
HAL Id: hal-01002828
https://hal.science/hal-01002828

Submitted on 28 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A reconfigurable multi-standard ASIP-based turbo
decoder for an efficient dynamic reconfiguration in a

multi-ASIP
Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer

Baghdadi, Jean-Philippe Diguet, Jean-Noël Bazin, Michael Hubner

To cite this version:
Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer Baghdadi, Jean-Philippe
Diguet, et al.. A reconfigurable multi-standard ASIP-based turbo decoder for an efficient dynamic
reconfiguration in a multi-ASIP. ISVLSI 2013 : IEEE Computer Society Annual Symposium on VLSI,
Aug 2013, Natal, Brazil. �10.1109/ISVLSI.2013.6654620�. �hal-01002828�

https://hal.science/hal-01002828
https://hal.archives-ouvertes.fr

A reconfigurable multi-standard ASIP-based turbo decoder for an efficient dynamic
reconfiguration in a multi-ASIP context

Vianney Lapotre∗, Purushotham Murugappa†, Guy Gogniat∗, Amer Baghdadi†, Jean-Philippe Diguet∗,
Jean-Noël Bazin † and Michael Hübner ‡

∗Univ. Bretagne Sud, UMR6285, Lab-STICC, F56100 Lorient, France. Email: firstname.lastname@univ-ubs.fr
†Telecom Bretagne, UMR6285, Lab-STICC, F29200 Brest, France. Email: firstname.lastname@telecom-bretagne.eu

‡Rurh-Universität Bochum, ESIT, Bochum, Germany. Email: michael.huebner@rub.de

Abstract—The emergence of many wireless standards is introducing
the need of flexible multi-standard baseband receivers. To address
this issue and to face the increasing demand of higher throughput
for new greedy applications on mobile devices recent works propose
multi-ASIP platforms for decoding algorithms. Furthermore dynamic
evolution of communication parameters combined with the reduction
of latency between two data frames imposes the need for an efficient
reconfiguration management of such systems. In this context, we
propose to tackle reconfiguration optimizations of a multi-standard and
multi-mode ASIP for turbo decoding in order to improve the global
reconfiguration management of a multi-ASIP platform. A comprehen-
sive analysis concerning the area impact and dynamic reconfiguration
performance is presented. Proposed ASIP configuration optimizations
lead to a low area overhead of 0.004 mm2 in 65 nm CMOS technology.
For a multi-ASIP platform in which 8 ASIPs are implemented on a
same device the configuration load is divided by ten thanks to both
ASIP optimizations and an efficient configuration infrastructure.

Keywords-ASIP; Multiprocessor; SoC; Dynamic reconfiguration;
Wireless multi-standard receiver; Turbo decoder;

I. INTRODUCTION

The evolution of recent wireless communication standards aims
at increasing the requirements in terms of throughput, robustness
against destructive channel effects and convergence of services in
a smart terminal. As an example, the fourth generation (4G) of
cellular wireless standards aims at providing mobile broadband so-
lution to laptop computer wireless modems, smartphones, and other
mobile devices. Diverse features such as ultra-broadband Internet
access, IP telephony, gaming services, and streamed multimedia
are provided.

Channel decoding is a key feature of a wireless standard. Turbo
codes [1] are frequently adopted in the recent wireless standards to
reach a low bit error rate (BER). The high throughput requirement
of recent standards often imposes the efficient exploitation of dif-
ferent parallelism levels. In this context, multi-ASIP (Application-
Specific Instruction-set Processor) architectures for turbo decoding
[2], [3], [4] is a promising approach to reach high flexibility,
high throughput and energy efficiency. The high flexibility of
these multi-ASIP architectures is provided by the possibility to
load new configuration in each ASIP of the platform. In [2] and
[3], the authors propose to implement the ASIP described in [5]
in order to build a flexible multi-ASIP based turbo decoder for
LTE requirements. This ASIP is configured through an interleaver
memory, a program memory and the Dynamically Reconfigurable
Channel Code Control (DRCCC). The DRCCC is a look-up table
based unit which allows the configuration of the structure of the
convolutional code, the internal data-path, and the configuration
memory. Two configurations are stored in this unit, a working

