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This paper deals with a symmetric regularized variational boundary/ domain formulation for quasi-static 3D elastoplasticity, which is shown to express the stationarity of a certain energy functional. An implicit constitutive integration scheme is implemented. The global consistent tangent operator associated with the non-linear algebraic system of equations is shown to be symmetric.

1.

THE QUASI-STATIC ELASTOPLASTIC MODEL

Mechanical problems with material or geometrical non-linearities can be solved with BEM. In that case, the boundary integrals are supplemented with domain integrals containing plastic strains treated as unknown distributions of initial strains. Non-linear domain-BEM formulations are attractive in some specific situations like infinite media, fracture mechanics problems, . .. This paper addresses the formulation and numerical implementation of a symmetric Galerkin boundary integral equation (SGBIE) method for solving three-dimensional smallstrain quasi-static elastic-plastic problems.

Consider a homogeneous body occupying the open domain n, referred to a Cartesian orthogonal system. Its piecewise smooth boundary S is split into two disjoint open subsets Su and St , over which histories of boundary data (displacement u 0 ( •, t) and traction t 0 ( •, t) , respectively) are prescribed in a quasi-static manner, t denoting a montonically in-creasing time-like parameter hereafter referred to simply as 'time'. Let Op denote the potentially plastic region, i.e. an open bounded subset of n outside of which plastic stains gP and internal variables a are assumed to vanish.

Assuming small displacements and strains, the quasi-static evolution of the considered solid from the initial state is governed (see [START_REF] Lemaitre | M echanics of solid materials[END_REF]) by (i) mechanical field equations (equilibrum, compatibility) and boundary conditions, (ii) state laws (generalized Hooke's laws) and (iii) evolution laws (plastic flow rules, consistency condition). The latter equations imply that any numerical solution procedure should involve a time-stepping scheme. In this paper, a single-step integration method [START_REF] Simo | of Interdisciplinary Applied Mathematics[END_REF], namely the well-known backward difference method, is used; it consists in solving an increment problem for every time step with enforcement of the constitutive equations at the step end. This procedure is nowadays quite popular and some interesting results about consistency, convergence and stability are known [START_REF] Simo | Non-linear b-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity[END_REF]. After discretization in time, the equations of the evolutive problem are: 

(field equations) (boundary con d.) (state laws) (evolution laws) div O"n+I = 0 En+I = ~(V + VT)un+I = V'
(2)

(3) (4) 
where u and e: denote stresses and total strains, n the unit normal to s outward to n, c the elastic stiffness tensor' q the thermodynamical force associated to a , 8 the hardening potential and¢ the yield surface. This set of relations can be solved by a FEM scheme (based on variational principles in either displacement [START_REF] Simo | Consistent tangent operators for rate independent elastoplasticity[END_REF], mixed [START_REF] Simo | Complementary mixed finite element formulations for elastoplasticity[END_REF] or Hu-Washizu [START_REF] Simo | of Interdisciplinary Applied Mathematics[END_REF] forms), but also by means of boundary /domain formulations.

2.

VARIATIONAL INTEGRAL FORMULATION

Boundary element methods for quasi-static elastoplasticity based on variational principles were proposed in the late eighties [START_REF] Maier | A galerkin approach to boundary element elastoplastic analysis[END_REF][START_REF] Polizzotto | An energy approach to the boundary element method. part ii : Elastic-plastics solids[END_REF] and have since seen several implementations for two-dimensional problems [START_REF] Bonnet | Symmetric galerkin boundary element method[END_REF]. Weakly singular SGBIE formulations for three-dimensional elasticity are expounded in [START_REF] Bonnet | Regularized direct and indirect symmetric variational hie formulations for three-dimensional elasticity[END_REF] (as stationarity equations of the elastic potential energy for displacement fields in elastic equilibrium) and [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF]. The former formulation is here extended to small-strain elastoplasticity.

Let 'n+l = (un+l , O"n+l , en+l,e~+l ' qn+l , an+d denote the solution to the governing relations at time tn+ 1 . The following representation formula holds for any displacement solving the field equations (1) and Hooke's law:

Uk(x) =Is ii(Y) uik(y-x) dSy-Is :Et(y-x)nj(y) Ui(Y) dSy

+In :Et(y-x) c:fi( y) dVy [START_REF] Bui | Sur le probleme aux limites en vitesse des contraintes du solide elasto-plastique[END_REF] where u, t are the boundary displacement and traction associated with u, respectively, U(r) and :E(r) = C: VU(r) the Kelvin fundamental displacement and elastic stress, respectively; strains and stresses at x are then obtained upon differentiation of the above formula with respect to x, considering eP as initial strains.

