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The quantitative long time behavior of absorbing, finite, irreducible Markov processes is considered. Via Doob transforms, it is shown that only the knowledge of the ratio of the values of the underlying first Dirichlet eigenvector is necessary to come back to the well-investigated situation of the convergence to equilibrium of ergodic finite Markov processes. This leads to explicit estimates on the convergence to quasi-stationarity, in particular via functional inequalities. When the process is reversible, the optimal exponential rate consisting of the spectral gap between the two first Dirichlet eigenvalues is recovered. Several simple examples are provided to illustrate the bounds obtained.

Résumé

On cherche à quantifier le comportement en temps long des processus de Markov finis, absorbés et supposés irréductibles en dehors du point absorbant. Par le biais de transformations de Doob, on montre qu'il est juste besoin du ratio maximal des valeurs prises par le premier vecteur propre de Dirichlet associé pour se ramener à la situation bien plus étudiée de la convergence à l'équilibre des processus de Markov finis. On obtient ainsi des estimées explicites de convergence à la quasistationnarité, en particulier via l'utilisation d'inégalités fonctionnelles. Quand le processus est de plus réversible, on retrouve le taux optimal de convergence exponentielle donné par le trou spectral entre les deux premières valeurs propres de Dirichlet. Plusieurs exemples simples illustrent les bornes obtenues.

Introduction

This paper begins to develop a quantitative theory of rates of convergence to quasi-stationarity, as in the following example. Consider the simple symmetric random walk on t0, ..., N u with holding 1{2 at N and absorbing at 0. Let Xt be the position of the walk at time t P Z `and T be the absorption time at 0. Let µ t pxq ≔ Pr Xt " x|T ą ts, for x P t1, ..., N u. Classical theory, reviewed below, shows that lim tÑ`8 µ t pxq " νpxq ≔ Z ´1 cos ˆp2N `1 ´2xqπ

2p2N `1q ẇith Z ´1 ≔ 2 tan ´π 2p2N `1q ¯, the normalizing constant. The measure ν is called a quasi-stationary distribution. How large does t have to be so that these asymptotics are useful? In Section 3, which is devoted to explicit computations, we prove for the continuous time counterpart of the above process that for any starting distribution on t1, ..., N u and for all s ě 0,

}µ t ´ν} tv ď 2 ? 2 π 2 p1 `OpN ´1qq expp´sq (1) 
for

t " 5 4π 2 N 2 lnpN q `s 2π 2 N 2
Thus the quasi-stationary asymptotics takes hold for t larger than N 2 lnpN q. In (1), µ t and ν depend on N but the bounds are uniform in N .

We will work mainly in the continuous time setting, which is more convenient to deal with. We will come back to the discrete time framework in Section 4. Generally, a quasi-stationary distribution of an absorbing Markov process X ≔ p Xt q tě0 is a probability measure ν on the state space S (where the absorbing points have been removed) such that starting from this distribution, the time marginal laws Lp Xt q remain proportional to ν on S, for all t ě 0. For nice processes X, the quasi-stationary distribution is unique and starting from any distribution on S, the conditional (to non-absorption) law µ t ≔ Lp Xt | Xt P Sq converges toward ν for large times t ě 0. The purpose of this article is to investigate this convergence quantitatively when S is finite.

More precisely, the framework is as follows. The whole finite state space is S ≔ S \ t8u, where 8 is the absorbing point. There is no loss of generality in assuming there is only one such point, up to lumping together all the absorbing points. Let L be the generator of the process X on S, seen as a matrix p Lpx, yqq x,yP S . To any given probability measure m 0 on S, there is a unique (in law) Markov process X whose generator is L and whose initial distribution Lp X0 q is m 0 . For any t ě 0, let m t " Lp Xt q. Using matrix notation, where measures are seen as row vectors (and functions as column vectors), we have @ t ě 0, m t " m 0 Pt where p Pt q tě0 is the semi-group pexppt Lqq tě0 associated to L. Except if m 0 is the Dirac mass on 8, for any t ě 0, m t pSq ą 0 and we can define the probability measures µ t as the restriction to S of m t {m t pSq. They will be our main objects of interest here. By definition, we have @ t ě 0, @ f P F, µ t rf s " µ 0 r Pt rf ss µ 0 r Pt r1 S ss [START_REF] Barbour | Total variation approximation for quasi-stationary distributions[END_REF] where F is the space of real functions defined on S, also seen as functions defined on S which vanish at 8 (Dirichlet condition at 8). A probability measure ν on S is said to be a quasi-stationary measure for L if µ 0 " ν implies that µ t " ν for all t ě 0. We will recall below a convenient assumption ensuring there is a unique quasi-invariant measure ν associated to L. The objective of this paper is to quantify the convergence of µ t toward ν for large times t ě 0, whatever the initial distribution µ 0 . For any x P S, denote V pxq " Lpx, 8q ě 0, the killing rate at x and recall that by assumption, V does not vanish identically. The symbol V will designate the function S Q x Þ Ñ V pxq as well as the S ˆS diagonal matrix whose values on the diagonal are given by V , namely the multiplication operator by V on F. Let L be the Markov generator on S which is such that the S ˆS minor of L can be written L ´V . Our main assumption is that L is irreducible. At some point, this hypothesis will be strengthened by a reversibility assumption, in order to get more explicit results. A traditional application of the Perron-Frobenius theorem (see for instance the book [START_REF] Collet | Quasi-stationary distributions. Markov chains, diffusions and dynamical systems[END_REF] of Collet, Martínez and San Martín) to L ´V or to the associated semi-group, seen as operators on measures on S, ensures that there exists a unique quasi-invariant measure ν associated to L. The probability measure ν gives a positive weight to any point of S. Furthermore there exists λ 1 ą 0 such that νpL ´V q " ´λ1 ν, λ 1 is the eigenvalue of V ´L which is strictly less than the real parts of the remaining eigenvalues (in C). In the same manner, there exists a unique invariant measure η for L, charging all points of S. To see the relation between ν and η, consider the operator L ˚which is adjoint to L in L 2 pηq. As a matrix, it is given by @ x, y P S, L ˚px, yq " ηpyq ηpxq Lpy, xq

The fact that η is invariant is equivalent to the fact that L ˚is a Markovian generator. We can thus apply the Perron-Frobenius theorem to L ˚´V , seen as an operator on F to find a positive function ϕ ˚on S such that pL ˚´V qrϕ ˚s " ´λ1 ϕ ˚. Let us renormalize ϕ ˚so that ηrϕ ˚s " 1. Then ν " ϕ ˚¨η, the probability measure admitting the density ϕ ˚with respect to η. Indeed, for any test function f P F, we have pϕ ˚¨ηqrpL ´V qrf ss " ηrϕ ˚pL ´V qrf ss " ηrpL ˚´V qrϕ ˚sf s " ´λ1 ηrϕ ˚f s " ´λ1 pϕ ˚¨ηqrf s so that pϕ ˚¨ηqpL ´V q " ´λ1 pϕ ˚¨ηq and by consequence pϕ ˚¨ηq Pt " expp´λ 1 tqpϕ ˚¨ηq `p1 éxpp´λ 1 tqqδ 8 . This relation implies that if the process X is started from the quasi-distribution ν, then the absorption time τ ≔ inftt ě 0 : Xt " 8u is distributed as an exponential distribution of parameter λ 1 . Indeed, we have for any t ě 0,

P ν rτ ą ts " ν Pt rSs " expp´λ 1 tq
where P ν is the underlying probability measure, when X0 is distributed according to ν. More generally, from this identity, it is not difficult to deduce that for any initial distribution m 0 not equal to δ 8 , we have lim tÑ`8

lnpP m 0 rτ ą tsq t " ´λ1
showing that λ 1 is the exponential rate of absorption. Furthermore, we can find a positive function ϕ P F such that pL ´V qϕ " ´λ1 ϕ, but we rather normalize it through the relation ηrϕ 2 s " 1. For any positive function f P F, we note f ^≔ min xPS f pxq and f _ ≔ max xPS f pxq.