and a shadow configuration. The working configuration holds the
parameters that are actually used while the shadow configuration
is used to prepare the next configuration. One cycle switching can
be performed between these two configurations thanks to a special
instruction. However, using a specific instruction in the program
to switch between two configurations limits the flexibility because
the reconfiguration scenario is defined statically. In [4], the authors
present the UDec architecture. It consists of 8 ASIPs (named
DecASIPs) interconnected via a Network on Chip (NoC). Within
each component decoder the ASIPs are also connected by a ring
network for metric exchanges. Each ASIP is configured through a
program and a configuration memory. The configuration memory
contains several communication parameters which are loaded in
internal registers of the ASIP during an initialization step, while
the program describes the control flow for the initializing loop and
the decoding loops.

Previous work provides an efficient way to reach the high perfor-
mance requirement of emergent standards. However, the dynamic
reconfiguration aspect of these platforms is superficially addressed.
All these platforms can be reconfigured through program and con-
figuration memories of each core, but the configuration mechanisms
are not optimized for an efficient implementation in a multi-core
system. The perpetual increase of throughput of wireless standards
reduces the reconfiguration time available between two data frames
while the number of cores increases to reach high throughput. This
point is particularly challenging as in many standards decoding
parameters can be changed as early as one data frame ahead [6],
thus it becomes mandatory to aggressively improve reconfiguration
times in order to perform the reconfiguration of the whole platform
within a single data frame duration. Reaching a reconfiguration
time below tens of microseconds will be a key concern to face
expected throughput of future communication standards. In this
paper, we tackle this problem and propose several optimizations for
reconfiguration of multi-ASIP architectures allowing to meet this
constraint. Furthermore any possible optimization at the ASIP level
will lead to a lower reconfiguration time at the platform level. Thus
it is essential to target any possible improvement at the ASIP level.
The proposed approach is illustrated through the flexible DecASIP
core described in [4] and highlights how our optimizations enable
reaching a low reconfiguration time for a multi-ASIP platform.

The rest of this paper is organized as follows. Section II
introduces the UDec multi-ASIP architecture and describes the
DecASIP. Section III presents the proposed optimizations to reach
an efficient configuration of the multi-ASIP platform. Section
IV describes the implementation of the optimizations into the
DecASIP processor and the evaluation of the (re)configuration

performance. Finally, section V concludes the paper.

II. MULTI-ASIP TURBO DECODER

The turbo decoding system diagram is presented in Fig. 1. It
consists of component decoders which exchange extrinsic informa-
tion via an interleaver (Π) and deinterleaver (Π−1) processes. The
component decoder 1 receives Log-likelihood ratio (LLR) from
a demapper for each bit of a frame in the natural order while
component decoder 0 receives LLR in interleaved order. Then,
iterative decoding algorithm is performed to decode the frame. The
flexibility of a turbo decoding system is reached through several
configuration parameters as the interleaver law, the trellis structure,
the frame size and the number of turbo decoding iterations.

Component
decoder 0

Component
decoder 1

π-1 π

π

Hard. dec

Channel
LLR

Figure 1. Turbo decoding system

The UDec turbo decoder architecture [4] shown in Fig. 2
implements the turbo decoding system previously described. It
consists of two rows of DecASIPs interconnected via a butterfly
Network on Chip [7]. Each row corresponds to a component
decoder. In the example in Fig. 2, four ASIPs are organized in 2
component decoders respectively built with 2 ASIPs. Within each
component decoder the ASIPs are connected by two 80-bit buses
for state metric exchange. The DecASIP implements the Max-Log
MAP algorithm as described in [8]. It supports convolutional turbo
codes up to eight-state double binary codes or sixteen-state single
binary codes. Large frames are processed by dividing the frame

