P Gabriel 
email: pierre.gabriel@uvsq.fr
  
Global stability for the prion equation with general incidence

Keywords: prion equation, growth-fragmentation equation, spectral gap, self-similarity, long-time behavior, stability AMS Class. No. 35B35, 35B40, 35Q92, 45K05, 92D25

published or not. The documents may come    

Global stability for the prion equation with general incidence

Introduction

Prion diseases, also referred to as transmissible spongiform encephalopathies, are infectious and fatal neurodegenerative diseases. They include bovine spongiform encephalopathy in cattle, scrapie in sheep, and Creutzfeld-Jakob disease in human. It is now widely admitted that the agent responsible for these diseases, known as prion, is a protein which has the ability to self-replicate by an autocatalytic process [START_REF] Griffith | Nature of the scrapie agent: Self-replication and scrapie[END_REF][START_REF] Prusiner | Novel proteinaceous infectious particles cause scrapie[END_REF]. The infectious prion, called PrP Sc for Prion Protein Scrapie, is a misfolded form of a normally shaped cellular prion protein, the PrP c . The so-called nucleated polymerization was proposed by [START_REF] Jarrett | Seeding "one-dimensional crystallization" of amyloid: A pathogenic mechanism in alzheimer's disease and scrapie?[END_REF] as a conversion mechanism of PrP c into PrP Sc . According to this theory the PrP Sc is in a polymeric form and the polymers can lenghten by attaching PrP c monomers and transconforming them into PrP Sc . To understand more qualitatively this mechanism, a mathematical model consisting in a infinite number of coupled ordinary differential equations (ODEs) was introduced in [START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF]. Then a partial differential equation (PDE) version of this model was proposed in [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF] (see also [START_REF] Doumic | Scaling limit of a discrete prion dynamics model[END_REF] for a rigourous derivation). This equation, known as the prion equation, was studied in various works in the last few years [START_REF] Engler | Analysis of a model for the dynamics of prions ii[END_REF][START_REF] Prüss | Analysis of a model for the dynamics of prion[END_REF][START_REF] Simonett | On the solvability of a mathematical model for prion proliferation[END_REF][START_REF] Walker | Prion proliferation with unbounded polymerization rates[END_REF][START_REF] Laurençot | Well-posedness for a model of prion proliferation dynamics[END_REF][START_REF] Calvez | Size distribution dependence of prion aggregates infectivity[END_REF][START_REF] Calvez | Prion dynamic with size dependency -strain phenomena[END_REF][START_REF] Gabriel | The shape of the polymerization rate in the prion equation[END_REF]. A more general model including general incidence of the total population of polymers on the polymerization process and a coagulation term was proposed in [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF].

1

In the present work we propose to investigate the prion equation with general incidence, but without coagulation, which writes

         d dt V (t) = λ -δV (t) - V (t) 1 + ω x p u ∞ 0 τ (x)u(t, x) dx , ∂ t u(t, x) = - V (t) 1 + ω x p u ∂ x τ (x)u(t, x) -µ(x)u(t, x) + Fu(t, x), (1) 
where F defined by

Fu(x) := 2 ∞ x β(y)κ(x, y)u(y) dy -β(x)u(x)
is the fragmentation operator. Dynamics ( 1) is subjected to nonnegative initial conditions V 0 and u 0 (x). The unknown V (t) represents the quantity of PrP c monomers at time t while u(t, x) is the quantity of PrP Sc polymers of size x. The PrP c is produced by the cells with the rate λ and degraded with the rate δ. The PrP Sc polymers have a death rate µ(x) and they can break into two smaller pieces with the fragmentation rate β(x). The kernel κ(x, y) gives the size distribution of the fragments. The "general incidence" corresponds to the term 1 1+ω x p u in front of the polymerization rate τ (x), with ω ≥ 0 and p ≥ 0. The case ω = 0 corresponds to the mass action law, i.e. the original model without general incidence. The more interesting case ω > 0 corresponds to the case when the total population of polymers induces a saturation effect on the polymerization process. In [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF] the parameter p is equal to 1, meaning that the saturation is a function of the total number of polymerized proteins. To be more general and to take into account the fact that the polymers are not necessarily linear fibrils but can have more complex spatial structure (see [START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF]), we consider in our study any parameter p ≥ 0. In [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF], the polymerization rate τ (x) is supposed to be independant of x. But some works [START_REF] Gabriel | The shape of the polymerization rate in the prion equation[END_REF][START_REF] Silveira | The most infectious prion protein particles[END_REF] indicate that the polymerization ability, which relies on the infectivity of a polymer, may depend on its size. For mathematical convinience in our work we assume that this dependence is linear