Finally, consider the Markovian operator r L on S which is defined by its off-diagonal entries via @ x " y P S, r Lpx, yq ≔ Lpx, yq ϕpyq ϕpxq

(the diagonal entries are such the row sums vanish). Let p r P t q tě0 be the associated Markovian semi-group. Since r L is irreducible, it admits an invariant probability r η. In the next section we will check that it is given by

@ x P S, r ηpxq " ϕpxqϕ ˚pxqηpxq ř yPS ϕpyqϕ ˚pyqηpyq (4) 
To give a first estimate on the convergence of µ t toward ν, let us recall that the total variation of a signed measure m on S satisfying mpSq " 0 is given equivalently by

}m} tv ≔ 2 sup AĂS |mpAq| " sup f PF , }f } 8 ď1 mpf q " ÿ xPS |mpxq|
(where as usual, }f } 8 designates the supremum norm of f ). Note this definition differs by a factor of 2 from the probabilist version.

Theorem 1 For any probability measure µ 0 on S and for any t ě 0, we have

ϕ 2ϕ _ › › ›r µ 0 r P t ´r η › › › tv ď }µ t ´ν} tv ď 2 ϕ _ ϕ ^› › ›r µ 0 r P t ´r η › › › tv
where r µ 0 is the probability on S whose density with respect to µ 0 is proportional to ϕ. In particular the asymptotic exponential rate of convergence of }µ t ´ν} tv and › › ›r µ 0 r P t ´r η › › › tv are the same.

Note that in the trivial case where there is no absorption, namely V " 0, we have ϕ " 1 " ϕ ˚, p r P t q tě0 " pP t q tě0 , the Markovian semi-group generated by L, ν " r η and µ t " µ 0 r P t for all t ě 0, so that the above bounds are optimal, up to the factor 2.

The ratio ϕ _ {ϕ ^has already appeared in the literature about absorbing Markov processes, see for instance Lemma 2.3 of the paper of Jacka and Roberts [START_REF] Jacka | Weak convergence of conditioned processes on a countable state space[END_REF], where they studied the process conditioned to have never been absorbed. In a forthcoming paper, we will investigate this quantity ϕ _ {ϕ ^, providing different upper bounds via path and spectral considerations. This is a first step toward the extension of the results presented here to certain denumerable chains.

Theorem 1 reduces the study of convergence to quasi-stationarity to the much more well-studied situation of the convergence to equilibrium. One can for instance resort to functional inequality techniques (see for instance the lecture notes of Saloff-Coste [START_REF] Saloff-Coste | Lectures on finite Markov chains[END_REF]), the simplest of them being the L 2 approach. Let r L ˛be the additive symmetrization of r L in L 2 pr ηq: it is equal to p r L `r L ˚q{2, where r L ˚is the adjoint operator of r L in L 2 pr ηq. This self-adjointness implies that r L ˛is diagonalizable in R. Let r λ ą 0 stand for the smallest non-zero eigenvalue of ´r L ˛. Since r L ˛is irreducible, the eigenvalue 0 has multiplicity 1 (with eigenspace consisting of the constant functions) and r λ is the spectral gap of r L ˛. Then we get: 

This variational formulation enables comparison of r λ with λ (see for instance Diaconis and Saloff-Coste [START_REF] Diaconis | Comparison theorems for reversible Markov chains[END_REF] and Fill [START_REF] Allen | Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process[END_REF]), the spectral gap of the additive symmetrization of L in L 2 pηq:

r λ ě ϕ ^ϕφ _ ϕ _ λ (6) 
We will put these considerations into practice in Example 3.4.

Let us now assume that η is reversible for L. Then ´pL ´V q is self-adjoint in L 2 pηq and so is diagonalizable in R. As was already mentioned for the general case, its smallest eigenvalue is λ 1 ą 0. Consider its next eigenvalue λ 2 ą λ 1 (the strict inequality is a consequence of the irreducibility of L in the Perron-Frobenius theorem). The next result shows that to get a useful understanding of the convergence of µ t toward ν for large t ě 0, only the knowledge of η, of the ratio of the extrema of ϕ and of λ 2 ´λ1 is required.

Theorem 3 Under the reversibility assumption, for any t ě 0, we have

sup µ 0 PP }µ t ´ν} tv ď d 1 pϕ 2 ηq ^ϕ_ ϕ ^expp´pλ 2 ´λ1 qtq ď c 1 η ^ˆϕ _ ϕ ^˙2 expp´pλ 2 ´λ1 qtq
Note that (2) can be written in terms of Feynman-Kac integrals. Let pX t q tě0 be a Markov process starting from the initial law µ 0 and admitting L as generator. We have @ t ě 0, @ f P F, µ t rf s "

E µ 0 " f pX t q exp ´´ş t 0 V pX s q ds ¯ı E µ 0 " exp ´´ş t 0 V pX s q ds ¯ı
The stability for large times of such expressions have been extensively studied by Del Moral and his coauthors (see for instance his recent book [START_REF] Del | Mean field simulation for Monte Carlo integration[END_REF] and the references given there). They also use estimates on the convergence to equilibrium of Markov processes. Since their assumptions are based on Dobrushin type conditions on the underlying Markov process (or on some of its modifications, see e.g. Del Moral and Miclo [START_REF] Del | Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups[END_REF]), the deduced bounds are often quite coarse. While we work here in the same spirit, we will rather resort to spectral techniques, which lead to relatively sharp estimates, as will be illustrated by several examples. In particular, we obtain in the reversible case the optimal asymptotical rate λ 2 ´λ1 (see e.g. the review paper of Méléard and Villemonais [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF], with a non-quantified pre-exponential factor). Under appropriate conditions, this rate was deduced asymptotically for birth and death processes by van Doorn [START_REF] Van Doorn | Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes[END_REF] (see also van Doorn and Zeifman [START_REF] Van Doorn | On the speed of convergence to stationarity of the Erlang loss system[END_REF] for another example), which are outside the scope of the present note, because the state space is not finite. We hope that in a future work, we will be able to extend the above quantitative bounds to more general situations of appropriate denumerable Markov processes or diffusions, requiring at least the condition there is a unique quasi-invariant measure (usually this requires that the process comes in from infinity fast enough, see for instance Collet, Martínez and San Martín [START_REF] Collet | Quasi-stationary distributions. Markov chains, diffusions and dynamical systems[END_REF]). For Brownian motion absorbed on the boundary of a compact domain in Euclidean spaces, one may see Gyrya and Saloff-Coste [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains[END_REF] and Lierl and Saloff-Coste [START_REF] Lierl | The Dirichlet heat kernel in inner uniform domains: local results, compact domains and non-symmetric forms[END_REF] The literature on quasi-stationarity is substantial and we are able to call on several comprehensive surveys. One short readable survey, close in spirit to our paper, is by Van Doorn and Pollett [START_REF] Van Doorn | Quasi-stationary distributions for discrete-state models[END_REF] (discrete state space, continuous time). More general state spaces and applications in biology are emphasized by Méléard and Villemonais [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]. A recent book length treatment by Collet, Martínez and San Martín [START_REF] Collet | Quasi-stationary distributions. Markov chains, diffusions and dynamical systems[END_REF] treats all aspects. All of these review the history (Yaglom, Bartlett, Darroch-Seneta, ...). A most useful adjunct to these surveys is the annotated online bibliography kept up to date by Phil Pollett, see http://www.maths.uq.edu.au/ " pkp/papers/qsds/qsds.html.

We have not found very much literature on the kind of quantitative questions treated here. A useful review of previous quantitative efforts is in Section 4 of Van Doorn and Pollett [START_REF] Van Doorn | Quasi-stationary distributions for discrete-state models[END_REF]. This is along the lines of spectral gap estimates without consideration of the size of the state space or the starting distribution. Some quantitative bounds are also deduced in the recent papers of Barbour and Pollett [START_REF] Barbour | Total variation approximation for quasi-stationary distributions[END_REF][START_REF] Barbour | Total variation approximation for quasi-equilibrium distributions[END_REF], of Cloez and Thai [START_REF] Cloez | Quantitative results for the Fleming-Viot particle system in discrete space[END_REF] and of Champagnat and Villemonais [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF].

The plan of the paper is very simple: the next section presents the proof of the above theorems, as well as an alternative bound based on logarithmic Sobolev inequalities, the next section contains some illustrative examples. The final section gives further examples in discrete time.

Proofs

The following arguments are based on a simple use of Doob's transforms, which by a conjugation by ϕ, replace V by a constant killing rate.

