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Abstract. We extend the Miles mechanism of wind-wave 1.1 Miles’ and Jeffreys’ mechanisms of wind-wave
generation to finite depth. g-Miles linear growth rate de- growth

pending on the depth and wind velocity is derived and al-

lows the study of linear growth rates of surface waves from

weak to moderate winds in finite depth The evolution of Miles’ and Jeffreys’ theories consider both air and water to
g is plotted, for several values of the dispersion paramete®€ incompressible and disregard viscosity effects. Both the-
kh with k the wave number. For constant depths we find thatories are linear and Miles’ mechanism is limited to the deep-
no matter what the values of wind velocities are, at smallwater domain. They give the linear wave growiliies and
enough wave age thé-Miles linear growth rates are in the YJeffreys (respectively notedy and y;) of wind-generated
known deep-water limit. However winds of moderate inten- hormal Fourier modes of wave numberin Miles’ theory
sities prevent the waves from growing beyond a critical wavethe basic state is a shear current in air and still water. The air
age, which is also constrained by the water depth and idurbulence is disregarded (Janssen, 2004) aside from estab-
less than the wave age limit of deep water. Depending orjishing the logarithmic profile of the wind flow. The Miles
wave age and wind velocity, the Jeffreys and Miles mechaJnechanism of wave generation by wind states that waves are
nisms are compared to determine which of them dominatesProduced and amplified throughresonance phenomenon
Awind-forced nonlinear Schrédinger equation is derived andResonance appears between the wave-induced pressure gra-

the Akhmediev, Peregrine and Kuznetsov—Ma breather soludient on the inviscid airflow and the surface waves. The reso-
tions for weak wind inputs in finite depthare obtained. nant mechanism happens at a critical height where the airflow

speed matches the phase velocity of the surface wave.

In 1925, Jeffreys produced the first plausible mechanism
to explain the necessary shift of the atmospheric pressure re-
1 Introduction quired for an energy transfer from the wind to the waves.

He assumed that this energy transfer was solely caused by
The pioneer theories to describe surface wind-wave growthta combination of form drag and flow separation. It was as-
in deep water began with the works of Jeffreys (1925),sumed that flow separation occurred on the leeward side of
Phillips (1957) and Miles (1957, 1997), and the modern in-wave crests with re-attachment further down on the leeward
vestigations take nonlinearity and turbulence effects into acslopes of the wave. Sitow separatioris central in Jeffrey’s
count. Janssen (2004) has provided a thorough review of théheory. The resulting growth ragg increases with the differ-
topic. ence between the wave phase velocity and the wind speed.
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2806 P. Montalvo et al.: Wind-wave amplification mechanisms

Jeffreys computegt; for deep water (Jeffreys, 1925) and for However, in these papers, the NLS equation was used in deep
finite depth as well (Jeffreys, 1926). Airflow separation oc- water. In a recent paper Didenkulova, Nikolkina and Peli-
curing only over steep waves (Banner and Melville, 1976;novsky (2013) have described and compared properties of
Kawai, 1982), the Jeffreys sheltering mechanism must be aprogue waves in intermediate depth with those in deep water.
plied locally in time and space rather than constantly and ev-The focused regime of the BF instability was studied using a
erywhere on the wave field. Note that the sheltering mech-NLS equation in arbitrary depth.

anism is working even without proper airflow separation. In  In this work we are able to produce an adequate model for
fact, there is a thickening of the boundary layer (Reul et al.,nearshore extreme wave everkhis is done using our finite
2008) on the leeward side that generates a pressure asymmgepth extensions of Miles’ theory and the NLS equation in

try and consequently a sheltering effect. finite depth under the wind action. The case of a Jeffreys type
wind input is straightforward.
1.2 The Miles and Jeffreys mechanisms in finite NLS is exactly solvable, and some of its deterministic so-
depth: basis to model freak wave events in coastal lutions are good candidates to be weakly nonlinear proto-
regions types of rogue waves in finite depth under wind input. This

is the case of the Akhmedian, Peregrine and Kusnhetsov—Ma

Generally extreme wave events occur in the presence ofolutions.
wind. Kharif et al. (2008) and Touboul and Kharif (2006)  The aims of this paper are: (i) to extend the Miles mech-
investigated the influence of wind on extreme wave eventsanism to a finite depth setup, (i) to express the Jeffreys
using the Jeffreys sheltering theory. They have shown thamechanism in terms of adequate dimensionless parameters,
extreme events may be sustained longer by the airflow sep(ii) to determine, in terms of wave age and wind velocity,
aration. This mechanism can only be invoked if the wave iswhich among the Miles and Jeffreys mechanisms prevails
steep enough to effectively separate the airflow. Otherwiseand (iv) to derive a wind-forced nonlinear Schrédinger equa-
for a too-low steepness parameter ka the Jeffreys shelteringon (NLS) in finite depth to study the effects of wind and
mechanism due to flow separation becomes irrelevant. depth on extreme wave events due to the modulational insta-

