
HAL Id: hal-01002835
https://hal.science/hal-01002835v1

Submitted on 6 Jun 2014 (v1), last revised 30 May 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of the fiber geometry on the macroscopic
elastic and thermal properties

Hellen Altendorf, Dominique Jeulin, François Willot

To cite this version:
Hellen Altendorf, Dominique Jeulin, François Willot. Influence of the fiber geometry on the macro-
scopic elastic and thermal properties. International Journal of Solids and Structures, 2014, 51 (23-24),
pp.3807-3822. �10.1016/j.ijsolstr.2014.05.013�. �hal-01002835v1�

https://hal.science/hal-01002835v1
https://hal.archives-ouvertes.fr


Influence of the fiber geometry on the macroscopic

elastic and thermal properties

Hellen Altendorfa,∗, Dominique Jeulina, François Willota
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35 rue Saint Honoré, 77305 Fontainebleau cedex, France.

Abstract

This work focuses on the linear elastic and thermal properties of real and

virtual, computer-generated fibrous composites. A stochastic microstruc-

ture model is used to generate densely-assembled 3D systems of curved, non

overlapping fibers with specific orientation distributions. This model is first

optimized to approach the characteristics of a real fiber glass polymer by fit-

ting geometrical and statistical parameters, such as fiber orientation, radius,

length, and curvature. Second, random realizations of the stochastic models

that depart from the characteristics of the fiber glass polymer are generated.

The latter, which range from isotropic to transversely isotropic and to or-

thotropic materials, represent plausible virtual fibrous materials. Full-field

numerical computations, undertaken by means of the Fourier-based (FFT)

method, are used to estimate the local and effective mechanical and thermal
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responses of the fibrous composites. The anisotropy of the macroscopic re-

sponses as well as the size of the corresponding representative volume element

(RVE) are examined numerically. It is found that the variance of the prop-

erties on a volume V scales as a powerlaw ∼ 1/V α where α < 1, an effect of

long-range correlations in the microstructure. Finally, the overall behavior of

the fiber composites are computed for varying fiber curvature and orientation

distributions, and compared with available analytical bounds. We find that

the fiber arrangement strongly influences the elastic and thermal responses,

less so for the fiber curvature.

Keywords: Glass fiber reinforced polymer, FFT computation, stochastic

modeling, linear elasticity, thermal conductivity, representative volume

element.

1. Introduction

The use of fibrous composites has recently increased in vast areas of ma-

terial engineering, such as in aeronautics and automotive industry. Their

physical properties largely depend upon the materials microstructure and

fibers arrangement which 2D models can not take into account; accordingly,

a detailed analysis of these materials is required to estimate and understand

their macroscopic behavior. The final goal is to optimize fibrous materials

by means of “virtual material design”. New fibrous materials are virtually

created as realizations of a stochastic model and evaluated with physical

simulations. This allows for material optimization for a specific use, without

constructing expensive prototypes or performing mechanical experiments.

In order to design a practically fabricable material, a stochastic model is
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designed and adapted to an existing material and then slightly modified. The

virtual reconstruction of the existing material requires a precise knowledge

of the geometry of its microstructure. We propose and apply a local analysis

of fiber orientation and radius as well as a single fiber tracking approach to

characterize in details the fiber system. In this work, the theory used to

simulate and interpret the elastic and thermal properties of fiber-reinforced

materials is presented, and then applied to a glass-fiber reinforced polymer.

This paper is structured in three parts. The first part on image analysis

and stochastic modeling is used to generate realizations of virtual materials

of fiber systems. The second part is devoted to the local and effective con-

stitutive laws of the material, in mechanics and conductivity, as well as the

numerical method used to solve them. Finally, the method is applied to a

sample of glass fiber reinforced composite.

2. Microstructure characterization and stochastic models for fi-

brous composites

In this section, the fibrous microstructure, its virtual reconstruction, that

serves as a basis for the physical simulations, and the stochastic fiber models

are presented. We first introduce the material, glass fiber reinforced polymer,

which is the subject of our application. A fiber tracking approach enables

the complete quantification of the fiber system with amount, length, radius

and curvature. Realizations of two stochastic models are considered: the

standard Boolean system of (straight) cylinders and a complex fiber packing

approach, more representative of the measured characteristics of the real

microstructure.
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2.1. Glass-fiber reinforced polymer

Glass-fiber reinforced polymer (GRP) consists of a polymer matrix rein-

forced with thin glass fibers. Strong mechanical properties, i.e. high strength,

are achieved when the glass fibers are free of defects. Full glass material

without defects would have comparable strength, however, in contrast to

glass fibers, it is practically impossible to build defect-free full glass mate-

rials. The main properties of GRP are light weight, extreme strength, and

robustness. In comparison to carbon fiber reinforced polymers, the GRP has

lower strength and is less stiff. Still, the GRP is typically far less brittle, and

the raw materials are less expensive. A GRP is stiff and strong in tension

and compression along the mean fiber alignment. In other directions, i.e.

orthogonal to their principal axis, the glass fiber is neither stiff nor strong

with respect to shear. Therefore, the orientation distribution of the fibers

plays a centered role for its physical behavior.

Common uses of GRP include boats, automobiles, baths, hot tubs, water

tanks, roofing, pipes, cladding and external door skins. Details are given

in [1] or [2]. Figure (1a) shows the original gray value image of the glass

fiber reinforced polymer sample, provided by R. Velthuis from the IVW in

Kaiserslautern. The image was recorded by A. Rack and J. Goebbels at the

synchrotron BESSY in Berlin with a pixel sampling of 3.5➭m. As shown

in the surface rendering of the binarized image (figure 1b), fibers do exhibit

some small level of curvature.

2.2. Analysis of the microstructure characteristics

The main geometrical and statistical characteristics of the fibrous mi-

crostructure, important for this study, are the volume fraction and the distri-
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(a) 2D sections of the original gray-value image along the xy (left) and

xz planes (right), shown at the same scale.

(b) Surface rendering of the binarized image.

Figure 1: GRP sample from R. Velthuis (IVW Kaiserslautern) recorded by A. Rack and J.

Goebbels at the BAMline (BESSY II, Berlin, Germany) with a pixel sampling of 3.5 ➭m.
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butions of the fiber orientations, radii, lengths and curvatures. Use is made

of local analysis techniques to determine the fiber radius and orientation,

that are directly applied on the gray value images [3]. Still, characteristics

as lengths and curvature necessitate a fiber tracking approach, that makes it

possible to follow the path of single fibers. In this respect, an algorithm for

single fiber tracking is proposed in [4].

Figure 2 shows surface renderings of the reconstructed and labeled fibers

versus the surface rendering of the original sample. Although most fibers

are correctly reconstructed, it happens that fibers are split in two parts.

This effect influences only the length estimation. Furthermore, the fact that

most fibers extend over both boundaries of the image, complicates the length

estimation. As such, most techniques used to estimate the average fibers

length are not reliable, independently of the reconstruction. We measure the

fiber volume fraction from the binarized image.

