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Abstract

This work focuses on the linear elastic and thermal properties of real and
virtual, computer-generated fibrous composites. A stochastic microstruc-
ture model is used to generate densely-assembled 3D systems of curved, non
overlapping fibers with specific orientation distributions. This model is first
optimized to approach the characteristics of a real fiber glass polymer by fit-
ting geometrical and statistical parameters, such as fiber orientation, radius,
length, and curvature. Second, random realizations of the stochastic models
that depart from the characteristics of the fiber glass polymer are generated.
The latter, which range from isotropic to transversely isotropic and to or-
thotropic materials, represent plausible virtual fibrous materials. Full-field
numerical computations, undertaken by means of the Fourier-based (FFT)
method, are used to estimate the local and effective mechanical and thermal
responses of the fibrous composites. The anisotropy of the macroscopic re-
sponses as well as the size of the corresponding representative volume element
(RVE) are examined numerically. It is found that the variance of the prop-
erties on a volume V scales as a powerlaw ∼ 1/V α where α < 1, an effect of
long-range correlations in the microstructure. Finally, the overall behavior of
the fiber composites are computed for varying fiber curvature and orientation
distributions, and compared with available analytical bounds. We find that
the fiber arrangement strongly influences the elastic and thermal responses,
less so for the fiber curvature.

0Abbreviations: FFT - Fast Fourrier Transform; RVE - Representative Volume El-
ement; GRP - Glass-Fiber Reinforced Polymer; HS - Hashin-Shtrikman; MPa - Mega
Pascal
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1. Introduction

The use of fibrous composites has recently increased in vast areas of ma-
terial engineering, such as in aeronautics and automotive industry. Their
physical properties largely depend upon the materials microstructure and
fibers arrangement which 2D models can not take into account; accordingly,
a detailed analysis of these materials is required to estimate and understand
their macroscopic behavior. The final goal is to optimize fibrous materials
by means of “virtual material design”. New fibrous materials are virtually
created as realizations of a stochastic model and evaluated with physical
simulations. This allows for material optimization for a specific use, without
constructing expensive prototypes or performing mechanical experiments.

In order to design a practically fabricable material, a stochastic model is
designed and adapted to an existing material and then slightly modified. The
virtual reconstruction of the existing material requires a precise knowledge
of the geometry of its microstructure. We propose and apply a local analysis
of fiber orientation and radius as well as a single fiber tracking approach to
characterize in details the fiber system. In this work, the theory used to
simulate and interpret the elastic and thermal properties of fiber-reinforced
materials is presented, and then applied to a glass-fiber reinforced polymer.

This paper is structured in three parts. The first part on image analysis
and stochastic modeling is used to generate realizations of virtual materials
of fiber systems. The second part is devoted to the local and effective con-
stitutive laws of the material, in mechanics and conductivity, as well as the
numerical method used to solve them. Finally, the method is applied to a
sample of glass fiber reinforced composite.
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2. Microstructure characterization and stochastic models for fi-
brous composites

In this section, the fibrous microstructure, its virtual reconstruction, that
serves as a basis for the physical simulations, and the stochastic fiber models
are presented. We first introduce the material, glass fiber reinforced polymer,
which is the subject of our application. A fiber tracking approach enables
the complete quantification of the fiber system with amount, length, radius
and curvature. Realizations of two stochastic models are considered: the
standard Boolean system of (straight) cylinders and a complex fiber packing
approach, more representative of the measured characteristics of the real
microstructure.

2.1. Glass-fiber reinforced polymer

Glass-fiber reinforced polymer (GRP) consists of a polymer matrix rein-
forced with thin glass fibers. Strong mechanical properties, i.e. high strength,
are achieved when the glass fibers are free of defects. Full glass material
without defects would have comparable strength, however, in contrast to
glass fibers, it is practically impossible to build defect-free full glass mate-
rials. The main properties of GRP are light weight, extreme strength, and
robustness. In comparison to carbon fiber reinforced polymers, the GRP has
lower strength and is less stiff. Still, the GRP is typically far less brittle, and
the raw materials are less expensive. A GRP is stiff and strong in tension
and compression along the mean fiber alignment. In other directions, i.e.
orthogonal to their principal axis, the glass fiber is neither stiff nor strong
with respect to shear. Therefore, the orientation distribution of the fibers
plays a centered role for its physical behavior.

Common uses of GRP include boats, automobiles, baths, hot tubs, water
tanks, roofing, pipes, cladding and external door skins. Details are given
in [5] or [38]. Figure (1a) shows the original gray value image of the glass
fiber reinforced polymer sample, provided by R. Velthuis from the IVW in
Kaiserslautern. The image was recorded by A. Rack and J. Goebbels at the
synchrotron BESSY in Berlin with a pixel sampling of 3.5µm. As shown
in the surface rendering of the binarized image (figure 1b), fibers do exhibit
some small level of curvature.

2.2. Analysis of the microstructure characteristics

The main geometrical and statistical characteristics of the fibrous mi-
crostructure, important for this study, are the volume fraction and the distri-
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(a) 2D sections of the original gray-value image along the xy (left) and
xz planes (right), shown at the same scale.

(b) Surface rendering of the binarized image.

Figure 1: GRP sample from R. Velthuis (IVW Kaiserslautern) recorded by A. Rack and J.
Goebbels at the BAMline (BESSY II, Berlin, Germany) with a pixel sampling of 3.5µm.
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butions of the fiber orientations, radii, lengths and curvatures. We measure
the fiber volume fraction from the binarized image. Use is made of local
analysis techniques to determine the fiber radius and orientation, that are
directly applied on the gray value images [1]. Still, characteristics as lengths
and curvature necessitate a fiber tracking approach, that makes it possible
to follow the path of single fibers. In this respect, an algorithm for single
fiber tracking is proposed in [2].

Figure 2 shows surface renderings of the reconstructed and labeled fibers
versus the surface rendering of the original sample. Although most fibers
are correctly reconstructed, it happens that fibers are split in two parts.
This effect influences only the length estimation. Furthermore, the fact that
most fibers extend over both boundaries of the image, complicates the length
estimation. As such, most techniques used to estimate the average fibers
length are not reliable, independently of the reconstruction.

(a) Binary image. (b) Separated fibers.

Figure 2: Surface label renderings of the original binary image and the separated fibers.