40

40

40

40

Component decoder 0 Component decoder 1

Butterfly

NoC

N
o

C
in

te
rfa

ce
N

o
C

in
te

rfa
ce

N
o

C
in

te
rf

a
ce

N
o

C
in

te
rf

a
ce

DecASIP

0
DecASIP

2

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

1

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

3

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

1 2

3

5

4

Figure 2. UDec system architecture example with 2x2 ASIPs

into N windows each with a maximum size of 64 symbols. Each
ASIP can manage a maximum of 12 windows. The DecASIP is
associated with 3 memory banks of size 24x256 used to store the
input channel LLR values ¬. There are also another 3 banks of
size 30x256 used for extrinsic information storing ­. Each ASIP is
further equipped with two 40x32 memories which hold state values
®. Moreover, Each ASIP is configured through a program ¯ and
a configuration memory °. The configuration memory contains
all parameters required to perform the initialization of the ASIP
while the program memory contains the instructions in order to
perform the decoding algorithm. Since the DecASIP is designed to
work in a multi-ASIP architecture as described in [4], it requires
several parameters to deal with a subblock of the data frame and
several parameters to configure the ASIP mode. Concerning the
subblock partitioning, each ASIP is configured with the size and
the number of windows it has to decode. Furthermore, the last
window size can be different so it corresponds to an additional
parameter. In a single binary turbo code mode, the address of
the tail bits in memory, the size and the number of windows
for the tail bits have to be configured. Parameters for the ASIP
mode correspond to the location of the ASIP in the architecture,
the number of ASIPs required, the parameter which defines if the
current ASIP is in charge of tail bits or not, the target standard
(3GPP-LTE, WIMAX, or DVB-RCS) and the scaling factor for
extrinsic information. Finally, some seed values are necessary for
address generation in order to exchange information over the NoC
that connects the ASIPs of each decoder component.

In order to address the dynamic configuration of the UDec
Platform through the DecASIP configuration the architecture pre-
sented in Fig. 3 is considered. It includes 4 DecASIPs that are
configured thanks to a bus-based configuration infrastructure (the
details of this infrastructure is out of the scope of this paper).
Moreover, A Random generator associated with an Emitter produce
the encoded symbols. The considered channel model is an Additive
White Gaussian Noise (AWGN). The Input interface distributes
the received symbols in the Input memories of each DecASIP. The
configuration manager is in charge of the configuration generation.
The configuration information is sent through the Master Interface
to the Slaves interfaces that finally fill the configuration memory
of each DecASIP. This configuration infrastructure provides an
efficient solution to update DecASIP configuration memories using
unicast, multicast or broadcast transfers. In [4], authors show that
the DecASIP architecture provides high performance and high
flexibility. However the topic of dynamic reconfiguration is not
addressed. Despite its high flexibility, it presents some lacks to
offer an efficient dynamic reconfiguration. The next section points
out theses lacks and proposes several solutions to implement
an efficient reconfigurable DecASIP for the UDec turbo decoder
architecture.

III. PROPOSED OPTIMIZATIONS

Several optimizations are proposed to reach an efficient dynamic
reconfiguration of the DecASIP architecture. The first optimization
is related to the storage of configuration parameters. Currently,
some parameters are stored in the configuration memory and others
are provided in the program instructions directly [4]. The second
optimization deals with the way used to load the configuration
memory through the configuration memory organization. The third

bit 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
@0 - Tail ASIPId
@1 Turbo Seed 0 Turbo Seed 1
@2 - TurboInitIteration Maxiteration State NumSteps
@3 Turbo Step 0 Turbo Step 1
@4 Turbo Step 2 Turbo Step 3
@5 Turbo Step 4 Turbo Step 5
@6 Turbo Step 6 Turbo Step 7
@7 - @ Tail bits Scaling Factor Mode
@8 Turbo PrevStep Blocklength in bits
@9 - NumASIPs StepIndex WindowSize LastWindowSize
@10 - CurrentWindowN norm CurrentWindowID tail WindowN tail