Figure 3 shows the length-weighted radius distribution from the separated

fibers. The term length-weighted is to be understood as weighted statistics

proportional to the fiber lengths, i.e. long fibers contribute more than short

fibers. It is reminded that the number or length-weighted radius distribution

is more accurate than the volume-weighted version [5], as the volume is de-

pendent on the radius and therefore the volume-weighted radius distribution

is distorted towards larger radii. The normal distribution N (5.44, 0.59) fits

well to the numerically estimated radius distribution as shown in Figure 3.

Figure 4 shows the length-weighted orientation distribution of the fiber

system on the unit sphere from two view angles. We observe a high probabil-
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(a) Binary image. (b) Separated fibers.

Figure 2: Surface label renderings of the original binary image and the separated fibers.

ity of the direction along the z axis and a faint increase on a girdle passing the

z axis. This distribution structure is fitted by a mixture of two β orientation

distributions: one with preferred orientation close to the z axis and a second

independent girdle distribution [6, section 8.3]. The β-distribution [7, 8] is a

non-directed orientation distribution with one global parameter β ∈ R
+\{0}.

For β = 1 it results in the uniform distribution on the sphere, for β → 0 the

distribution concentrates on the z-axis and for β → ∞ the orientations are

distributed isotropically in the xy-plane.The probability density function of

the β orientation distribution is

p(θ, φ |β) = β sin θ

4π(1 + (β2 − 1) cos2 θ)3/2
. (1)

where (θ, φ) are the polar coordinates of an orientation ∈ S2. The final
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Figure 3: The empirical length-weighted radius distribution of the reconstructed fiber

system and a fitted normal distribution N (5.44, 0.59).
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Figure 4: The empirical length weighted orientation distribution of the separated fiber

system on the unit sphere. Accumulation near the z axis and on a girdle passing through

the z pole is observed. The orientation distribution is given by the color scale density on

the unit sphere, shown as stereographic projections from two different perspectives.

orientation distribution is estimated as:

Pβ-mixed(µ) = qzPβ(µ|µz , βz) + qgPβ(µ|µg, βg) with (2)

qz = 0.393, µz = (0.075,−0.006,−0.997)T , βz = 0.114 (3)

qg = 0.607, µg = (−0.526, 0.849,−0.045)T , βg = 10.1. (4)

Figure 5 shows a visualization of the mixed-β orientation distribution on the

unit sphere.

Furthermore, the mean fiber length is estimated as 340 pixels (1.19mm)

according to the method proposed in [9], that approximates the mean fiber

length by the lengths of the fiber parts and visible ends. The mean fiber

length is most probably underestimated since, as the fiber tracking was not

always completely successful in reconstructing the fiber with its full length.

The fiber curvature is captured by the parameter of a stochastic model. We
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Figure 5: The fitted orientation distribution as a mixture of two β distributions presented

in Equation (2).

assume that the fiber structure follows a random walk with a multivariate

von Mises-Fisher orientation distribution [10, 11, 12, 13]. The parameters of

this distribution are two preferred directions and their reliability parameters

κ1 and κ2. In our case, the preferred directions are the main fiber orientation

µ1 and the last chosen orientation µi−1. The level of bending is defined by the

reliability parameters. The probability density function for the orientation

distribution of the i-th step in the random walk is

f(µi|µ1, κ1, µi−1, κ2) = c(µ1, κ1, µi−1, κ2) e
κ1µ

T
1 µi+κ2µ

T
i−1µi . (5)

The factor c(x1, κ1, x2, κ2) serves for the normalization, such that the integral

over S2 is equal to 1. The normalization factor is

c(x1, κ1, x2, κ2) =
|κ1x1 + κ2x2|

2π(e|κ1x1+κ2x2| − e−|κ1x1+κ2x2|)
. (6)

The curvature parameters are estimated in [9]: κ1 = 30.1612 and κ2 = 109.077.

The parameter κ1 is interpreted as the loyalty to the main fiber orientation

or global straightness of the fiber, whereas κ2 describes the local smoothness

or straightness of the drift of the fiber core.
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2.3. Stochastic model

Altendorf et al. [14] introduced a new stochastic model that generalizes

the force-biased packing approach to fibers, represented as chains of spheres.

This structure gives the fibers a flexible behavior during the packing process.

The starting configuration is first modeled using random walks, where two

parameters (κ1 and κ2) in the multivariate von Mises-Fisher orientation dis-

tribution control the bending. Adding an initial placement strategy to place

the fibers at locations with minimal overlap reduces the computation time

of the packing algorithm [15]. The final fiber configuration is obtained as an

equilibrium between repulsion forces (avoiding crossing fibers) and recover-

ing forces (ensuring a correct fiber structure). In the model, the fibers do

not interpenetrate but contact is allowed. This approach provides for high

volume fractions of up to 72%.

The parameters for the stochastic modeling are adapted to the real mi-

crostructure, as they are extracted from the previously described recon-

structed fiber system. An overview of the parameters is presented in Table 1.

Additionally to the force-biased fiber packing, a Boolean cylinder model,

where fibers are randomly placed using a Poisson point process, is considered

with the same orientation characteristics except for the curvature. To study

the influence of the microstructure on the physical behavior of the material,

different parameter sets are tested for the orientation distribution and the

fiber bending. We study three groups of microstructures and let one (or

two) microstructural parameters vary in each group. In all microstructures,

the fibers properties and volume fraction, their radius distribution and mean
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Parameters Values Remarks

Vol. Fraction VV = 15.01% measured on

the binarized image

Radius Distribution PR = N (5.44 pixels, 0.59 pixels) fitted normal

= N (19.04 ➭m, 2.065 ➭m) distribution

Mean Length L̂ = 340 pixels = 1.19mm measured on

separated fibers

Global, local straightness κ̂1 = 40, κ̂2 = 120 (resp.)

Orientation Pβ−mixed(µ) (see equation 2) fitted distribution

Table 1: The model parameters estimated from the reconstructed fiber system or the

binary image of the real material and used as input for the stochastic model.

length (and the aspect ratio) are fixed, as given in table (1). This leaves the

orientation distribution and curvatures left to define. In the first group of

microstructures, the fibers bending is fixed by κ̃1,2 = 40, 120 and the fibers

orientation follow a β-distribution, i.e. the microstructure are transverse

isotropic with symmetry axis z. Increasing values of β ≥ 0 are used to

simulate different fiber orientations. The “z-preferred”, isotropic and planar

distributions are recovered when β ≪ 1, β = 1 and β ≫ 1 resp.

The second group of microstructures consist of a combination of two β-

distributions oriented along µz and µg (see equation 2). The two distributions

have weight q and 1−q, resp., with varying q. Transverse isotropic orientation

distributions are recovered when q = 0 or q = 1, whereas in general an

orthotropic distribution is found when 0 < q < 1. The fibers bending is fixed

by the parameters κ̃1,2 so that the stochastic model fitted to the real material
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is recovered when q ≈ 0.39. Finally, the third group of microstructures consist

in orthotropic distributions of fibers. Again, we use a combination of two β-

distributions along µz and µg but with q fixed to q ≈ 0.39. Increasing values

of the straightness parameters κ1 and κ2 are considered to model the effect

of fibers bending. Straight cylinders are found in the limit κ1,2 ≫ 1. The

stochastic model fitted to the real material is recovered when κ1,2 = κ̃1,2.

