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Abstract

This paper studies the problem of color transfer be-
tween images using optimal transport techniques. While
being a generic framework to handle statistics properly,
it is also known to be sensitive to noise and outliers, and
is not suitable for direct application to images without
additional post-processing regularization to remove ar-
tifacts. To tackle these issues, we propose to directly
deal with the regularity of the transport map and the
spatial consistency of the reconstruction. Our approach
is based on the relaxed and regularized discrete opti-
mal transport method of [8]. We extend this work by (i)
modeling the spatial distribution of colors within the im-
age domain and (ii) tuning automatically the relaxation
parameters. Experiments on real images demonstrate
the capacity of our model to adapt itself to the consid-
ered data.

1 Introduction

A large class of Image Processing problems involve
probability densities estimated from local or global im-
age features. To compare these densities, most distances
from information theory (e.g. Bhattacharya distance or
Kullback-Leibler divergence) give fast and accurate esti-
mations when the densities are similar. However, these
tools are not adapted when the density modes are not
located spatially at the same place. Furthermore, for
some classes of problems, the mapping between densi-
ties itself is more important than the value of the dis-
tance, whereas classic metrics do not define correspon-
dence functions between densities.

Optimal Transport in Imaging As a consequence, the ap-
plication of the Optimal Transport (OT) framework for
Image Processing problems has been widely studied in
the last decade. The OT problem consists in estimating
the minimal cost of transferring a source distribution
onto a target one.

The OT distance (also known as the Wasserstein dis-
tance or the Earth Mover distance) has been shown to
produce state of the art results for the comparison of dis-
crete statistical descriptors, see for instance [20]. It can
therefore deal perfectly well with discrete densities that
have either similar or different supports. As a byproduct
of the OT distance computation, the minimization of the
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transport cost also provides the optimal plan between
the two distributions. For discrete densities represented
by cloud of points, the problem amounts to finding the
optimal bijective assignment between the clouds, which
is a NP-hard problem (see for instance [22][4]). While
the estimation of the transport and the optimal path
are explicit in 1-D domain, the existing algorithms for
multidimensional data (linear programming, Hungarian
or auction algorithms) are limited to small sets of points
(typically less than 10%).

Color transfer The goal of color transfer is to impose
the ’image look and feel’ [19] of one image onto another
exemplar image. More precisely, given two input images,
color transfer algorithms impose the color palette of the
first image onto a second one. Initiated by [19], they pro-
pose to transfer some simple statistical descriptors (the
mean and standard deviation) in the la/ color space.
This idea was then extended to any color space by [23].
More precise methods for statistic transfer propose to
match the whole color distribution. For grayscale im-
ages, histogram matching corresponds to the application
of the 1-D OT plan to an image, as noted by [6] for the
case of histogram equalization. In [10], a reduced color
index was defined, so that the 1-D discrete OT can be
easily computed. Approximate methods for 3D OT were
proposed by [13, 18] for color images, and more recently
for videos [3].

However, as pointed out by [16, 14], the perfect trans-
fer of color is not satisfying in real applications given
that color densities may have very different shapes and
outliers generally appear in the final images. In fact, as
the transfer is performed in the color space, it does not
take into account the fact that coherent colors should be
transferred to neighboring pixels, making obvious JPEG
compression blocks, or increasing noise. As a conse-
quence, methods have been proposed to consider the
spatial nature of images and model some regularity pri-
ors on the image domain. Similarly to previous works on
image enhancement (see e.g. [2, 11]), the color transfer
may be formalized [12, 17] as an energy minimization
problem in the image domain, which allows to directly
incorporate a spatial regularization of colors. The post-
regularization of the image color obtained by OT has
also been proposed in [13, 15].

With these last approaches, pixels that were originally
close in the color space can nevertheless be very differ-
ent after the color transfer. In [21], an EM approach
is used to estimate a Gaussian mixture model in both
color and pixel space, showing that taking into account
the pixel location helps preserve the image geometry. A
major limitation of this method is that, contrary to OT



methods which match point clouds in order to minimize
some global cost function, the clusters are matched using
a greedy approach based on nearest-neighbor criterion.
To avoid contrast inversion, they used only luminance
instead of full color information, so that there is no con-
trol over the color distortion.

In the case of OT, the introduction of regularity pri-
ors on the transport map has been introduced in [8] to
transfer 3D color histograms. This method relaxes the
assignment problem but it does not deal with the spatial
distorsion introduced by the color mapping.