Following [START_REF] Bonnet | Regularized direct and indirect symmetric variational hie formulations for three-dimensional elasticity[END_REF] and [START_REF] Polizzotto | A step-wise variational approach to elastic-plastic analysis by boundary-interior elements[END_REF], the variational equation on the submanifold 1s, 1st

X~+l = ((u,t) , u , eP , q,a)n+l of'n+l• { u.(C:V 5 6u ].ndS+ { u 0 .(C:V 8 6u].ndS 1st 1s, -f t 0 .ro6udS-f t.ro6udS -1 V'b"u:C:ePdV 1st 1s, np + { b"a.[~~ (a)-q] dV + { b"eP: (u-C: (V 5 u-eP)J dV 1np 1np -{ b"u:(eP-e~-). 8u¢]dV-{ 6>. ¢ dV 1np 1np + { b"q.[-a +On-). 8q¢] dV = 0 (6)
(with Ju E ii 1 1 2 (St) and Jt E H-1 1 2 (Su)), stress variations Ja E L 2 (0), plastic strain variations JgP E L 2 (0) and variations Ja E L 2 (0), Jq E L 2 (0), <5>. E {-y E L 2 (0), -y 2:: 0}. From eq. ( 6) on, (u,t,a,eP,q, a) are implicitly taken at t = tn+l and the index n + 1 is omitted for brevity.

The substitution of ( 7) in ( 6) mandates a careful treatment, because the traces of Ju and [C: V 5 <5u].n on S involve non-integrable kernels. To overcome this difficulty, the following definition of the hypersingular boundary operator on S is used [START_REF] Costabel | Boundary integral operators on lipschitz domains : elementary results[END_REF] for Ju satisfying div ( C: vs Ju) = 0 in 0 ('Yo: extension operator around S). By taking into account the following decomposition of the hypersingular kernel cijab"L-kl b(r) [START_REF] Nedelec | Integral equations with non-integrble kernels[END_REF] ' and applying Stokes theorem to reduce the singularity of kernels in both boundary and domain integral operators, a fully regularized variational formulation is finally obtained from [START_REF] Burgardt | A fully regularized boundary formulation for threedimensional elastoplastic problems[END_REF]:

auu(Mi., u) + aut(6u, t) atu(6t, u) + au(Jt, t) = fu(Ju) + aw:(Ju, gP) = ft(Ot) + atc: (ot, gP)

+ Evolution laws in weak form

with some properties of symmetry and sign-definiteness proved in [START_REF] Polizzotto | A step-wise variational approach to elastic-plastic analysis by boundary-interior elements[END_REF]. The terms corresponding to the purely elastic response of the body can be found in [START_REF] Bonnet | Regularized direct and indirect symmetric variational hie formulations for three-dimensional elasticity[END_REF] or [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF], while the new ones are given by: au10 (8u , gP) = -{ { R8 8uk(x)ejfqBiqks,J(r)(y-x)Efj(Y) dSy dSx 1St lop at10 (8t,gP) = { { 8ik(x)~t(y-x).sfj(y)dVydSx lsu loP a~10 (8gP, gP) =In In (eqjf8Efj,J)(x )Biqks(y-x)(eshtE~l,h)(y) dVy dVx p p -{ { (eqjf<5.sfj,J)(x)Biqks(Y-x)(eshtnh.s~1)(y) dSy dVx lop lsp -f f (eqjfEfjJ)(x)Biqks(y-x)(eshtnh<S.sL)(y) dSy dVx lop lsp

+ { { ( eqfj<5.sfjn f )(x )Biqks(Y -x) ( eshtE~1nh) (y) dSy dSx lsp lsp
Following [START_REF] Polizzotto | A step-wise variational approach to elastic-plastic analysis by boundary-interior elements[END_REF], this set of variational equations is found to express the stationarity of the functional L(xu) defined by

L( u) -1 (--) 1 (--) 1 u ( p P) X -2auu u, U + 2att t , t + 2ac£ € , €
+ aut(U, t)auc:( U, gP)atc: (t, gP)fu( u)ft(t) -fc: (eP)

+ { a: (gP-e~) dV + { [ 8(a)q.(a-an) ] dV lop lop -{ .A <I>( a, q) dV lop Note that L(xu) does not involve the total strain e, so that the present formulation might be termed an assumed-stress method. Some important results about consistency, stability and convergence of the associated numerical scheme has been established in [START_REF] Comi | Extremum, convergence and stability properties of the finite-increment problem in elastic-plastic boundary element method[END_REF] .

