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Orthogonal polynomials with respect of a class of Fisher-Hartwig symbols.

In this paper we give an asymptotic of the coefficients of the orthogonal polynomials on the unit circle, with respect of a weight of type f : θ

2 and c a sufficiently smooth function.

Introduction

The study of the orthogonal polynomials on the unit circle is an old and difficult problem (see [START_REF] Simon | Orthogonal polynomials on the unit circle, Part 1: classical theory[END_REF], [START_REF] Simon | Orthogonal polynomials on the unit circle, Part 2: spectral theory[END_REF] or [START_REF] Szegö | Orthogonal polynomials[END_REF]). Here we are interested in the asymptotic of the coefficient of the orthogonals polynomial with respect of an Fisher-Hartwig symbol. A Fisher-Hartwig symbol is a function ψ defined on the united circle by ψ : e iθ → 1≤j≤M |e i(θ-θ j ) -1| 2α j e iβ j (θ-θ j -π) c(e iθ ) with 0 < θ, θ j < 2π, - 1 2 < ℜ(α j ) and for all j, 1 ≤ j ≤ M and where the function c is assumed sufficiently smooth, continuous, non zero, and have winding number zero (see [START_REF] Basor | Toeplitz determinants,Fisher-Hartwig symbols and random matrices[END_REF]). Here we consider the class of symbols f : e iθ → 1≤j≤M |e i(θ-θ j ) -1| 2α j c(e iθ ) with -1 2 < α j < 1 2 and c a regular function sufficiently smooth. It is said that a function k is a regular function on the united circle T when k(θ) > 0 for all θ ∈ T and k ∈ L 1 (T). In [START_REF] Martinez-Finkelshtein | Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle[END_REF] Martinez-Finkelstein, Mac-Laughin and Saff give the asymptotic behviour of this polynomials. If M = 2, α 1 = α 2 and θ 1 = -θ 2 , θ 1 = 0 we can remark that these polynomials are Gegenbauer polynomials ( [START_REF] Beran | Statistics for long memory process[END_REF][START_REF] Beaumont | Robust estimation of GARMA model parameters with an application to cointegration among interest rates of industrialized country[END_REF][START_REF] Cheng | A k-factor GARMA long-memory model[END_REF]) (see Corollary 1) . The main tool to compute this is the study of the Toeplitz matrix with symbol f . Given a function h in L 1 (T) we denote by T N (h) the Toeplitz matrix of order N with symbol h the (N + 1) × (N + 1) matrix defined by (T N (h)) i+1,j+1 = ĥ(j -i) ∀i, j 0 ≤ i, j ≤ N where m(s) is the Fourier coefficient of order s of the function m (see, for instance [START_REF] Böttcher | Toeplitz matrices and determinants with Fisher-Hartwig symbols[END_REF] and [START_REF] Böttcher | Toeplitz operators and determinants generated by symbols with one Fisher-Hartwig singularity[END_REF]). There is a close connection between Toeplitz matrices and orthogonal polynomials on the complex unit circle. Indeed the coefficients of the orthogonal polynomial of degree N with respect of h are also the coefficients of the last column of T -1 N (h) except for a normalisation (see [START_REF] Landau | Maximum entropy and the moment problem[END_REF]). Here we give an asymptotic expansion of the entries (T N (f α )) -1 k+1,1 (Theorem 2). Using the symmetries of the Toeplitz matrix T N (f α ), we deduce from this last result an asymptotic of (T N (f α )) -1 N -k+1,N +1 . The proof of our main Theorem often refers to results of [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]. In this last work we have treated the case of the symbols h α defined by θ → (1 -cos θ) α c whith -1 2 < α ≤ 1 2 and the same hypothesis on c as on c 1 . We have stated the following Theorem which is an important tool in the demonstration of Theorem 2.

Theorem 1 ([26]) If -1 2 < α ≤ 1 2 , α = 0 we have for c ∈ A(T, 3 2 ) and 0 < x < 1 c(1) (T N (h α )) -1 [N x]+1,1 = N α-1 1 Γ(α) x α-1 (1 -x) α + o(N α-1 ). uniformly in x for x ∈ [δ 1 , δ 2 ] with 0 < δ 1 < δ 2 < 1,
with T = R/2πZ, and the definition Définition 1 For all positive real τ we denote by A(T, τ ) the set

A(T, τ ) = {h ∈ L 2 (T)| s∈Z |s τ ĥ(s)| < ∞}
This theorem has also been proved for α ∈ N * in [START_REF] Rambour | Formulas for the inverses of Toeplitz matrices with polynomially singular symbols[END_REF] and for α ∈] 1 2 , +∞[\N * in [START_REF] Rambour | Inversion des matrices de Toeplitz dont le symbole admet un zéro d'ordre rationnel positif,valeur propre minimale[END_REF].