Contributions In this paper, we reformulate the discrete
relaxed and regularized OT method of [8] in order to
tackle the aforementioned flaws. We first define the re-
laxed optimal transport between densities and present
the regularization of the transport map on a non regu-
lar grid taking into account the spatial distribution of
colors. Hence, we propose to automate the setting of
relaxation parameters. Numerical results show the rele-
vance of this approach for color transfer problems.

2 Relaxed, Regularized and Weighted
oT

Problem Formulation We consider the bipartite
weighted matching problem between two histograms.
Let px and vy be two discrete and normalized dis-
tributions of features X € RNx*d and Y € RNv x4,
respectively. Their corresponding weights are p € RVx
and v € RN so that: pux Y iy Midx; and
vy =2 jcry VjOy;, where:

o Ix ={1,...,Nx} and Iy = {1,..., Ny} denote the
two index sets;

e X = {X; € Rl}jer, and Y = {Y; € R} ¢y, are
respectively two sets of features in a d dimensional
space;

e 0x(.) = d0(. — X) is the Dirac delta function located
at X;

e ;i and v are non-negative and normalized vectors, i.e.
pov=0and )0, pi = Zjely vj=1.

We look for a mapping 7" : R? i R? between X and
Y, referred to as transfer map in the following. In order
to transport pux towards vy (a.k.a. the "Monge’s Prob-
lem” [22]), we define T#ux = >, pidr(x,). In prac-
tice, depending on the targeted application, the map-
ping should have some of the following properties: (i)
T+ should be close to or match the target distribution
v, (i1) T should be regular in some sense, (%) T' should
take into account the weights p and v. We now describe
how modeling such constraints.

Optimal Transport When looking for a perfect match,
an effective way of addressing this problem (see e.g. [22])
is to define a local matching cost function ¢(X;,Y;) =
(Cxy)i,; between features X and Y, and then finding
the optimal transport plan w. This optimal plan gives
the perfect match between p and v, such that 7#ux =

vy, and is estimated through the matrix minimizing the
following linear program:

P* € argmin {(Cxvy, P) =
PeP(p,v)

>

ielx,jely

(Cxv)ij P} (1)

where the set of admissible solutions is defined as
Plu,v) = {Pe0,JNx*M\Ply, =pu, Py, =v},
In being a column vector of N elements equal to 1 and
P* corresponding to the transpose of P. The first con-
straint of P(u,v) implies that (Ply, ); = ZjEIy P =
pi- Thus Iy, Ply, = > ,c; pi = 1. Thanks to the
second constraint, the whole “mass” from the source X
is transferred to Y. The values P;; of matrix P then
corresponds to the proportion of the mass of cluster X;
that is transferred to the cluster Y;.

The advantage of such a formulation is that it is a
convex problem that can easily be solved using linear
program methods, provided that the size of the problem
is small (typically Nx Ny < 10%). The main limitation
of this framework is that 7 is a multi-valued mapping
function, meaning that each cluster X; may be matched
to several clusters Yj: m#ux = 3, ; P j0y,. For color
transfer application, this mixing can therefore lead to
the creation of spatial irregularities. Moreover, OT suf-
fers from high sensibility to weight inconsistency [16],
which is known to be a strong limitation for the target
we have in mind. To address those issues, we propose to
consider a relaxed and regularized convex problem.

Relaxed Weighted OT Following [8], we can tackle the
problem of weight inconsistencies by relaxing the match-
ing constraint towards the target distribution vy on the
matrix P. We introduce the set of acceptable transfer
maps Py, v):

Pulp,v) = {P € [0, ]V *"\ Ply, =p, Plny < kQu}

where k € RNY | k> 0,6 ® v = (kj v5) e, and s.t. (k, v) > 1.

Observe here that the second constraint involves now a
set of local relaxation parameters k = (k;);er, . Such a
relaxation k; parameter allows the model to increase or
decrease the capacity value of the corresponding feature
Y; of the target histogram vy; the maximum amount of
mass from px that Y; can receive is now bounded by
j vj. This relaxed modeling will allow defining a model
that locally adapt itself to the data. If k = Iy, , we get
the previous OT problem.