Miles’ and Jeffreys’ mechanism of wind-generated sur- bility.
face waves in deep water was used in Touboul et al. (2008) The paper is organized as follows. In Sects. 2, 2.1 and 2.2
to describe (theoretically and numerically) the evolution of the linear stability problem of the air—water interface is pre-
a chirped wave packet under wind forcing. A comparison of sented and the derivation of the system of equations coupling
theym and they; values corresponding to a modified Jeffreys the waves to the airflow with the corresponding dispersion re-
mechanism was developed. lation is done. In Sects. 3, 3.1 and 3.2, we write the growth

However, all this work is limited to deep water and hence rates of Miles’ and Jeffreys’ theories, with appropriate scal-
unable to fully describe winds generating nearshore waveéngs and variables. In Sect. 4.1 the Miles coefficignis
where the wave field is influenced by bottom bathymetry.plotted as a function of wave age witth constant. Next in
Consequently they are not adequate to correctly describe thBect. 4.2, we present our results about the evolution of the
wind influence on extreme wave events in the coastal zone. growth rate as a function of the wave age witfconstant

Therefore an extension of Miles’ theory of wind-generated for several wind velocities. A comparison between Miles’
monochromatic waves to the case of finite depth under wealand Jeffreys’ theory is shown and discussed in Sect. 4.3. In
or moderate winds is needed, as well as a theoretical formuSect. 5 we derive a wind-forced NLS equation in finite depth
lation of Jeffreys’ theory in terms of adequate finite depth 2. The Akhmediev, Peregrine and Kuznetsov—Ma breather
parameters. solutions for weak wind inputs in finite depkhare exhibited.

Finally in Sect. 6, conclusion and perspectives are drawn.

1.3 Nearshore extreme wave events

Extreme wave events are anomalous large-amplitude surface  Coupling of the air and water dynamics at
waves. They are callefieak or rogue waveslt is crucial to the interface

understand the physical mechanisms producing freak W&V he fluid particle coordinates are expressed in a fixed 3-

as well as to obtain an accurate prediction of their dynam- . : ; :
o : dimensional Cartesian fram@xyz, Oz being the upwards
ics in extreme sea states. A number of mechanisms gener-_. i . :
. . e . _~axis. We assume the problem to be invariant onjthaxis,
ating freak waves have been identified. Such mechanisms : .
. . ) . . reducing the problem to an area parallel@az. We define

are, for instance, linear space—time focusing, variable cur; : .
: : ) .~ the surface = 0 as the rest state of the interface. The inter-

rents, interaction waves/currents, modulational or Benjamin—,

Feir (BF) instability. A classical way to model the BF insta- face perturbat|on'|tself Is denoted by;nd depends of, t)'.
b ) S . The water depth is set ati, and the air extends from the in-
bility is to use the nonlinear Schrodinger equation (NLS),

as in references Touboul and Kharif (2006), Touboul et al.terface to infinity.
(2008), Kharif et al. (2008) and Onorato and Proment (2012).
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2.1 Water dynamics

2807

where Wy is a wind forcing at the surface level. It ensures
that there is always an interaction between the wind and the

The horizontal and vertical components of the fluid velocity free surface. The pressure and the wind perturbations vanish

areu andw, both depending ofx, z, ¢). They obey the linear
Euler equations of motion in finite depth (Lighthill, 1978):

uy+w, =0, pwu;y=—"P;, pyw;=—"P, (2)
w(—h)=0 at z=—h, 2)
n=w0) at z=rn(x,1), €)
P(n) = Pa(n) + pwgn—Po at z=n(x,1). (4)

HereP = p + pwgz — Ppis areduced pressure withthe
pressure,Pg the total atmospheric pressurg,the gravita-
tional acceleration ang,, the water densityp and P de-
pend on(x, z,t) as well, and subscripts im, w and P de-

at high altitudes. For the air, there is a kinematic condition
as well at the aerodynamic sea surface roughpgsever
the free surface. In this work,zo will be determined by the
Charnock relation (Charnock, 1955):