The results of this paper are of interest in the study of the random matrices (see [START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF], [START_REF] Deift | A riemann-Hilbert approach to asymptotic questions for orthogonal polynomials[END_REF]) and in the analysis of time series . Indeed it is known that the n-th covariance matrix of a time series is a positive Toeplitz matrix. If φ is the symbol of this Toeplitz matrix, φ is called the spectral density of the time series. The time series with spectral density is the function f : θ → |e iθ -e iθ 0 | 2α |e iθ -e -iθ 0 | 2α c with θ 0 ∈]0, π[ are also called GARMA processes. Moreover the time series with spectral density is the function [START_REF] Kâ | Estimation of k-factor GIGARCH process : a Monte Carlo Study[END_REF][START_REF] Kâ | Estimating parameters for k-factor GIGARCH process[END_REF]. For more on this processes we refer the reader to [START_REF] Beran | Statistics for long memory process[END_REF][START_REF] Beaumont | Robust estimation of GARMA model parameters with an application to cointegration among interest rates of industrialized country[END_REF][START_REF] Cheng | A k-factor GARMA long-memory model[END_REF], and to [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF][START_REF] Doukhan | Theory and applications of long-range dependence[END_REF][START_REF] Grenander | Toeplitz forms and their applications[END_REF][START_REF] Beran | Statistics for long memory process[END_REF][START_REF] Brockwell | Times series: theory and methods[END_REF][START_REF] Kirman | Long memory in economic[END_REF][START_REF] Lu | On the complexity of the preconditioned conjugate gradient algorithm for solving Toeplitz systems with a Fisher-Hartwig singularity[END_REF] for Toeplitz matrices in times series. On the other hand a random matrice is characterized by the distribution of its eigenvalues. For the case of random unitary matrices an important case is the Dyson generalized circular unitary ensemble the density of the vector (θ 1 , θ 2 , • • • , θ N ) of eigenvalue angles is given for a N × N matrix is ( [START_REF] Nagao | Eigenvalue distribution of random matrices at the spectrum edge[END_REF], [START_REF] Nagao | An Integration Methodon Generalized Circular Ensembles[END_REF], [START_REF] Nagao | Universal Correlations Near a Singularity of Random Matrix Spectrum[END_REF], [START_REF] Tracy | Correlation functions, cluster functions and spacing distribution for random matrices[END_REF])

f : θ → k j=1 |e iθ -e iθ j | 2α j |e iθ -e -iθ j | 2α j c with θ 0 ∈]0, π[ are k-factors GARMA processes
P N (θ 1 , θ 2 , • • • , θ N ) = 1≤j≤N f (θ j ) 1≤j≤k≤N |e iθ j -e iθ k | 2 ,
where f is generally a regular function (see [START_REF] Johansson | On random matrices from the compact classical groups[END_REF]), but it also can be a Fisher-Hartwing symbol. For the Dyson generalized circular ensemble the correlation function is written by means of the Christofel-Darboux kernel K N ( see [START_REF] Szegö | Orthogonal polynomials[END_REF]) associated to the orthogonal polynomials with respect of the weight f . Lastly it is important to observe that Theorem 2 provides the entries and the trace of the matrix

T -1 N (f ) with f = 1lej≤M
|1 -e i(θ)-θ j ) | 2α j c (see [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF], [START_REF] Rambour | Théorèmes de trace de type Szegö dans le cas singulier[END_REF]).

Now we have to precise the deep link between the orthogonal polynomials and the inverse of the Toeplitz matrices. Let T n (f ) a Toeplitz matrix with symbol f and (Φ n ) n∈N the orthogonal polynomials with respect to f ( [START_REF] Landau | Maximum entropy and the moment problem[END_REF]). To have the polynomial used for the prediction theory we put

Φ * n (z) = n k=0 (T n (f )) -1 k+1,N +1 (T n (f )) -1 N +1,N +1 z k , | z |= 1. (1) 
We define the polynomial Φ * n (see [START_REF] Simon | Orthogonal polynomials on the unit circle, Part 1: classical theory[END_REF]) as

Φ * n (z) = z n Φn ( 1 z ), (2) 
that implies, with the symmetry of the Toeplitz matrix

Φ * n (z) = n k=0 (T n (f )) -1 k+1,1 (T n (f )) -1 1,1 z k , | z |= 1. (3) 
The polynomials Φn = Φ * n (T n (f )) -1 1,1 are often called predictor polynomials. As we can see in the previous formula their coefficients are, up to a normalisation, the entries of the first column of T n (f ) -1 .

Main results

Main notations

In all the paper we consider the symbol defined by f : θ

→ 1≤j≤M |1 -e i(θ-θ j ) | 2α j c where c = P Q 2 with P, Q ∈ R[X]
, without zeros on the united circle, -1 2 < α j < 1 2 and 0 ≤ θ j ′ = θ j < 2π. We consider also the function f :

θ → 1≤j≤M |1 -e i(θ-θ j ) | 2α j We have c = c 1 c1 with c 1 = P Q . Obviously c 1 ∈ H 2+ (T) since H 2+ (T) = {h ∈ L 2 (T)|u < 0 =⇒ ĥ(u) = 0}. If χ is the function θ → e iθ and if χ j = e iθ j for all j, 1 ≤ j ≤ M we put g = M j=1
(1 -χ j χ) α j c 1 and

g = M j=1
(1χ j χ) α j . Clearly g, g ∈ H 2+ (T) and f = gg, f = gg. Then we denote by β k the Fourier coefficient of order k g -1 and by βk the one of g-1 . Without loss of generality we assume β 0 = 1. Lastly for all real α in ] -

1 2 , 1 2 [ we put β (α) u = (1 -χ) -α .