Figure 3 shows the length-weighted radius distribution from the separated
fibers. The term length-weighted is to be understood as weighted statistics
proportional to the fiber lengths, i.e. long fibers contribute more than short
fibers. It is reminded that the number or length-weighted radius distribution
is more accurate than the volume-weighted version [3], as the volume is de-
pendent on the radius and therefore the volume-weighted radius distribution
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is distorted towards larger radii. The normal distribution N (5.44, 0.59) fits
well to the numerically estimated radius distribution as shown in Figure 3.

Figure 3: The empirical length-weighted radius distribution of the reconstructed fiber
system and a fitted normal distribution N (5.44, 0.59).

Figure 4 shows the length-weighted orientation distribution of the fiber
system on the unit sphere from two view angles. We observe a high probabil-
ity of the direction along the z axis and a faint increase on a girdle passing the
z axis. This distribution structure is fitted by a mixture of two β orientation
distributions: one with preferred orientation close to the z axis and a second
independent girdle distribution [4, section 8.3]. The β-distribution [6, 7] is a
non-directed orientation distribution with one global parameter β ∈ R+\{0}.
For β = 1 it results in the uniform distribution on the sphere, for β → 0 the
distribution concentrates on the z-axis and for β → ∞ the orientations are
distributed isotropically in the xy-plane. The probability density function of
the β orientation distribution is:

Pβ(θ, φ |ez) = Pβ(µ |ez) =
β sin θ

4π(1 + (β2 − 1) cos2 θ)3/2
. (1)
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Figure 4: The empirical length weighted orientation distribution of the separated fiber
system on the unit sphere. Accumulation near the z axis and on a girdle passing through
the z pole is observed. The orientation distribution is given by the color scale density on
the unit sphere, shown as stereographic projections from two different perspectives.

where θ and φ are resp. the polar and azimuthal angles, in spherical coordi-
nates, of an orientation µ on the unit sphere. The polar angle θ is the angle
between µ and ez; here Pβ(µ |ez) does not depend on φ. The final orientation
distribution is estimated as:

Pβ-mixed(µ) = qzPβz (µ |µz) + qgPβg (µ |µg) with (2)

qz = 0.393, µz = (0.075,−0.006,−0.997)T , βz = 0.114 (3)

qg = 0.607, µg = (−0.526, 0.849,−0.045)T , βg = 10.1. (4)

Figure 5 shows a visualization of the mixed-β orientation distribution on the
unit sphere.

Furthermore, the mean fiber length is estimated as 340 pixels (1.19 mm)
according to the method proposed in [8], that approximates the mean fiber
length by the lengths of the fiber parts and visible ends. The mean fiber
length is most probably underestimated since, as the fiber tracking was not
always completely successful in reconstructing the fiber with its full length.
The fiber curvature is captured by the parameter of a stochastic model. We
assume that the fiber structure follows a random walk with a multivariate
von Mises-Fisher orientation distribution [23, 24, 22, 12]. The parameters of
this distribution are two preferred directions and their reliability parameters
κ1 and κ2. In our case, the preferred directions are the main fiber orientation
µ1 and the last chosen orientation µi−1. The level of bending is defined by the
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Figure 5: The fitted orientation distribution as a mixture of two β distributions presented
in Equation (2).

reliability parameters. The probability density function for the orientation
distribution of the i-th step in the random walk is

f(µi|µ1, κ1, µi−1, κ2) = c(µ1, κ1, µi−1, κ2) eκ1µ
T
1 µi+κ2µ

T
i−1µi . (5)

The factor c(x1, κ1, x2, κ2) serves for the normalization, such that the integral
over S2 is equal to 1. The normalization factor is

c(x1, κ1, x2, κ2) =
|κ1x1 + κ2x2|

2π(e|κ1x1+κ2x2| − e−|κ1x1+κ2x2|)
. (6)

The curvature parameters are estimated in [8]: κ1 = 30.1612 and κ2 = 109.077.
The parameter κ1 is interpreted as the loyalty to the main fiber orientation
or global straightness of the fiber, whereas κ2 describes the local smoothness
or straightness of the drift of the fiber core.

2.3. Stochastic model

Altendorf et al. [10] introduced a new stochastic model that generalizes
the force-biased packing approach to fibers, represented as chains of spheres.
This structure gives the fibers a flexible behavior during the packing process.
The starting configuration is first modeled using random walks, where two
parameters (κ1 and κ2) in the multivariate von Mises-Fisher orientation dis-
tribution control the bending. Adding an initial placement strategy to place
the fibers at locations with minimal overlap reduces the computation time
of the packing algorithm [11]. The final fiber configuration is obtained as an
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equilibrium between repulsion forces (avoiding crossing fibers) and recover-
ing forces (ensuring a correct fiber structure). In the model, the fibers do
not interpenetrate but contact is allowed. This approach provides for high
volume fractions of up to 72%.

The parameters for the stochastic modeling are adapted to the real mi-
crostructure, as they are extracted from the previously described recon-
structed fiber system. An overview of the parameters is presented in Table 1.

Parameters Values Remarks

Vol. Fraction VV = 15.01% measured on
the binarized image

Radius Distribution PR = N (5.44 pixels, 0.59 pixels) fitted normal
= N (19.04 µm, 2.065 µm) distribution

Mean Length L̂ = 340 pixels = 1.19 mm measured on
separated fibers

Global, local straightness κ̂1 = 40, κ̂2 = 120 (resp.)
Orientation Pβ−mixed(µ) (see equation 2) fitted distribution

Table 1: The model parameters estimated from the reconstructed fiber system or the
binary image of the real material and used as an input for the stochastic model.