0= Olc—*, (14)

where u, is the friction velocity, and assuming that =
0.018 remains constant. The kinematic boundary condition
reads

Nt + U (zo)nx = wa(zo). (15)

note partial derivatives. We solve the linear equations system

Egs. (1)—(3) with
P=Pe?, u=U[)é?,
w=W(z)e"?, n=ne, ()

whereP, U and )V are to be found.We have the phase-
k(x — ct) with k the wave number andthe phase speedg
is an unknown constant. Using Egs. (1)—(3) we obigimw
andP for all (x, z,7). Then, using Eq. (4) we derive

pwnoe'? {c?k cothkh — g} + Po = Pa(n). (6)

In the Archimedean cas@®;(n) = Pp and Eqg. (6) returns
the classical phase speed expression,

2=ck= %tanh(kh). @)

We need an expression f&y atz = n to obtain the modi-
fiedc.

2.2 Airdynamics

We examine the steady state of a prescribed horizontal ai

flow, with a mean velocityy depending only orz. We de-

note physical quantities in the air domain by a subscript a.
The air density i5,; the perturbations to this steady state are (U — c)(W, — k’Wa) — U " Wa=0.

assumed to be,, w, for the velocities ang, for the non-
reduced pressure, all quantities dependingxan, t). Now,
using a reduced pressuPg = pa+ pa gz — Po, we have

Ugx + Waz = 0, (8)
paluar+U@uax + U'(2)wa] = —Pay, 9)
,Oa[wa,t + U(Z)wa,x] =—Pa_, (10)

with primes indicating differentiation with respectioNext
we assumePa = Pa(z)e'?, ua=Ua(z)e!?, wa= Wa(z)e'?
and we add the boundary conditions)dfy andPs,

lim (W,+kWa) =0, (11)
z—> 400

lim Wa= Wy, (12)
Z—20

lim P,=0, (13)
z—>+00

www.nat-hazards-earth-syst-sci.net/13/2805/2013/
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Our steady airflow/ (z) is set as the logarithmic wind pro-
file

u
U(z) =U1In(z/z0), Ur= ?* K ~0.41, (16)
wherex is the Von Karmén constant. Such a profile is a com-
mon ground to describe wind phenomena close to the marine
boundary layer (Garratt et al., 1996). Hence, we can reduce

Eqg. (15) to

Nt = wa(zo)- (7)
Then, using Egs. (8)—(10) and (13) we obtain
wa = Wse', (18)
la= ’Ewaze”, (19)
oo
Pa=ikpae' / [U) = c]Waz)dZ'. (20)

Z
The Rayleigh equation (Rayleigh, 1880) is then found by
eliminating P; from Egs. (9)—(10), and is valid as long as
> 20

(21)

This equation contains a singularity at a so-called critical
heightz¢, whereU (z¢) = ¢. All turbulence phenomena being
disregarded, any possible eddies are assumed to be set below
z0, and their influence is not taken into account. We note that
Wa(z) andc are unknown in Eqs18)—(21). So, we have to
evaluatePs(n) to getc. We then have

pa(n) = Po— pa gn + ikpae' f [U(z) — ] Wa(z)dz, (22)
20

where z = zo replacesz = as the lower integral bound,
since we are studying the linear problem. Finally, eliminating
the termikpae’® using Eq. (17), we derive

sk? 2 sk?
g(l—S‘)—'—CWOI]_—C WOIZ—'—kCOtr(kh) =0, (23)

Nat. Hazards Earth Syst. Sci., 13, 2805-2813, 2013
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wheres = pa/pw andIy = fz‘;o UWadz, b = f;}o Wy dz. As

the ratio densitys is of order of magnitude 1I&, we can
develop the wave speed in Eq. (23)@s co+ sc1 + o(s2).
Next, we findcy as a function ofV,, which is obtained by
solving Eq. (21) withe ~ .