Proof of Theorem 1

Let Φ be the diagonal matrix corresponding to the multiplication by ϕ operating on F. Thus Φ ´1 is just the diagonal matrix corresponding to the multiplication by 1{ϕ. We begin by checking that the generator matrix r L defined in (3) satisfies

r L " Φ ´1pL ´V `λ1 IqΦ ( 7 
)
where I is the identity matrix. Indeed, the off-diagonal entries of the r.h.s. coincide with those of Φ ´1LΦ which are those of r L by [START_REF] Barbour | Total variation approximation for quasi-equilibrium distributions[END_REF]. Thus it is sufficient to check that the sums of the rows of Φ ´1pL ´V `λ1 IqΦ vanish. The sum corresponding to the row indexed by x P S is 1 ϕpxq pLrϕspxq ´V pxqϕpxqq `λ1 " 0 since by definition, ϕ is an eigenfunction of L ´V associated to the eigenvalue ´λ1 .

It is now easy to check (4): it must be seen that 

@ f P F,
and exponentiate this identity to find @ t ě 0, expp´λ 1 tqΦ r P t Φ ´1 " Pt (the r.h.s. is to be understood as the restriction of Pt to F, as explained after (2)). Thus for any µ 0 P P and f P F, we have @ t ě 0, expp´λ 1 tqµ 0 rϕsr µ 0 r r P t rf {ϕss " µ 0 r Pt rf ss (recall that r µ 0 is the probability on S whose density with respect to µ 0 is proportional to ϕ). We deduce from (2) that

@ t ě 0, µ t rf s " r µ 0 r r P t rf {ϕss r µ 0 r r P t r1{ϕss (9) 
Since r P t converges to r η as t goes to infinity, we get that lim tÑ`8 µ t rf s " r ηrf {ϕs r ηr1{ϕs " νrf s due to the proportionality between the measures ν, ϕ ˚¨η and ϕ ´1 ¨r η. Thus the convergence toward quasi-stationarity has been recovered.

To get an estimate on the speed of convergence, we need the two following basic lemmas. On a general measurable space, consider two probability measures r µ ! r ν, as well as a measurable function ψ ą 0. Define

µ ≔ ψ Z r µ ¨r µ with Z r µ ≔ r µrψs ν ≔ ψ Z r ν ¨r ν with Z r ν ≔ r νrψs
Let r f and f stand for the Radon-Nikodym densities of r µ with respect to r ν and of µ with respect to ν. Obviously, we have

f " Z r ν Z r µ r f
Finally, choose r m and m to be medians of r f and f with respect to r ν and ν. The following result is well-known. 

"ż ˇˇˇZ r µ Z r ν f ´rˇˇˇˇd r ν : r P R * " Z r µ Z r ν inf "ż |f ´r| Z r ν ψ dν : r P R * ě Z r µ Z r ν Z r ν esssup r ν ψ inf "ż |f ´r| dν : r P R * " Z r ν esssup r ν ψ ż |f ´m| dν ě essinf r µ ψ esssup r ν ψ ż |f ´m| dν ě ψ ψ _ ż |f ´m| dν
For any fixed t ě 0, it remains to apply these general bounds with ν the quasi-stationary probability measure, r

ν ≔ r η µ ≔ µ t r µ ≔ r µ 0 r P t ψ ≔ 1{ϕ
Since ψ ^{ψ _ " ϕ _ {ϕ ^, the conclusion of Lemma 5 implies the wanted bound.

Remark 6 From (9), we could have been tempted to write that for any f P F, 

µ
}µ t ´ν} tv ď ˜ˆϕ _ ϕ ^˙`ˆϕ _ ϕ ^˙2 ¸› › ›r µ 0 r P t ´r η › › › tv ď 2 ˆϕ_ ϕ ^˙2 › › ›r µ 0 r P t ´r η › › ›
tv which is worse than the bound of Theorem 1 by a factor ϕ _ {ϕ ^.

2.2

Proof of Theorem 2

Since Theorem 1 brings us back to the situation of convergence to equilibrium of Markov processes, it is sufficient to use the argument of Fill [START_REF] Allen | Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process[END_REF]) for non-reversible processes. We recall them below for the sake of completeness.

To gain a factor 2, it is in fact better not to use Theorem 1, but to directly make a comparison between L 2 quantities. More precisely, for given µ 0 P P and t ě 0, denote by f t (respectively r f t ) the density of the probability µ t with respect to ν (resp. r µ t ≔ r µ 0 r P t with respect to r η). We have by the Cauchy-Schwarz inequality,

}µ t ´ν} tv " ÿ xPS |f t pxq ´1| νpxq ď a I t
where

I t ≔ ÿ xPS pf t pxq ´1q 2 νpxq
Let us also define

r I t ≔ ÿ xPS p r f t pxq ´1q 2 r ηpxq
It is easy to compare these quantities:

Lemma 7 For any t ě 0, we have

I t ď ˆϕ_ ϕ ^˙2 r I t

Proof

One recognizes in I t the variance of f t with respect to ν, so that

I t " inf # ÿ xPS pf t pxq ´rq 2 νpxq : r P R + Similarly we have r I t " inf # ÿ xPS p r f t pxq ´rq 2 r ηpxq : r P R +
The same arguments as those used in Lemma 5 give the conclusion without difficulty.

Putting together these estimates, we end up with

}µ t ´ν} tv ď ϕ _ ϕ ^b r I t (11) 
To study the evolution of r I t with respect to the time t ě 0, recall that

@ x P S, @ t ě 0, B t r f t pxq " r L ˚r r f t spxq
This comes from the relation r f t " r P t r r f 0 s, where r P t the adjoint operator of r P t in L 2 pr ηq. Thus we get that for all t ě 0,

B t r I t " 2r ηrp r f t ´1qB t r f t s " 2r ηrp r f t ´1q r L ˚r r f t ss " 2r ηrp r f t ´1q r L ˚r r f t ´1ss " 2r ηr r Lr r f t ´1sp r f t ´1qs " 2r ηr r L ˛r r f t ´1sp r f t ´1qs (12) 
By definition of r λ, the r.h.s. is bounded above by ´2r λ r I t , which leads to the ordinary differential inequality

@ t ě 0, B t r I t ď ´2r λ r I t
Gronwall's lemma implies that

@ t ě 0, r I t ď expp´2 r λtq r I 0 (13) 
so it remains to bound r I 0 above. But note that

r I 0 " r ηr r f 2 0 s ´1 ď r ηr r f 2 0 s " r µ 0 r r f 0 s ď › › › r f 0 › › › 8 ď 1 r η " ηrϕϕ ˚s pϕϕ ˚ηq ŵhich,
in conjunction with ( 11) and ( 13), lead to the bound of Theorem 2.

From

@ x " y, r L ˚px, yq " r ηpyq r ηpxq r Lpy, xq " ϕ ˚pyqηpyq ϕ ˚pxqηpxq Lpy, xq (14) 
we deduce that the matrix of the Markov generator r L ˛is described by its off-diagonal entries:

@ x " y P S, r L ˛px, yq " 1 2 ˆLpy, xq ϕ ˚pyqηpyq ϕ ˚pxqηpxq `Lpx, yq ϕpyq ϕpxq

Ṫhe

Poincaré formulation (5) then comes from the variational characterization of the eigenvalues and from the equality @ g P F, r ηrg r L ˛rgss " r ηrg r Lrgss already used in [START_REF] Diaconis | Comparison theorems for reversible Markov chains[END_REF].

Remark 8 Similarly to the lower bound in Theorem 1, we have also in Lemma 7

@ t ě 0, I t ě ˆϕφ _ ˙2 r I t
In particular ? I t and b r I t have the same asymptotic exponential rate of convergence. This common rate is the smallest real part of the non-zero eigenvalues of ´r L, but since this operator is not assumed to be reversible, this rate may be larger than r λ. 