Additionally to the force-biased fiber packing, a Boolean cylinder model,
where fibers are randomly placed using a Poisson point process, is considered
with the same orientation characteristics except for the curvature. To study
the influence of the microstructure on the physical behavior of the material,
different parameter sets are tested for the orientation distribution and the
fiber bending. We study three groups of microstructures and let one (or
two) microstructural parameters vary in each group. In all microstructures
considered hereafter we fix the fibers volume fraction, their radius distribu-
tion and mean length to values given in table (1). The fibers aspect ratio
is likewise fixed by the fibers length and radius. This leaves the orientation
distribution and curvatures left to define. In the first group of microstruc-
tures, the fibers bending is fixed by κ̃1,2 = 40, 120 and the fibers orientation
follow a β-distribution, i.e. the microstructure are transverse isotropic with
symmetry axis z. Increasing values of β ≥ 0 are used to simulate different
fiber orientations. The “z-preferred”, isotropic and planar distributions are
recovered when β � 1, β = 1 and β � 1 resp.
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The second group of microstructures consists of a combination of two β-
distributions oriented along µz and µg (see equation 2). The two distributions
have weight q and 1− q, resp., with varying q. Transverse isotropic orienta-
tion distributions are recovered when q = 0 or q = 1, whereas in general an
orthotropic distribution is found when 0 < q < 1. The fibers bending is fixed
by the parameters κ̃1,2 so that the stochastic model fitted to the real mate-
rial is recovered when q ≈ 0.39. Finally, the third group of microstructures
consists in orthotropic distributions of fibers. Again, we use a combination
of two β-distributions along µz and µg but with q fixed to q ≈ 0.39. In-
creasing values of the straightness parameters κ1 and κ2 are considered to
model the effect of fibers bending. Straight cylinders are found in the limit
κ1,2 � 1. The stochastic model fitted to the real material is recovered when
κ1,2 = κ̃1,2. For the first two groups of microstructures, we consider Boolean
models of straight cylinders with the same geometrical parameters for the
radiuses, mean length and orientation distribution, for comparison purpose.
Some of the microstructures that belong in each group are shown in Figure
6.

(a) Orientation distributions on the unit sphere

(b) Realizations of the orientation distributions in (a)

Figure 6: Variety of orientation distributions and their realizations. From left to right:
transversely isotropic Z-pref. (β = 0.05), Z-pref. (β = 0.3), Planar (β = 5) and Planar
(β = 30), and two orthotropic mixed-β distributions with q = 0.2 and q = 0.8.

3. Mechanical and thermal properties of a fibrous material

This section is devoted to the mechanical and thermal properties of fi-
brous materials, and to the underlying physical models adopted in this work.
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Equations governing the local and overall elastic response of fibrous materi-
als are given in section 3.1. The different types of microstructure anisotropy
and the resulting forms of the macroscopic elastic tensor, in particular, are
discussed in sections 3.1.1, 3.1.2 and 3.1.3. Section 3.2 addresses the thermal
response of the materials. The materials properties are numerically solved by
means of full-field FFT computations, which is recalled briefly in section 3.3.
Section 3.4 reports the available analytical bounds for the effective properties
and their relevance for different anisotropy cases. Finally, the representative
volume element is defined in section 3.5.

3.1. Linear Elasticity

Under small deformation, we assume that the composite materials con-
sidered in this work follows the classical assumptions of micro-mechanics
with linear elastic behavior [16, 29, 30, 9, 37, 32, 13]. The local stress
and strain tensors σ̃(x) and ε̃(x) at point x are related by Hooke’s law
σ̃ij(x) = C̃ij,kl(x)ε̃kl(x) (i, j, k, l = 1, ..., 3) where the local response of

the material at point x is given by the 4th-order stiffness tensor C̃ij,kl(x).
This tensor depends only on the phase at point x, i.e. on the fiber or matrix
constitutive laws. Under the hypothesis of small deformation, the local strain
is expressed in terms of the local displacement vector u as

ε̃(x) = (1/2)[∂iuj(x) + ∂jui(x)],

whereas stress equilibrium reads

∂iσ̃ij(x) = 0,

where ∂i is the derivative over xi. Strain loading is applied on a volume Ω by
means of periodic boundary conditions so that the overall strain ε = 〈ε̃(x)〉Ω is
prescribed. The effective response of the material is defined by the resulting
overall stress σ = 〈σ̃(x)〉Ω. Here the overall stress and strain follow Hooke’s
law at the macroscopic scale as well, i.e.

σij = Cij,klεkl for i, j, k, l ∈ {x, y, z}. (7)

Accordingly, the stiffness tensor Cijkl completely defines the material overall
behavior. Due to the microstructure anisotropy, however, the tensor Cijkl
follows, in general, triclinic (i.e. full) anisotropy, which comprises 21 elastic
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moduli. In the Voigt notation [32]:

σxx
σyy
σzz
σyz
σxz
σxy


=



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66


·



εxx
εyy
εzz
εyz
εxz
εxy


, (8)

where (Crs)1≤r,s≤6 is a second-rank symmetrical tensor. Statistical symme-
tries related to particular microstructures reduce the number of independent
components, as explained in detail in the following subsections. The stiffness
matrix is numerically estimated by examining several strain loading direc-
tions ε and the resulting stress tensor σ. The following loading modes for the
strain tensor are considered:

εC =

 1 0 0

1 0

1

 , εS1 =

 1 0 0

1 0

-2

 , εS1b =

 1 0 0

-2 0

1

 , (9)

εS2 =

 0 1 0

0 0

0

 , εS3 =

 0 0 0

0 1

0

 , εS4 =

 0 0 1

0 0

0

 . (10)

The resulting stress tensors σC,S1,S1b,S2,S3,S4 give the full stiffness matrix
Crs, which is equivalently represented by the axis dependent Young’s moduli
E and Poisson’s ratios ν, as well as the shear moduli G. The bulk modulus
K is likewise extracted from σC,S1,S1b,S2,S3,S4. The latter is defined here
as the ratio of mean stress σm = (σCxx + σCyy + σCzz)/3 to the relative volume
change ∆V/V , i.e.

K =
σm

∆V/V
=

σm
εxx + εyy + εzz

=
σCxx + σCyy + σCzz

9
. (11)

3.1.1. Isotropy

In isotropic media, the elasticity tensor is invariant by rotations of the co-
ordinate system. It is reminded that fibrous materials are isotropic whenever
the fiber orientations are isotropically distributed. In that simple case, the
stiffness matrix reduces to two independent scalars C11 and C44, as shown in
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equation (12) with C11 =
E(1−ν)

(1+ν)(1−2ν)
and C44 = E

(1+ν)
as diagonal elements.