τ (x) = τ x (τ > 0). (2) 
Notice that for such a function τ (x) there is no need of a boundary condition at x = 0 for the equation on u(t, x). In [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF] they restrict their study to linear global fragmentation rates β(x) and to the homogeneous fragmentation kernel κ(x, y) = 1/y. Together with the assumption of a constant death term µ, it allows them to reduce the PDE model to a system of three ODEs. Here we keep the assumption of a constant death term µ(x) ≡ µ > 0,

but we consider more general global fragmentation rates

β(x) = βx γ (β, γ > 0) (4) 
and more general (self-similar) fragmentation kernel

κ(x, y) = 1 y ℘ x y (5) 
where ℘(z) is a smooth function defined on [0, 1]. To ensure the conservation of the total number of PrP Sc monomers during the fragmentation, the operator F must verify ∞ 0 xFu(x) dx = 0 for any function u. This property is satisfied under the following assumption on ℘ 

Condition ( 6) is fulfilled for ℘ a symmetric, in the sense that ℘(z) = ℘(1 -z), probability measure. We additionnally suppose that the derivative of ℘ satisfies

1 0 |℘ ′ (z)| dz < +∞. ( 7 
)
Our study of Equation ( 1) is performed in the space R × X, where X := L 1 (R + , dx) ∩ L 1 (R + , x r dx) with r > 1. More precisely we work in the positive cone R + × X + which is invariant under the dynamics [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF]. We take r ≥ p in order to have L 1 (R + , x p dx) ⊂ X, so that the general incidence term is well defined. The space X is a Banach space for the natural norm

• X = • 0 + • r where u α = ∞ 0 |u(x)|x α dx.
But for a part of our study, we also need to consider the weaker norm • 1 on X.

Denote by X w the space X endowed with its weak topology. The solutions of Equation ( 1) are understood in the following weak sense.

Definition 1. Given V 0 > 0 and u 0 ∈ X + , we call (V, u) a (global) weak solution to Equation (1) if (i) V ∈ C 1 (R + ) is a non-negative solution to V = λ -δ + τ xu 1 + ω x p u V, (ii) u ∈ C(R + , X w ) ∩ L 1 loc (R + , L 1 (x γ dx)) and for all t > 0, u(t, •) ∈ X + , (iii) for all t > 0 and ϕ ∈ W 1,∞ (R + ) there holds ∞ 0 u(t, x)ϕ(x) dx = ∞ 0 u 0 (x)ϕ(x) dx + τ t 0 V (s) ∞ 0 xu(s, x)ϕ ′ (x) dx 1 + ω ∞ 0 u(s, x) dx ds -µ t 0 ∞ 0 u(s, x)ϕ(x) dxds + β t 0 ∞ 0 x γ u(s, x) 2 1 0 ϕ(zx)℘(z) dz -ϕ(x) dxds.
The question of the existence and uniqueness of solutions is addressed in [START_REF] Simonett | On the solvability of a mathematical model for prion proliferation[END_REF][START_REF] Walker | Prion proliferation with unbounded polymerization rates[END_REF][START_REF] Laurençot | Well-posedness for a model of prion proliferation dynamics[END_REF][START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF] for very similar equations. In the present paper we are interested in the long time behavior of the solutions to Equation (1) -in the sense of Definition 1 -, assuming their existence.