The proof of this bound has the same structure as the one of Theorem 2, with the quantities I t and r I t replaced by the relative entropies we deduce as in Lemma 5 that

J t ≔ ÿ xPS f t pxq lnpf t pxqq νpxq r J t ≔ ÿ xPS r f t pxq lnp r f t pxqq
@ t ě 0, ϕ φ _ r J t ď J t ď ϕ _ ϕ ^r J t
As a consequence, we get

@ t ě 0, }µ t ´ν} tv ď c 2 ϕ _ ϕ ^b r J t
which reduces our task to the investigation of the time evolution of r J t . By differentiation, it appears that

B t r J t " ÿ xPS p1 `lnp r f t pxqqqB t r f t pxq r ηpxq " ÿ xPS p1 `lnp r f t pxqqq r L ˚r r f t pxqs r ηpxq " ÿ x,yPS p1 `lnp r f t pxqqqp r f t pyq ´r f t pxqq r ηpxq r L ˚px, yq
To proceed, note (cf. for instance Miclo [START_REF] Miclo | Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies[END_REF]) that for all x, y P S, where we used [START_REF] Diaconis | Nash inequalities for finite Markov chains[END_REF]. The logarithmic Sobolev inequality [START_REF] Diaconis | What do we know about the Metropolis algorithm?[END_REF], with g ≔ f t , allows comparison of the r.h.s. with r J t to give the differential inequality

p1
@ t ě 0, B t r J t ď ´r α r J t
Gronwall's lemma implies again that @ t ě 0, r J t ď expp´r αtq r J 0 ď expp´r αtq lnpp r f 0 q _ q ď expp´r αtq lnp1{r η ^q The announced bound [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] follows.

Despite the deterioration of exponential rate in [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF], this bound can be interesting for not too large times t ě 0, especially when one looks for "quasi-mixing times". Diaconis and Saloff-Coste [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF] have shown the following general bound between the logarithmic Sobolev constant r α and the spectral gap r λ:

r α ě 1 ´2r η lnp1{r η ^´1q r λ (17) 
(where the factor on the r.h.s. is taken to be 1{2 in the particular case where r η ^" 1{2). But this relation is not very pertinent for quasi-mixing times estimates: if τ r λ ě 0 and τ r α ě 0 are the times t ě 0 in Theorem 2 and ( 16) such that the corresponding upper bounds are equal to 1, we get

τ r λ " 1 r λ plnpϕ _ {ϕ ^q `lnp1{r η ^q{2q τ r α " 1 r α plnpϕ _ {ϕ ^q `lnplnp1{r η ^qq `lnp2qq
and the injection of ( 17) leads to the disappointing τ r λ ! τ r α for small r η ^ą 0. Indeed, the interest of ( 16) appears when one has good estimates on r α (by tensorization for instance) and r η ^is very small. Simple examples on product spaces are provided in Subsection 3.5. Nevertheless, we believe that modified logarithmic Sobolev inequalities (see e.g. the article of Bobkov and Tetali [START_REF] Sergey | Modified logarithmic Sobolev inequalities in discrete settings[END_REF]), namely the consideration of the best constant p α ą 0 such that for all g P F,

p α ÿ xPS g 2 pxq ln ˆg2 pxq r ηrg 2 s ˙ϕ˚p xqϕpxqηpxq ď ÿ x,yPS
p|gpyq| ´|gpxq|qplnp|gpyq|q ´lnp|gpxq|qq ϕ ˚pxqϕpyqηpxqLpx, yq is better suited to the above entropic approach.

2.3

Proof of Theorem 3

Under the assumption that ν is reversible for L, we have that L ˚" L. The equations for ϕ and ϕ åre thus the same and only the corresponding renormalizations are different. If follows that ϕ and ϕ ˚are proportional and since only ratios enter the pre-exponential factor of Theorem 2, it can be replaced by the pre-exponential factor of Theorem 3 (recall the normalization ηrϕ 2 s " 1).

But the main advantage of Theorem 3 is the explicit rate λ 2 ´λ1 . It is a consequence of the conjugacy relation [START_REF] Defosseux | Fusion coefficients and random walks in alcoves[END_REF]. It shows first that r L must be reversible with respect to r η (but this can also be checked directly from the expressions (3) and ( 4)) and second that the spectrum of r L is obtained from the spectrum of L ´V by subtracting the value λ 1 . In particular the spectral gap r λ of r L ˛" r L is equal to λ 2 ´λ1 .

Remarks 10

(a) The fact that the spectrum of r L is obtained from the spectrum of L ´V by subtracting the value λ 1 is always true, but in the non-reversible case it is not clear how to use this possibly complex valued spectrum to deduce a bound on r λ. In the reversible situation Remark 8 can be made more precise: the common asymptotic exponential rate of ? I t and b r I t is λ 2 ´λ1 . (b) The logarithmic Sobolev inequality approach is equally valid in the reversible case, we get sup

µ 0 PP }µ t ´ν} tv ď d 2 ln ˆ1 pϕ 2 ηq ^˙ϕ _ ϕ ^expp´pr α{2qtq
where r α is the logarithmic Sobolev constant associated to the symmetric operator r L in r η (in particular ( 17) is satisfied with r λ replaced by λ 2 ´λ1 q.

3

Examples

Several basic examples are provided here, which in particular serve to illustrate some assertions made in the previous theoretical developments.

A finite birth and death example with

λ 1 « λ 2 ´λ1
This example and the next two are birth and death processes on S ≔ 0, N , with N P N, absorbed in 0. So S " 1, N , 8 " 0 and L gives positive rates only to the oriented edges px, x `1q and px `1, xq where x P 1, N ´1 . In this one-dimensional setting, L admits a unique reversible probability η. Let us assume that the killing rate at 1 is 1, namely V p1q " Lp1, 0q " 1. The other values of V are taken to be zero. Specifically for this example, we choose

@ x P 1, N ´2 , Lpx, x `1q ≔ Lpx `1, xq ≔ 1 ( 18 
)
LpN ´1, N q " 1 and LpN, N ´1q " 2

(the value 2 simplifies the analysis of the reflection at N by replacing the forbidden jump to N `1 by a supplementary jump at N ´1). The reversible probability η is then given by @ x P S, ηpxq "

" 2 2N ´1 , if x P N ´1 1 2N ´1 , if x " N
Let ϕ be the function defined by

@ x P S, ϕpxq ≔ 1 Z sinpπx{p2N qq ( 20 
)
where Z is the renormalization constant such that ηrϕ 2 s " 1. Due to the value 2 in [START_REF] Holley | Simulated annealing via Sobolev inequalities[END_REF], it is easy to check that pL ´V qrϕs " 2pcospπ{p2N qq ´1qϕ. The positivity of ϕ and Perron-Frobenius theorem imply that ϕ is indeed the function considered in the introduction and that

λ 1 " 2p1 ´cospπ{p2N qqq
The density of the quasi-invariant probability measure ν with respect to η is proportional to ϕ. More generally, define for k P 1, N ´1 , the function ϕ k by

@ x P S, ϕ k pxq ≔ sinpp2k `1qπx{p2N qq
By straightforward calculation, pL ´V qrϕ k s " 2pcospp2k `1qπ{p2N qq ´1qϕ k . Thus the spectrum of L ´V is t2pcospp2k `1qπ{p2N qq ´1q : k P 0, N ´1 u. In particular

λ 2 ´λ1 " 2pcospπ{p2N qq ´cosp3π{p2N qq " 4 sinpπ{N q sinpπ{p2N qq " 2 π 2 N 2 p1 `OpN ´2qq
as N goes to infinity. Since

λ 1 " π 2 4N 2 p1 `OpN ´2qq
in this situation λ 1 and λ 2 ´λ1 are of the same order, meaning that absorption and convergence to quasi-stationarity happen at similar rates.

From [START_REF] Jerrum | Approximating the permanent[END_REF], we deduce that

ϕ _ ϕ ^" 1 sinpπ{p2N qq " 2N π p1 `OpN ´2qq
Taking into account the classical Riemann sum approximation, we furthermore get

Z 2 " 2 2N ´1 ÿ xP 1,N ´1 sin 2 pπx{p2N qq `1 2N ´1 " p1 `OpN ´1qq ż 1 0 sin 2 pπu{2q du " 1 2 p1 `OpN ´1qq
The first bound of Theorem 3 asserts that sup

µ 0 PP }µ t ´ν} tv ď 4 π 2 N 5{2 exp ˆ´2π 2 N 2 tp1 `OpN ´2qq ˙p1 `OpN ´1qq
(the second bound of Theorem 3, which doesn't need the estimate on Z, leads to a similar bound with 4 replaced by 4 ?