For the first two groups of microstructures, we consider Boolean models of

straight cylinders with the same geometrical parameters for the radiuses,

mean length and orientation distribution, for comparison purpose. Some of

the microstructures that belong in each group are shown in Figure 6.

(a) Orientation distributions on the unit sphere

(b) Realizations of the orientation distributions in (a)

Figure 6: Variety of orientation distributions and their realizations. From left to right:

transversely isotropic Z-pref. (β = 0.05), Z-pref. (β = 0.3), Planar (β = 5) and Planar

(β = 30), and two orthotropic mixed-β distributions with q = 0.2 and q = 0.8.

3. Mechanical and thermal properties of a fibrous material

This section is devoted to the mechanical and thermal properties of fi-

brous materials, and to the underlying physical models adopted in this work.
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Equations governing the local and overall elastic response of fibrous materi-

als are given in section 3.1. The different types of microstructure anisotropy

and the resulting forms of the macroscopic elastic tensor, in particular, are

discussed in sections 3.1.1, 3.1.2 and 3.1.3. Section 3.2 addresses the thermal

response of the materials. The materials properties are numerically solved by

means of full-field FFT computations, which is recalled briefly in section 3.3.

Section 3.4 reports the available analytical bounds for the effective properties

and their relevance for different anisotropy cases. Finally, the representative

volume element is defined in section 3.5.

3.1. Linear Elasticity

Under small deformation, we assume that the composite materials con-

sidered in this work follows the classical assumptions of micro-mechanics

with linear elastic behavior [16, 17, 18, 19, 20, 21, 22]. The local stress

and strain tensors σ̃(x) and ε̃(x) at point x are related by Hooke’s law

σ̃ij(x) = C̃ij,kl(x)ε̃kl(x) (i, j, k, l = 1, ..., 3) where the local response of

the material at point x is given by the 4th-order stiffness tensor C̃ij,kl(x).

This tensor depends only on the phase at point x, i.e. on the fiber or matrix

constitutive laws. Under the hypothesis of small deformation, the local strain

is expressed in terms of the local displacement vector u as

ε̃(x) = (1/2)[∂iuj(x) + ∂jui(x)],

whereas stress equilibrium reads

∂iσ̃ij(x) = 0,

where ∂i is the derivative over xi. Strain loading is applied on a volume Ω by

means of periodic boundary conditions so that the overall strain ε = 〈ε̃(x)〉Ω is
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prescribed. The effective response of the material is defined by the resulting

overall stress σ = 〈σ̃(x)〉Ω. Here the overall stress and strain follow Hooke’s

law at the macroscopic scale as well, i.e.

σij = Cij,klεkl for i, j, k, l ∈ {x, y, z}. (7)

Accordingly, the stiffness tensor Cijkl completely defines the material overall

behavior. Due to the microstructure anisotropy, however, the tensor Cijkl

follows, in general, triclinic (i.e. full) anisotropy, which comprises 21 elastic

moduli. In the Voigt notation [21]:




σxx

σyy

σzz

σyz

σxz

σxy




=




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




·




εxx

εyy

εzz

εyz

εxz

εxy




, (8)

where (Crs)1≤r,s≤6 is a second-rank symmetrical tensor. Statistical symme-

tries related to particular microstructures reduce the number of independent

components, as explained in detail in the following subsections. The stiffness

matrix is numerically estimated by examining several strain loading direc-

tions ε and the resulting stress tensor σ. The following loading modes for the
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strain tensor are considered:

εC =




1 0 0

1 0

1




, εS1 =




1 0 0

1 0

-2




, εS1b =




1 0 0

-2 0

1




, (9)

εS2 =




0 1 0

0 0

0




, εS3 =




0 0 0

0 1

0




, εS4 =




0 0 1

0 0

0




. (10)

The resulting stress tensors σC,S1,S1b,S2,S3,S4 give the full stiffness matrix

Crs, which is equivalently represented by the axis dependent Young’s moduli

E and Poisson’s ratios ν, as well as the shear moduli G. The bulk modulus

K is likewise extracted from σC,S1,S1b,S2,S3,S4. The latter is defined here

as the ratio of mean stress σm = (σCxx + σCyy + σCzz)/3 to the relative volume

change ∆V/V , i.e.

K =
σm

∆V/V
=

σm
εxx + εyy + εzz

=
σCxx + σCyy + σCzz

9
. (11)

3.1.1. Isotropy

In isotropic media, the elasticity tensor is invariant by rotations of the co-

ordinate system. It is reminded that fibrous materials are isotropic whenever

the fiber orientations are isotropically distributed. In that simple case, the

stiffness matrix reduces to two independent scalars C11 and C44, as shown in

equation (12) with C11 =
E(1−ν)

(1+ν)(1−2ν)
and C44 = E

(1+ν)
as diagonal elements.
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The non-diagonal values are equal to C11 − C44 or zero as shown below

Crs =




C11 C11-C44 C11-C44 0 0 0

C11-C44 C11 C11-C44 0 0 0

C11-C44 C11-C44 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




. (12)

Accordingly, it is sufficient to apply two strain loading modes, compression

εC and shear strain defined as

εS = εS2 + εS3 + εS4 =




0 1 1

0 1

0




. (13)

The resultant stress tensors σC and σS simplify to σm =
σCxx+σCyy+σCzz

3 and

σd =
σSxy+σSyz+σSxz

3 , from which the elastic moduli are computed as follows:

ν =
σm − σd
2σm − σd

, E = σd(1 + ν), and G =
σd
2
. (14)

3.1.2. Transverse Isotropy

For a transversely isotropic microstructure, the stiffness matrix simplifies

to 5 independent values. Assuming the latter is the z-axis, the material

properties do not change under rotation around the z-axis. Accordingly,

the material is statistically isotropic along planes orthogonal to z. This is

in particular true for fiber systems with the β distribution as global fiber
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orientation distribution. In this situation, Hooke’s Law reads

Crs =




1−νpzνzp
EpEz∆

νp+νpzνzp
EpEz∆

νzp+νpνzp
EpEz∆

0 0 0

νp+νpzνzp
EpEz∆

1−νpzνzp
EpEz∆

νzp+νpνzp
EpEz∆

0 0 0

νpz+νpνpz
E2
p∆

νpz(1+νp)
E2
p∆

1−ν2p
E2
p∆

0 0 0

0 0 0 2Gzp 0 0

0 0 0 0 2Gzp 0

0 0 0 0 0
Ep

1+νp




, (15)

with ∆ =
(1+νp)(1−νp−2νpzνzp)

E2
pEz

. The 5 engineering constants in the stiffness

matrix are the “parallel” and “transverse” Young’s modulus Ez and Ep, along

the z axis and xy plane, Poisson’s ratios νp and νpz and the shear modulus

Gzp [23]. Poisson’s ratio νzp is related to νpz by νpz/Ep = νzp/Ez. The four

strain loading modes εC,S1,S2,S3 are sufficient to compute Crs:

C44 = σS3yz , C33 =
σCzz − σS1zz

3
, C13 =

σCxx − σS1xx
3

C11 =
1

3
σCxx +

1

6
σS1xx +

1

2
σS2xy , C12 =

1

3
σCxx +

1

6
σS1xx − 1

2
σS2xy .