Performing the change of variable a = C : (e -gP) would yield an assumed-strain method, commonly used in FEM and also introduced for collocation BEM in [START_REF] Bonnet | Implicit bern formulations for usual and sensitivity problems in elastoplasticity using the consistent tangent operator concept[END_REF]. Here, this manipulation changes L(xu) into a new functional L(xe) where xe = ((u,t),e,EP,q,a). The resulting assumed-strain formulation, which will be retained in the following sections, has obviously the same properties as the assumed-stress one.

LOCAL INTEGRATION

The inelastic behaviour of the body is here assumed to be described by a Von-Mises yield criterion associated to a linear isotropic and kinematic hardening rule respectively caracterized by two positive constants h and H (see [START_REF] Simo | of Interdisciplinary Applied Mathematics[END_REF] for more general classes of materials). The evolution laws resulting of the stationarity conditions of L(xe) are written in a weak form as:

with the classical notations ¢(a-/3,p) =II s-f3 II -JI(CJo + hp) n = II ~ II with ~ = s -13 s = Sn + 2G(e-en ->.n) (10) (11) 
where f3 is the center of the elastic domain, p the cumulated plastic strain, s and e the deviatoric stress strain, respectively. These set of relations are solved by considering the strain-driven Return Mapping Algorithm (RMA), widely used in FEM [START_REF] Simo | of Interdisciplinary Applied Mathematics[END_REF]. The RMA is based on a predictor-corrector scheme and allows to construct an intermediate configuration consistent with the normality rules and the Hooke's law. If>. = 0 the material remains elastic, otherwise the internal variables must be updated. >. results from the consistency condition at tn+l, which corresponds to the projection onto the yield surface of a trial stress defined by eE, and is given by: eE = Sn + 2G(een) -!3n ' and 3 E >. = 2(3G + H +h) (¢(e ,pn)) [START_REF] Maier | A galerkin approach to boundary element elastoplastic analysis[END_REF] A similar scheme corresponding to a stress-driven RMA is described in [START_REF] Simo | Complementary mixed finite element formulations for elastoplasticity[END_REF] but the plastic multiplier >. can not be evaluated in the case of perfect plasticity.

4.

NUMERICAL IMPLEMENTATION

The numerical solution procedure is based upon a discretization of eqs. ( 9) and [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF] in space. As pointed out in [START_REF] Polizzotto | A consistent boundary /interior element method for evolutive elastic-plastic structural analysis[END_REF] , the usual boundary element interpolation of unknown displacements and tractions on the boundary (which model the elastic structural behaviour) must b e supplemented with a domain interpolation of strains (the potentially plastic region being cut into 'cells') when non-linear material behaviour is present. Similar considerations arise in collocation BEM as well [START_REF] Bonnet | Implicit bern formulations for usual and sensitivity problems in elastoplasticity using the consistent tangent operator concept[END_REF][START_REF] Burgardt | A fully regularized boundary formulation for threedimensional elastoplastic problems[END_REF]. [START_REF] Nedelec | Integral equations with non-integrble kernels[END_REF] where ( E, EP , B, P , A) denotes the vector of domain nodal unknowns and Y the vector of boundary nodal densities. In this way we consider a continuous interpolation of the unknown boundary densities y = ( u, t) , the total strain c, the plastic strain c and the internal variables (3 and p, contrary to [START_REF] Polizzotto | A step-wise variational approach to elastic-plastic analysis by boundary-interior elements[END_REF] or [START_REF] Maier | Symmetric galerkin boundary element method in plasticity and gradient plasticity[END_REF]. In the last cited paper, the authors used compatible plastic strain field in order to avoid domain integral calculation.

y(x) = N(x).Y , b(x) = N(x) .B , c(x) = N(x).E, p(x) = N(x).P and ,\(x) = max(N(x).A, O) gP(x) = N(x).EP
A Galerkin scheme is then applied to equations ( 9) and to the timediscretized plasic strain flow rule. The evolutions of (3, p and the consist ency condition are performed at the nodes of the domain mesh , which amounts to use Dirac measures at the nodes of n P for the test functions in eqs. [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF]. The resulting non-linear algebraic system is written as 