2). It follows that for any given s ą 0, if

t " 5 4π 2 N 2 lnpN q `s 2π 2 N 2 then sup µ 0 PP }µ t ´ν} tv ď 4 π 2 p1 `OpN ´1qq expp´sq
3.2 A finite birth and death example with

λ 1 ! λ 2 ´λ1
The setting is as in the previous example, except that for some r ą 1, we replace ( 18) and ( 19) by

@ x P 1, N ´2 , " Lpx, x `1q ≔ r Lpx `1, xq ≔ 1 ( 21 
)
LpN ´1, N q " r and LpN, N ´1q " 1 `r

The reversible probability η is then given by

@ x P S, ηpxq " # r 2 ´1 2r N ´r´1 r x´1 , if x P N ´1 r´1 2r N ´r´1 r N ´1 , if x " N (23) 
Contrary to the previous example, it seems more difficult to derive explicit formulas for the eigenvalues and eigenfunctions associated to L ´V . To describe them, consider the rational fraction in X,

P N pXq ≔ X 2pN `1q ´X2N `r1´N X 2 ´r´N´1 X 2 ´r´1
Lemma 11 For N ě 1, P N is a polynomial which admits 2N distinct zeros. Denote by R the set of zeros. Let Λ be the image of R by the mapping

Ψ : ρ Þ Ñ p1 `rqρ ´1 ´rρ 2 ρ
For N ą p1 `rq{pr ´1q, the spectrum of V ´L is Λ and for any λ P Λ, an associated eigenfunction ϕ λ is defined by

@ x P S, ϕ λ pxq ≔ ρ x `´ρ x ẃhere ρ ˘≔ 1 2r pr `1 ´λ ˘apλ ´1 ´rq 2 ´4rq (24) 
(with ? ¨standing for the principal value of the complex square root) are the reciprocal images of λ by Ψ.

Proof

Let λ be an eigenvalue of V ´L and ϕ be an associated eigenfunction on S. With the convention that ϕp0q " 0, the values of ϕ satisfy the recursive formula

@ x P 1, N ´1 , ϕpx `1q " p1 `r ´λqϕpxq ´ϕpx ´1q r (25) 
It follows that on 1, N , ϕ is necessarily proportional to the functions ϕ λ defined above, where ρ ȃre the solutions of the quadratic equation in X, rX 2 `pλ ´1 ´rqX `1 " 0 [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] except if this equation admits a double solution ρ ˚, in which case ϕ must be proportional to the function ϕ ˚defined by @ x P S, ϕ ˚pxq ≔ xρ x Whatever the case, we have that

@ x P 1, N ´1 , pL ´V qrϕspxq " ´λϕpxq
This relation is also satisfied at x " N if and only if ϕpN `1q " ϕpN ´1q (as in the previous example, this justifies the simplifying choice of LpN, N ´1q " 1 `r).

' Let us first consider the situation where (26) admits a double solution. One computes immediately that this corresponds to λ " p1˘?rq 2 and ρ ˚" ¯1{ ? r. The condition ϕ ˚pN `1q " ϕ ˚pN ´1q is equivalent to ρ ˚" ˘apN ´1q{pN `1q. The assumption N ą p1 `rq{pr ´1q forbids that a pN `1q{pN ´1q " ? r, so that we are led to a contradiction. Only the next case is possible. ' Assume that (26) has two distinct solutions ρ `and ρ ´, they are given in the statement of the above lemma. The condition ϕpN `1q " ϕpN ´1q amounts to

ρ N `1 `´ρ N ´1 `´ρ N `1 ´`ρ N ´1
´" 0 But from [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] we see that ρ ´" 1{prρ `q, so ρ `is a solution of

X 2pN `1q ´X2N `r1´N X 2 ´r´N´1 " 0
This equation admits two obvious solutions, X " 1{ ? r and X " ´1{ ? r, so that P N is indeed a polynomial. But these values are not allowable for ρ `, because we would have ρ `" ρ ´. It follows that ρ `is a root of P N . Note that if ρ P C is a root of P N , the same is true for 1{prρq and that 1{

? r and ´1{ ? r are the only fixed points of the involutive mapping ξ :

Czt0u Q ρ Þ Ñ 1{prρq.
As a consequence, we can group the roots of P N by pairs stable by ξ, say tρ 1 , ξpρ 1 qu, tρ 2 , ξpρ 2 qu, ..., tρ N , ξpρ N qu. Moreover, notice that the mapping Ψ defined in the above lemma is constant on each of these pairs, so that the cardinality of Λ ≔ ΨpRq is at most N . But it appears from ( 26) and from the previous discussion that all the eigenvalues of V ´L are elements of Λ. From [START_REF] Miclo | Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies[END_REF] we deduce that all the eigenvalues of V ´L are simple and since by reversibility V ´L is known to be diagonalizable, it follows V ´L admits N distinct eigenvalues. Thus Λ must be of cardinality N and exactly consists of the eigenvalues of V ´L. It is interesting to remark that it is relatively difficult to check directly that all the ρ 1 , ρ 2 , ..., ρ N are different, or equivalently that all the roots of P N are distinct (try to compute its discriminant).

By the Perron-Frobenius theorem, the smallest eigenvalue λ 1 of V ´L is characterized by the fact that the associated eigenfunction has a fixed sign. This observation in conjunction with Lemma 11 lead to Proposition 12 For large N we have

λ 1 " 1 2 pr `1qpr ´1q 2 1 r N `1
moreover, if ϕ is an associated eigenvector,

ϕ _ ϕ ^" r r ´1 p1 `Opr ´N qq

Proof

With the notation of Lemma 11, we have ρ `ρ´" 1{r (recall ( 26)). So if ρ `ą 0, then we get 0 ă ρ ´ă ρ `. It follows that the mapping R ˚Q u Þ Ñ ρ u `´ρ u ´does not vanish and in particular ϕ λ only takes positive values. By consequence, the corresponding λ P Λ is the first Dirichlet eigenvalue λ 1 . To work out this program, we begin by showing that for N large enough, there exists

ρ 1 P R X R `satisfying 1 r 2 ď ρ 2 1 ď 1 r 2 `1 r N `1 (27) 
It is enough to show that there exists ρ 1 P r1{r, a 1{r 2 `r´1´N s such that

Qpρ 2 1 q ≔ ρ 2pN `1q 1 ´ρ2N 1 `r1´N ρ 2 1 ´r´N´1 " 0 (28) 
Write h 1 " r N `1pρ 2 1 ´1{r 2 q and for all h ě 0,

f phq ≔ r 2N Q ˆ1 r 2 `h r N `1 " ˆ1 `h r N ´1 ˙N ˆ1 r 2 ´1 `h r N `1 ˙`h
we just need to check that f p0q ď 0 and f p1q ě 0. The former inequality is immediate and the latter one is satisfied for N large enough, since lim N Ñ8 f p1q " 1{r 2 .

Next, injecting the a priori bound ( 27) in [START_REF] Saloff-Coste | Lectures on finite Markov chains[END_REF], it follows that lim

N Ñ8 h 1 " 1 ´1 r 2
Replacing ρ 1 " a r ´2 `p1 ´r´2 qr ´pN `1q p1 `˝p1qq " r ´1 `p1 ´r´2 qr ´N p1{2 `˝p1qq in

λ 1 " p1 `rqρ 1 ´1 ´rρ 2 1 ρ 1
we deduce the first announced behavior. Let ρ 1´a nd ρ 1`b e the corresponding values of ρ ´and ρ `, from ρ 1´ρ1`" 1{r, we obtain

ρ 1´" ρ 1 " 1 r `Opr ´N q and ρ 1`" 1 `Opr ´N q (29) 
Taking into account the expression of ϕ ≔ ϕ λ 1 given in Lemma 11, we get

ϕ _ ϕ ^" ϕpN q ϕp1q " ρ N 1`´ρ N 1ρ 1`´ρ1" r r ´1 p1 `Opr ´N qq
To be in position to use Theorem 3, it remains to evaluate λ 2 ´λ1 . From the previous proof, it appears there is only one eigenvalue λ P Λ such that ρ ´ą 0. Moreover there is at most one eigenvalue λ P Λ such that ρ ´ă 0. Indeed, in this case we have ρ ´ă ρ `ă 0 and it follows from Lemma 11 that ϕ λ pxq ą 0 for x P S odd and ϕ λ pxq ă 0 for x P S even, in particular ϕ λ has the maximal number of sign changes. The discrete version of Sturm's theorem (see for instance Miclo [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF]) then implies that λ must be λ N , the largest eigenvalue of V ´L. Since R is symmetrical with respect to zero, ´ρ1´a nd ´ρ1`( with the notation of ( 29)) also belong to R and this leads to the estimate λ N " 2p1 `rq `Opr ´N q

The previous arguments show that except for ρ 1´, ρ 1`, ´ρ1´a nd ´ρ1`, all the other elements of R are complex numbers which are not real. It follows from Lemma 11 that for λ P Λztλ 1 , λ N u, pλ ´1 ´rq 2 ´4r ă 0 so that

λ ą 1 `r ´2? r " p1 ´?rq 2
In particular, for N ą 2, we get Notice that the relaxation time to quasi-stationarity needs to be at least of order N , since it is already the order of time required by the semi-group associated to r L to get from 1 to N , which supports a non-negligible part of r η (but starting from N , it can be shown that the relaxation time to quasi-stationarity is bounded independently from N , using Theorem 1 and Proposition 12).