3 Theywm and y; wind inputs

3.1 ym wind input

The imaginary part ot gives directly the growth rate of
n(x,t):

i = k(). (24)

All the physical quantities derived from the growth rate
ym can be expressed with three parametér®q,y and by
(Young, 1997a, b):

1

_/E
1V Kk

U

8
92 "

dw

dw =

h
5=52.
Ul

Osg = detanHL/Z ( (25)

The dimensionless paramet&¥?2, for constant:, mea-
sures the relative value of the shallow-water speed with re
spect tal/1. The parametetyy, equivalent of the wave age in
deep water, measures the phase speed relatively to the ch
acteristic wind parametdy; in deep water, anéq (a finite

P. Montalvo et al.: Wind-wave amplification mechanisms

We have the following transformation rule betwegand
the dimensionlesgy (Montalvo et al., 2013):

2%
p="Mg3 712, (29)
S
The dimensional mean energy growth rate,
1 [0E
= = (), 30
" E) < or > G0
can then be written as a function pf
k3 1/2
v = spU? <—> coth2(kh). (31)
8

3.2 yjwind input

Jeffreys (1926) established that the pressure component act-
ing on a surface wave can be written as

Pa,.]effreys= PaJ = Spa(U10— C)an, (32)

wheren is the free surface elevatiof§;is the sheltering co-
efficient, always lower than unity; arldhg is the 10 m wind
velocity. This is only valid when the wave slope is larger than
a certain critical value. Such a pressure gradient can also be
obtained when the boundary layer thickness varies from one
side of the wave crest to another, thickening on the leeward

slope and resulting in a non-separated sheltering (Belcher

and Hunt, 1993). We do not consider variations of the bound-

aeffy layer here. Then Jeffreys assumed that the rate of work

transfer from the wind to the wave is (average with respect to

depth wave age) measures the influence of the finite depth %Bme)

In experiments, wether in wave tank or in field, the param

eterCp is used.Cp is the observed phase speed at the peak<

frequencyp. In this paper we used in Eq. (25) the phase
velocity ¢ = w/k of one mode instead @ or ©2p. Next we
choose dimensionless variables (topped by hats)

’

bl SN

U=UU, Wa=WoWa,

Ui
t=—1I.

8

=

c = Ujc, (26)

k 2
Using Egs. (25) and (26) in Eqg. (23) and discarding terms! 9= ECSS(UlO_ )

of order two ins we obtainc,
25 Oaw) = O T Y2 (1 _ %) n % {Til - edWT3/2i2} ey

whereT = tanha%. With e, we obtain the dimensionless

} |

growth ratejy = Zym as
TI(l)  T¥23(p)
Nat. Hazards Earth Syst. Sci., 13, 2805-2813, 2013

(28)
6w

LS
m=3

Odw

oE
dat

an

m (33)

)= (=52))
Our study being perturbative, we do not have any informa-
tion on the possible value af whatsoever. We assume a si-
nusoidal wave of the form = ngcosk(x — ct), no being the
wave amplitude. With this, and recalling that the mean wave

2
energy is(E) = ,owg%o, we can deduce the energy growth
rate expression

2
(34)

Now, in order to transfornd/1g into Uy, the relevant wind
scale, we use the wind-stress coefficiéhp, as defined by
Wu (1982) and the Charnock relation (Charnock, 1955):

2
C10=(0.8+0.065U10) x 1073 = = (35)
Uto
Uwo —
Ul = Tl C]_O. (36)

Wu (1982) showed that the empirical Egs. (35) and (36)
proposed for light winds are even applicable in hurricane

www.nat-hazards-earth-syst-sci.net/13/2805/2013/
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o
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Trenberth
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Fig. 1. The drag coefficient versus th&;g wind velocity. As we
can see, it follows a linear progression until its maximum around
30ms 1, then decreases. So, a linear parametrizatiof'gf is

a reasonable approximation.

conditions. However, above a 30mislimit, the drag coef-
ficient drops off theU;g linear progression in Eq. (35), as

2809
4.5 T T T
i Miles[1957] % B
kh~m 0O
3517 & kh=12 & |
- DD]ﬁ’DDIﬁ'DDﬁ'DDﬁ, kh~n/4 =
N DD
37 AAAAAAAAAAAAAA 7
o
25 A 5 |
B "sappesmEEEEEg, S a0
2 - .-Ai _
LI
151 LI i
LEWN
1+ "o i
n
B [
0.5 - 5
0 | | | | | | | | |
05 1 2 3 4 5 6 7 8 9 10

Ora

Fig. 2. Miles’ B vs 6¢4. For the deep-water limith ~ = our results

fit the Miles curvekh < 7 /4 corresponds to shallow water that is
beyond the range of validity of our model. An intermediate value
of ki is included, and we see thatis less than in the deep-water
limit.