Or equivalently:

Gzp =
1

2
C44, νzp =

C13
C11 + C12

, νp =
Ep

C11 − C12
− 1,

Ez = C33 −
2C2

13
C11 + C12

, Ep =
(C11 − C12)

[
C33(C11 + C12)− 2C2

13

]

C11C33 − C2
13

.

3.1.3. Orthotropic Materials

A material is orthotropic if its mechanical and thermal properties are de-

scribed by three perpendicular axes. The classic example for orthotropy is

a partial cutout of wood. The three axes of wood are: the fiber directions,
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the direction tangential to visual part of the growth rings and the direction

normal to the growth rings. This example yields only for a wood panel. A

slice of wood with the complete growth rings would be transversely isotropic.

In particular, fiber-reinforced materials are orthotropic when the fiber ori-

entation distribution is a combination of two β distributions oriented along

orthogonal axes. In the case of orthotropic materials, the stiffness matrix is

described by 9 values as follows:

Crs =




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66




. (16)

For the computation of the stiffness matrix Crs, all 6 strain modes as de-

scribed in Equation (10) are required. The values Crs of the stiffness matrix

are given by

C44 = σS3yz C13 =
σCxx − σS1xx

3
C12 =

σCxx − σS1bxx
3

(17)

C55 = σS4xz C23 =
σCyy − σS1yy

3
C22 =

σCyy − σS1byy

3
(18)

C66 = σS2xy C33 =
σCzz − σS1zz

3
C11 =

σCxx + σS1xx + σS1bxx
3

. (19)
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The inverse of the stiffness matrix, known as the compliance matrix, is de-

scribed by

C−1
rs =




1
Ex

−vxy
Ex

−vxz
Ex

0 0 0

−vxy
Ex

1
Ey

−vyz
Ey

0 0 0

−vxz
Ex

−vyz
Ey

1
Ez

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gzx

0

0 0 0 0 0 1
2Gxy




. (20)

In particular, the lower right part leads directly to the following relations:

Gyz =
1

2
C44, Gzx =

1

2
C55, Gxy =

1

2
C66 (21)

By inverting the upper-left part of the stiffness matrix Crs, the following

relations are found:

Ex =
D

C22C33 − C2
23

vxy = −Ex
C13C23 − C12C33

D
(22)

Ey =
D

C11C33 − C2
13

vxz = −Ex
C12C23 − C13C22

D
(23)

Ez =
D

C11C22 − C2
12

vyz = −Ey
C13C12 − C23C11

D
(24)

with D = C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12.

Inversely, assumptions of orthotropy, transverse isotropy or isotropy are

verified, in terms of the material response, by inspecting the complete stiff-

ness matrix. This necessitates numerical computations for at least 6 loading

modes, for which the strain tensors are linearly independent. With the 6

resulting stress tensors, all 21 values of Crs of the stiffness matrix can be

reconstructed and symmetries verified.
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3.2. Linear Thermal Conductivity

For steady-state conduction, the material local thermal behavior is de-

fined by Fourier’s law q̃i(x) = k̃(x)Ẽi(x) where k̃(x) is the phase-dependent

thermal conductivity (measured in Watt per meter Kelvin), Ẽ(x) = −∂iT (x)

is the opposite of the temperature gradient (measured in Kelvin per me-

ter), and q̃(x) is the heat flux vector (measured in Watt per square meter).

Heat flux conservation reads ∂iq̃i(x) ≡ 0. As in the elastic case, periodic

boundary conditions are applied so that a macroscopic temperature gradient

is prescribed over a volume Ω, i.e. E = 〈Ẽ(x)〉Ω is given. The overall heat

flux q = 〈q̃(x)〉Ω is linearly related to E as qi = kijEj where the anisotropic

second-rank tensor k completely defines the macroscopic thermal behavior

of the microstructure.

For the isotropic and anisotropic fibrous media considered here, the con-

ductivities k is represented in the (x, y, z) axes as a diagonal tensor. In the

isotropic case, all principal values kii are equal. In the case of transverse

isotropy around the z axis, the conductivity in the x and y directions are

equal: k11 = k22 = kp and differs from that in the z direction k33 = kz. In

the orthotropic case, all directions are treated separately: kii 6= kjj if i 6= j.

A macroscopic temperature gradient is applied over the samples so that E is

set to:

EC1 =




1

0

0




, EC2 =




0

1

0




, and EC3 =




0

0

1




. (25)

In the case of transverse isotropy, it is sufficient to consider the applied

temperature difference EC3 and any of EC1 or EC2, whereas, for isotropic
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media, EC1,C2,C3 are statistically equivalent.

It is noted that the linear constitutive laws considered above, discussed in

the context of thermal conductivity, apply to other mathematically-equivalent

problems such as thermal conductivity.

3.3. Full-field Fourier-based computations

The local and apparent macroscopic elastic and thermal fields of the fi-

brous realizations are readily determined using the Fast Fourier transform

method [24, 25]. The method has been applied successfully to compute the

mechanical response of composites and is not limited to materials with lin-

ear responses [26, 27]. The so-called accelerated scheme algorithm [28], par-

ticularly efficient to treat highly contrasted composites, is used, thanks to

the software Morph’Hom [29, 30], developed at the Center of Mathematical

Morphology in Fontainebleau. This image-based numerical method does not

necessitate prior meshing; equilibrium or heat flux conservation are, in par-

ticular, treated locally in the Fourier domain. Binary images are seen as the

elementary cell Ω of a periodic microstructure, accordingly to the Fourier

representation. More precisely, stress equilibrium (resp. heat flux conser-

vation) is enforced along the cell boundary ∂Ω, so that σ · n (resp. q · n) is

anti-periodic, where n is the normal along the boundary ∂Ω directed outward.

Macroscopic loading conditions are applied so that the overall deformation

〈ε̃(x)〉Ω (resp. the mean temperature gradient field 〈Ẽ(x)〉Ω) are prescribed

by setting, in the Fourier domain, FFT (ε̃; r = 0) = ε and FFT
(
Ẽ; r = 0

)
= E

where r is the wave-vector.
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3.4. Bounds for the effective mechanical and thermal properties

Numerical results are compared with the well-known Hashin and Shtrik-

man bounds [31, 32], hereafter referred to as HS bounds:

K − c1K1 − c2K2 ≤ −c1c2(K1 −K2)
2

c2K1 + c1K2 + (2− 2/d)G1
,

≥ −c1c2(K1 −K2)
2

c2K1 + c1K2 + (2− 2/d)G2
,

G− c1G1 − c2G2 ≤ −c1c2(G1 −G2)
2

c2G1 + c1G2 + [dK1/2 + (4− 8/d)G1]/(2 +K1/G1)
,

≥ −c1c2(G1 −G2)
2

c2G1 + c1G2 + [dK2/2 + (4− 8/d)G2]/(2 +K2/G2)
,

k2 +
dc1k2

dk2 + c2(k1 − k2)
≤ k ≤ k1 +

dc2k1
dk1 + c1(k2 − k1)

where d = 2, 3 is the dimension, c1 = 15% is the fiber volume fraction and

c2 = 1 − c1. In elasticity, these bounds extend to Young’s modulus (in 2D

and 3D) and Poisson’s ratio (in 3D) with:

E =

[
1

d2K
+

1

(6− d)G

]−1
, ν =

3K − 2G

2(3K +G)
.

