"q.[-a +On-). 8q¢] dV = 0 (6) 1np 

holds true for any displacement variation b"u solving the homogeneous 
elastic equilibrium field equation, i.e. of the form 

b"uk(Y) = r Mi(x)Uik(x -y) dSx- r :Efj(x-y)nj(x)b"ui(x) dSx (7) 1s, 1st 



(with Ju E ii112 (St) and Jt E H- 112 (Su)), stress variations Ja E L2 (0), 
plastic strain variations JgP E L2(0) and variations Ja E L2(0), Jq E 

L2 (0), <5>. E {-y E L2 (0), -y 2:: 0}. From eq. (6) on, (u,t,a,eP,q,a) are 
implicitly taken at t = tn+l and the index n + 1 is omitted for brevity. 

The substitution of (7) in (6) mandates a careful treatment, because 
the traces of Ju and [C: V 5 <5u].n on S involve non-integrable kernels. 
To overcome this difficulty, the following definition of the hypersingular 
boundary operator on S is used [8] 

for Ju satisfying div ( C: vs Ju) = 0 in 0 ('Yo: extension operator around 
S). By taking into account the following decomposition of the hypersin­
gular kernel cijab"L-kl b(r) [13] 

' 

and applying Stokes theorem to reduce the singularity of kernels in both 
boundary and domain integral operators, a fully regularized variational 
formulation is finally obtained from ( 6): 

auu(Mi., u) + aut(6u, t) 

atu(6t, u) + au(Jt, t) 

= fu(Ju) + aw:(Ju, gP) 

= ft(Ot) + atc: (ot, gP) 

+ Evolution laws in weak form 

with some properties of symmetry and sign-definiteness proved in [16]. 
The terms corresponding to the purely elastic response of the body can 



be found in [2] or [10], while the new ones are given by: 

au10 (8u , gP) =- { { R8 8uk(x)ejfqBiqks,J(r)(y-x)Efj(Y) dSy dSx 1St lop 
at10 (8t,gP) = { { 8ik(x)~t(y-x).sfj(y)dVydSx 

lsu loP 
a~10 (8gP, gP) =In In (eqjf8Efj,J)(x )Biqks(y-x)(eshtE~l,h)(y) dVy dVx 

p p 

- { { (eqjf<5.sfj,J)(x)Biqks(Y-x)(eshtnh.s~1 )(y) dSy dVx lop lsp 
- f f (eqjfEfjJ)(x)Biqks(y-x)(eshtnh<S.sL)(y) dSy dVx lop lsp 
+ { { ( eqfj<5.sfjn f )(x )Biqks(Y -x) ( eshtE~1nh) (y) dSy dSx lsp lsp 

Following [16], this set of variational equations is found to express the 
stationarity of the functional L(xu) defined by 

L( u) - 1 (- -) 1 (- -) 1 u ( p P) X - 2auu u, U + 2att t , t + 2ac£ € , € 

+ aut(U, t) - auc:( U, gP) - atc: (t, gP) - fu( u) - ft(t) - fc: (eP) 

+ { a: (gP- e~) dV + { [ 8(a)- q.(a- an) ] dV 
lop lop 

- { .A <I>( a, q) dV lop 
Note that L(xu) does not involve the total strain e, so that the present 
formulation might be termed an assumed-stress method. Some important 
results about consistency, stability and convergence of the associated 
numerical scheme has been established in [7] . 

Performing the change of variable a = C : (e - gP) would yield an 
assumed-strain method, commonly used in FEM and also introduced for 
collocation BEM in [4]. Here, this manipulation changes L(xu) into 
a new functional L(xe) where xe = ((u,t),e,EP,q,a). The resulting 
assumed-strain formulation, which will be retained in the following sec­
tions, has obviously the same properties as the assumed-stress one. 

3. LOCAL INTEGRATION 
The inelastic behaviour of the body is here assumed to be described by 

a Von-Mises yield criterion associated to a linear isotropic and kinematic 



hardening rule respectively caracterized by two positive constants h and 
H (see [21] for more general classes of materials). The evolution laws 
resulting of the stationarity conditions of L(xe) are written in a weak 
form as: 

with the classical notations 

¢(a- /3,p) =II s- f3 II -JI(CJo + hp) 

n = II ~ II with ~ = s - 13 

s = Sn + 2G(e- en - >.n) 

(10) 

(11) 

where f3 is the center of the elastic domain, p the cumulated plastic 
strain, s and e the deviatoric stress strain, respectively. 

These set of relations are solved by considering the strain-driven Re­
turn Mapping Algorithm (RMA), widely used in FEM [21]. The RMA 
is based on a predictor-corrector scheme and allows to construct an in­
termediate configuration consistent with the normality rules and the 
Hooke's law. If>. = 0 the material remains elastic, otherwise the inter­
nal variables must be updated. >. results from the consistency condition 
at tn+l, which corresponds to the projection onto the yield surface of a 
trial stress defined by eE, and is given by: 

eE = Sn + 2G(e - en) - !3n ' and 

3 E 
>. = 2(3G + H +h) (¢(e ,pn)) 

(12) 

A similar scheme corresponding to a stress-driven RMA is described in 
[19] but the plastic multiplier >. can not be evaluated in the case of 
perfect plasticity. 