Orthogonal polynomials

Theorem 2 Assume that for all j ∈ {1,

• • • , M } we have θ j ∈]0, 2π[, θ j = θ j ′ if j = j ′ and -1 2 < α M ≤ • • • ≤ α j ≤ • • • α 1 < 1 2 . Let m, 1 ≤ m ≤ M , such that α j = α 1 for all j, 1 ≤ j ≤ m.Then for all integer k, k N → x, 0 < x < 1, we have the asymptotic   T -1 N   1≤j≤M |χχ j -1| 2α j c     k+1,1 = = k α 1 -1 Γ(α 1 ) (1 - k N ) α 1 m j=1 K j χ k j c -1 1 (χ j ) + o(k α 1 -1 ) uniformly in k for x ∈ [δ 0 , δ 1 ], 0 < δ 0 < δ 1 < 1, and with K j = M h=1 (1 -χ h χ j ) -α h .
Then the following statement is an obvious consequence of Theorems 2.

Corollary 1 Let χ 0 be e iθ 0 with θ 0 ∈]0, +π[. With the same hypotheses as in Theorem 2 we have

T -1 N |χχ 0 -1 | 2α |χχ 0 -1 | 2α c k+1,1 = = K α,θ 0 ,c 1 Γ(α) cos (kθ 0 + ω α,θ 0 ) k α-1 (1 - k N ) α + o(k α-1 )
uniformly in k for x ∈ [δ 0 , δ 1 ] 0 < δ 0 < δ 1 < 1, and with

ω α,θ 0 = α π 2 -αθ 0 -arg (c 1 (χ 0 )) , K α,θ 0 ,c 1 = 2 -α+1 (sin θ 0 ) -α c -1 1 (χ 0 ).
We can also point out the asymptotic of the coefficients of order k of the predictor polynomial when k N → 0.

Corollary 2 With the same hypotheses as in Theorem 2 we have, if

k N → 0 when N goes to the infinity   T -1 N   1≤j≤M |χχ j -1| 2α j c     k+1,1 = β k + O( 1 
N
).

3 Inversion formula

Definitions and notations

Let H 2+ (T) and H 2-(T) the two subspaces of L 2 (T) defined by

H 2+ (T) = {h ∈ L 2 (T)|u < 0 =⇒ ĥ(u) = 0} and H 2-(T) = {h ∈ L 2 (T)|u ≥ 0 =⇒ ĥ(u) = 0}
. We denote by π + the orthogonal projector on H 2+ (T) and π -the orthogonal projector on H 2-(T). It is known (see [START_REF] Grenander | Toeplitz forms and their applications[END_REF]) that if f ≥ 0 and ln f ∈ L 1 (T) we have f = gḡ with g ∈ H 2+ (T). Put Φ N = g ḡ χ N +1 . Let H Φ N and H * Φ N be the two Hankel operators defined respectively on H 2+ and H 2-by

H Φ N : H 2+ (T) → H 2-(T), H Φ N (ψ) = π -(Φ N ψ),
and

H * Φ N : H 2-(T) → H 2+ (T), H * Φ N (ψ) = π + ( ΦN ψ).

A generalised inversion formula

We have stated in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] for a precise class of non regular functions which contains

1≤j≤M |χ χj -1| 2α j c
the following lemma (see the appendix of [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] for the demonstration),

Lemma 1 Let f be an almost everywhere positive function on the torus T with ln f , f , and

1 f are in L 1 (T). Then f = gḡ with g ∈ H 2+ (T).
For all trigonometric polynomials P of degree at most N , we define G N,f (P ) by

G N,f (P ) = 1 g π + P ḡ - 1 g π + Φ N ∞ s=0 H * Φ N H Φ N s π + ΦN π + P ḡ .
For all P we have

• The serie ∞ s=0 H * Φ N H Φ N s π + ΦN π + P ḡ converges in L 2 (T). • det (T N (f )) = 0 and (T N (f )) -1 (P ) = G N,f (P ).