K.Y n+l = F n+l + Q.E~+l
which formally involves a nonlinear vector function Ae whose tangent operator is the global consistent tangent operator (CTO) [START_REF] Simo | Consistent tangent operators for rate independent elastoplasticity[END_REF]:

A (E~+l) _ (u~+l) BA _ [ 8 M ] e En+l - t~+l e -M r(En+l) r(En+l) = M. oE~+l = 2G { Nt(x) o(.An+lnn+l) N(x) dV 8En+l JnP Ocn+l
The global CTO 8Ae is symmetric but from a numerical point of view, this formulation leads to an algebraic system of large size. Unfortunately neither r nor 8 are invertible [START_REF] Bui | Sur le probleme aux limites en vitesse des contraintes du solide elasto-plastique[END_REF][START_REF] Polizzotto | An energy approach to the boundary element method. part ii : Elastic-plastics solids[END_REF]. It is more interesting to eliminate the plastic strain vector E~+l in order to get a non-linear equation for En+l• Equations [START_REF] Simo | Complementary mixed finite element formulations for elastoplasticity[END_REF][START_REF] Simo | Consistent tangent operators for rate independent elastoplasticity[END_REF] then become (withE= En+d):

Re(E) = E + M-1 sM-1 ('1'e(E) +ME~)-M-1 Gn+l = 0 (21)
This equation is solved with a Newton-Raphson method and the associated consistent iterative scheme reads:

where I+ 2GM-1 8M-1 r , the global CTO corresponding to (22), is seen to be non-symmetric and fully populated because of S. This presentation encompasses the treatment proposed in [START_REF] Maier | Symmetric galerkin boundary element method in plasticity and gradient plasticity[END_REF] which corresponds to a modified Newton-Raphson scheme with a tangent operator equal to I.

Concerning the numerical evaluation of the integral operators, since the present formulation involves integrable kernels, classical Gauss quadrature rules are used for the inner integration (after removing of the singularity by Duffy's coordinates) and the outer integration (the inner potential being regular). This method is easy to implement but numerical quadrature errors entail slight loss of symmetry becaue the inner and outer integrations are not treated symmetrically [START_REF] Sauter | Transformation of hypersingular integrals and blackbox cubature[END_REF].

NUMERICAL RESULTS

As a test example, the elastoplastic torsion problem for a cylindrical body (radius r = 100 mm, height h = 50 mm) is considered. A displacement-controlled twisting motion is prescribed on the plane ends. Perfect plasticity is considered; the material properties are E = 200000 MPa, v = 0.3 and ao = 240 MPa. The numerical model is made of 8 27-noded hexaedral cells and 48 9-noded quadrilateral boundary elements (Fig. 1). The results are compared to the analytical solution and the load-displacement curve is plotted in Fig. 2. 

Twisting Rotation (rad)

Figure 2 Twisting moment-Angular rotation curve

CONCLUSION

A BEM-based strain formulation to quasi-static elastoplasticity evolutive analysis has been presented for general standard materials. The associated iterative scheme admits a global symmetric CTO. Some numerical aspects have now to be improved: quadrature rules taking into account the symmetry of the integration domains and parallel computing. Extensions to damage or finite strain models can be performed in the same way.
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  holds true for any displacement variation b"u solving the homogeneous elastic equilibrium field equation, i.e. of the form b"uk(Y) = r Mi(x)Uik(x -y) dSx-r :Efj(x-y)nj(x)b"ui(x) dSx[START_REF] Comi | Extremum, convergence and stability properties of the finite-increment problem in elastic-plastic boundary element method[END_REF] 

( 14 )

 14 M.En+l = Hn+l + Qt.Y n+l-Z.E~+l (15) M.E~+l = M.E~ + 'l'e:(E~+ l' En, E~) (16) + Evolution of internal variables and consistency condition with the notations 'l'e:(En+l) = 2G { Nt(x)-\n+dx) nn+l dV (17) lnp M= { Nt(x):C:N(x)dV (18) lnp Solving eq. (14) for Y n+l and substituting the result into eqs. (15,16) yields a non-linear system of equations for En+l and E~+l characterizing the material plastic constitutive behaviour: M.En+l = Gn+l-S.E~+l M . E~+l = M . E~ + 'l'e:(En+l, En, E~)
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 1 Figure 1 Discretized BE-CE model. Boundary and internal mesh