We easily check that ( V = λ δ , 0) is a steady state of our equation. We call this trivial steady state the disease free equilibrium (DFE) since there is no polymerized proteins in this situation (u ≡ 0). A natural question is to know whether there exist endemic equilibria (EE), namely steady states

(V ∞ , u ∞ ) ∈ R + × X * + where X * + = X + \ {0}.
For an EE, we get by testing the equation on u ∞ against x and using the relation

∞ 0 xFu ∞ (x) dx = 0 that V ∞ τ 1 + ω x p u ∞ = µ, (8) 
and then u ∞ is a positive solution to

µ xu ∞ (x) ′ + µu ∞ (x) = Fu ∞ (x). ( 9 
)
The existence of an EE as well as the stability of the DFE depend on the basic reproduction rate R 0 of Equation (1), which indicates the average number of new infections caused by a single infective introduced to an entirely susceptible population. To find this parameter R 0 , we linearize the equation on u about the DFE ( V , 0) and we test the resulting equation against x to obtain

d dt ∞ 0 xu(t, x) dx ≃ V τ ∞ 0 xu(t, x) dx -µ ∞ 0 xu(t, x) dx.
We deduce that R 0 is given by

R 0 = V τ µ = λτ δµ .
It is worth noticing that this parameter does not depend on the fragmentation coefficients β, γ, and ℘. We can now summarize the results of the paper in the following main theorem.

Theorem 2. If R 0 ≤ 1, the unique equilibrium in R + × X + is the DFE. It is globally asymptotically stable for the norm |V | + u 1 . If R 0 > 1,
then there exists a unique EE which coexists with the DFE. The EE is locally stable for the norm |V | + u X , and the nontrivial trajectories cannot approach the DFE in the sense that

u 0 ≡ 0 =⇒ lim inf t→+∞ ∞ 0 xu(t, x) dx > 0.
In the case when p ≥ 1 and δ ≥ µ, the EE is globally asymptotically stable in R + × X * + for the norm

|V | + u X .
The paper is organized as follows: In Section 2 we explain the method which allows to reduce Equation (1) to a system of ODEs, and in Section 3 we take advantage of this reduction to prove Theorem 2.

Reduction to a system of ODEs

As suggested by Equation ( 9), we use the properties of the linear growth-fragmentation equation

∂ t u(t, x) + µ ∂ x xu(t, x) + µu(t, x) = Fu(t, x). ( 10 
)
This equation is also known as the self-similar fragmentation equation (see [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Cáceres | Rate of convergence to self-similarity for the fragmentation equation in L 1 spaces[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF]). Using Assumption [START_REF] Doumic | Scaling limit of a discrete prion dynamics model[END_REF] we obtain (at least formally) that Equation [START_REF] Gabriel | The shape of the polymerization rate in the prion equation[END_REF] preserves the mass

∀t ≥ 0, ∞ 0 xu(t, x) dx = ̺ 0 := ∞ 0 xu 0 (x) dx. (11) 
Under Assumptions ( 2)-( 6), this equation admits a unique (up to normalization) positive steady state U (x) (see [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]

), i.e. a unique U ∈ L 1 (R + , x dx) satisfying µ x U (x) ′ + µ U (x) = FU (x), U (x) > 0, ∞ 0 x U (x) dx = 1.
This steady state belongs to L 1 (R + , x α dx) for any α ≥ 0, so it belongs to X + . The convergence of the solutions to this equilibrium has been investigated in [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Michel | General relative entropy inequality: An illustration on growth models[END_REF] and recent results give the exponential relaxation under some assumptions and in suitable spaces (see [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Laurençot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF][START_REF] Cáceres | Rate of convergence to self-similarity for the fragmentation equation in L 1 spaces[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF][START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF]). Here we use the spectral gap result recently proved in [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] under the assumption that ℘ is a smooth function satisfying Assumption [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF].

Theorem 3 ([21]

). Under Assumptions (2)-( 7), there exist a > 0 and C > 0 such that

∀u 0 ∈ X, ∀t ≥ 0, u(t, •) -̺ 0 U X ≤ Ce -at u 0 -̺ 0 U X . (12) 
The method we use to prove Theorem 2 is based on a (time dependent) self-similar change of variable introduced in [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] which allows to transform a solution of the prion equation into a solution to the linear growth-fragmentation equation. Then we combine the spectral gap result [START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF] with an asymptotic analysis of the change of variable to get the long time behavior of Equation [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF].