4. NUMERICAL IMPLEMENTATION 

The numerical solution procedure is based upon a discretization of eqs. 
(9) and (10) in space. As pointed out in [15] , the usual boundary element 
interpolation of unknown displacements and tractions on the boundary 
(which model the elastic structural behaviour) must be supplemented 
with a domain interpolation of strains (the potentially plastic region 
being cut into 'cells') when non-linear material behaviour is present. 
Similar considerations arise in collocation BEM as well [4, 6]. 

y(x) = N(x).Y , 

b(x) = N(x) .B , 

c(x) = N(x).E, 

p(x) = N(x).P 

and ,\(x) = max(N(x).A,O) 

gP(x) = N(x).EP 

(13) 

where ( E, EP , B, P , A) denotes the vector of domain nodal unknowns 
and Y the vector of boundary nodal densities. In this way we consider a 
continuous interpolation of the unknown boundary densities y = ( u, t) , 
the total strain c, the plastic strain c and the internal variables (3 and 
p, contrary to [16] or [11]. In the last cited paper, the authors used com­
patible plastic strain field in order to avoid domain integral calculation. 

A Galerkin scheme is then applied to equations (9) and to the time­
discretized plasic strain flow rule. The evolutions of (3, p and the consis­
tency condition are performed at the nodes of the domain mesh , which 
amounts to use Dirac measures at the nodes of n P for the test functions 
in eqs. (10). The resulting non-linear algebraic system is written as 

K.Y n+l = F n+l + Q.E~+l (14) 

M.En+l = Hn+l + Qt.Y n+l- Z.E~+l (15) 

M.E~+l = M.E~ + 'l'e:(E~+l' En, E~) (16) 

+ Evolution of internal variables and consistency condition 

with the notations 

'l'e:(En+l) = 2G { Nt(x)-\n+dx) nn+l dV (17) lnp 
M= { Nt(x):C:N(x)dV (18) 

lnp 
Solving eq. (14) for Y n+l and substituting the result into eqs. (15,16) 
yields a non-linear system of equations for En+l and E~+l characterizing 
the material plastic constitutive behaviour: 

M.En+l = Gn+l- S.E~+l 

M.E~+l = M.E~ + 'l'e:(En+l, En, E~) 

(19) 

(20) 



which formally involves a nonlinear vector function Ae whose tangent 
operator is the global consistent tangent operator (CTO) [20]: 

A (E~+l) _ (u~+l) BA _ [ 8 M ] 
e En+l - t~+l e - M r(En+l) 

r(En+l) = M. oE~+l = 2G { Nt(x) o(.An+lnn+l) N(x) dV 
8En+l JnP Ocn+l 

The global CTO 8Ae is symmetric but from a numerical point of view, 
this formulation leads to an algebraic system of large size. Unfortunately 
neither r nor 8 are invertible [5, 14]. It is more interesting to eliminate 
the plastic strain vector E~+l in order to get a non-linear equation for 
En+l· Equations (19,20) then become (withE= En+d): 

Re(E) = E + M-1sM-1 ('1'e(E) +ME~)- M-1Gn+l = 0 (21) 

This equation is solved with a Newton-Raphson method and the associ­
ated consistent iterative scheme reads: 

where I+ 2GM-18M-1r , the global CTO corresponding to (22), is 
seen to be non-symmetric and fully populated because of S. This pre­
sentation encompasses the treatment proposed in [11] which corresponds 
to a modified Newton-Raphson scheme with a tangent operator equal to 
I. 

Concerning the numerical evaluation of the integral operators, since 
the present formulation involves integrable kernels, classical Gauss qua­
drature rules are used for the inner integration (after removing of the 
singularity by Duffy's coordinates) and the outer integration (the inner 
potential being regular). This method is easy to implement but numeri­
cal quadrature errors entail slight loss of symmetry becaue the inner and 
outer integrations are not treated symmetrically [17]. 

5. NUMERICAL RESULTS 
As a test example, the elastoplastic torsion problem for a cylindri­

cal body (radius r = 100 mm, height h = 50 mm) is considered. 
A displacement-controlled twisting motion is prescribed on the plane 
ends. Perfect plasticity is considered; the material properties are E = 

200000 MPa, v = 0.3 and ao = 240 MPa. The numerical model is made 
of 8 27-noded hexaedral cells and 48 9-noded quadrilateral boundary 
elements (Fig. 1). 
The results are compared to the analytical solution and the load-displacement 
curve is plotted in Fig. 2. 



Figure 1 Discretized BE-CE model. Boundary and internal mesh 
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Figure 2 Twisting moment-Angular rotation curve 

6. CONCLUSION 

A BEM-based strain formulation to quasi-static elastoplasticity evo­
lutive analysis has been presented for general standard materials. The 
associated iterative scheme admits a global symmetric CTO. Some nu­
merical aspects have now to be improved: quadrature rules taking into 
account the symmetry of the integration domains and parallel comput­
ing. Extensions to damage or finite strain models can be performed in 
the same way. 
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