An obvious corollary of Lemma 1 is

Corollary 3 With the hypotheses of Lemma 1 we have

(T N (f )) -1 l+1,k+1 = π + χ k ḡ χ l ḡ - ∞ s=0 H * Φ N H Φ N s π + ΦN π + χ k ḡ ΦN χ l ḡ .
Lastly if γ u = g g (u) we obtain as in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] the formal result

H * Φ N H Φ N m π + ΦN π + χ k ḡ = k u=0 β (α) u,θ 0 ,c 1 ∞ n 0 =0 ∞ n 1 =1 γ-(N+1+n 1 +n 0 ),α,θ 0 ∞ n 2 =0 γ -(N +1+n 1 +n 2 ),α,θ 0 • • • ∞ n 2m-1 =1 γ-(N+1+n 2m-1 +n 2m-2 ),α,θ 0 ∞ n 2m =0 γ -(N +1+n 2m-1 +n 2m ),α,θ 0 γ-(u-(N+1+n 2m ),α,θ 0 ) χ n 0

Application to the orthogonal polynomials

With the corollary 3 and the hypothesis on β 0 the equality in the corollary 3 becomes, for l = 1,

(T N (f )) -1 1,k+1 = β k - k u=0 β k-u H N (u) (4) 
with

H N (u) = +∞ m=0 ∞ n 0 =0 γ N +1+n 0 ,α,θ 0 ∞ n 1 =0 γ-(N+1+n 1 +n 0 ),α,θ 0 ∞ n 2 =0 γ -(N +1+n 1 +n 2 ),α,θ 0 • • • ∞ n 2m-1 =0 γ-(N+1+n 2m-1 +n 2m-2 ),α,θ 0 ∞ n 2m =0 γ -(N +1+n 2m-1 +n 2m ),α,θ 0 γ(u-(N+1+n 2m ),α,θ 0
The remainder of the paper is devoted to the computation of the coefficients

β k = g -1 (k), γ k = g
ḡ and H N (u) which appears in the inversion formula. For each step we obtain the corresponding terms for the symbol 2 α (1 -cos θ)c mulitiplied by a rigonometric coefficient (see [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]). That provides the expected link with the formulas in Theorem 2. 

β k = k α 1 -1 Γ(α 1 ) m j=1 K j χ j k c -1 1 (χ j ) + o(k τ 1 -1 )
uniformly in k, with

K j = M h=1,h =j (1 -χ h χ j ) -α h , and τ 1 = α 1 if α 1 > 0 and τ 1 <= alpha 1 -1 2
else.

First we have to prove the lemma

Lemma 2 With the hypothesis of Theorem 2 we have, for a sufficiently large k.

βk = k α 1 -1 Γ(α 1 ) m j=1 K j χ j k + o(k α 1 -1 )
uniformly in k, and with τ 1 as in Property 1

Remark 1 In these two last statements"uniformly in k " means

∀ǫ > 0, ∃k ǫ ∈ N such that : ∀k, k ≥ k ǫ β k - k α 1 -1 Γ(α 1 ) m j=1 K j χ j k c -1 1 (χ j ) < ǫk τ 1 -1 and βk - k α 1 -1 Γ(α 1 ) m j=1 K j χ j k < ǫk τ 1 -1 .
Proof of Lemma 2:

Put g M = M h=1 (1 -χ h χ) -α h and g M +1 = (1 -χ M +1 χ) -α M +1 . Assume g -1 (k) = k α 1 -1 Γ(α 1 ) m j=1 K j χ j k . Put k 0 = k γ and k 1 = k γ 1 with 0 < γ, γ 1 < 1 andfor u > k 0 , (k-k 1 )
we have

(1 -χ) -α M +1 (u) = u α M +1 -1 Γ(α M +1 ) + O(k α M +1 -2 ) ( 5 
)
uniformly in u (see [START_REF] Zygmund | Trigonometric series[END_REF]). Writting for k ≥ k 0 , βk = S 1 + S 2 + S 3 with

S 1 = k 0 u=0 g -1 M (u) g -1 M +1 (k -u), S 2 = k-k 1 -1 u=k 0 +1 g -1 M (u) g -1 M +1 (k -u)
and

S 3 = k u=k-k 1 g -1 M (u) g -1 M +1 (k -u).
The first sum is also

S 1 = k 0 u=0 g -1 M (u) g -1 M +1 (k -u) -χ M +1 k-u (k -u) α M +1 -1 Γ(α M +1 ) + k 0 u=0 χ u M +1 (k -u) α M +1 -1 Γ(α M +1 ) χ M +1 k
We observe that

k 0 u=0 g -1 M (u) g -1 M +1 (k -u) -χ M +1 k-u (k -u) α M +1 -1 Γ(α M +1 ) = k 0 u=0 O (k -u) α M +1 -2 = O (k -u) α M +1 -1 -k α M +1 -1
Since 0 ≤ α 1 -α M +1 + 1 2 we may assume γ < α 1 -α M +1 + 1 2 and we get

k 0 u=0 g -1 M (u) g -1 M +1 (k -u) -χ M +1 k-u (k -u) α M +1 -1 Γ(α M +1 ) = o(k τ 1 -1 ). (6) 
It turns out that

S 1 = k 0 u=0 g -1 M (u)χ M +1 k-u (k -u) α M +1 -1 -k α M +1 -1 Γ(α M +1 ) + k 0 u=0 g -1 M (u)χ M +1 k-u k α M +1 -1 Γ(α M +1 ) + o(k τ 1 -1 )
with, for γ <