The non-diagonal values are equal to C11 − C44 or zero as shown below

Crs =



C11 C11-C44 C11-C44 0 0 0

C11-C44 C11 C11-C44 0 0 0

C11-C44 C11-C44 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (12)

Accordingly, it is sufficient to apply two strain loading modes, compression
εC and shear strain defined as

εS = εS2 + εS3 + εS4 =

 0 1 1

0 1

0

 . (13)

The resultant stress tensors σC and σS simplify to σm =
σCxx+σCyy+σCzz

3 and

σd =
σSxy+σSyz+σ

S
xz

3 , from which the elastic moduli are computed as follows:

ν =
σm − σd
2σm − σd

, E = σd(1 + ν), and G =
σd
2
. (14)

3.1.2. Transverse Isotropy

For a transversely isotropic microstructure, the stiffness matrix simplifies
to 5 independent values. Assuming the latter is the z-axis, the material
properties do not change under rotation around the z-axis. Accordingly,
the material is statistically isotropic along planes orthogonal to z. This is
in particular true for fiber systems with the β distribution as global fiber
orientation distribution. In this situation, Hooke’s Law reads

Crs =



1−νpzνzp
EpEz∆

νp+νpzνzp
EpEz∆

νzp+νpνzp
EpEz∆

0 0 0

νp+νpzνzp
EpEz∆

1−νpzνzp
EpEz∆

νzp+νpνzp
EpEz∆

0 0 0

νpz+νpνpz
E2
p∆

νpz(1+νp)
E2
p∆

1−ν2p
E2
p∆

0 0 0

0 0 0 2Gzp 0 0

0 0 0 0 2Gzp 0

0 0 0 0 0
Ep

1+νp


, (15)
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with ∆ =
(1+νp)(1−νp−2νpzνzp)

E2
pEz

. The 5 engineering constants in the stiffness

matrix are the “parallel” and “transverse” Young’s modulus Ez and Ep, along
the z axis and xy plane, Poisson’s ratios νp and νpz and the shear modulus
Gzp [25]. Poisson’s ratio νzp is related to νpz by νpz/Ep = νzp/Ez. The four
strain loading modes εC,S1,S2,S3 are sufficient to compute Crs:

C44 = σS3
yz , C33 =

σCzz − σS1
zz

3
, C13 =

σCxx − σS1
xx

3

C11 =
1

3
σCxx +

1

6
σS1
xx +

1

2
σS2
xy , C12 =

1

3
σCxx +

1

6
σS1
xx −

1

2
σS2
xy .

Or equivalently:

Gzp =
1

2
C44, νzp =

C13
C11 + C12

, νp =
Ep

C11 − C12
− 1,

Ez = C33 −
2C2

13
C11 + C12

, Ep =
(C11 − C12)

[
C33(C11 + C12)− 2C2

13

]
C11C33 − C2

13

.

3.1.3. Orthotropic Materials

A material is orthotropic if its mechanical and thermal properties are de-
scribed by three perpendicular axes. The classic example for orthotropy is
a partial cutout of wood. The three axes of wood are: the fiber directions,
the direction tangential to visual part of the growth rings and the direction
normal to the growth rings. This example yields only for a wood panel. A
slice of wood with the complete growth rings would be transversely isotropic.
In particular, fiber-reinforced materials are orthotropic when the fiber ori-
entation distribution is a combination of two β distributions oriented along
orthogonal axes. In the case of orthotropic materials, the stiffness matrix is
described by 9 values as follows:

Crs =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (16)

For the computation of the stiffness matrix Crs, all 6 strain modes as de-
scribed in Equation (10) are required. The values Crs of the stiffness matrix
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are given by

C44 = σS3
yz C13 =

σCxx − σS1
xx

3
C12 =

σCxx − σS1b
xx

3
(17)

C55 = σS4
xz C23 =

σCyy − σS1
yy

3
C22 =

σCyy − σS1b
yy

3
(18)

C66 = σS2
xy C33 =

σCzz − σS1
zz

3
C11 =

σCxx + σS1
xx + σS1b

xx
3

. (19)

The inverse of the stiffness matrix, known as the compliance matrix, is de-
scribed by

C−1
rs =



1
Ex

−vxyEx −vxzEx 0 0 0

−vxyEx
1
Ey

−vyzEy 0 0 0

−vxzEx −vyzEy
1
Ez

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gzx

0

0 0 0 0 0 1
2Gxy


. (20)

In particular, the lower right part leads directly to the following relations:

Gyz =
1

2
C44, Gzx =

1

2
C55, Gxy =

1

2
C66 (21)

By inverting the upper-left part of the stiffness matrix Crs, the following
relations are found:

Ex =
D

C22C33 − C2
23

vxy = −Ex
C13C23 − C12C33

D
(22)

Ey =
D

C11C33 − C2
13

vxz = −Ex
C12C23 − C13C22

D
(23)

Ez =
D

C11C22 − C2
12

vyz = −Ey
C13C12 − C23C11

D
(24)

with D = C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12.

Inversely, assumptions of orthotropy, transverse isotropy or isotropy are
verified, in terms of the material response, by inspecting the complete stiff-
ness matrix. This necessitates numerical computations for at least 6 loading
modes, for which the strain tensors are linearly independent. With the 6
resulting stress tensors, all 21 values of Crs of the stiffness matrix can be
reconstructed and symmetries verified.
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3.2. Linear Thermal Conductivity

For steady-state conduction, the material local thermal behavior is de-
fined by Fourier’s law q̃i(x) = k̃(x)Ẽi(x) where k̃(x) is the phase-dependent
thermal conductivity (measured in Watt per meter Kelvin), Ẽ(x) = −∂iT (x)

is the opposite of the temperature gradient (measured in Kelvin per me-
ter), and q̃(x) is the heat flux vector (measured in Watt per square meter).
Heat flux conservation reads ∂iq̃i(x) ≡ 0. As in the elastic case, periodic
boundary conditions are applied so that a macroscopic temperature gradient
is prescribed over a volume Ω, i.e. E = 〈Ẽ(x)〉Ω is given. The overall heat
flux q = 〈q̃(x)〉Ω is linearly related to E as qi = kijEj where the anisotropic
second-rank tensor k completely defines the macroscopic thermal behavior
of the microstructure.

For the isotropic and anisotropic fibrous media considered here, the con-
ductivities k is represented in the (x, y, z) axes as a diagonal tensor. In the
isotropic case, all principal values kii are equal. In the case of transverse
isotropy around the z axis, the conductivity in the x and y directions are
equal: k11 = k22 = kp and differs from that in the z direction k33 = kz. In
the orthotropic case, all directions are treated separately: kii 6= kjj if i 6= j.
A macroscopic temperature gradient is applied over the samples so that E is
set to:

EC1 =

 1

0

0

 , EC2 =

 0

1

0

 , and EC3 =

 0

0

1

 . (25)

In the case of transverse isotropy, it is sufficient to consider the applied
temperature difference EC3 and any of EC1 or EC2, whereas, for isotropic
media, EC1,C2,C3 are statistically equivalent.