The 3D HS bounds apply to isotropic distributions of fibers only. For arbi-

trary fiber distributions, the broader Reuss and Voigt bounds in elasticity

and the Wiener bounds in conductivity, i.e. the geometric and arithmetic

phase properties average, hold. For comparison purpose, we also consider

the 2D Hashin and Shtrikman bounds, appropriate to plane strain problems

and the (3D) self-consistent estimates. The self-consistent bulk and shear

moduli K∗ and G∗ are the solutions of [33]:

2∑

j=1

cj(Kj −K∗)
Kj − 4G∗/3 =

2∑

j=1

cj(Gj −G∗)
Gj +G∗[(3/2)K∗ + (4/3)G∗]/(K∗ + 2G∗) = 0,
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whereas in conductivity we solve:

2∑

j=1

cj
kj − k∗

kj + 2k∗ = 0.

3.5. Representative Volume Element

The representative volume element (RVE) is a volume of “minimal” size

that exhibits a behavior “representative” for a real microstructure. Consider

a local (elastic or thermal) field Z(x) and its mean over V , sZ = 〈Z(x)〉V =

(1/V )
∫
V Z(x)dx. The variance of the random variable sZ is given by

D2
Z(V ) =

D2
Z(1) A

α
3

V α , V ≫ A3 (26)

where D2
Z(1) = 〈Z(x)2〉V − sZ2 is the point variance, A3 is the integral range

in 3D, and α ≤ 1. The quantity D2
Z(V ) is estimated by computing the mean

of the field Z(x) over m independent samples of size V [34, 35, 36] as follows

D2
Z(V ) =

1

m

m∑

i=1

(〈Z(x)〉Vi − sZ)2. (27)

This approach allows one to verify that the scaling relation given in equation

(26) applies in a range of volume sizes V , much larger than A3 so that the

number of subvolumes is large enough to compute a variance. Note that

in materials with finite correlation lengths, α = 1. This relation breaks

down when considering degenerate microstructures with infinite correlation

lengths [37], resulting in much larger RVE sizes. In this respect, α = 2/3

for the scaling law of the volume fraction of Boolean varieties of infinite

fibers [37]. Accordingly, we expect non-integer values of α as well for the

mechanical effective properties of our fibrous microstructures.
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The volume V is chosen so that sZ is a good estimate of the effective

response for stress or heat flux of the material. The relative error ǫrel and

the absolute error ǫabs on the effective property sZ depend on the sample

volume V of n independent realizations by

ǫrel =
ǫabs
sZ

=
2DZ(V )
sZ
√
n

(28)

At a given relative error ǫrel (typically 1%), the RVE size is

VRVE =

(
4 D2

Z Aα
3

ǫ2rel
sZ2 n

)1/α

. (29)

The choice of Z(x) is driven by the physical property one wish to con-

sider. For instance, when hydrostatic strain loading is applied, Z is set to

the mean stress component σm, so that sZ is, up to a constant, an estimate of

the macroscopic bulk modulus. More generally, one would choose Z(x) equal

to the energy density in the system. Local fluctuations are induced by the

microstructure and by the contrast of properties between the phases, as well

as on the boundary conditions. In that respect, the use of periodic bound-

ary conditions is known to minimize the RVE size compared to traditional

kinematic or static uniform boundary conditions, as used in finite element

computations [35].

4. Simulation results: elastic and thermal responses

In this section, results for the elastic and thermal responses of the stochas-

tic models and of the original segmented material are given. Computations

are based on binarizations of the microstructures. The mechanical and ther-

mal properties for the fibers and surrounding matrix are given in Table 2.
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The effective properties of the different microstructures are determined by the

full-field results computed by the FFT method, as discussed in Section 3.3.

Furthermore, the results are compared to the theoretical Hashin-Shtrikman,

Reuss-Voigt and Wiener bounds. The size of the representative volume ele-

ment (RVE) is finally computed for a cubic, elongated or flat window.

Young’s Poisson’s Bulk Shear Thermal

Modulus Ratio Modulus Modulus Conductivity

Ẽ [MPa] ν̃ K̃ [MPa] G̃ [MPa] k̃ [W/mK]

Glass Fibers 72000 0.22 42857 29508 1

Polymer Matrix 2002 0.39 3033 720 0.2

Table 2: Elastic moduli and thermal conductivity of glass fibers and surrounding polymer

matrix, from [36].

Examples of the elastic local fields computed by the FFT method are

shown in Figure 7. The latter represent four 2D maps of the mean stress

component σm and of the stress component σxx − σyy, cut along the (x, y)

plane, for two isotropic and transversely isotropic fibrous models (top and

bottom, respectively). The component σxx − σyy, transverse to the applied

loading, exhibits heterogeneous local stress depending on the fibers orien-

tation (unsurprisingly, positive if the fibers are directed parallel to the x

direction, negative in the y direction, as seen in the top and bottom right

maps). Fluctuations inside the fibers are most visible in the maps for the

mean stress field σm (top and bottom left), parallel to the applied loading.

More precisely, the mean stress field is highest along a fiber at places cross-

ing or close to another fiber, a feature reminiscent of previous observations
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in granular media [38].

4.1. Anisotropy of the stochastic model responses

In the numerical computations, the orthotropic, transversely isotropic and

isotropic behaviors of the various fibrous microstructures are only conveyed

approximately, due to finite-size effects. In this section, the deviation of the

stiffness matrix with respect to the symmetries of the ideal isotropic models is

evaluated. Optimally, the matrices fulfill the symmetries described in Section

3.1. First, for one arbitrarily chosen realization of the isotropic orientation

distribution, the following stiffness matrix is found:

Cisotropic =




6391.44 3394.00 3365.64 -28.85 46.35 -26.38

3399.60 6502.43 3436.42 -105.23 -3.08 -55.95

3378.52 3445.55 6394.85 -121.69 28.27 -12.45

-60.56 -216.24 -243.37 3118.67 -26.98 -14.06

95.22 -9.02 57.00 -27.72 3053.90 -79.30

-56.45 -114.16 -24.90 -14.06 -76.42 3072.67




. (30)

This is to be compared with the form (12) of the matrix in the isotropic case,

which depends on two parameters (section 3.1.1). The absolute of the values

expected to be zero do not overrun 250, which is less than 8% of the smallest

value on the diagonal. The diagonal values are not independent and match

the isotropic symmetries up to small corrections. The mean of non-diagonal

values in the top-left quarter is 3403.29, which is close to the difference of the

mean of C11 and C44: 3347.83. Accordingly, all symmetries for the simulated

isotropic material are respected up to a relatively small deviation.