The small values ofy seem constrained. In fact, be-

we can see in Fig. 1. This phenomenon reported in Powellcause all the curves are calculated with the same parame-

et al. (2003) is due to the droplet saturation in a suspensio

L : Rer spacer € [0.1m, 18 m], different bounds ot/ give dif-
layer above the sea surface. Even though it is possible to USRent bounds ort. and subsequently afig

the model developed in Makin (2004) to calculate the COIrect, ~ior limit kh
drag coefficient and friction velocity, flow separation is likely the shallow-water limikh
to occur at wind speeds that high, preventing Miles’ mecha-

For the deep-
~  we rediscover Miles’ result, and below
~ /4 we are beyond the validity
of the model.

nism from acting. Hence, we keep the range of wind speeds

below this limit for computation and we can use Egs. (35)
and (36).

4 Results

In the following Sects. 4.1, 4.2, 4.3 and 5 we present (i) the

evolution of the finite depth wind-wave inpgtwith 6g,, for
kh constant; (ii) its evolution, as a function of wind veloc-
ity and wave age, witth constant; (iii) a comparison be-

tween the Miles and Jeffreys mechanism for finite depth; and

(iv) a wind-forced NLS equation in finite depth.
After recalling several approximations, we are going to
work with the finite depttB-Miles wind input instead ofy.

4.1 The finite depth8-Miles with constant kh

First, we plot in Fig. 2 the evolution of the growth rate with
0tq for several constant values of the parameter. Neither
nor h are constants,

— for large values of the theoretical wave #gg the val-
ues ofg are in the deep-water limit,

— from small to intermediate values 6§ the values of
B are lower than in the deep-water limit and

dg
dbtq

www.nat-hazards-earth-syst-sci.net/13/2805/2013/

4.2 The finite depth g-Miles from weak to moderate
winds with h constant

In deep water, we have the classical Miles cup(@qgw)-
Herein, the introduction of the parametetransforms the
unique curve of wave growth rate families of curve$ (6rq)
indexed bys = gh/Ulz, i.e. a curve for each value 6f Two

types of families are possible:

— a family of 8 curves againdiy indexed byh with U
constant;

— afamily of 8 curves againgty indexed byU;, with &
constant.

The first one was studied in Montalvo et al. (2013). In this
work, and for the first time, we presented curves of wave
growth evolution as a function df; with constant deptth.
Figures 3, 4 and 5 shoy curves for constarit as a function

of 44, for friction velocitiesU1 from 0.5 to 25m s 1. More
specifically, this denomination refers to a 10 m wind velocity,
namelyUs o, such that

5<Up<22mst.
One can switch fronU; to Ujp using simply Eqg. (36).

From now on, we will refer td/19 only. The curves show
that

Nat. Hazards Earth Syst. Sci., 13, 2805-2813, 2013
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— no matter what the values of wind velocities are, at

4.5 . g

.| Miles[1057] o small enough wave agky the growth rates satisfies

Uiobmfs = the known deep-water limit;
350 * 6m/s  x |
Hessssssgs K % 162 m/s o . L

3L \ e s, ~ L8mfs e | — the consequences of finite are visible asfq aug-

25 s 3% " oy | ments. The coefficieng is lesser than in the deep-
N R % *r, | water limit. Furthermore, if the finite depth wave age

i T rq is kept constant, the growth ragedecreases as the
L3 t, ] wind speed/19 augments.

1r '3 N
05 - +++§ EachU;q curve approaches its oviheoreticalftq-limited

o L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ growthasg goes to zero (no energy transfer). Then, the wave

05 1 2 3 4 5 6 7 8 9 10 propagates steadily without changing its amplitude. @he
O5a at which this happens is lower as the wind speed augments.