3.3. Full-field Fourier-based computations

The local and apparent macroscopic elastic and thermal fields of the fi-
brous realizations are readily determined using the Fast Fourier transform
method [26, 28]. The method has been applied successfully to compute the
mechanical response of composites and is not limited to materials with lin-
ear responses [35, 36]. The so-called accelerated scheme algorithm [15], par-
ticularly efficient to treat highly contrasted composites, is used, thanks to
the software Morph’Hom [34, 14], developed at the Center of Mathematical
Morphology in Fontainebleau. This image-based numerical method does not
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necessitate prior meshing; equilibrium or heat flux conservation are, in par-
ticular, treated locally in the Fourier domain. Binary images are seen as the
elementary cell Ω of a periodic microstructure, accordingly to the Fourier
representation. More precisely, stress equilibrium (resp. heat flux conser-
vation) is enforced along the cell boundary ∂Ω, so that σ · n (resp. q · n) is
anti-periodic, where n is the normal along the boundary ∂Ω directed outward.
Macroscopic loading conditions are applied so that the overall deformation
〈ε̃(x)〉Ω (resp. the mean temperature gradient field 〈Ẽ(x)〉Ω) are prescribed

by setting, in the Fourier domain, FFT (ε̃; r = 0) = ε and FFT
(
Ẽ; r = 0

)
= E

where r is the wave-vector.

3.4. Bounds for the effective mechanical and thermal properties

Numerical results are compared with the well-known Hashin and Shtrik-
man bounds [17, 27], hereafter referred to as HS bounds:

K − c1K1 − c2K2 ≤ −c1c2(K1 −K2)2

c2K1 + c1K2 + (2− 2/d)G1
,

≥ −c1c2(K1 −K2)2

c2K1 + c1K2 + (2− 2/d)G2
,

G− c1G1 − c2G2 ≤ −c1c2(G1 −G2)2

c2G1 + c1G2 + [dK1/2 + (4− 8/d)G1]/(2 +K1/G1)
,

≥ −c1c2(G1 −G2)2

c2G1 + c1G2 + [dK2/2 + (4− 8/d)G2]/(2 +K2/G2)
,

k2 +
dc1k2(k1 − k2)

dk2 + c2(k1 − k2)
≤ k ≤ k1 +

dc2k1(k2 − k1)

dk1 + c1(k2 − k1)

where d = 2, 3 is the dimension, c1 = 15% is the fiber volume fraction and
c2 = 1 − c1. In elasticity, these bounds extend to Young’s modulus (in 2D
and 3D) and Poisson’s ratio (in 3D) with:

E =

[
1

d2K
+

1

(6− d)G

]−1
, ν =

3K − 2G

2(3K +G)
.

The 3D HS bounds apply to isotropic distributions of fibers only. For arbi-
trary fiber distributions, the broader Reuss and Voigt bounds in elasticity
and the Wiener bounds in conductivity, i.e. the geometric and arithmetic
phase properties average, hold. For comparison purpose, we also consider
the 2D Hashin and Shtrikman bounds, appropriate to plane strain problems
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and the (3D) self-consistent estimates. The self-consistent bulk and shear
moduli K∗ and G∗ are the solutions of [18]:

2∑
j=1

cj(Kj −K∗)
Kj − 4G∗/3

=

2∑
j=1

cj(Gj −G∗)
Gj +G∗[(3/2)K∗ + (4/3)G∗]/(K∗ + 2G∗)

= 0,

whereas in conductivity we solve:

2∑
j=1

cj
kj − k∗

kj + 2k∗
= 0.

3.5. Representative Volume Element

The representative volume element (RVE) is a volume of “minimal” size
that exhibits a behavior “representative” for a real microstructure. Consider
a local (elastic or thermal) field Z(x) and its mean over V , sZ = 〈Z(x)〉V =

(1/V )
∫
V Z(x)dx. The variance of the random variable sZ is given by

D2
Z(V ) =

D2
Z(1) Aα3
V α

, V � A3 (26)

where D2
Z(1) = 〈Z(x)2〉V − sZ2 is the point variance, A3 is the integral range

in 3D, and α ≤ 1. The quantity D2
Z(V ) is estimated by computing the mean

of the field Z(x) over m independent samples of size V [21, 20, 31] as follows

D2
Z(V ) =

1

m

m∑
i=1

(〈Z(x)〉Vi −
sZ)2. (27)

This approach allows one to verify that the scaling relation given in equation
(26) applies in a range of volume sizes V , much larger than A3 so that the
number of subvolumes is large enough to compute a variance. Note that
in materials with finite correlation lengths, α = 1. This relation breaks
down when considering degenerate microstructures with infinite correlation
lengths [19], resulting in much larger RVE sizes. In this respect, α = 2/3

for the scaling law of the volume fraction of Boolean varieties of infinite
fibers [19]. Accordingly, we expect non-integer values of α as well for the
mechanical effective properties of our fibrous microstructures.
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The volume V is chosen so that sZ is a good estimate of the effective
response for stress or heat flux of the material. The relative error εrel and
the absolute error εabs on the effective property sZ depend on the sample
volume V of n independent realizations by

εrel =
εabs

sZ
=

2DZ(V )
sZ
√
n

(28)

At a given relative error εrel (typically 1%), the RVE size is

VRVE =

(
4 D2

Z Aα3
ε2rel

sZ2 n

)1/α

. (29)

The choice of Z(x) is driven by the physical property one wish to con-
sider. For instance, when hydrostatic strain loading is applied, Z is set to
the mean stress component σm, so that sZ is, up to a constant, an estimate of
the macroscopic bulk modulus. More generally, one would choose Z(x) equal
to the energy density in the system. Local fluctuations are induced by the
microstructure and by the contrast of properties between the phases, as well
as on the boundary conditions. In that respect, the use of periodic bound-
ary conditions is known to minimize the RVE size compared to traditional
kinematic or static uniform boundary conditions, as used in finite element
computations [20].

4. Simulation results: elastic and thermal responses

In this section, results for the elastic and thermal responses of the stochas-
tic models and of the original segmented material are given. Computations
are based on binarizations of the microstructures. The mechanical and ther-
mal properties for the fibers and surrounding matrix are given in Table 2.
The effective properties of the different microstructures are determined by the
full-field results computed by the FFT method, as discussed in Section 3.3.
Furthermore, the results are compared to the theoretical Hashin-Shtrikman,
Reuss-Voigt and Wiener bounds. The size of the representative volume ele-
ment (RVE) is finally computed for a cubic, elongated or flat window.