Average transport map Here, we resort to the follow-
ing definition adapted from [8] which may be seen as a
Posterior mean estimate to define a one-to-one transfer
function T
1 * 1 *
Sl Z PLY;, = — Y PLY;. (2)
JjEly

T(X) =Y =
uljefy
One thus have a linear relation between the transport
matrix and the average transport map: T(X) = D, PY,
where D,, = diag(p™!).

Regularity of a transport map We consider a structured
representation of X through the weighted graph Gx =
(Ix,Ex), where Ix is the set of vertices, and Ex C



I% is the set of edges [5]. We refer to w;; > 0 as the
weight of edge (i,7) € Ex between features X; and Xj.
The divergence of a vector field V = {(Vf)lgzgn}ielx €
RNx*7 on the graph Gy is defined at point X;, for each
dimension ¢, as the (opposite) adjoint operator of the
gradient operator

VielIx,Ve<n (divx V)= > wy (Vi =V)
JjEIx

3)
In the following, we will measure the regularity of the
flow V by considering the L' norm of the divergence

1) - DI

ielx 1<<n

|divx V|, := (divx V)§ (4)

Convex formulation When considering color transfer,
we would like the transport to be piecewise constant,
since we do not want to penalize color shift. To that end,
we consider the regularization of the average transport
displacement by defining V' = A(D,PY — X) in the pe-
nalization model (4). Matrix A € {0,1}"*¢ selects fea-
tures components that should be regularized. For color
transfer, we only consider n = 3 (RGB coordinates)
among d = 5 dimensional features (color attributes
along with additional spatial dimensions). Moreover, in
order to control that the relaxed and regularized trans-
ported color palette is close to the target, we add an
additional term |k — In,. | to check that the relaxation
is tight.

Introducing the regularlzatlon parameter A > 0 and
the fidelity one p > 0, our model becomes the followmg
convex optimization problem with linear constraints:

{P*,rk*} € argmin (Cxy, P)+AJ(A(D,PY —X))+p|x —1|,.

PePy(p,v)
reRNY ,k2>0,(k,v)>1

()

Notice that this energy can be minimized with a linear
solver by introducing auxiliary variables to deal with the
L' norm (see [7] for more details). This formulation gen-
eralizes the OT model proposed in [8] on cloud of points
to handle distributions. We will also show that it per-
mits to include spatial regularization for color transfer
purposes. Observe that the transport is here automati-
cally relaxed, since the we do not require the user to tune
the capacity vector k. Note also that, unlike [8], we con-
sider the divergence operator instead of Total Variation
in order to reduce the time complexity.

3 Application to color transfer

In this section we consider the application of our
model to color-transfer (or color “grading”). Let u be
the source image and v an exemplar image with the de-
sired color distribution. We denote as u : Q, C Z2 —
¥ C R3, where ,, is the regular pixel grid of u and ¥ is
the quantized RGB color space.The problem is to find a
new image w whose geometry is as close as possible to
the source image u and whose color distribution is close
to the one of the exemplar image v.

Let us now detail how the framework presented in the
previous section can be applied to color transfer (see il-
lustration in Figure 1). The first step consists in defining

the source and target sets X, Y, which involves spatio-
color clustering on the input images u, v, respectively.
These clusters are then used to build a weighted graph
(wi,;) and define the transport cost matrix Cxy that are
involved in the local adaptive functional (5) to minimize.
The color transfer is finally applied using the estimated
relaxed and regularized transport map.

Spatio-color clustering To cope with the dimensional is-
sue, we perform a joint clustering on the pixel grid and
on the color space (d = 5). The images v and v are quan-
tized to generate X and Y with Nx, Ny clusters, re-
spectively. We denote X; = (z;,U;) € R, to specify the
spatial component (x; € §,) and the color component
(U; € X). These values (x;, U;) represent the mean spa-
tial and color values of the set of pixels in v (and equiv-
alently for v) assigned to cluster X;. Here, we computed
this assignment using the fast super-pixels method [1],
with the default regularization parameter 0.02 and a raw
10 x 10 seed initialization. Note that each cluster X; has
an assigned group of pixels {N; C Q, X X};¢r, that can
have a different amount |N;| of pixels. We define the
cluster weight as p; = |[N;|/|Q].

Thus, we consider from now the measure of in-
terest px X = (@U) = Yl midx,(X) =
> icry Midz; (2)0y; (U), and similarly for the cluster set
Y obtained from image v, vy.

Transport cost Considering only color characteristics
for transfer, the ground cost is taken as (Cxy),; =

Ui = V;I*.