Table I
NEW CONFIGURATION MEMORY

Butterfly NoC

N
o

C
in

te
rfa

ce
N

o
C

in
te

rfa
ce

N
o

C
in

te
rf

a
ce

N
o

C
in

te
rf

a
ce

DecASIP 0 DecASIP 2

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP 1

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP 3

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

Input interface

Channel

Noisy symbols

Emitter

Symbols

Random generatorPlatform controller

Verification module

To ASIPs To NoC

Hard decision

from ASIPs

Config

Memory

(26x12)

Control flow Data flow Configuration flow

Mem.@

Data
T_enable

Dest. @

Selector
Slave Interface 0

(SI_1)

Slave Interface 1

(SI_3)

Slave Interface N

(SI_4)

Slave Interface 0

(SI_0)

Slave Interface 0

(SI_2)

Master Interface

(MI)

T_init

D_enable

Data

Base. @

Dest. @ Configuration

Manager

26

8

8

26

8

8

T

E

S

T

B

E

N

C

H

U

D

E

C

A

R

C

H

I

T

E

C

T

U

R

E

C O N F I G U R A T I O N I N F R A S T R U C T U R E

Figure 3. Architecture of the proposed configuration infrastructure for the
UDec platform.

optimization corresponds to the development of a generic program
independent of the configuration to be performed.

A. Configuration parameters storage

To reach (re)configuration efficiency, we propose to move all
parameters from the program memory to the configuration memory.
This solution allows to (re)configure a single memory to change all
the configuration parameters (instead of loading both new program
memory and configuration memory). Furthermore, once the ASIP is
configured, the configuration memory can be accessed without any
conflict since the configuration is loaded inside internal registers
of the ASIP during the initialization step. This is a key point to
prepare the next configuration if necessary. Indeed, the entire next

configuration can be loaded in the configuration memory during
the processing of the current data frame. Thus the configuration
loading can be partially or completely masked. If the configuration
loading is completely masked, the configuration overhead consists
in the initialization step only. However, this modification impacts
the area of the configuration memory since it is necessary to store
more parameters. It also impacts the number of registers inside the
ASIP in order to store these parameters after the initialization step.
Finally, it impacts the initialization step duration since this step
consists in reading the configuration memory and then storing each
parameter in the corresponding register. The program in its current
form contains eight configuration parameters. So eight parameters
have to be added to the configuration memory to obtain a parameter
independent program memory. The next sub-section presents a way
to integrate these new parameters in a smart memory organization.

B. Configuration memory organization

In order to improve the (re)configuration of the ASIP, it is
essential to analyze the organization of the configuration memory.
The parameters stored in the configuration memory are very spe-
cific. They can be divided in four categories: 1) domain dependent
(for component decoder 0 or component decoder 1 in Fig. 1), 2)
identical for all ASIPs, 3) different for all ASIPs and 4) different
for the last ASIPs which decode the tail bits in a single binary
turbo code mode. All these characteristics need to be taken into
account in order to build a low latency configuration process.
Furthermore, in a multi-ASIP context, it is necessary to only
configure ASIPs required for a specific execution context (it means
that only a subset of ASIPs may be required depending on the
performance to be achieved). A smart memory organization should
allow an efficient broadcasting of the configuration parameters
to the required ASIPs. thus we propose to group the parameters
depending on the previously described categories. Four groups
which occupy four different parts of the configuration memory are
defined.

As different memory architectures can be considered, it is
important to define the best size for the memory. Table II shows
that the choice of the width and depth of the memory impacts the
time required to load the configuration into the ASIP and the area
of the memory on the chip. We evaluate five solutions from 14 bits
to 32 bits memory width. Since the number and the size of each
parameter are fixed, the depth of the memory decreases when the
width increases. Furthermore, in order to take into account the final

Width Depth Usage Configuration time
(in bits) (in %) (in cycles)

32 10 79.1 12
28 12 75.3 13
26 12 97.3 13
24 16 65.9 17
20 18 70.3 19
16 20 79.1 22
14 22 82.1 24