Examples of the elastic local fields computed by the FFT method are
shown in Figure 7. The latter represent four 2D maps of the mean stress
component σm and of the stress component σxx − σyy, cut along the (x, y)

plane, for two isotropic and transversely isotropic fibrous models (top and
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Young’s Poisson’s Bulk Shear Thermal

Modulus Ratio Modulus Modulus Conductivity

Ẽ [MPa] ν̃ K̃ [MPa] G̃ [MPa] k̃ [W/mK]

Glass Fibers 72000 0.22 42857 29508 1

Polymer Matrix 2002 0.39 3033 720 0.2

Table 2: Elastic moduli and thermal conductivity of glass fibers and surrounding polymer
matrix, from [31].

bottom, respectively). The component σxx − σyy, transverse to the applied
loading, exhibits heterogeneous local stress depending on the fibers orien-
tation (unsurprisingly, positive if the fibers are directed parallel to the x

direction, negative in the y direction, as seen in the top and bottom right
maps). Fluctuations inside the fibers are most visible in the maps for the
mean stress field σm (top and bottom left), parallel to the applied loading.
More precisely, the mean stress field is highest along a fiber at places cross-
ing or close to another fiber, a feature reminiscent of previous observations
in granular media [33].

4.1. Anisotropy of the stochastic model responses

In the numerical computations, the orthotropic, transversely isotropic and
isotropic behaviors of the various fibrous microstructures are only conveyed
approximately, due to finite-size effects. In this section, the deviation of the
stiffness matrix with respect to the symmetries of the ideal isotropic models is
evaluated. Optimally, the matrices fulfill the symmetries described in Section
3.1. First, for one arbitrarily chosen realization of the isotropic orientation
distribution, the following stiffness matrix is found:

Cisotropic =



6391.44 3394.00 3365.64 -28.85 46.35 -26.38

3399.60 6502.43 3436.42 -105.23 -3.08 -55.95

3378.52 3445.55 6394.85 -121.69 28.27 -12.45

-60.56 -216.24 -243.37 3118.67 -26.98 -14.06

95.22 -9.02 57.00 -27.72 3053.90 -79.30

-56.45 -114.16 -24.90 -14.06 -76.42 3072.67


. (30)

This is to be compared with the form (12) of the matrix in the isotropic case,
which depends on two parameters (section 3.1.1). The absolute of the values
expected to be zero do not overrun 250, which is less than 8% of the smallest
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Figure 7: 2D sections along the (x, y) plane of the mean stress field σm(x) (left) and of the
stress component σxx(x)− σyy(x) (right) in fibrous microstructure models with isotropic
(top) and transversely isotropic (bottom) distribution of fibers; hydrostatic strain loading
with 〈εm(x)〉 = 1 is applied. The mean stress components have been thresholded to
highlight the fields structure.
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value on the diagonal. The diagonal values are not independent and match
the isotropic symmetries up to small corrections. The mean of non-diagonal
values in the top-left quarter is 3403.29, which is close to the difference of the
mean of C11 and C44: 3347.83. Accordingly, all symmetries for the simulated
isotropic material are respected up to a relatively small deviation.

Second, two randomly chosen microstructure realizations, one having
transverse isotropy with axis of rotation along z and one generated using
a girdle orientation distribution (see equation 15), are considered. The cor-
responding stiffness matrices are

Cz-preferred =



5179.43 2982.40 3141.73 1.74 -1.74 -1.91

3016.38 5031.73 3051.98 -1.56 -15.69 -3.59

3090.30 3047.32 11227.94 0.84 31.92 2.49

3.77 -3.22 0.46 2344.22 1.90 -30.44

-5.24 -31.39 69.54 1.58 2466.12 3.94

-0.91 -7.18 4.13 -31.88 3.94 2061.38


(31)

and

Cgirdle =



7799.50 3780.97 2972.98 -0.92 6.37 12.02

3780.97 7554.32 2975.42 -13.65 2.03 37.79

2972.63 2974.84 5078.91 -7.09 -3.53 1.22

-1.44 -28.11 -14.18 2169.46 5.12 -1.06

13.37 3.39 -7.06 5.12 2181.00 5.45

23.42 75.01 1.81 -0.62 5.40 3820.53


. (32)

The highest value among the ones which ideally vanish in equation (15) is
75, which is less than 4% compared to all other non-vanishing values. The
symmetry in x and y directions is approximately given as well. The equality
of the lower right value to C11 − C12 remains to be checked. The stiffness
matrix for the z preferred orientations yields C11 − C12 = 2197.03 versus
C33 = 2061.38 and for the girdle orientation, it yields C11 − C12 = 4018.53

versus C33 = 3820.53. Both results show a relatively small discrepancy of
less than 5%. Accordingly, the transverse isotropy for the simulated material
with single β distributions (either aligned or planar) is verified.

Finally, for general orthotropic microstructures, it is sufficient to verify
that the values in the upper-right and lower-left quarters of the stiffness ma-
trix as well as outside of the diagonal in the lower-right quarter, are small
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compared to the rest (equation 16). For an arbitrary realization of an or-
thotropic type microstructure it is found that

Cortho =



6066.10 3348.66 3404.30 1.66 -25.59 524.42

3360.65 5405.84 3210.74 35.35 8.05 228.07

3404.30 3202.34 8538.99 139.00 -128.68 191.09

3.33 66.74 277.99 2652.07 403.67 6.86

-51.19 15.67 -257.37 403.67 3081.05 13.26

1026.54 430.45 373.77 6.29 12.84 2823.16


. (33)

Furthermore, the stiffness matrix of the original microstructure reads

Corig =



5933.17 3283.14 3541.18 4.87 -55.50 445.01

3283.14 5326.58 3210.82 28.35 26.48 190.44

3509.92 3197.54 8994.90 59.21 -186.21 320.97

7.66 53.62 121.16 2733.97 697.23 35.24

-107.38 48.60 -372.41 683.03 3376.96 5.86

859.89 366.84 655.95 35.24 6.89 2709.74


. (34)

The highest value in places where elastic moduli of orthotropic media vanish
is 1026.54. This value is not comparatively much smaller than the others.
However, as there are only few outliers in the part, that is supposed to
vanish, we still treat the material under conditions of orthotropic symmetry.
The physical responses will be treated as approximations of the effective
properties.