λ 2 ą

A finite birth and death example with λ 1 " λ 2 ´λ1

The setting is as in the previous example, except that r ă 1 in ( 21) and [START_REF] Jiang | Mixing Time of Metropolis Chain Based on Random Transposition Walk Converging to Multivariate Ewens Distribution[END_REF].

The beginning of Subsection 3.2 is still valid: the reversible probability η is given by ( 23) and Lemma 11 is true, without the condition N ą p1 `rq{pr ´1q, which is now void. The difference starts with Proposition 12, which must be replaced by Proposition 13 For N ě 4, we have p1 ´?rq 2 `4? r sin 2 pp1 ´rq{p4N `4qq ď λ 1 ď p1 ´?rq 2 `4? r sin 2 pπ{p2N qq p1 ´?rq 2 `4? r sin 2 pπ{p2N qq ď λ 2 ď p1 ´?rq 2 `4? r sin 2 pπ{N q Furthermore, if ϕ is an eigenvector associated to λ 1 , we have

ϕ _ ϕ ^ď r ´pN ´1q{2 1 sinpp1 ´rq{p2N `2qq
Proof First we show that none of the roots of P N is a real number. Consider the function

f : R `Q x Þ Ñ x N `1 ´xN `r1´N x ´r´N´1
According to the arguments of Lemma 11, it is sufficient to show that f only vanishes at 1{r. Its second derivative is given by f 2 pxq " pN `1qN x N ´1 ´N pN ´1qx N ´2, for x ě 0. Thus f 2 is negative on p0, pN ´1q{pN `1qq and positive on ppN ´1q{pN `1q, `8q. Furthermore, we compute that

f 1 ˆN ´1 N `1 ˙" ´ˆ1 ´2 N `1 ˙N´1 `r1´N
This quantity is positive for N ě 2. Thus f is increasing on p0, `8q and can only vanish at 1{r. Since we know that the roots of P N are given by ( 24) for λ P Λ Ă R, we deduce that

@ λ P Λ, pλ ´1 ´rq 2 ă 4r
It follows that the modulus of ρ ˘in [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF] is given by 1{ ? r, independently of λ P Λ. More precisely, there exists a set Θ Ă p0, πq, such that the roots of P N are given by " 1 ? r expp˘iθq : θ P Θ * By using the mapping Ψ of Lemma 11, we get that the spectrum of L is Λ " tlpθq ≔ 1 `r ´2? r cospθq : θ P Θu and that corresponding eigenvectors are given by @ x P 1, N , ϕ θ pxq " r ´x{2 sinpθxq [START_REF] Van Doorn | Quasi-stationary distributions for discrete-state models[END_REF] for θ P Θ (note the slight modification of notation with respect to Lemma 11, indexing by elements of Θ instead of Λ). Ordering Θ into 0 ă θ 1 ă θ 2 ă ¨¨¨ă θ N ă π, it appears that λ 1 " lpθ 1 q and λ 2 " lpθ 2 q (31)

From [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF], we deduce that ϕ θ 1 is non-decreasing and that ϕ θ 2 changes sign once (more generally ϕ θ k changes sign k ´1 times, for k P 1, N ). This remark and (30) lead to the bounds

θ 1 ď π{N and π{N ď θ 2 ď 2π{N (32) 
Taking into account that @ θ P Θ, lpθq " p1 ´?rq 2 `2? rp1 ´cospθqq " p1 ´?rq 2 `4? r sin 2 pθ{2q and that sinus is positive and increasing on p0, π{2q, we get that for N ě 4, λ 1 ď p1 ´?rq 2 `4? r sin 2 pπ{p2N qq p1 ´?rq 2 `4? r sin 2 pπ{p2N qq ď λ 2 ď p1 ´?rq 2 `4? r sin 2 pπ{N q

To obtain a lower bound of the same kind for λ 1 , recall that the elements θ P Θ satisfy the equation

1 r N `1 exppi2pN `1qθq ´1 r N exppi2N θq `1 r N exppi2θq ´1 r N `1 " 0 (33)
and in particular gpθq " 0, where the mapping g is defined by

@ θ P R, gpθq ≔ sinp2pN `1qθq ´r sinp2N θq `r sinp2θq (34)
One computes that g 1 p0q " 2N p1 ´rq `2 `2r and that

@ θ P R, ˇˇg 2 pθq ˇˇď 8pN `1q 2 (35)
By consequence, the first zero of g after 0 is larger than p2N p1 ´rq `2 `2rq{p4pN `1q 2 q and in particular

θ 1 ě 2p1 ´rqpN `1q 4pN `1q 2 " 1 ´r 2pN `1q (36) 
leading to the announced lower bound on λ 1 . Furthermore, if ϕ ≔ ϕ θ 1 , we have

ϕ _ ϕ ^" ϕ θ 1 pN q ϕ θ 1 p1q ď r ´pN ´1q{2 1 sinpθ 1 q ď r ´pN ´1q{2 1 sinpp1 ´rq{p2N `2qq
Working for fixed r P p0, 1q in the asymptotic N Ñ 8, we deduce that p1 ´?rq 2 `?rp1 ´rq 2 4

1 N 2 p1 `˝p1qq ď λ 1 ď p1 ´?rq 2 `π2 ? r N 2 p1 `˝p1qq p1 ´?rq 2 `π2 ? r N 2 p1 `˝p1qq ď λ 2 ď p1 ´?rq 2 `4π 2 ? r N 2 p1 `˝p1qq and ϕ _ ϕ ^ď 2N p1 ´rqr pN ´1q{2 p1 `˝p1qq
In particular, we get

λ 2 ´λ1 ď 16π 2 ´p1 ´rq 2 4N 2 ? rp1 `˝p1qq λ 1 " p1 ´?rq 2
and, as announced, for N large,

λ 2 ´λ1 ! λ 1
meaning that absorption happens at a much faster rate than convergence to quasi-stationarity.

To exhibit a quantitative estimate for the latter convergence, we need a lower bound on λ 2 ´λ1 .

Lemma 14 For N large enough, we have

λ 2 ´λ1 ě p1 ´rq 2 ? r 2N 2 p1 `˝p1qq
Proof With the notation of the proof of Proposition 13, let us begin by obtaining a lower bound on θ 2 ´θ1 . Considering the function g defined in (34), θ 2 is larger than the zero of g following θ 1 . We have

g 1 pθ 1 q ≔ 2pN `1q cosp2pN `1qθ 1 q ´r2N cosp2N θ 1 q `2r cosp2θ 1 q
From (33), we also obtain cosp2pN `1qθ 1 q ´r cosp2N θ 1 q `r cosp2θ 1 q ´1 " 0 so that

g 1 pθ 1 q " 2N p1 ´r cosp2θ 1 qq `2 cosp2pN `1qθ 1 q `2r cosp2θ 1 q ě 2N p1 ´rq ´2p1 `rq
Taking into account (35), we deduce that

θ 2 ´θ1 ě N p1 ´rq ´p1 `rq 2pN `1q 2 " 1 ´r 2N p1 `˝p1qq
Next, we have (recall (32)),

´cospθ 2 q ě ´cospθ 1 q `min θPrθ 1 ,θ 2 s sinpθqpθ 2 ´θ1 q " ´cospθ 1 q `p1 `˝p1qqθ 1 pθ 2 ´θ1 q ě ´cospθ 1 q `1 ´r 2pN `1q 1 ´r 2N p1 `˝p1qq
where we used (36). The announced bound is now a consequence of [START_REF] Van Doorn | On the speed of convergence to stationarity of the Erlang loss system[END_REF].