Graph construction As stated in the previous section,
to consider a regularization term, we need to define the
concept of neighborhood on the data set. In this work,
a NN graph is computed through k-NN search based on
the L2-distance between clusters.The weight w; ; of the
edge that links clusters X; to X, in (3) is defined as

LIX; = X173, ), where | X[ = X" =71 X
is the Mahalanobis distance and

wm- = exXp (—

Vi=L Y S(E—-X;)(F—X;)'S* eR>®

E,FeN;

is the weighted empirical covariance matrix of clus-
ter X;, wusing diagonal weighting matrix S =
diag (03,0y,0.,04,0p). Note that, the matrix V[l
in practice a pseudo-inverse matrix (Moore-Penrose) to
avoid numerical problem when dealing with uniform
clusters.

Color Palette Transfer Once the optimization problem
is solved and the relaxed OT matrix P* is computed, we
define the color transfer as T(U) = D, P*V, i.e.

= D nibe,d7w,)-

i€lx

TH#u(z,U) (6)
Image Synthesis As we work at a super-pixel scale to
speed-up the OT computation, the last step of the pro-
posed approach is to synthesize a new image w from the
source image u using the new color palette T#ux (z,U).



(a)
Figure 1: Color transfer process. (a) source image u and target color image v. (b) Super-pixel segmentation of v and v.
Raw color transfer without (c) and with (d) relaxation (i.e. p = oo and p = 10%). (e) Final image w with post-processing.
Photo credit: Nicolas Le Dilhuit

(b)

Like [21], we use maximum likelihood estimation to
incorporate geometrical information from the source
image u into the synthesis process. For each pixel
X = (x,u(x)) of the source image, the idea is to
use the likelihood to all clusters {X;}; through the
weights {w; }; in order to compute a linear combination
of the estimated transferred colors 7(X;). Using (6),
we set Vo € Qy, w(z) = ﬁ Yier, Wil X)T(U;), with
w;(-) = exp (3| - —Xi[?,), and the normalizing factor
W(X) = 32 wi(X).

Post-processing In order to restore the sharp details
from the original image that may have been lost in the
process, we make use of the NLMR filter from [15]. Note
that this step can be approximated and speeded up us-
ing the real time guided filter proposed by [9].

Experiments We first present in Figure 1 the full
pipeline including the super-pixel segmentation (b) of
the images (a). The raw color transfers obtained with-
out (c) and with (d) the automatic tuning of the re-
laxation parameters are presented as well as the re-
sult of the post-processing (e). In all our experiments,
we used the following parameters: m = 10 neighbors
in the graph, a regularization parameter A = 107!, a
capacity fidelity p = 10% and the covariance rescaling
0y = 0y = 10, 0, = 04 = 0 = 1, to give more im-
portance to the color information. A comparison with
state-of-the art methods [13, 12, 8] is given in Figure 2.
Notice that [13] can be improved with a post-processing
[15]. Thanks to the segmentation, our algorithm only
requires a few seconds whereas the methods of the lit-
erature last a few minutes. Contrary to [13, 12], we
do not match exactly the target color palette, since our
model adapt itself to the source image data. With re-
spect to [8], the improvement of the spatial regular-
ization allows removing artifacts that appear for in-
stance in the background. We finally present in Fig-
ure 3 some examples of color transfer. The reader may
find more results and comparisons at http://www.math.u-
bordeauxl.fr/ "npapadak/Color_transfer.html.

4 Conclusion and perspectives

In this paper, we have proposed a method for transfer-
ring color between images using relaxed and regularized
weighted optimal transport. Our convex minimization
approach involves a spatial representation of colors and
allows an automatic parameterization of the relaxation
parameters.

Further improvements of the method may reside in

(d)

the incorporation of image details in the model to avoid
the final post-processing step and the preservation of
contrast.

[13] raw [13]+[15] [12]
Figure 2: Comparison of out approach with [13] (without
and with the post-processing of [15]), [12], and [8]. Photo

credit: FElektrofisch

Figure 3: Examples of color transfer. (a) source image u
and target color image v. (b) Final image w with post-
processing. Photo credit: ‘Waves’ photo by Daniele Zedda,
‘Grafiti’ and ‘fire exits’ by Thomas Leuthard, ‘Canyon’ by
Chen Su, ‘Desert’ by Steve Yabek, and ‘Creek’ by Nicolas Le
Dilhuit.
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