Fig. 3. B vs. 64, the wave-age-like parameter. The water depth is Consequently, developed seas are reached fa§ter under mod-
h =3m for all curves above. For this depth, all 10 m wind speedser_ate_v\”nds_than under weak winds. _The_ evolutio uhdgr
account for early drops in the growth rate. The deep-water limitWind intensity and wave age shown in Figs. 3, 4, and 5 is not
kh — oo, originally computed by Miles, is plotted for comparison. @ dynamical one, but rather a collection of wave snapshots
For the lower wind speed, the growth drop occurs closer to deegaken at every step of the growth in height and age.
water. AlthoughU;g =6 ms1 gives a deep-water-like behaviour,
we see that stronger winds imply early (wavelength-wise) drops in4.3 Comparisonyy versusy;

the growth rate.
Very recently, Tian and Choi (2013) investigated experimen-

tally and numerically the evolution of deep-water waves in-

45 ‘ ‘ ‘ ‘ teracting with wind, with breaking effects. They discussed
s BTy v B . the relative importance of Miles’ and Jeffreys’ models and
351 * 162m/s o | showed that Miles’ model may be used for waves of mod-
*\ %bo Hos, Asmls e erate wave steepness under weak to moderate wind forc-
3 % ok B
us L '-.. OO% * | ing, whereas for steep waves under strong wind forcing both
p . o - mechanisms may have to be considered. In this section we
2r “x x ] desire to measure the relative importance of Miles’ mecha-
L5 T b nism versus Jeffreys’ mechanism in finite depth. To do that,
L Tk we follow the idea in Touboul and Kharif (2006). Taking
0.5 - B the derived growth rates from Sects. 3.1 and 3.2, one can
0L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ establish the ratio between them. It reads, with only non-
05128 A f;fd 67 8 9 10 dimensional parameters,
] ) ) ) I'y ™M ST K
Fig. 4. Same as Fig. 3 with = 9 m. The lowest wind speeld; g ~ R=—"—=—=— <— - 6’fd) , (37)
6.0m s 1 is not shown, as the next one already gives us a deep- I'm & B \/C_lo
water limit.

where ny =Ty,' and 13=T5' are the characteristic
timescales of growth for the Miles and Jeffreys mechanism.
45 ‘ ‘ ‘ Hence, we can calcula®(U1g, 65q) to study the evolution of

e . 211118%12;)/71 * h this ratiq with the theoretica_l wave age, for different values
a5l * . . 162 m/s o | of the wind speed. Each point in tliéxy, U1p) plane corre-
‘\%%%O 218m/s o sponds to a water depthbetween 3m and 18m and a dis-
s ", O"o*oo 7 persive parameteith € [Z; 7 |. These boundaries di cor-
3 251 °, %o, * 7 respond to the shallow-water and deep-water limits, as dis-
2r %, Xxx% 7 cussed previously. The results are shown in Fig. 6. When
L5+ . this ratio is significantly greater than unity, it means that the
1F T Jeffreys mechanism acts faster, and dominates. Conversely,
05 L g Miles’ mechanism is dominant for values lower than unity.
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ One can observe in finite depth that the Miles mechanism is

05 1 2 34 5 6 T8 9 10 dominant for mature waves whereas the Jeffreys mechanism
Ora is dominant for younger waves. This comparison stands as
long as the wave isteep enougho induce a sheltering, as

Fig. 5. Same as Fig. 4 with =18 m. 8
discussed before.

Nat. Hazards Earth Syst. Sci., 13, 2805-2813, 2013 www.nat-hazards-earth-syst-sci.net/13/2805/2013/
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22 6 with cg, a, b andd given by Egs. (45), (46), (47), and (48):
20
5
18 cg= %[1+ 2kh/ sinh(2kh)1, (45)
4
16
— gh[1—khT(1—T2)]
Uro (m/s)14 3 a=— i , (46)
" 2w
2 k4 2 9
10 — 1241372
. 1 = 4wr?
2\12
. 0 o4 _ 2[2c+cg(1—T )] 7 (47)
4 5 6 7 8 9 10 1n gh—c3
Ora
d= sé U—12Tw (48)
Fig. 6. (U10, 6t¢) parameter space for continuously varying values = = " 2 .2 :

of R=T3/Tm. In the domain defined bR < 1, the Miles mech- ) _ o _
anism is dominant, whereas fé > 1 the Jeffreys mechanism is For more information about the derivation of the coeffi-

dominant. cientsa and b see Thomas et al. (2012). To derive a di-
mensionless wind-forced NLS equation we use Eq. (26) and
we obtain in the original laboratory variablesandr (after

a Galilean transformation in order to eliminate the linear term
cgix and dropping the hats)

5 Wind-forced nonlinear Schrédinger equation in finite
depth

Let us consider the air/water system fromgaasi-linear
point of view; i.e. the water dynamics is considered nonlin- ine + Anxx + Bln|*n = i Dn,
ear and irrotational and, as in Miles’ theory, the airflow is . .