α 1 -α M +1 +1 2 k 0 u=0 g -1 M (u) χ M +1 k-u (k -u) α M +1 -1 -k α M +1 -1 Γ(α M +1 ) = O(k α M +1 -2 ) k 0 u=0 u = O(k α M -1 +2γ -2) = o(k τ 1 -1 ).
On the other hand

k 0 u=0 g -1 M (u)χ u M +1 = +∞ u=0 g -1 M (u)χ u M +1 - ∞ u=k 0 +1 g -1 M (u)χ u M +1 .
Using the appendix we get

∞ u=k 0 +1 g -1 M (u)χ u M +1 = O(k α 1 -1 0
), and

k α M +1 -1 k α 1 -1 0 = o(k τ 1 -1 ) since α M +1 -1 + γ(α 1 -1) < α 1 -3 2 .
Hence

S 1 = k α M +1 -1 Γ(α M + 1) χ M +1 k   M j=1 (1 -χ M +1 χ j ) -α j   + o(k τ 1 -1 )
uniformly in k. Identically we get

S 3 = k α 1 -1 Γ(α 1 ) m j=0 χ j k   M +1 h=1,h =j (1 -χ j χ h ) -α h   + o(k τ 1 -1 ),
uniformly in k. Finally we can remark that the appendix provides

S 2 = O(max(k α 1 -1 0 k α M +1 -1 , k α M +1 -1 1 k α 1 -1 ) = o(k τ 1 -1
) uniformly in k. We have obtain 1. for α M +1 < α 1 ,

β k = k α 1 Γ(α 1 ) m j=0 χ j k   M +1 h=1,h =j (1 -χ j χ h ) -α h   + o(k α 1 -1 ), 2. for α M +1 = α 1 β k = k α 1 Γ(α 1 )   m j=0 χ j k   M +1 h=1,h =j (1 -χ j χ h ) -α h   + χ M +1 k   M j=1 (1 -χ M +1 χ j -α j     + o(k α 1 -1 ).
that ends the proof of the lemma. ✷

To ends the proof of the property we need to obtain β k from βk for a sufficiently large k.

We can remark that a similar case has been treated in [START_REF] Rambour | Inversion des matrices de Toeplitz dont le symbole admet un zéro d'ordre rationnel positif,valeur propre minimale[END_REF] for the function ((1 -χ) α c 1 ) -1 .

Here we develop the same idea than in this last paper. Let c m the coefficient of Fourier of order m of the function c -1 1 . The hypotheses on c 1 imply that c -1

1 is in A(T, p) = {h ∈ L 2 (T)| u∈Z u p | ĥ(u)| < ∞} for all positive integer p ( because c -1 1 ∈ C ∞ (T) and for all positive integer | h (p) | = 1 p | h|) . We have, β k = k s=0 βk c k-s . For 0 < ν < 1 we can write k s=0 βs c k-s = k-k ν s=0 βs c k-s + k s=k-k ν +1 βs c k-s .
Lemma 2 provides, with the same notations,

k s=k-k ν +1 βs c m-s = m j=0 K j k s=k-k ν +1 s α 1 Γ(α 1 ) χ j s c k-s + R with |R| = o(m τ 1 -1 ) k s=k-k ν +1 |c k-s |. Since s∈Z |c s | < ∞, we have k s=k-k ν +1 βs c k-s = k j=0 K j k s=k-k ν +1 s α 1 -1 Γ(α 1 χ j s c k-s + o(m τ 1 -1 ).
We have

k s=k-k ν (s α-1 -k α-1 )c k-s ≤ (1 -α)O(k ν+α-2 ) m s=k-k ν +1 |c k-s |. (7) 
and the convergence of (c s ) implies

k s=k-k ν s α 1 -1 -k α 1 -1 + k α 1 -1 Γ(α 1 ) χ j s c k-s = k α 1 -1 Γ(α 1 ) k s=k-k ν χ j s c k-s + O(k α-2+ν ) k α 1 -1 Γ(α 1 ) χ k ∞ v=0 χ v c v - ∞ v=k ν +1 χ v c v
For all positive integer p the function c 1 ∈ A(p, T)). Hence one can prove first

∞ v=k ν +1 e +ivθ c v ≤ (k -pν ) s∈Z |c s | (8) 
and secondly

k s=k-k ν χ j s c k-s = χ j k c -1 1 (χ j ) + O(k -pν ).
On the other hand we have (always because c -1

1 in A(T, p)) k-k ν s=0 βs c k-s ≤ 1 k pν v∈Z v p |c v | max s∈N (| βs |). (9) 
For a good choice of p and ν we obtain the expected formula for β k . The uniformity is provided by Lemma 2 and the equation ( 7), ( 8) and ( 9).

Estimation of the Fourier coefficients of g g .

Let γ k be g g (k) and γk be g g (k).