The change of variable is defined as follows. Starting from u(t, x) ≥ 0 and V (t) ≥ 0 solution to Equation (1) we define for k :

= γ -1 v(h(t), x) := W k (t)u(t, W k (t)x) e µ(t-h(t)) with W solution to Ẇ = γW τ 1 + ω x p u V -µW ,
and h the solution to ḣ = W, h(0) = 0. We choose W (0) = 1 to have v(t = 0, •) = u 0 . Since V is positive we have Ẇ ≥ -γµW 2 and so W ≥ 1 1+γµt . As a consequence h(t) ≥ 1 γµ ln(1 + γµt) → +∞ when t → +∞ so h is a bijection of R + and v(t, •) is well defined for all t ≥ 0. We can check that v is a solution to the linear equation [START_REF] Gabriel | The shape of the polymerization rate in the prion equation[END_REF]. Then the convergence result of Theorem 3 ensures that v(t, x)

• X ----→ t→+∞ ̺ 0 U (x).
We deduce, for α ∈ [0, r], the equivalence

∞ 0 x α u(t, x) dx ∼ t→+∞ ̺ 0 M α W kα (t) e µ(h(t)-t)
where M α = ∞ 0 x α U (x) dx. This equivalence allows us to obtain an (asymptotically) closed system of ODEs which provides the behavior of the change of variables. Define Q(t) = ̺ 0 e µ(h(t)-t) which satisfies Q = µQ(W -1).

Then denoting

f (I) = τ 1+ωMpI we have Ẇ ∼ t→+∞ γW f (W kp Q)V -µW and, since M 1 = 1 by definition of U , V ∼ t→+∞ λ -V δ + f (W kp Q)W k Q .
To make these equivalences more precise, we define for α ≥ 0

ε α (t) := x α u(t, x) dx M α Q(t)W kα (t) -1 = 1 M α (̺ -1 0 v(h(t), x) -U (x))x α dx
The following Lemma ensures that ε α (t) → 0 when t → +∞ if α ∈ [0, r].

Lemma 4. For any α ∈ [0, r], there exists C > 0 such that

|ε α (t)| ≤ C ̺ -1 0 u 0 -U X e -ah(t) .
Proof. Using Theorem 3 we have t) .

|ε α (t)| ≤ M -1 α |̺ -1 0 v(h(t), x) -U (x)|x α dx ≤ M -1 α ̺ -1 0 v(h(t), •) -U X ≤ C ̺ -1 0 u 0 -U X e -ah(
For α = 1 we even have, using M 1 = 1 and the mass conservation law [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF], that

∀t ≥ 0, ε 1 (t) = (̺ -1 0 v(h(t), x) -U (x))x dx = 0
and as a consequence

∞ 0 xu(t, x) dx = W k (t)Q(t). Setting f (ε; I) = f ((1 + ε)I), we get that (V, W, Q) is solution to the sytem            V = λ -V δ + f ε p ; W kp Q W k Q , Ẇ = γW f ε p ; W kp Q V -µW , Q = µQ W -1 , (13) 
with the initial condition (V 0 , W 0 , Q 0 ) = (V 0 , 1, ̺ 0 ). Defining the relevant quantity P (t) = W k (t)Q(t) and using it instead of Q as an unknown we obtain the other system

           V = λ -V δ + f ε p ; W k(p-1) P P , Ẇ = γW f ε p ; W k(p-1) P V -µW , Ṗ = P f ε p ; W k(p-1) P V -µ . ( 14 
)
Remark 5 (Interpretation of V, W, Q and P ). By definition we have that V (t) is the number of monomeric proteins (PrP c ). The relation

P (t) = ∞ 0 xu(t, x
) dx means that P (t) represents the number of polymerized proteins (PrP Sc ). The unknown Q(t) represents roughly the total number of polymers

∞ 0 u(t, x) dx = (1 + ε 0 (t))M 0 Q(t),
and W (t) is related to the mean size of the polymers