Table II
CONFIGURATION MEMORY ARCHITECTURE ALTERNATIVES

implementation of the different memory alternatives, the depth and
width of each memory must be a multiple of 2. It represents the
minimal constraint to design the memory (this constraint is related
to the memory technology considered for our design). Depending
on the alternative, the level of memory usage changes. Results of
Table II show that a 26 bits memory width is the most efficient one
(97.3%) while a 24 bits memory width is inefficient (65.9%). The
time required to configure the ASIP is proportional to the number
of memory lines to be read. Each clock cycle, the ASIP reads one
data from the memory and configures the corresponding register.
One more clock cycle is necessary to initialize the reading loop, and
another cycle is required to complete the initialization of the ASIP.
For example, 12 cycles are needed to load the configuration in the
ASIP with a 32 bits memory width while 24 cycles are necessary
for a 14 bits memory width. Moreover, the memory width has an
impact on the global multi-ASIP platform. Indeed, a large memory
width increases the number of connections between each ASIP and
its configuration memory and between each configuration memory
and the link that is used to load the configuration parameters in
the memories (Fig. 3). Thus, a trade-off between the initialization
time, the memory usage and the global impact on the platform has
to be found. The 26 bits memory width is an interesting trade-
off. This memory alternative offers a fast configuration time (13
cycles) and the highest memory usage efficiency (97.3%). Finally,
the impact on the entire platform is low compared to the current
solution that implements a 24 bits memory width. This point will
be further discussed in the result section.

Table I shows the 26 bits width configuration memory organi-
zation. The memory is organized as follows: (1) from address @0
to @1, parameters can be different for each ASIP. Furthermore,
to optimize the initialization step of the ASIP, the parameter Tail
which indicates if the ASIP has to perform or not the tail bits is
included in this group. Only the last two ASIPs are concerned by
the tail bits in a single binary turbo code mode; (2) from address
@2 to @6, the parameters are domain dependent; (3) from address
@7 to @10, the parameters are the same for all ASIPs. This
organization allows a good way for a fast reconfiguration at the
platform level. Indeed, multicast mechanisms can be used to load
the configuration in order to minimize the data transfers load. In
this context, two multicast transfers are necessary to send domain
dependent parameters to all ASIPs and one multicast transfer for
parameters that are the same for all ASIPs. Finally, unicast transfers
are used to load the ASIP dependent parameters.

C. Generic program

We propose to simplify the (re)configuration mechanism by
using a unique generic program stored in a ROM memory. Since all
parameters contained in the program memory have been moved to
the configuration memory, three possibilities exist for the program:
two programs for single binary turbo code and one program for duo
binary turbo codes. In single binary mode, after the initialization
step, the last two ASIPs have to perform the tail bits while other
ASIPs execute NOP operations. So, a particular program is loaded
in these last two ASIPs. In duo binary mode, data frames are
decoded after the initialization step. In order to merge these three
possible programs, the new unique program has to be able to tackle
these three cases. For this purpose, the program which integrates
the tail bits computation is used as a reference. We have chosen
to modify the Fetch pipe stage of the ASIP in order to detect
and replace the instructions for tail bits with NOP instructions if
the ASIP is not concerned. The value of the bit Tail stored in the
configuration memory (Table I) determines if the ASIP is concerned
or not by tail bits decoding. In duo binary mode, no tail bits have to
be decoded. So, using a unique program in this mode adds 12 extra
NOP instructions before the decoding step which corresponds to
tail bits computation in single binary mode. However, these extra
clock cycles are negligible regarding the number of cycles required
to perform the decoding on one entire data frame (for example,
around 3000 cycles are necessary to execute the entire program on
a 960 bits data frame in single binary mode with 8 ASIPs applying
6 iterations).

Optimizations described in this section allow to reduce the
(re)configuration impact: 1) locally through the optimization of the
storage of configuration parameters to efficiently use the memory
capacity and 2) globally thanks to the new memory organization
and the generic program which reduce the total configuration load
to be transferred through the configuration infrastructure (Fig.
3) when a new configuration has to be performed. The next
section presents the implementation and the impact of proposed
optimizations in the DecASIP.