kept linear. So with this assumption the complete irrotational( 'g)‘ cg: A, B, andD now given by Egs. (50), (1), (52) and
Euler equations and boundary conditions in terms of the ve-

(49)

locity potentialg (x, z, t) are 1 5 172
=— —— |, 50
dxx+¢z=0 for —h<z<n,1), (38) “ 26t |: +9§ T :| (50)
¢,=0 for z=—nh, (39) [1 56; (1 TZ)]
N+ —¢, =0 for z=n(x,1), (40) A=— s (51)
2 2

b+ Spr+ sps+gn=——Pa for z=nx,1). (41) 1 9

27 2 Pw — [TZ 12+ 1377

In Miless’ theory of wave generation (Miles, 1957, 1997), ~ar? efdedw )
the complex air pressurg,; can be_separated into two com- 2 [2% +og(1— TZ)]
ponents, one in phase and one in quadrature with the free  _o74 _ , (52)
surfacen. A phase shift between those two quantities is nec- 8- 05
essary to transfer energy from the airflow to the wave field. 1o
The transfer is only due to the part 8§ in quadrature with ~ ,, _ Sﬁ Y (53)
n. Hence, we will deal only with the acting pressure compo- 2 eg'w
nent, that is,
) Equation (49) is a wind-forced finite depth NLS equation

Pa(x,1) = pafUinx (x,1), (42)  in dimensionless variables.

so that the modified Bernoulli equation reads 5.1 The Akhmediev, Peregrine and Ma solutions for

b+ %qﬁf n %‘Pzz +gn= —SﬂUlznx for z=n(.1). (43) weak wind inputs in finite depth
The classical nonlinear Schrédinger equation provides
a model forfreak wavessee for example Touboul and Kharif
(2006), Touboul et al. (2008), Kharif et al. (2008) and refer-
ences therein. The wind-forced nonlinear Schrédinger equa-
tion allows the study of the wind influence on the freak
wave dynamics (Touboul and Kharif, 2006; Touboul et al.,
iny +ans +bln*n = idn, (44) 2_008; Kharif et al., 2008;_ Onorato and Pro!’nen_t, 2012). Pre-
vious authors have carried out such studies in deep water.

From Egs. (38), (39), (40), and (43) we find a wind-forced
finite depth NLS equation fay as a function of the standard
slow space and time variablés= ¢(x —cgt) andv = &2,
with ¢ < 1 andcg the group velocity. The perturbed NLS
equation reads

www.nat-hazards-earth-syst-sci.net/13/2805/2013/ Nat. Hazards Earth Syst. Sci., 13, 2805-2813, 2013
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Didenkulova, Nikolkina and Pelinovsky (2013) studied the The present work allows us to go ahead and to exhibit ex-
Peregrine breather in water of finite depth without the wind pressions folva, Wp and ¥y under the influence of weak
influence. The present work allows, for the first time, similar wind forcing in finite depth: given by the extended Miles
studies in finite depth with the right Miles growth rates. mechanismThese solutions read (Dysthe and Trulsen, 1999)
In the following we are going only to consider the so-
called focusing NLS equation, i.e. positivasand B. Intro-

o cosh(Q1 — 2iw) — cogw) COg pz)
ducingn’ andx’ as =P 61
an * 4 (@) { cosh Q1) — coqw) cosg pz) } ’ (61)
, X
n'=vBn x=-"F, with p = 2sin(w), Q = 2siN(2w), » real andp related to the
VA . .
spatial period 2/ p,
Eq (49) transforms, dropping the primes, into
q (49) pping the p —P(t){l— A1+ 4it) } 62)
in +mc + In|?n =i Dn. (54) = 1+4z2+1672)°
Introducing a functionM (x, r) as
_p coS Q1 — 2iw) — coshw) cosh pz) (63)
we obtain from Eq. (54) with p = 2sinh(w), 2 = 2sinh(2w) and$2 real and related to

the time period 2/ 2 and
iM; + Myy + exp(2D1)|M |>M = 0. (56) ,
In order to reduce Eq. (54) into the standard form of the £ (1) = ”(T)eXp[ n(rj ]exp[Zir].
NLS with constant coefficients we proceed in the follow-
ing way. First of all we consider the wind forcingD2 to A more detailed analytical and numerical analysis in terms
be weak, such that the exponential can be approximated sof x andr of Eq. (49) will be developed in a future work.
we have

iM, + Mg +n|MPM =0, n=n@t)= 57y & Conclusions

1-2Dt’
_ . We have extended the well-known Miles theory to the finite
- Now with a change of coordinates from, 1) to (z,7) de-  gepth case under breeze to moderate wind conditions. We
fined by have linearized the equations of motion governing the dy-
namics of the air/water interface problem in finite depth, and