W k (t) = (1 + ε 0 (t))M 0 xu(t, x) dx u(t, x) dx .
Proof. We start from

d dt (V + P ) = λ -δV -µP ≤ λ -min(δ, µ)(V + P )
which ensures by the Grönwall lemma the global boundedness of V + P. Then from

d dt W = W k f ε p ; W k(p-1) P V -µW ≤ W k (τ K 0 -µW )
we get the global boundedness (from above) of W by W > 0. From

d dt V ≥ λ -V (δ + τ K 0 )
we obtain that lim inf t→+∞ V (t) ≥ λ δ+τ K 0 > 0. Then if p ≥ 1 we deduce from

d dt W ≥ W k f ε p ; W k(p-1) K 0 V -µW that lim inf t→+∞ W (t) ≥ µ -1 f W k(p-1) K 0 lim inf t→+∞ V (t) > 0 since lim t→+∞ ε p (t) → 0. For the case p < 1 we write d dt W ≥ W f ε p ; W k(p-1) P kτ τ V -µW 1 + ω(1 + ε p )M p W k(p-1) K 0 and we define g(W ) = W 1 + ωM p W k(p-1) K 0 .
The function g is continuous and satisfies g(0) = 0 and lim W →+∞ g(W ) = +∞, so there exists W 1 > 0 such that g(W 1 ) = τ µ lim inf V and for all W < W 1 , g(W 1 ) < τ µ lim inf V. Since ε p → 0 when t → +∞, we deduce that lim inf t→+∞ W ≥ W 1 > 0. Finally we have proved the existence of K 1 and K 2 because W 0 = 1 > 0 and W cannot vanish in finite time.

Proposition 9. If R 0 ≤ 1, then the DFE is globally asymptotically stable for the norm |V | + u 1 .

Proof. Define Ṽ = V -V . The stability of the DFE in norm |V | + u 1 = |V | + |P | is ensured by the Lyapunov functional d dt V P (t) + Ṽ 2 (t) 2 = -µ -f V V P -δ Ṽ 2 -Ṽ 2 f P ≤ 0.
It remains to prove the global attractivity.

First case: R 0 < 1. We have

d dt V P + Ṽ 2 2 ≤ -µ -f V V P -δ Ṽ 2 .
Since R 0 < 1 we have µ > τ V and

d dt V P + Ṽ 2 2 ≤ -min(µ -τ V , 2δ) V P + Ṽ 2 2 .
where we have skipped the indices ∞ for the sake of clarity. To use the Routh-Hurwitz criterion, we compute the trace

T = -δ -γµ -Qf (Q) + pV Qf ′ (Q), the determinant D = γµV Q δf ′ (Q) -f 2 (Q) ,
and the sum of the three 2 × 2 principal minors

M = γµ δ + Qf (Q) -V Qf ′ (Q) -pδV Qf ′ (Q) + V Qf 2 (Q).
We have T < 0, D < 0, and from

T < -δ -γµ and M > -γµV Qf ′ (Q) + V Qf 2 (Q)
we obtain that M T < D. By the Routh-Hurwitz criterion, we deduce that the steady state (V ∞ , 1, Q ∞ ) is locally stable for Equation [START_REF] Laurençot | Well-posedness for a model of prion proliferation dynamics[END_REF].

Step #2. By continuity of the function f, the steady-state (V ∞ , 1, Q ∞ ) is also stable for System [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF] provided that ε p ∞ is small enough, i.e.

∀ǫ, ∃η > 0,

|V 0 -V ∞ | + |W 0 -1| + |Q 0 -Q ∞ | + ε p ∞ < η =⇒ ∀t ≥ 0, |V (t) -V ∞ | + |W (t) -1| + |Q(t) -Q ∞ | < ǫ. (19) 
We would like to replace

|W 0 -1| + |Q 0 -Q ∞ | + ε p ∞ in (19) by u 0 -u ∞ X . From our choice of W 0 , we have |W 0 -1| = 0. For |Q 0 -Q ∞ | we have Q 0 = ̺ 0 and |̺ 0 -Q ∞ | = ∞ 0 (u 0 (x) -u ∞ (x))x dx ≤ u 0 -u ∞ X . (20) 
For the last term ε p ∞ we know from Lemma 4 that