Second, two randomly chosen microstructure realizations, one having

transverse isotropy with axis of rotation along z and one generated using
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Figure 7: 2D sections along the (x, y) plane of the mean stress field σm(x) (left) and of the

stress component σxx(x)− σyy(x) (right) in fibrous microstructure models with isotropic

(top) and transversely isotropic (bottom) distribution of fibers; hydrostatic strain loading

with 〈εm(x)〉 = 1 is applied. The mean stress components have been thresholded to

highlight the fields structure.
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a girdle orientation distribution (see equation 15), are considered. The cor-

responding stiffness matrices are

Cz-preferred =




5179.43 2982.40 3141.73 1.74 -1.74 -1.91

3016.38 5031.73 3051.98 -1.56 -15.69 -3.59

3090.30 3047.32 11227.94 0.84 31.92 2.49

3.77 -3.22 0.46 2344.22 1.90 -30.44

-5.24 -31.39 69.54 1.58 2466.12 3.94

-0.91 -7.18 4.13 -31.88 3.94 2061.38




(31)

and

Cgirdle =




7799.50 3780.97 2972.98 -0.92 6.37 12.02

3780.97 7554.32 2975.42 -13.65 2.03 37.79

2972.63 2974.84 5078.91 -7.09 -3.53 1.22

-1.44 -28.11 -14.18 2169.46 5.12 -1.06

13.37 3.39 -7.06 5.12 2181.00 5.45

23.42 75.01 1.81 -0.62 5.40 3820.53




. (32)

The highest value among the ones which ideally vanish in equation (15) is

75, which is less than 4% compared to all other non-vanishing values. The

symmetry in x and y directions is approximately given as well. The equality

of the lower right value to C11 − C12 remains to be checked. The stiffness

matrix for the z preferred orientations yields C11 − C12 = 2197.03 versus

C33 = 2061.38 and for the girdle orientation, it yields C11 − C12 = 4018.53

versus C33 = 3820.53. Both results show a relatively small discrepancy of

less than 5%. Accordingly, the transverse isotropy for the simulated material

with single β distributions (either aligned or planar) is verified.
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Finally, for general orthotropic microstructures, it is sufficient to verify

that the values in the upper-right and lower-left quarters of the stiffness ma-

trix as well as outside of the diagonal in the lower-right quarter, are small

compared to the rest (equation 16). For an arbitrary realization of an or-

thotropic type microstructure it is found that

Cortho =




6066.10 3348.66 3404.30 1.66 -25.59 524.42

3360.65 5405.84 3210.74 35.35 8.05 228.07

3404.30 3202.34 8538.99 139.00 -128.68 191.09

3.33 66.74 277.99 2652.07 403.67 6.86

-51.19 15.67 -257.37 403.67 3081.05 13.26

1026.54 430.45 373.77 6.29 12.84 2823.16




. (33)

Furthermore, the stiffness matrix of the original microstructure reads

Corig =




5933.17 3283.14 3541.18 4.87 -55.50 445.01

3283.14 5326.58 3210.82 28.35 26.48 190.44

3509.92 3197.54 8994.90 59.21 -186.21 320.97

7.66 53.62 121.16 2733.97 697.23 35.24

-107.38 48.60 -372.41 683.03 3376.96 5.86

859.89 366.84 655.95 35.24 6.89 2709.74




. (34)

The highest value in places where elastic moduli of orthotropic media vanish

is 1026.54. This value is not comparatively much smaller than the others.

However, as there are only few outliers in the part, that is supposed to

vanish, we still treat the material under conditions of orthotropic symmetry.

The physical responses will be treated as approximations of the effective

properties.
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4.2. Representative Volume Element

The Representative Volume Element (RVE), introduced in section 3.5, is

computed for various physical properties on realizations of the fiber model.

Three types of orientation distributions are considered: z-preferred (β =

0.05), isotropic (β = 1) and planar (β = 30). Realizations of the stochastic

model for cubic images with a volume of 6003 pixels are used, with parameters

of the models given in table 1. Periodic boundary conditions are applied.

It is reminded that the mean values of the elastic or thermal fields over a

volume give the apparent properties of the considered size. The variance of

such mean values over non-overlapping subvolumes is computed at increasing

volume sizes. As a complement to cubic RVEs, we also make use of RVEs

with elongated (or shortened) cuboidal shapes of the form ℓx × ℓy × ℓz with

ℓx = ℓy and either ℓx,y/ℓz = 10 (“plate” shape) or ℓx,y/ℓz = 0.1 (“long”

shape), which respect the transverse anisotropy of the fibers arrangement.

Such forms allow to increase the statistics (or representativeness) in the x

and y plane at the expense of that in the z direction and vice-versa, and to

improve on the precision of the elastic moduli and thermal conductivity.

The variance D2
Z(V ) of the apparent elastic moduli and thermal conduc-

tivity 〈Z〉V are first computed in subdomains of volume V . A powerlaw

∼ 1/V α is fitted with respect to the subvolume size V ≫ A3. An example is

show in figure (8) for the bulk modulus K and z-preferred orientation dis-

tribution (β = 0.05), where the variance is represented as a function of the

volume V in log-log scale. A region of interest is selected. On the one hand,

the powerlaw is not valid for small (≪ A3) volume sizes. On the other hand,

the precision of the variance deteriorates for large volumes due to a small
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number of configurations (8 for the larger sizes). To estimate the precision

of the parameters of the fitted law, three regions of interest are manually

selected in figure 8 resulting in three fitted laws. The resulting RVEs differ

from 3813 to 4823 voxels. Likewise, the fitted exponent α varies but is close

to 0.8. The variation in the exponent and RVE size estimates are, according

to the theoretical constraints outlined above, an effect of the relatively small

observation window of less than two decades. Improved precision should be

achieved with either larger sizes or a higher number of realizations.
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Figure 8: RVE sizes for the bulk modulus K in a fibrous microstructure with z-preferred

orientation distribution (β = 0.05): variances of the apparent bulk modulus K vs. volume

size computed from FFT data. Solid lines: numerical fits by a powerlaw ∼ 1/V α. The

three fits correspond to three manually-selected zones of interest.

The region of interest is accordingly selected by setting a minimal subdo-

main volume Vs and a minimal amount of subvolumes me. These values for
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the volume limits vary with the shape of the subvolume and are numerically

adapted to the curves. We manually choose Vs = 104, 2 104 and 105 (resp.

me = 10, 120 and 15) for cubic, elongated and plate shape respectively, and

Table (3) shows the RVE size required to achieve a relative precision

of 1% for the estimation of various effective physical properties using the

three cubic and cuboidal (“plate” and “long”) RVE shapes. The relative

error for a cubic volume of size 4003 voxels is given as well. Some of the

corresponding variance curves are shown in figures (9), (10), (11), (12), (13)

and (14), corresponding resp. to the bulk K and shear Gzp elastic moduli for

a z-preferred orientation distribution, volume fraction VV and bulk modulus

K for isotropic fibers distribution, and thermal conductivity components kp

and kz for a planar fibers distribution. As shown in Table 3, the relative

error for ten realizations of 4003 voxels each varies from 0.29% to 1.86%.

This confirms a posteriori the validity of the computations undertaken in

this work. Furthermore, much improved precision are achieved when using

a flat volume shape. For instance, the use of 10 configurations of a flat

volume shape (in the xy plane) with a height of 21 voxels is sufficient to

estimate numerically the in plane thermal conductivity components of a fiber

system with z-preferred direction at 1% relative error. In the literature,

nearly parallel fiber systems are often approximated by computations on 2D

images of discs, assuming infinite parallel fibers. Considering 2D cuts of

the microstructure, the deviation along the z axis is not taken into account.