4.2. Representative Volume Element

The Representative Volume Element (RVE), introduced in section 3.5, is
computed for various physical properties on realizations of the fiber model.
Three types of orientation distributions are considered: z-preferred (β =

0.05), isotropic (β = 1) and planar (β = 30). Realizations of the stochastic
model for cubic images with a volume of 6003 pixels are used, with parameters
of the models given in table 1. Periodic boundary conditions are applied.
It is reminded that the mean values of the elastic or thermal fields over a
volume give the apparent properties of the considered size. The variance of
such mean values over non-overlapping subvolumes is computed at increasing
volume sizes. As a complement to cubic RVEs, we also make use of RVEs
with elongated (or shortened) cuboidal shapes of the form `x × `y × `z with
`x = `y and either `x,y/`z = 10 (“plate” shape) or `x,y/`z = 0.1 (“long”
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shape), which respect the transverse isotropy of the fibers arrangement. Such
forms allow to increase the statistics (or representativeness) in the x and y

plane at the expense of that in the z direction and vice-versa, and to improve
on the precision of the elastic moduli and thermal conductivity.

The variance D2
Z(V ) of the apparent elastic moduli and thermal conduc-

tivity 〈Z〉V are first computed in subdomains of volume V . A powerlaw
∼ 1/V α is fitted with respect to the subvolume size V � A3. An example is
show in figure (8) for the bulk modulus K and z-preferred orientation dis-
tribution (β = 0.05), where the variance is represented as a function of the
volume V in log-log scale. A region of interest is selected. On the one hand,
the powerlaw is not valid for small (� A3) volume sizes. On the other hand,
the precision of the variance deteriorates for large volumes due to a small
number of configurations (8 for the larger sizes). To estimate the precision
of the parameters of the fitted law, three regions of interest are manually
selected in figure 8 resulting in three fitted laws. The resulting RVEs differ
from 3813 to 4823 voxels. Likewise, the fitted exponent α varies but is close
to 0.8. The variation in the exponent and RVE size estimates are, according
to the theoretical constraints outlined above, an effect of the relatively small
observation window of less than two decades. Improved precision should be
achieved with either larger sizes or a higher number of realizations.

The region of interest is accordingly selected by setting a minimal subdo-
main volume Vs and a minimal amount of subvolumes me. These values for
the volume limits vary with the shape of the subvolume and are numerically
adapted to the curves. We manually choose (Vs;me) = (104; 10), (104; 15) and
(2× 104; 120) for cubic, plate and elongated shape respectively.

Table (3) shows the RVE size required to achieve a relative precision of
1% for the estimation of various effective physical properties using the three
cubic and cuboidal (“plate” and “long”) RVE shapes. The relative error for
a cubic volume of size 4003 voxels is given as well. Some of the correspond-
ing variance curves are shown in figures (9), (10), (11), (12), (13) and (14),
corresponding resp. to the bulk K and shear Gzp elastic moduli for a z-
preferred orientation distribution, volume fraction VV and bulk modulus K
for isotropic fibers distribution, and thermal conductivity components kp and
kz for a planar fibers distribution. As shown in Table 3, the relative error
for ten realizations of 4003 voxels each varies from 0.29% to 1.86%. This con-
firms a posteriori the validity of the computations undertaken in this work.
Furthermore, much improved precision are achieved when using a flat vol-
ume shape. For instance, the use of 10 configurations of a flat volume shape
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Figure 8: RVE sizes for the bulk modulus K in a fibrous microstructure with z-preferred
orientation distribution (β = 0.05): variances of the apparent bulk modulus K vs. volume
size computed from FFT data. Solid lines: numerical fits by a powerlaw ∼ 1/V α. The
three fits correspond to three manually-selected zones of interest.

(in the xy plane) with a height of 21 voxels is sufficient to estimate numeri-
cally the thermal conductivity components kx and ky of a fiber system with
z-preferred direction at 1% relative error. In the literature, nearly parallel
fiber systems are often approximated by computations on 2D images of discs,
assuming infinite parallel fibers. Considering 2D cuts of the microstructure,
the deviation along the z axis is not taken into account. However, the influ-
ence of the deviation parameter β in media with a preferred orientation is
not negligible. The bottom four lines of table (3) give the ratio of cuboidal
RVE sizes with respect to a cubic RVE for a required relative precision of
1 or 5%. The optimal choice of the RVE depends on the fiber orientation,
but also on the considered tensorial component. RVE with flat shapes (of
the “plate” type) are best for estimating the bulk and shear moduli K and
Gzp, and the thermal conductivity components kz and kp of microstructures
with z-preferred fiber orientation. For an isotropic distribution, the plate
(resp. long) shape gives the best result for the elastic moduli K and Gzp
(resp. thermal conductivity k). For a planar orientation distribution, the
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plate (resp. long) shape is the best choice for the shear modulus Gzp and
conductivity component kz (resp. the thermal conductivity planar compo-
nent kp) whereas a cubic shape is preferred for computing the bulk modulus
K.
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Figure 9: Variance of the apparent bulk modulus K with respect to the volume (in vox-
els) of cubic, plate and long RVE shapes, for fiber packing with z-preferred orientation
distribution (β = 0.05).

Finally, it is useful to compare the above results with that found in [31],
where the authors compute the RVE size of the apparent surface fraction of a
system of parallel fibers, equivalent to a 2D microstructure, with mean fiber
diameter 16µm. The authors determined the RVE as a surface of 1311µm
sidelength, for n = 100 realizations and a relative error of 1%. This is to be
compared with a fibrous microstructure with plate shape, as considered in
this work, where the fiber radius is 5.44 pixels. Assuming a voxel sampling of
1.47µm voxel, and flattening the volume to 1 voxel thickness, a 2D section is
recovered. Such conversion results in a 2D section of 1687µm sidelength. As
the fibers in the 3D stochastic model are not completely parallel nor straight,
it is reasonable that the RVE is slightly higher than in [31].
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Figure 10: Variance of the apparent shear modulus Gzp with respect to the volume (in
voxels) of cubic, plate and long RVE shapes, for fiber packing with z-preferred orientation
distribution (β = 0.05).
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Figure 11: Variance of the apparent volume fraction VV with respect to the volume (in
voxels) of cubic, plate and long RVE shapes, for isotropic fiber distribution (β = 1).
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Figure 12: Variance of the apparent bulk modulus K with respect to the volume (in voxels)
of cubic, plate and long RVE shapes, for isotropic fiber distribution (β = 1).
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Figure 13: Variance of the apparent planar thermal conductivity component kp with re-
spect to the volume (in voxels) of cubic, plate and long RVE shapes,for a planar orientation
distribution (β = 30) of fibers.
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Figure 14: Variance of the apparent transverse thermal conductivity component kz with
respect to the volume (in voxels) of cubic, plate and long RVE shapes,for a planar orien-
tation distribution (β = 30) of fibers.