Property 2 With the hypothesis of Theorem 2 we have, for all integer k ≥ 0 sufficiently large

γ -k = 1 k M j=1 sin(πα j ) π H j c 1 (χ j ) c 1 (χ j ) χ j k + o(k min(α 1 -1,-1) )
uniformly in k and with

H j = M j=1,h = χ h χ j -1 χ h χ j -1 α j .
First we have to prove the lemma Lemma 3 With the hypothesis of Theorem 2 we have, for all integer k ≥ 0 sufficiently large

γ-k = 1 k M j=1 sin(πα j ) π H j χ j k + o(k min(α 1 -1,-1) )
uniformly in k.

Proof of Lemma 3:

In all this proof we denote respectively by γ 1,k , γ 2,k the Fourier coefficient of order k of

M -1 j=1 χ h χ -1 χ h χ -1 α j
and χχ M -1)

(χχ M -1) α M . Clearly γ 2,k = ( χM ) k sin πα M π 1 k+α M = ( χM ) k γ 3,k . Assume k ≥ 0 and γ 1,k = 1 k M j=1 sin(πα j ) π H ′ j χ j k + o( 1 k ) with H ′ j = M -1 j=1,h =j χ h χ j -1 χ h χ j -1 α j . Assume also k ≥ 0. We have γ -k = v+u=-k γ 1,u γ 2,v . For k 0 = k τ , 0 < τ < 1 we can split this sum into u<-k-k 0 γ 1,u γ 2,-k-u + -k+k 0 u=-k-k 0 γ 1,u γ 2,-k-u + -k 0 -1 u=-k+k 0 +1 γ 1,u γ 2,-k-u + k 0 u=-k 0 γ 1,u γ 2,k-u + u>k 0 γ 1,u γ 2,-k-u . Write k 0 u=-k 0 γ 1,u γ 2,-k-u = k 0 u=-k 0 γ 1,u ( χM ) k+u (γ 3,-k-u -γ 3,-k + γ 3,-k ). Since k 0 u=-k 0 γ 1,u ( χM ) k+u (γ 3,-k-u -γ 3,-k ) = sin(πα) π k 0 u=-k 0 γ 1,u ( χM ) k+u -u (k + u + α)(k + α) (10) 
it follows that (always with the appendix)

k 0 u=-k 0 γ 1,u γ 2,-k-u = γ 3,-k k 0 u=-k 0 γ 1,u ( χM ) -k-u + O(k 0 k -2 ) = γ 3,-k (χ M ) k |u|≥k 0 γ 1u χ u M + O(k 0 k -2 ) = γ 3,-k (χ M ) k M -1 j=1 χ h χ M -1 χ h χ M -1 α j + O (k 0 k) -1 + O(k 0 k -2 ) = γ 3,-k (χ M ) k M -1 j=1 χ h χ M -1 χ h χ M -1 α j + O(k τ -2 ).
In the same way we have

-k+k 0 u=-k-k 0 γ 1,u γ 2,k-u = M j=1 sin πα j π H ′ j χ j k χ M χ j -1 χ M χ j -1 α M O(k τ -2 ).
Now using the appendix it is easy to see that

u<-k-k 0 γ 1,u γ 2,-k-u ≤ M 1 (k 0 k) -1 (11) 
u>k 0 γ 1,u γ 2,-k-u ≤ M 2 (k 0 k) -1 (12) 
with M 1 and M 2 no depending from k. For the sum S =

-k 0 -1 u=-k+k 0 +1
γ 1,u γ 2,-k-u we remark, using an Abel summation, that

|S| ≤ M 3 (k 0 k) -1 + -k 0 -1 u=-k+k 0 +1 1 (u + α)(k -u + α) - 1 (u + 1 + α)(k -u -1 + α) with M 3 no depending from k. Consequently |S| ≤ M 3 (k 0 k) -1 + -k 0 -1 u=-k+k 0 +1 k -2u (k -u) 2 u 2 . ( 13 
)
Then Euler and Mac-Laurin formula provides the upper bound

|S| ≤ O (k 0 k) -1 + -k 0 -1 -k+k 0 +1 k -2u (k -u) 2 u 2 du. Since -k 0 -1 -k+k 0 +1 k -2u (k -u) 2 u 2 du ≤ 3k (k + k 0 ) 2 -k 0 -1 -k+k 0 +1 1 u 2 du we get finally -k 0 -1 u<-k+k 0 +1 γ 1,u γ 2,k-u = O (k 0 k) -1 and γ-k = 1 k M j=1 sin(πα j ) π H j χ j k + O (k 0 k) -1 + O(k α-2 ).
Then with a good choice of τ we obtain the expected formula. The uniformity is a direct consequence of the equations ( 10), ( 11), ( 12), [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF]. ✷

The rest of the proof of Lemma 3 can be treated as the end of the proof of property 1.