However, the influence of the deviation parameter β in media with a preferred

orientation is not negligible. The bottom four lines of table (3) give the ratio

of cuboidal RVE sizes with respect to a cubic RVE for a required relative
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precision of 1 or 5%. The optimal choice of the RVE depends on the fiber

orientation, but also on the considered tensorial component. RVE with flat

shapes (of the “plate” type) are best for z-preferred fiber orientation. For

an isotropic distribution, the plate (resp. long) shape gives the best result

for the elastic moduli (resp. thermal conductivity). For a planar orientation

distribution, the plate (resp. long) shape is the best choice for the shear

modulus Gzp and conductivity component kz (resp. the thermal conductivity

planar component kp) whereas a cubic shape is preferred for computing the

bulk modulus.
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Figure 9: Variance of the apparent bulk modulus K with respect to the volume (in vox-

els) of cubic, plate and long RVE shapes, for fiber packing with z-preferred orientation

distribution (β = 0.05).

Finally, it is useful to compare the above results with that found in [36],

where the authors compute the RVE size of the apparent surface fraction of a
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Z Preferred (β = 0.05) Isotropic (β = 1) Planar (β = 30)

VV K Gzp kp kz VV K G k VV K Gzp kp kz

C
U
B
IC

ℓcubicRVE (ǫrel = 1%, n = 1) 1886 414 832 371 689 1123 477 938 430 1616 509 672 801 438

ℓcubicRVE (ǫrel = 1%, n = 10) 688 164 326 138 258 466 177 375 173 617 189 249 274 153

ǫrel(V= 4003, n = 10) [%] 1.86 0.33 0.78 0.29 0.6 1.22 0.39 0.92 0.35 1.68 0.42 0.58 0.67 0.35

α 0.76 0.83 0.82 0.77 0.78 0.87 0.77 0.84 0.84 0.8 0.77 0.77 0.71 0.73

A3 616 816 1086 827 686 1046 559 1031 1031 801 698 687 580 701

L
O
N
G

ℓlongRVE(ǫrel = 1%, n = 1) 771 260 478 158 393 628 207 574 172 1270 312 379 354 301

ℓlongRVE(ǫrel = 1%, n = 10) 316 105 175 66 156 239 75 199 65 394 94 122 107 91

α 0.86 0.84 0.76 0.88 0.83 0.8 0.76 0.73 0.79 0.66 0.64 0.68 0.64 0.64

A3 2699 2526 790 2315 2833 468 359 287 337 141 128 185 109 445

P
L
A
T
E

ℓplateRVE (ǫrel = 1%, n = 1) 178 53 109 58 64 239 87 134 116 513 154 84 509 48

ℓplateRVE (ǫrel = 1%, n = 10) 71 20 42 21 26 94 32 55 41 177 50 33 124 18

α 0.83 0.8 0.8 0.76 0.85 0.82 0.76 0.87 0.74 0.72 0.68 0.83 0.54 0.77

A3 205 118 168 241 160 422 286 491 420 503 333 336 191 185

R
V
E

R
at
io

V long
RVE/V

cubic
RVE (ǫrel = 1%) 0.68 2.48 1.90 0.77 1.86 1.75 0.82 2.29 0.64 4.85 2.30 1.79 0.86 3.25

V plate
RVE /V cubic

RVE (ǫrel = 1%) 0.08 0.21 0.22 0.38 0.08 0.96 0.61 0.29 1.96 3.20 2.77 0.20 25.7 0.13

V long
RVE/V

cubic
RVE (ǫrel = 5%) 1.12 2.59 1.39 1.30 2.38 1.27 0.77 1.29 0.50 2.07 0.99 1.03 0.53 1.75

V plate
RVE /V cubic

RVE (ǫrel = 5%) 0.12 0.18 0.20 0.36 0.11 0.77 0.57 0.33 1.17 2.05 1.59 0.26 6.16 0.17

Table 3: Size ℓRVE in number of voxels of representative volume elements for the volume fraction (VV ), bulk (K) and shear

(G, Gpz) moduli and thermal conductivity (k, kp, kz) for transverse isotropic of the z-preferred type (left), planar (right) and

isotropic (center) fibers orientation. Three cuboidal RVE shapes are investigated: cubic (top), long (elongated along the z

direction, middle) and plate (elongated along the x and y directions, bottom), with, referring to the sizes along the x, y and

z directions, V cubic
RVE = (ℓRVE)

3
, V long

RVE = ℓRVE × ℓRVE × (10ℓRVE), and V plate
RVE = (10ℓRVE)× (10ℓRVE)× ℓRVE, resp. The relative

errors and number of configurations are noted ǫrel and n resp.
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Figure 10: Variance of the apparent shear modulus Gzp with respect to the volume (in

voxels) of cubic, plate and long RVE shapes, for fiber packing with z-preferred orientation

distribution (β = 0.05).
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Figure 11: Variance of the apparent volume fraction VV with respect to the volume (in

voxels) of cubic, plate and long RVE shapes, for isotropic fiber distribution (β = 1).

system of parallel fibers, equivalent to a 2D microstructure, with mean fiber

diameter 16➭m. The authors determined the RVE as a surface of 1311➭m

sidelength, for n = 100 realizations and a relative error of 1%. This is to be

compared with a fibrous microstructure with plate shape, as considered in

this work, where the fiber radius is 5.44 pixels. Assuming a voxel sampling of

1.47➭m voxel, and flattening the volume to 1 voxel thickness, a 2D section is

recovered. Such conversion results in a 2D section of 1687➭m sidelength. As

the fibers in the 3D stochastic model are not completely parallel nor straight,

it is reasonable that the RVE is slightly higher than in [36].

37



●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●●
●
●
●●●

●●●●
●
●
●
●●●

●●●●●●
●●
●
●●●●●●●●●●●

1e+00 1e+02 1e+04 1e+06

2e
+

03
1e

+
04

5e
+

04
5e

+
05

5e
+

06

Volume [pixel]

V
ar

ia
nc

e 
of

 M
ea

n 
C

ha
ra

ct
er

is
tic

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● Variance to Mean Characteristics
Fitted line with cubic window
α = 0.77, VRVE = 4773, A3 = 559
Fitted line with long window
α = 0.76, VRVE = 2068 × 2072, A3 = 359
Fitted line with plate window
α = 0.76, VRVE = 8662 × 87, A3 = 286
Limits of Points to fit

Figure 12: Variance of the apparent bulk modulusK with respect to the volume (in voxels)

of cubic, plate and long RVE shapes, for isotropic fiber distribution (β = 1).

5. Effective response vs. fiber distributions

FFT results for the elastic and thermal responses of various fibrous mi-

crostructures are represented in figures (15) to (19) as well as analytical

bounds and estimates. The elastic and thermal properties are bounded by

the general Reuss and Voigt or by the Wiener bounds only (magenta lines).