IV. IMPLEMENTATION AND RESULTS

A. ASIP implementation

Optimizations described in Section III have been implemented
on the DecASIP presented in [4]. To provide more flexibility for
future configuration organization, input pins have been added to
inform the ASIP about the size of the configuration. The ASIP
was modeled in LISA language using Synopsys (ex. Coware) Pro-
cessor Designer tool. Synthesis of the previous and the new cores
was done with 65nm CMOS technology with a clock frequency
objective equals to 500MHz. Synthesis results have been extracted
to determine the impact of the optimizations on the pipeline and
the register file of the ASIP.

To evaluate the impact of the new features on the ASIP area,
we extracted the area synthesis results for each pipeline stage of
the ASIP. This ASIP consists of 10 pipeline stages as shown in
Fig. 4. The reconfiguration optimizations presented in this paper
do not affect all the stages. Only three stages are impacted. Indeed,
from BM1 to EXTR-CH, stages are dedicated to data computation
and this part of the ASIP pipeline is not directly concerned by

26

P
re

fe
tc

h

P
ip

e
li

n
e

 r
e

g
s.

In
st

ru
ct

io
n

 f
e

tc
h

P
ip

e
li

n
e

 r
e

g
s.

O
p

e
ra

n
d

 f
e

tc
h

P
ip

e
li

n
e

 r
e

g
s.

B
ra

n
ch

 m
e

tr
ic

 1

P
ip

e
li

n
e

 r
e

g
s.

B
ra

n
ch

 m
e

tr
ic

 2

P
ip

e
li

n
e

 r
e

g
s.

S
ta

te
 m

e
tr

ic
 L

LR
s

g
e

n
e

ra
ti

o
n

P
ip

e
li

n
e

 r
e

g
s.

M
a

x
 u

n
it

s
1

P
ip

e
li

n
e

 r
e

g
s.

M
a

x
 u

n
it

s
2

P
ip

e
li

n
e

 r
e

g
s.

In
fo

rm
a

ti
o

n
 g

e
n

e
ra

ti
o

n

PF FE OPF BM1 BM2 EX MAX1 MAX2 EXTR-CH

Program

memory

P
ip

e
li

n
e

 r
e

g
s.

In
st

ru
ct

io
n

 D
e

co
d

in
g

DC

Input

memories

Cross metric

memories

Config.

memory

Extrinsic

memories
Decoding algorithm execution

16

16
6

8

24

8

24

6

80

Register file

Branch metric LLRs

State metric LLRs

Config.

registers

Figure 4. DecASIP Pipeline

FE DC OPF Total
pipeline

DecASIP 0.001 0.05 0.003 0.078
New ASIP 0.0011 0.055 0.0037 0.080

Diff. 0.0001 0.005 0.0007 0.002
+10% +10% +23% +2.6%

Table III
PIPELINE STAGES AREA COMPARISON IN mm2

the configuration optimizations proposed in this work. Moreover,
The pre-fetch stage is identical in the two implementation of the
DecASIP. On the other hand, fetch (FE), decode (DC), and operand
fetch (OPF) stages have seen their area increased compared to the
previous ASIP. Table III presents area synthesis results for each
impacted pipeline stage for the original ASIP and the new version.
The proposed optimizations were implemented along the pipelines
stages as follows:

• FE: The FE stage insures the automatic replacement of in-
structions for tail bits computation by NOP when the ASIP is
not concerned by tail bits decoding.

• DC: This stage is mainly impacted by the transfer of all flex-
ible parameters in a unique configuration memory. Instead of
a direct access to some parameters in instruction code words,
parameters are now read from registers. Thus, the number of
connections with the register file has been increased.

• OPF: This stage is impacted by the new configuration memory
organization since it is in charge of the parameter registers
initialization. The area overhead comes from the increasing
number of parameters in the configuration memory and by
added control structures that manage the configuration size
flexibility. Since more configuration parameters are read from
the configuration memory, the number of connections with
the register file has been increased to configure additional
registers.