ε p ∞ ≤ M -1 p ̺ -1 0 u 0 -U X .
But using [START_REF] Michel | General relative entropy inequality: An illustration on growth models[END_REF] we also have

̺ -1 0 u 0 -U X = 1 Q ∞ Q ∞ ̺ 0 u 0 -u ∞ X ≤ 1 Q ∞ |Q ∞ -̺ 0 | + u 0 -u ∞ X ≤ 2 Q ∞ u 0 -u ∞ X .
At this stage we have proved that for all ǫ > 0 there exists η > 0 such that

|V 0 -V ∞ | + u 0 -u ∞ X < η =⇒ ∀t ≥ 0, |V (t) -V ∞ | + |W (t) -1| + |Q(t) -Q ∞ | < ǫ. (21) 
Step #3. It remains to deduce [START_REF] Laurençot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF] from [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF]. We write

u(t, •) -u ∞ X ≤ u(t, •) -Q(t)W -k (t)U (W -k (t)•) X + Q(t)W -k (t)U (W -k (t)•) -Q ∞ U X .
For the first term we have

u(t, •) -Q(t)W -k (t)U (W -k (t)•) X = Q(t) ∞ 0 |̺ -1 0 v(h(t), x) -U (x)|(1 + W kr (t)x r ) dx ≤ Q ∞ + |Q -Q ∞ | 1 + |W -1| kr ̺ -1 0 u 0 -U X ≤ 2 1 + Q Q ∞ -1 1 + |W -1| kr u 0 -u ∞ X . (22) 
For the second term we have by dominated convergence that

∀ǫ > 0, ∃η > 0, |W -1| + |Q -Q ∞ | < η =⇒ QW -k U (W -k •) -Q ∞ U X < ǫ. (23) 
Combining ( 21), ( 22) and ( 23), we obtain [START_REF] Laurençot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF] and the proposition is proved.

Proposition 11. If R 0 > 1, then the trajectories cannot approach the DFE in the sense that

lim inf t→+∞ ∞ 0 xu(t, x) dx > 0.
Proof. We are in the case R 0 > 1 so θ := τ V -µ > 0.

First case: ∀t, V (t) ≥ V . Using System ( 14), Lemma 8 and Lemma (4) we have

d dt P = P f (ε p ; W k(p-1) P )V -µ ≥ P (f (ε p ; W k(p-1) P ) -τ )V + τ V -µ = P - τ ωM p (1 + ε p )W k(p-1) P 1 + ωM p (1 + ε p )W k(p-1) P V + θ ≥ P -τ ωM p (1 + C ̺ -1 0 u 0 -U )K 1 K 0 P + θ
and we deduce that lim inf

t→+∞ P ≥ θ τ ωM p (1 + C ̺ -1 0 u 0 -U )K 1 K 0 > 0.
Remark that this case cannot hold since the positivity of the lim inf P together with the equation on V implies that V becomes lower than V in finite time. So we are always in the second case.

Second case:

∃t 0 ≥ 0, V (t 0 ) < V . Define the positive function Ṽ (t) = V -V (t) (∀t ≥ t 0 , Ṽ (t) > 0).
As in [START_REF] Calvez | Prion dynamic with size dependency -strain phenomena[END_REF] we compute, for α > 0 to be chosen later,

d dt P Ṽ α ≥ P Ṽ α ( V -Ṽ )f -µ -α P Ṽ α -δ + τ V P Ṽ .
We choose α large enough so that η := αδ -µ > 0. Denoting R = P Ṽ -α we have

Ṙ ≥ R(η -ατ V R 1/α P 1-1/α ) and, choosing α ≥ 1, Ṗ = P f τ τ V -µ + µ 1 - τ f -τ P R 1/α ≥ P f τ θ -µωM p K 2 P -τ P R 1/α ≥ P f τ θ -µωM p K 2 K α-1 α 0 + τ R 1 α P 1/α .
The first inequality tells us that