Expression of

T -1 N (f ) k+1,1 .
First we have to prove the next lemma

Lemma 4 For α ∈] -1 2 , 1 2 [ we have a function F N,α ∈ C 1 [0, δ] for all δ ∈]0, 1[, satisfying the properties i) ∀z ∈ [0, δ[ |F N,α (z)| ≤ K 0 (1 + | ln(1 -z + 1 + α N )|)
where K 0 is a constant no depending from N .

ii) F N and F ′ N have a modulus of continuity no depending from N . iii) with the notations of Theorem 2 we have

T -1 N (f ) k+1,1 = = β k - 1 N k u=0 β k-u   M j=1 F N,α j ( u N )χ j u   + R N,α 1 uniformly in k, 0 ≤ k ≤ N , with R N,α 1 = o   N -1 k u=0 β k-u   M j=1 F N,α j ( u N )χ j u     if α > 0 and R N,α 1 = o   N αα 1 -1 k u=0 β k-u   M j=1 F N,α j ( u N )χ j u     if α < 0
Remark 2 (Proof of the corollary 2) for k N → 0 Lemma 4 and the continuity of the function F α provide

T -1 N (f ) k,1 = β k + 1 N k u=0 β k-u   M j=0 F N,α j (0)χ j u   (1 + o(1)) .
Since F N,α (0) = α 2 + o(1) (see [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]) the hypothesis β 0 = 1 and the formula (4) imply the corollary.

Proof of the lemma 4: As for [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] and using the inversion formula and Corollary 3 we have to consider the sums

H p,N (u) = ∞ n 0 =0 γ -(N +1+n 0 ) ∞ n 1 =0 γ -(N +1+n 1 +n 0 ) ∞ n 2 =0 γ -(N +1+n 1 +n 2 ) × • • • × ∞ n 2m-1 =0 γ -(N +1+n 2p-2 +n 2p-1 ) ∞ n 2p =0 γ -(N +1+n 2m-1 +n 2m ) γ u-(N +1+n 2p )   . If S 2p = ∞ n 2p =0 γ -(N +1+n 2p-1 +n 2p ) γ u-(N +1+n 2p )
we can write, following the previous Lemma,

S 2p = S 2p,0 + S 2p,1 + R 2p,α 1 with S 2p,0 = ∞ n 2p =0   M j=0 sin πα j π 2 χ j n 2p-1 +u 1 N + 1 + n 2p-1 + n 2p + α j 1 N + 1 + n 2p -u + α j S 2p,1 = ∞ n 2p =0   M jj ′ =0j =j ′ H j H(j ′ ) sin πα j π sin πα j ′ π c 1 (χ j ) c 1 (χ j ) c 1 (χ j ′ ) c 1 (χ j ′ ) χ j N +1+n 2p +n 2p-1 χ N +1+n 2p -u j ′ 1 N + 1 + n 2p-1 + n 2p + α j 1 N + 1 + n 2p -u + α j ′
Let us study the order of S 2p,1 . To do this we have to evaluate the order of the expression

H j=0 χ j 0 1 N + 1 + n 2m-1 + j + α 1 N + 1 + j -u + α
where H goes to the infinity and N = o(H). As for the previous proofs it is clear that this sum is bounded by

M j=0 1 N + 2 + n 2p-1 + j 1 N + 2 + j -u - 1 N + 1 + n 2p-1 + j 1 N + 1 + j -u . Obviously 1 N + 2 + n 2p-1 + j 1 N + 2 + j -u - 1 N + 1 + n 2p-1 + j 1 N + 1 + j -u ≤ 2N + 2 + 2j + n 2p-1 -u (N + 1 + n 2p-1 + j) 2 (N + 1 + j -u) 2 and 2N + 2 + 2j + n 2p-1 -u (N + 1 + n 2p-1 + j) 2 (N + 1 + j -u) 2 = 1 N + 1 + j + n 2p-1 + 1 N + 1 + j -u 1 (N + 1 + j + n 2p-1 )(N + 1 + j -u) ≤ 1 N 1 (N + 1 + j + n 2p-1 )(N + 1 + j -u) .
In the other hand we have, for

α 1 ∈]0, 1 2 [ R 2p,α 1 = o   ∞ j=0 1 N + 1 + n 2p-1 + n 2p 1 N + 1 + n 2p -u   and for α 1 ∈] -1 2 , 0[. R 2p,α 1 = o   N α 1 ∞ j=0 1 N + 1 + n 2p-1 + n 2p 1 N + 1 + n 2p -u   .
Hence we can write derivable on [0, 1[ (see [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] Lemma 4). Moreover for all z ∈ [0, δ] , 0 < δ < 1 we have the upper bounds