Regarding results from Table III for the complete pipeline of the
ASIP, we observe that despite of the different area overheads on the
first pipeline stages caused by our optimizations, the global area
overhead for the complete pipeline is 2.6% (0.002 mm2). Indeed,
the most complex part of the pipeline consists of the execution
stages that implement the decoding algorithm.

On the register file side, this increasing is around 14.5% (0.011
mm2).

Table IV shows the global area comparison between the De-

Pipeline Register Total
file ASIP

DecASIP 0.078 0.076 0.175
New ASIP 0.080 0.087 0.179

Diff. 0.002 0.011 0.004
+2.6% + 14.5% +2.3%

Table IV
ASIP AREA COMPARISON IN mm2

cASIP and the new version optimized for dynamic reconfiguration.
We observe that the global logic overhead on the ASIP is 2.3%
(0.004 mm2). This overhead is mainly due to the register file.
So, the increasing complexity of the ASIP is mainly due to
the additional internal registers used to store the configuration
parameters read from the configuration memory.

B. Dynamic reconfiguration performance

In this section, we evaluate the gain of proposed optimizations on
reconfiguration timing performance. For this purpose, we consider
the following reconfiguration steps:

1) Memories loading: The first step of the configuration pro-
cess is the transfer of the configuration parameters in the
configuration memory of one or several ASIPs.

2) ASIP Initialization: When the configuration parameters are
available in the memory, the ASIP can start the initialization
process. During this step, the ASIP reads the configuration
stored in the configuration memory and initializes the internal
registers. Then, the ASIP is ready to execute the computation
on the input data frame.

Table V compares the configuration and program load (in bits)
for the proposed ASIP, the original DecASIP presented in [4] and
the ASIP presented in [5]. For one ASIP, we observe that the
proposed ASIP can be configured with 286 bits instead of 976 bits
thanks to the generic program described in Section III-C while 1463
bits and the complete interleaver table are required for the ASIP in
[5]. Moreover, the new memory organization proposed in Section
III-B allows the optimization of the configuration memory loading.
Indeed, parameters are sent to several ASIPs through multicast
mechanism presented in Section II. Thus, in a multi-ASIP context,
each original ASIP has to be configured with its own configuration
and program memory while configuration memory of the proposed
new ASIP can be loaded using a multicast mechanism as follows:
52 bits are independently loaded in each ASIP. ASIPs that compose
the same decoder component (Fig. 1) are loaded with 130 common
bits. Finally, 104 configuration bits are broadcasted to all ASIPs.
Thanks to this new configuration memory organization, the impact
of the number of ASIPs on the configuration load is significantly
reduced: n.52 bits instead of n.976 bits, where n is the number of
ASIPs implemented. For example, if 8 ASIPs are implemented in
a multi-ASIP platform, the configuration load to configure the 8
ASIPs is 7808 bits with the original DecASIP, 11704 bits for [5]
plus the interleaver tables and 780 bits with the proposed ASIP. In
this case the configuration load is divided by 10 and 15 compared
to the DecASIP and the ASIP from [5] respectively. Finally, it is
interesting to note that the configuration infrastructure presented in
Section II providing multicast mechanism has a low area overhead
that represents 1.4% (i.e. 0,01 mm2) of the area of the 4 DecASIPs

Config Prog. 1 n
param. mem. ASIP ASIPs

New ASIP 286 - 286 n.52+260+104
DecASIP 336 640 976 n.976

Gain 14% 100% 70% 90% (n = 8)
[5] 383 + ∼1080 1463 + n.1463

Interl. Inter. n.Interl.
Gain 25% 100% 80% 93% (n = 8)

Table V
CONFIGURATION AND PROGRAM BIT LOAD COMPARISON IN BITS

that are implemented in the considered UDec platform. Moreover,
the configuration of the 4 DecASIPs are performed in 2µs.