30



5. Effective response vs. fiber distributions

FFT results for the elastic and thermal responses of various fibrous mi-
crostructures are represented in figures (15) to (19) as well as analytical
bounds and estimates. The elastic and thermal properties are bounded by
the general Reuss and Voigt or by the Wiener bounds only (magenta lines).
The response of the isotropic microstructure is also bounded by the sharpest
3D Hashin and Shtrikman bounds (black dots), whereas the 2D HS bounds
(orange lines) and the self-consistent estimates (cyan dots) are shown for
comparison.

5.1. Young’s moduli

Results for Young’s moduli are shown in figure 15. As expected, the mate-
rial is reinforced in the direction of the fibers. Since the fibers are stiffer than
the matrix, the stiffness of the composite is higher in the preferred direction
of the fibers. For a planar orientation distribution the Young’s modulus is
also stronger in the planar directions, but the difference is smaller compared
to z-preferred orientation distribution. The right part of the parameter sets,
with varying κ1,2 values describes different fiber curvatures. These param-
eter sets are divided in four sets, which are ordered by increasing global
straightness or decreasing global bending. The microstructures in each set
are ordered by increasing local straightness. The stiffness in the z-direction
increases with the fiber straightness. In the y direction only a small decrease
is observed, whereas no visible trend appears in the x direction.

As expected, the Boolean model of cylinders, with straight fibers and more
connected fiber system, always has higher stiffness than the corresponding
model with bending fibers. We note however that Boolean media are not
realistic models of glass fibers, where no interpenetration occures. Overall,
the properties of the real microstructure and of the corresponding orthotropic
model are close to each other, which confirms that the structure of the real
material is correctly simulated by the stochastic model.

5.2. Poisson’s ratios

The Poisson ratios νxy,yz,xz are represented in figure (16). They strongly
depend on the fibers directions. For tranversely isotropic fibers distribution
with β < 1, they vary between 0.12 and 0.51. Note that, for anisotropic
media the Poisson ratios νxy,yz,xz are not constrained between 0 and 0.5 as
for an isotropic medium. Less variation is observed for a planar orientation
distribution or for higher fiber curvature.
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5.3. Shear moduli

FFT results for the elastic shear modulus as shown in Figure 17 exhibit
high values in the planar directions of the girdle orientation. This effect is
expected as the stiff fibers in the planar direction is opposed to the applied
strain, when shear strain loading is applied. The mixed β-distributions have
an intermediate behavior. The values for Gzx are slightly higher, because the
zx plane is closest to the plane in which the girdle orientation distribution is
concentrated. Consistently with results observed in [31], the shear modulus
is close to the lower Hashin-Shtrikman bound for z preferred materials. In-
creasing the fiber bending results in a slight decrease of the shear modulus.

5.4. Bulk modulus

The bulk modulus in Figure 18 is the response to hydrostatic uniform
pressure on the material. Accordingly, it is not very sensitive to the different
orientation distributions. The response value is mainly dependent on the
volume fraction, which is constant in all models. It should be noted how-
ever that bending tends to decrease the bulk modulus. The responses for
the Boolean model are slightly higher, since the fiber system is connected
and therefore more resistant to the applied strain. Due to some defects in
the binarization of the original dataset, some false connections occur and
therefore the simulation on the binarized image tends to a slightly too high
result. The bulk modulus is relatively close to the lower bounds for all types
of materials.

5.5. Thermal conductivity

FFT results for the thermal conductivity are given in Figure 19. The
effective conductivity is high along the fiber directions as the very long fibers
conduct heat through the material. As observed in [31], the thermal con-
ductivity is close to the lower Hashin-Shtrikman bound in the directions
orthogonal to the fiber arrangement, where the thermal isolation provided
by the matrix material is favored. In that respect, fibers are usually in a
planar configuration in materials used in the enclosure of boats or airplanes,
to provide thermal isolation between the interior and exterior. It is empha-
sized that the estimated physical properties of the real microstructure and of
our “mixed” stochastic model are nearly equal for all physical and thermal
responses, which confirms that the structure of the real material is consistent
with the adapted stochastic model.
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6. Conclusion

In this work, set in the framework of virtual material design, the me-
chanical and thermal simulation of a fibrous material has been undertaken.
For the application on glass fiber reinforced polymers, experimental data
was used to construct realistic material models up to the predictions of their
physical properties. Such analysis necessitates the estimation of the relevant
microstructure parameters, from local radius and orientation analysis, over
fiber separation techniques, up to stochastic modeling. The influence of the
geometrical parameters on the macroscopic properties has been examined
and interpreted in terms of expected behavior.

Geometrical characteristics such as the fiber curvature and the mixed β
-distribution are adequately estimated using the reconstructed fiber system.
Making use of the stochastic model, it is possible to create virtual materials
by generating realizations with varying geometrical parameters, whose phys-
ical properties are readily computed using FFT methods. The computation
of the representative volume element confirms that the number of realizations
equal to 10, and overall volume discretization of 4003 voxels have sufficient
accuracy. Still, the computation of the RVE is to be improved using larger
observation subdomains.

The following phenomenological interpretations are made: the fiber ar-
rangement strongly influences the elastic and thermal responses. In contrast,
these physical responses are generally less sensitive to the fiber curvature.
Furthermore, comparison with a model of Boolean cylinders allows to esti-
mate the influence of overlap. Finally, it has been found that in general, the
effective properties of the rebuilt fiber packing match those of the real mate-
rial provided the necessary geometrical parameters are set accordingly. Such
study allows in particular to optimize the effective properties with respect
to the application; this is especially useful for anisotropic materials, where
minimal mechanical responses are required in the weakest modes.

In that respect, the introduction of additional microstructure parameters
such as the aspect ratio, local alignment, or multiple layers of varying ori-
entation distributions could lead to a wider range of useful mechanical and
thermal properties.
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ory for infinite-contrast two-dimensionally periodic linear composites
with strongly anisotropic matrix behavior: Dilute limit and crossover
behavior, Physical review B 78 (10) (2008) 104111.

[36] F. Willot, Y.-P. Pellegrini, Fast fourier transform computations and
build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise
disordered porous media, in: Continuum Models and Discrete Systems:
CMDS 11: Proceedings of the International Symposium Held in Paris
July 30th-August 3rd 2007, Dominique Jeulin and Samuel Forest eds.,
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