R := lim inf t→+∞ R ≥ η ατ V K 1-1/α 0 α > 0.
Then the second inequality ensures that lim inf

t→+∞ P ≥   θ µωM p K 2 K α-1 α 0 + τ R -1 α   α > 0.
Proposition 12. In the case when R 0 > 1 and additionnaly p ≥ 1 and δ ≥ µ, the EE is globally asymptotically stable for the norm |V | + u X . In the case p ≥ 1 and δ ≥ µ, this indicates an irreducible cooperative system. Then by Theorems 2.3.2, 4.1.1 and 4.1.2 on respective pages 18, 56 and 57 of [START_REF] Smith | Monotone dynamical systems[END_REF], the homogeneous form of System (15) exhibits monotone dynamical flow and solutions must approach an equilibrium. From Proposition 11 the trajectories cannot approach the DFE when R 0 > 1, so they necessarily approach the EE. Using the stability result of Proposition 10 we deduce the global asymptotic stability of the EE.

To conclude to the same result for the original System (15), we use the fact that ε p (t) → 0 when t → +∞ and Lemma 4.2 in [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF].

Conclusion

We have considered a prion model with less terms than in [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF], but with more general coefficients. Compared to the results in [START_REF] Greer | Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation[END_REF] we have proved the global stability of the DFE in the critical case R 0 = 1 and the global asymptotic stability of the EE when the system is cooperative.

The results in Theorem 2 remain valid for more general incidence functions f provided that they are decreasing. Indeed it has been proved in [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] that for increasing functions f, periodic solutions can exist. This indicates that Equation (1) can exhibit various behaviors and their classification in the general case is still an open question.
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Proof.

  Consider the homogeneous form of System (15) (by replacing ε p by 0). The matrix of partial derivatives has the sign pattern

Another relevant quantity is Y = V + P, the total number of proteins (PrP c + PrP Sc ). We have a system of ODEs satisfied by (Y, Q, P ):

We will use alternatively formulations [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF], ( 14) and [START_REF] Griffith | Nature of the scrapie agent: Self-replication and scrapie[END_REF] to prove our main theorem. These systems are not autonomous because of the term ε p . But the property that this term vanishes when t → +∞ (see Lemma 4) is sufficient to get the asymptotic behavior of the change of variable, as we will see in the next section.

Proof of Theorem 2

We divide the proof of Theorem 2 into several propositions. Proposition 6. There exists an EE if and only if R 0 > 1. This EE is unique and is explicitely given by

It is worth noticing that V ∞ given in the proposition belongs to the interval µ τ , V , recalling that V > µ τ when (and only when) R 0 > 1. Proof. We recall that an EE is a positive nontrivial steady state. We deduce from Equation ( 9) and the uniqueness of U that the function u ∞ of an EE is positively colinear to U , i.e. u ∞ = Q ∞ U with Q ∞ > 0. Then using the equation on V at the equilibrium and Equation [START_REF] Engler | Analysis of a model for the dynamics of prions ii[END_REF] 

We easily check that this system has a unique solution different from ( V , 0), given by

Now we give a useful lemma about the boundedness of V, P and W.

Lemma 8. Any solution to Equation [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF] with

We deduce the exponential convergence from the Grönwall lemma.

Second case: R 0 = 1. When R 0 = 1 we only have

so we need to be more precise and estimate the value of 1 -f τ . Using System ( 14) we have

From Lemma 4 we can ensure the existence of a time t 0 ≥ 0 such that |ε p (t)| ≤ 1 2 for all t ≥ t 0 . Then using Lemma 8 we get that for all t > t 0

After integration this gives for t ≥ t 0

where the constant C = min

Proposition 10. If R 0 > 1, then the unique EE is locally asymptotically stable for the norm |V | + u X .

Proof. We want to prove

Step #1. We start from the homogeneous form of Equation ( 13) (obtained by replacing ε p by 0) which writes

We easily check from Equation ( 16) that (V ∞ , 1, Q ∞ ) is the unique equilibrium of System [START_REF] Laurençot | Well-posedness for a model of prion proliferation dynamics[END_REF]. First we prove the linear stability of this equilibrium by using the Routh-Hurwitz criterion. The Jacobian of System (18) about (V ∞ , 1, Q ∞ ) is