S 2p = S ′ 2p   M j=0 sin πα j π 2 χ j n 2p-1 +u + r m   , with S ′ 2p = +∞ j=0 1 N + 1 + n 2m-1 + n 2m 1 N + 1 + n 2m -u . and r m,α 1 = o(1) if α ∈]0, 1 2 [ r m,α 1 = o(N α 1 ) if α ∈] -1 2 , 0[. For z ∈ [0, 1] we define F p,N (z) by F p,N (z) = ∞ n 0 =0 1 N + 1 + n 0 ∞ n 1 =0 1 N + 1 + w 1 + w 0 × • • • × ∞ n 2p-1 =0 1 N + 1 + n 2p-2 + n 2p-1 × ∞ n 2p =0 1 N + 1 + n 2p-1 + n 2p
1 1 + 1 N + n 2p N -z ≤ 1 1 + 1 N -δ . Hence 1 + 1 N -δ 1 + 1 N + n 2p N -z 2 ≤ 1 + 1 N -δ 1 + 1 N + n 2p N -z and 1 1 + 1 N + n 2p N -z 2 ≤ 1 1 + 1 N -δ 1 1 + 1 N + n 2p N -z .
These last inequalities and the proof of Lemma 4 in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] provide that F N,α is in C 1 [0, 1[. Always in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] we have obtained that, for all z in [0, 1],

F N,α (z) ≤ K 0 1+ ln(1 -z + 1 + α N ) ( 14 
)
where K 0 is a constant no depending from N . Now we have to prove the point ii) of the statement. For z, z ′ ∈ [0, δ]

z -z ′ (1 + 1+α N + n 2m N -z)(1 + 1+α N + n 2m N -z ′ ) ≤ |z -z ′ | 1 -δ 1 1 + 1+α N + n 2m
N -δ that implies, with ( 14)

|F N,α (z) -F N,α (z ′ ) | ≤ |z -z ′ | K 0 1 + ln(1 -δ + 1+α N ) 1 -δ . ( 15 
)
In the same way we have

|z -z ′ | ((1 + 1+α N + n 2m N -z) + (1 + 1+α N + n 2m N -z ′ ) (1 + 1+α N + n 2m N -z) 2 (1 + 1+α N + n 2m N -z ′ ) 2 ≤ 2|z -z ′ | 1 (1 -δ) 2 1 1 + 1+α N + n 2m
N -δ and always with the inequality ( 14)

|F ′ N,α (z) -F ′ N,α (z ′ ) | ≤ 2|z -z ′ | K 0 1 + ln(1 -δ + 1+α N ) (1 -δ) 2 . ( 16 
)
hence

M 1 u=M 0 f (u)χ u = O(M β 1 ) if β > 0 O(M β 0 ) if β < 0. ✷

4 Demonstration of Theorem 2 4. 1 Property 1

 211 Asymptotic of β k With the hypothesis of Theorem 2 we have, for sufficiently large k,

.sin πα π 2m F

 2m Repeating the same idea as previously for the sums on n 2m-1 , • • • , n 0 we finally obtainH p,N (u) = 1 N F m,N ( u N ) + R N,α 1 ).with R N,α 1 as announced previously. For all α ∈] -1 2 , 1 2 [ we established in [26] the continuity of the function F p,N and the uniform convergence in [0, 1] of the sequence ∞ p=0 sin(πα) π 2p F p,N (z). For α ∈] -1 2 , 1 2 [ let us denote by F N,α (z) the sum +∞ m=0 m,N (z). The function F N,α is defined, continuous and

Using [START_REF] Johansson | On random matrices from the compact classical groups[END_REF] and [START_REF] Kirman | Long memory in economic[END_REF] we get the point ii).

To achieve the proof we have to remark that the uniformity in k in the point iii) is a direct consequence of Property 2. ✷

We have now to state the following lemma.

Lemma 5 For k N → x, 0 < x < 1 we have, with the notations of Theorem 2,

uniformly in k for x in all compact of ]0, 1[ and for K j as in Property 1.

Remark 3 This Lemma and Lemma 4 imply the equality

with (see [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] Lemma 3)

) .

Proof of lemma 5:

With our notation assume x ∈ [0, δ],

we can splite the sum

First we assume that 0 ≤ h ≤ m. Then α 1 = α h and Property 1 and the assumption on τ 1 show that

uniformly in k (5). Then an Abel summation provides that the quantity

From the inequality ( 14) (we have assumed 0

with M 2 no depending from k. We finally get

Identically Lemma 4 and the main value theorem provide (since

always with M 3 no depending from N . By definition of k 0 and with Property 1 we have easily the existence of a constant M 4 , always no depending from k, satisfying for

uniformly in k with the definition of the constants M i , 1 ≤ i ≤ 4. For h > m we obtain identically that

and we get the Lemma for α 1 > 0. Hence we assume in the rest of the demonstration that α

We have to evaluate the sum

uniformly in k (see once a more the definition of γ and τ 1 ).

Hence we can write, uniformly in k,

that is also, with the definition

We have

that is also

uniformly in k. Since we have seen that the sum

we can also conclude, as for α 1 > 0, that for 1

) uniformly in k. The uniformity is clearly provided by the uniformity in Lemma 4 and by the previous remarks. This last remark is sufficient to prove Lemma 5. ✷

Then Theorem 2 is a direct consequence of the inversion formula and of Lemma 5.

Appendix

Estimation of a trigonometric sum

Lemma 6 Let M 0 , M 1 two integers with 0 < M 0 < M 1 , χ = 1 and f a function in

Proof : With an Abel summation we obtain, if