2, 1) =xn(), () =1tn(), (58)  \ve have investigated the linear instability in time of a nor-
and scaling the wave envelope as (Onorato and Promenf‘,1al Fourler m_°d‘? C,Jf wave numbkiin M|I§s and Jeffrgys
2012) mechanisms in finite depth. For the Miles mechanism we
have shown that normal modes are unstable and grow ex-
—iDZ? ponentially in time as

M(z,‘l:):\ll(z,‘[)\/n(z')exp< D) ) (59)

. . exp _SP__ t
we reduce Eqg. (57) to the standard focusing equation for 29%Tl/2 ’

Y(z,1):
with g the finite depth Miles coefficient. The curves pf
iV, 4+ Wy 4 | WPW = 0. (60)  agains®sg with kh constant showed essentially that the val-
ues of 8 remain smaller than those corresponding to the

Equation (60) admits well-known breather solutions thatdeep—water limitv6sg. Wind effects on the temporal growth
are simple analytical prototypes for rogue wave events. They,aye peen discussed. From a comparison between the growth
are the Akhmedle\{\('A) (Akhmediev et al., 1987), the Pere- ratesywm andy; a diagram in theétg, Uio) plane displays the
grine (Wp) (Peregrine, 1983) and the Kuznetsov—-Mam)  gomains where the Miles mechanisi & 1) or the Jeffreys
(Ma, 1979) breather solutions. mechanismR > 1) is dominant.

Dysthe and Trulsen (1999) investigated whether freak \ye nave derived for the first time a wind-forced finite
waves in deep water could be modelled by, Wp or by gepth nonlinear Schrédinger equation. The wind forcing is
Wm. Onorato and Proment (2012) considered the influencg,ased on the Miles theory extended to finite depth. This equa-
of weak wind forcing and dissipation on thes, Wp Or  tjon admits the Akhmediev, Peregrine and Kuznetsov—Ma
Wy solutions in deep water. breather solutions for weak wind input in finite depth.
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In this paper we have used the conventional finite depthkawai, S.: Structure of air flow separation over wind wave crests,
NLS second-order envelope equation under the wind action. Bound.-Lay. Meteorol., 23, 503-521, 1982.
The third-order finite depth NLS equations introduced by Kharif, C., Giovanangeli, J.-P., Touboul., C., Grade, L., and Peli-
Slunyaev (2005) could improve the results. novsky, E.. Influence of wind on extreme wave events: experi-
Other factors influence the mechanisms of wave growth mental and numerical approaches, J. Fluid Mech., 594, 209-247,

: I P - . 2008.
u_nder Wm.d action, in ﬂmte.dept.h' fo.r Instance, time varia Lighthill, J.: Waves in Fluids, Cambridge University Press, UK,
tions of wind speed and wind direction, the bathymetry ef- 1978

fects in the field, Iqss of energy by bottpm fri_ction, a_irflow- Ma, Y. The perturbed plane-wave solutions of the cubic
induced surface drifts, turbulence, nonlinear interactions be-  gchrsdinger equation, Stud. Appl. Math, 60, 43-58, 1979.

tween waves, flow separation, dissipation due to white capmakin, V.: A note on the drag of the sea surface at hurricane winds,
ping and so on. Bound.-Lay. Meteorol., 115, 169-176, 2004.

The scope of this paper is not to address all of these pheMiles, J.: On the generation of surface waves by shear flows, J. Fluid
nomena, and they will be treated in a future work. Never- Mech., 3, 185-204, 1957.
theless, we believe that this work could be useful for theMiles, J.: Generation of surface waves by winds, Appl. Mech. Rev,
understanding of wave generation in finite-depth situations, °0-7, R5-R9,1997. _
namely in the coastal zone. The present theory is the first stefflontalvo,  P., Dorignac, J., Manna, M., Kharif, C., and

S Branger, H.: Growth of surface wind-waves in water of fi-
towards more accurate freak wave models in finite depth. nite depth, a theoretical approach, Coast. Eng., 77, 4956,

doi:10.1016/j.coastaleng.2013.02.008, 2013.
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