The response of the isotropic microstructure is also bounded by the sharpest

3D Hashin and Shtrikman bounds (black dots), whereas the 2D HS bounds

(orange lines) and the self-consistent estimates (cyan dots) are shown for

comparison.
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Figure 13: Variance of the apparent planar thermal conductivity component kp with re-

spect to the volume (in voxels) of cubic, plate and long RVE shapes,for a planar orientation

distribution (β = 30) of fibers.
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Figure 14: Variance of the apparent transverse thermal conductivity component kz with

respect to the volume (in voxels) of cubic, plate and long RVE shapes,for a planar orien-

tation distribution (β = 30) of fibers.
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5.1. Young’s moduli

Results for Young’s moduli are shown in figure 15. As expected, the mate-

rial is reinforced in the direction of the fibers. Since the fibers are stiffer than

the matrix, the stiffness of the composite is higher in the preferred direction

of the fibers. For a planar orientation distribution the Young’s modulus is

also stronger in the planar directions, but the difference is smaller compared

to z-preferred orientation distribution. The right part of the parameter sets,

with varying κ1,2 values describes different fiber curvatures. These param-

eter sets are divided in four sets, which are ordered by increasing global

straightness or decreasing global bending. The microstructures in each set

are ordered by increasing local straightness. The stiffness in the z-direction

increases with the fiber straightness. In the y direction only a small decrease

is observed, whereas no visible trend apepars in the x direction.

As expected, the Boolean model of cylinders, with straight fibers and more

connected fiber system, always has higher stiffness than the corresponding

model with bending fibers. We note however that Boolean media are not

realistic models of glass fibers, where no interpenetration occures. Overall,

the properties of the real microstructure and of the corresponding orthotropic

model are close to each other, which confirms that the structure of the real

material is correctly simulated by the stochastic model.

5.2. Poisson’s ratios

The Poisson ratios νxy,yz,xz are represented in figure (16). They strongly

depend on the fibers directions. For tranversely isotropic fibers distribution

with β < 1, they vary between 0.12 and 0.51. Note that, for anisotropic

media the Poisson ratios νxy,yz,xz are not constrained between 0 and 0.5 as
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Figure 15: Young moduli Ex (�), Ey (▽) and Ez ( 1) of various transversely-isotropic (left) and orthotropic (right) fibers

distributions: FFT results for the stochastic (blue) and Boolean (green) models, and for the reconstructed material (red);

Voigt and Reuss bounds (magenta), 2D (orange) and 3D (black dots) Hashin and Shtrikman (HS) bounds. Fibers are much

stiffer than the matrix, with elastic properties given in table (2). In all microstructures, the volume fraction is VV = 15%, the

radiuses follow the distribution N (19 ➭m, 2.1 ➭m) and the mean fiber length is L̂ = 1.19mm. The straightness parameters are

κ1 = 40 and κ2 = 120 except when noted.
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for an isotropic medium. Less variation is observed for a planar orientation

distribution or for higher fiber curvature.

5.3. Shear moduli

FFT results for the elastic shear modulus as shown in Figure 17 exhibit

high values in the planar directions of the girdle orientation. This effect is

expected as the stiff fibers in the planar direction is opposed to the applied

strain, when shear strain loading is applied. The mixed β-distributions have

an intermediate behavior. The values for Gzx are slightly higher, because the

zx plane is closest to the plane in which the girdle orientation distribution is

concentrated. Consistently with results observed in [36], the shear modulus

is close to the lower Hashin-Shtrikman bound for z preferred materials. In-

creasing the fiber bending results in a slight decrease of the shear modulus.

5.4. Bulk modulus

The bulk modulus in Figure 18 is the response to hydrostatic uniform

pressure on the material. Accordingly, it is not very sensitive to the different

orientation distributions. The response value is mainly dependent on the

volume fraction, which is constant in all models. It should be noted how-

ever that bending tends to decrease the bulk modulus. The responses for

the boolean model are slightly higher, since the fiber system is connected

and therefore more resistant to the applied strain. Due to some defects in

the binarization of the original dataset, some false connections occur and

therefore the simulation on the binarized image tends to a slightly too high
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Figure 16: Continuation of figure (15): Poisson ratios νxy, νxz and νyz
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result. The bulk modulus is relatively close to the lower bounds for all types

of materials.

5.5. Thermal conductivity

FFT results for the thermal conductivity are given in Figure 19. The

effective conductivity is high along the fiber directions as the very long fibers

conduct heat through the material. As observed in [36], the thermal con-

ductivity is close to the lower Hashin-Shtrikman bound in the directions

orthogonal to the fiber arrangement, where the thermal isolation provided

by the matrix material is favored. In that respect, fibers are usually in a

planar configuration in materials used in the enclosure of boats or airplanes,

to provide thermal isolation between the interior and exterior. It is empha-

sized that the estimated physical properties of the real microstructure and of

our “mixed” stochastic model are nearly equal for all physical and thermal

responses, which confirms that the structure of the real material is consistent

with the adapted stochastic model.

6. Conclusion

In this work, set in the framework of virtual material design, the me-

chanical and thermal simulation of a fibrous material has been undertaken.

For the application on glass fiber reinforced polymers, experimental data

was used to construct realistic material models up to the predictions of their

physical properties. Such analysis necessitates the estimation of the relevant

microstructure parameters, from local radius and orientation analysis, over

fiber separation techniques, up to stochastic modeling. The influence of the
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geometrical parameters on the macroscopic properties has been examined

and interpreted in terms of expected behavior.

Geometrical characteristics such as the fiber curvature and the mixed β

-distribution are adequately estimated using the reconstructed fiber system.

Making use of the stochastic model, it is possible to create virtual materials

by generating realizations with varying geometrical parameters, whose phys-

ical properties are readily computed using FFT methods. The computation

of the representative volume element confirms that the number of realizations

equal to 10, and overall volume discretization of 4003 voxels have sufficient

accuracy. Still, the computation of the RVE is to be improved using larger

observation subdomains.

The following phenomenological interpretations are made: the fiber ar-

rangement strongly influences the elastic and thermal responses. In contrast,

these physical responses are generally less sensitive to the fiber curvature.

Furthermore, comparison with a model of Boolean cylinders allows to esti-

mate the influence of overlap. Finally, it has been found that in general, the

effective properties of the rebuilt fiber packing match those of the real mate-

rial provided the necessary geometrical parameters are set accordingly. Such

study allows in particular to optimize the effective properties with respect

to the application; this is especially useful for anisotropic materials, where

minimal mechanical responses are required in the weakest modes.

In that respect, the introduction of additional microstructure parameters

such as the aspect ratio, local alignment, or multiple layers of varying ori-

entation distributions could lead to a wider range of useful mechanical and

thermal properties.
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ory for infinite-contrast two-dimensionally periodic linear composites

with strongly anisotropic matrix behavior: Dilute limit and crossover

behavior, Physical review B 78 (10) (2008) 104111.

[27] F. Willot, Y.-P. Pellegrini, Fast fourier transform computations and

build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise

disordered porous media, in: Continuum Models and Discrete Systems:

CMDS 11: Proceedings of the International Symposium Held in Paris

July 30th-August 3rd 2007, Dominique Jeulin and Samuel Forest eds.,
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