The new configuration memory area is reduced by 7.5% (i.e.
194 µm2) compared to the original implementation. Its new orga-
nization has also an impact on the initialization time of the ASIP.
Indeed, for each new configuration, the ASIP reads the parameters
from the configuration memory and initializes the internal registers.
The new memory organization reduces the number of read accesses
to the memory. Only 11 read accesses are necessary instead of 15
in the original ASIP. Thus the initialization time is reduced by 4
cycles. Thus, the ASIP can be reconfigured in 12 clock cycles if
we assume that one extra clock cycle is necessary to drive the
reset pin of the ASIP. Furthermore, when the initialization step is
performed, the ASIP does not read the configuration memory until
the next initialization. Hence, during the computation on a data
frame, configuration parameters can be loaded in the configuration
memory. The memory loading process can be partially or totally
masked depending on when the reconfiguration order is triggered.
If the loading process is masked, the complete (re)configuration of
a multi-ASIP platform represents an overhead of around 12 clock
cycles. This low (re)configuration time overhead allows the imple-
mentation of such an optimized ASIP in multi-ASIP architecture
for future high throughput and low latency requirements.

The timing performances for turbo decoding of the new and
the original version of the DecASIP are purely identical. Indeed,
the pipeline architecture is still the same and both implementation
are able to reach the maximum frequency of 500MHz. However,
in double binary mode, the new version of DecASIP requires 12
extra clock cycles after the initialization phase to start decoding.
Since the initialization phase for the new version is 4 clock cycles
shorter than for the original version, the new DecASIP requires 8
extra clock cycles before the beginning of the decoding in double
binary mode while it is able to start the treatments 4 clock cycles
before the original DecASIP in simple binary mode. Nevertheless,
we can disregard these impacts in front of the decoding time of a
data frame that is identical for both version of the DecASIP.

V. CONCLUSION

Multi-ASIP architectures for turbo decoding is a promising
approach to reach high flexibility and high throughput requirements
imposed by new emerging communication standards. Due to the
increasing throughput and the reduction of latency between two
data frames, the configuration of such multi-core platforms is
becoming a critical point. In this paper, we propose to optimize
a multi-standard ASIP for an efficient (re)configuration in a multi-
ASIP context. Results show that configuration load of the ASIP

has been reduce by 70% compared to the original implementation.
Furthermore, in a multi-ASIP context implementing 8 ASIPs, the
proposed smart configuration memory organization allows dividing
the configuration load by 10 using a multicast mechanism. Future
work targets the evaluation of the power consumption in order to
analyze the impact of our optimizations with respect to power and
energy that are main issues.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Commu-
nications, 1993. ICC 93. Geneva. Technical Program, Conference
Record, IEEE International Conference on, vol. 2, may 1993, pp.
1064 –1070 vol.2.

[2] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-ASIP ar-
chitecture for standard compliant trellis decoding,” in International
SoC Design Conference (ISOCC), 2011, pp. 349 –352.

[3] T. Vogt, C. Neeb, and N. Wehn, “A reconfigurable multi-processor
platform for convolutional and turbo decoding,” in Proc. of In-
ternational Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2006, pp. 16–23.

[4] P. Murugappa, A.-K. R., A. Baghdadi, and M. Jézéquel, “A
Flexible High Throughput Multi-ASIP Architecture for LDPC and
Turbo Decoding,” in Proc. of Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2011.

[5] T. Vogt and N. Wehn, “A reconfigurable asip for convolutional
and turbo decoding in an sdr environment,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 10,
pp. 1309 –1320, oct. 2008.

[6] “Ieee standard for local and metropolitan area networks part 16:
Air interface for fixed and mobile broadband wireless,” IEEE Std
802.16e-2005, 2006.

[7] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de bruijn on-
chip network for a flexible multiprocessor ldpc decoder,” in Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, june
2008, pp. 429 –434.

[8] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and
sub-optimal maximum a posteriori algorithms suitable for
turbo decoding,” European Transactions on Telecommunications,
vol. 8, no. 2, pp. 119–125, 1997. [Online]. Available:
http://dx.doi.org/10.1002/ett.4460080202