Putting together the previous estimates, with η ^" p1 ´rqr N ´1{pr `1q, we get sup

µ 0 PP }µ t ´ν} tv ď 4 ? r `1N 2 p1 ´rq 5{2 r 3pN ´1q{2 p1 `˝p1qq exp ˆ´p1 ´rq 2 ? r 2N 2 p1 `˝p1qqt
İn particular, for any given ǫ ą 0, if we consider

t N ≔ 3p1 `ǫq lnp1{rq p1 ´rq 2 ? r N 3 then lim N Ñ8 sup µ 0 PP }µ t N ´ν} tv " 0

A non-reversible example

Let N P N be fixed. We consider S " S \ t8u, with S " Z N . The generator L allows with rate 1 jumps adding 1 in Z N and a jump at rate 1 from 0 P Z N to 8, the absorbing point. Namely, the generator L is given by

@ x, y P Z N , Lpx, yq ≔ $ & % 1 , if y " x `1 ´1 , if y " x 0
, otherwise whose invariant probability measure η is the uniform distribution. The potential V takes the value 1 at 0 and 0 otherwise. The spectral decomposition of the highly non-reversible operator L ´V is given by: Lemma 15 Let C be the set of (complex) solutions of the equation X N `XN´1 ´1 " 0. Its cardinality is N (i.e. all the solutions of the equation are distinct), the set of eigenvalues of L ´V is tc ´1 : c P Cu and corresponding eigenvectors are given by the functions ϕ c , for c P C, defined by

@ x P 0, N ´1 , ϕ c pxq ≔ " 1 , if x " 0 c x´N , otherwise
(where Z N is naturally identified with 0, N ´1 ).

Proof

We begin by checking that all the roots of the polynomial X N `XN´1 ´1 are simple. Indeed, if c P C had multiplicity at least two, it would also satisfy N c N ´1 `pN ´1qc N ´2 " 0, namely c " p1 ´N q{N (because 0 does not belong to C). The equation c N `cN´1 " 1 could then be rewritten

1 N ˆ1 ´N N ˙N´1 " 1
but this is impossible, because the absolute value of the l.h.s. is strictly less than 1.

Next we compute that for c P C,

@ x P Z N , Lrϕ c spxq " " c 1´N ´1 , if x " 0 pc ´1qϕ c pxq , otherwise Note that c 1´N ´1 " c 1´N ´c `pc ´1qϕ c p0q " 1 `pc ´1qϕ c p0q " V p0qϕ c p0q `pc ´1qϕ c p0q
Thus it appears that on Z N , pL ´V qrϕ c s " pc ´1qϕ c which is the wanted result, since we have exhibited exactly N eigenvalues.

Necessarily C contains some real numbers, due to the Perron-Frobenius theorem which asserts that the smallest eigenvalue λ 1 of V ´L satisfies

λ 1 " 1 ´maxtc : c P C X Ru
By the strong irreversibility of L, the set C X R is in fact very restricted, an observation which enables easy deduction of the asymptotic behavior of λ 1 for N large:

Lemma 16 If N is odd, C X R " t1 ´λ1 u and if N is even, C X R consists of two points. In both cases, C X R `" t1 ´λ1 u and we have for N large

λ 1 " lnp2q N Proof Consider the function g : R Q x Þ Ñ x N `xN´1 ´1
The study of its variations leads to the two first announced results by differentiating it twice. Indeed, if N is odd, g is increasing on p´8, p1´N q{N q, decreasing on pp1´N q{N, 0q and increasing on p0, `8q. As was already seen in the proof of the previous lemma, gpp1 ´N q{N q ă 0, so that g admits a unique real root contained in p0, `8q. For N even, g is decreasing on p´8, p1 ´N q{N q and increasing on pp1 ´N q{N, `8q. Since gpp1 ´N q{N q ă 0 and lim ˘8 g " `8, g admits two real roots, the largest one being the unique one belonging to p0, `8q, since gp0q " ´1.

Let y ą 0 be given and for N ą y consider x N " 1 ´y{N . It appears that lim

N Ñ8
gpx N q " 2 expp´yq ´1

It follows that the unique root c N of g in p0, `8q satisfies for N large c N ´1 " ´lnp2q N which amounts to the last announced result.

Let ϕ " ϕ 1´λ 1 , with the notation of Lemma 15, be an eigenvector associated to λ 1 . We have, for N large

ϕ _ ϕ ^" ϕp1q ϕp0q " p1 ´λ1 q 1´N " expplnp2qq " 2
In addition, note that L ˚, the dual operator of L in L 2 pηq, is given by

@ x, y P Z N , L ˚px, yq ≔ $ & % 1 , if y " x ´1 ´1 , if y " x 0 , otherwise
It corresponds to the conjugation of L with the involutive transformation of Z N given by ι :

Z N Q x Þ Ñ ´x (or 1, N ´1 Q x Þ Ñ N
´x and ιp0q " 0). It follows that the function ϕ ˚considered in the introduction is proportional to ϕ ˝ι, so that the mapping ϕϕ ˚is constant. In particular the probability r η defined in ( 4) is equal to η, the uniform distribution on Z N . Furthermore, we compute that the generator r L defined in (3) is given by @ x, y P Z N , r Lpx, yq ≔ $ ' ' ' ' & ' ' ' ' % p1 ´λ1 q , if x " 0 and y " x `1 ´p1 ´λ1 q , if x " 0 and y " x p1 ´λ1 q 1´N , if x " 0 and y " 1 ´p1 ´λ1 q 1´N , if x " 0 and y " 0 0 , otherwise Its additive symmetrization r L ˛in L 2 pηq gives the rate p1 ´λ1 q{2 to any oriented edge px, x `1q or px `1, xq of Z N , except to the edges p0, 1q and p1, 0q, which have the rate p1 ´λ1 q 1´N {2. By comparison with the usual continuous-time random walk on Z N , we deduce that the spectral gap r λ of r L ˛satisfies p1 ´cosp2π{N qqp1 ´λ1 q ď r λ ď p1 ´cosp2π{N qqp1 ´λ1 q 1´N namely, asymptotically for N large,

2π 2 N 2 p1 `˝p1qq ď r λ ď 4π 2 N 2 p1 `˝p1qq
Relying on (6), we would have obtained

r λ ě 1 `˝p1q 4 λ
where λ is the spectral gap of the additive symmetrization of L in L 2 pηq, which is the usual continuous-time random walk on Z N , so that λ " 2π 2 {N 2 . Thus it only leads to a slight deterioration on the estimate of r λ obtained by working directly with [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]. For large N , Theorem 2 leads to sup

µ 0 PP }µ t ´ν} tv ď 2 ? N p1 `˝p1qq exp ˆ2π 2 N 2 p1 `˝p1qqt
İn particular, for any given ǫ ą 0, if we consider

t N ≔ p1 `ǫq N 2 lnpN q 4π 2 then lim N Ñ8 sup µ 0 PP }µ t N ´ν} tv " 0

A product example

Let us first come back to the general setting of the introduction (which is then tensorized). Let d P N, be given. On S d , consider the Markovian generator

L pdq ≔ 1 d ÿ kP 1,d L k
where L k acts like L on the k-th coordinate of S d . Define furthermore the potential V pdq by

@ x ≔ px 1 , ..., x d q P S d , V pdq ≔ 1 d ÿ kP 1,d V px k q
Note that the associated Lpdq is not of the form p1{dq ř kP 1,d Lk , because the underlying state space would be p Sq d and not S d \ t8u as it should be. One recovers the subMarkovian generator L pdq ´V pdq by modifying p1{dq ř kP 1,d Lk so that all the points of tx ≔ px 1 , ..., x d q P p Sq d : D k P 1, d with x k " 8u become absorbing.

The invariant measure η pdq associated to L pdq is η bd and we have

L pdq ´V pdq " 1 d ÿ kP 1,d pL ´V q k
It appears in particular that the first eigenvalue of V pdq ´Lpdq is λ 1 , the same as that of V ´L and the associated quasi-stationary distribution (respectively first eigenfunction) is ν bd (resp. ϕ bd ). It follows that r L pdq , the Doob transform of L pdq ´V pdq by ϕ bd , satisfies

r L pdq " 1 d ÿ kP 1,d r L k
and that its invariant probability r η pdq is r η bd . In a similar way, we have that

L ˚pdq " 1 d ÿ kP 1,d L k
and the first eigenvector of ´L˚pdq is pϕ ˚qbd . Finally r L ˛pdq , the additive symmetrization of r L pdq in L 2 pr η bd q, is equal to p1{dq ř kP 1,d r L k, so that its spectral gap r λ (respectively its logarithmic Sobolev constant r α) is equal to that of r L ˛(for such tensorization properties, see for instance the book [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF] of Ané et al.).

With obvious notation, Theorem 2 then leads to the fact that for any t ě 0, we have sup 

It is easy to construct an example showing that (38) can lead to a better estimate than (37). Take

S ≔ t1, 2u, L ≔ ˆ´1 1 1 ´1 ˙, V ≔ ˆ1 1 ḟor
which ϕ " 1, η " p1{2, 1{2q, λ 2 ´λ1 " 2 and r α " 1 (recall the convention after [START_REF] Allen | Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process[END_REF], which is an equality in this two-points case, see Diaconis and Saloff-Coste [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF]). The r.h.s. of (37) and ( 38 For a little less artificial example, one can come back to Subsection 3.3, with N " 2 and r ą 0 very small. Indeed, one computes that

λ 2 ´λ1 " 2 a rp1 `rq ϕ _ ϕ ^" c 1 ´r r η ^" r 1 `r r η ^" 1 ´r 2 
It follows from ( 17) that for 0 ă r ! 1, r α ě r lnpp1 `rq{p1 ´rqq pλ 2 ´λ1 q " λ 2 ´λ1 2 For r ą 0 small, we get from (37) and (38) that the leading term in d P N in the deduced upper bounds on the mixing time are respectively 3d{p4 ? rq lnp1{rq and d{p2 ? rq lnp1{rq, showing thus a little advantage for the estimate coming from (38).

Some discrete time models

Of course the theory can be developed in discrete time as well. We briefly carry this out here and treat some higher dimensional examples where all the spectral information is available. Let S ≔ S \ t8u be the extended state space with 8 the absorbing state. Denote by N the cardinality of S. The transition matrix Q can be written

Q " ¨1 0 ¨¨¨0 a 1 . . . Q a N ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
with Q an N ˆN matrix, here assumed to be irreducible. Let ψ and ϕ be positive left and right eigenvectors of Q with eigenvalue β ą 0 of largest size. Set @ x, y P S, Kpx, yq ≔ Qpx, yq ϕpyq βϕpxq This is a Markov transition matrix on S with stationary distribution π given by @ x P S, πpxq ≔ ϕpxqψpxq ř yPS ϕpyqψpyq

It has the probabilistic interpretation of the transition probabilities for the original chain conditioned on non-absorption (for all time). The quasi-stationary distribution is given by @ x P S, νpxq ≔ ψpxq ř yPS ψpyq observe that the ratio r ≔ ϕ _ {ϕ ^allows the bounds @ x P S, r ´1νpxq ď πpxq ď rνpxq If Q above is diagonalizable, with right eigenfunctions pf i q iP N and left eigenfunctions pg i q iP N for eigenvalues pβ i q iP N , normalized so that ř xPS g i pxqf j pxq " δ i,j for any i, j P N , then

@ l P Z `, @ x, y P S, Q l px, yq " N ÿ k"1 β l k f k pxqg k pyq thus P rX l " y|X 0 " x, T ą ls " Q l px, yq Q l pxq
with Q l pxq " ř yPS Q l px, yq and where pX n q nPZ `is the underlying absorbing Markov chain and T is its absorbing time.

The argument for Theorem 1 works in the discrete case just as well. With notation as above, it shows for any starting state x,

@ l P Z `, ϕ 2ϕ _ › › ›K l px, .q ´π› › › tv ď › › ›Q l px, .q ´ν› › › tv ď 2ϕ _ ϕ ^› › ›K l px, .q ´π› › › tv
Explicit diagonalizations are available surprisingly often. For example, for a birth and death chain on t0, 1, ..., 2N u, symmetric with respect to N , take the starting point to be zero and the absorbing point to be N . If pϕ i q iP 0,2N are the right eigenvectors of the original chain, often available as orthogonal polynomials, ϕ 1 , ϕ 3 , ..., ϕ 2N ´1 all vanish at N and so restrict to the needed pf i q iP N . Because birth and death chains are reversible, these determine the family pg i q iP N and the ingredients for analysis are available. The Ehrenfest urn and the example at the end of this section are two cases where we have carried this approach out to get sharp answers (matching upper and lower bounds for convergence to quasi-stationarity). It is only fair to report that the analysis involved can require substantial effort.

Example of rock breaking

In this example the matrix Q is not irreducible, nevertheless the above results can be applied, because the function ϕ is (strictly) positive. To justify this observation, for ǫ P p0, 1q, replace Q by p1 ´ǫqQ `ǫJ, where J has all its entries equal to 1{N , apply the previous results and let ǫ go to zero.

Let n P N be given and S ≔ Ppnq, the set of all partitions of n. Thus if n " 4, S " t4, 31, 22, 211, 1111u. An absorbing Markov chain on S, modeled on a rock breaking Markov chain studied by Kolmogorov, is developed in Diaconis, Pang and Ram [START_REF] Persi Diaconis | Hopf algebras and Markov chains: two examples and a theory[END_REF]. Briefly, if λ " pλ 1 , λ 2 , ..., λ l q, with λ 1 ě λ 2 ě ¨¨¨ě λ l ą 0, λ 1 `¨¨¨`λ l " n, the chain proceeds from λ by independently choosing, for i P 1, l , binomial variables λ p1q i of parameters pλ i , 1{2q, so that we can write λ i ≕ λ p1q i

`λp2q

i . Next, after discarding any zeros and reordering the λ p1q i , λ p2q i , for i P 1, l , we get the new position of the chain. It is absorbing at p1 n q. The natural starting place is pnq.

In [START_REF] Persi Diaconis | Hopf algebras and Markov chains: two examples and a theory[END_REF], the eigenvalues are shown to be 1, 1{2, 1{4, ..., 1{2 n , with 1{2 n´l having multiplicity ppn, lq, the number of partitions of n into l parts. In particular the second eigenvalue is 1{2, with multiplicity 1. The eigenvectors are given explicitly and these restrict to give explicit left and right eigenbases of Q. With notation as above, for β " 1{2, for all λ " pλ 1 , λ 2 , ..., λ l q P Ppnq,

ϕpλq " ÿ iP 1,l ˆλi 2 ψpλq " " 1 , if λ " p1 n´2 , 2q 0 , otherwise Thus ϕ _ {ϕ ^"
`n 2 ˘{1 " `n 2 ˘. When n " 4, the original transition matrix is

1 4 1 2 2 2 2 13 4 1 4 1 2 2 2 2 13 4 ¨1 0 0 0 0 1{2 1{2 0 0 0 1{4 1{2 1{4 0 0 0 3{4 0 1{4 0 0 0 3{8 1{2 1{8 ‹ ‹ ‹ ‹ '
The left (right) eigenvectors are given as the rows (columns) of the two arrays ¨1 0 0 0 0

1 1 0 0 0 1 2 1 0 0 1 3 0 1 0 1 6 3 4 1 ‹ ‹ ‹ ‹ ' ¨1 0 0 0 0 ´1 1 0 0 0 1 ´2 1 0 0 2 ´3 0 1 0 ´6 12 ´3 ´4 1 ‹ ‹ ‹ ‹ '
So ψ " p1, 0, 0, 0q, ϕ " p1, 2, 3, 6q t . The adjusted transition matrix K is given by 1 2 2 2 2 13 4 1 2 2 2 2 13 4

¨1 0 0 0 1{2 1{2 0 0 1{2 0 1{2 0 0 1{4 1{2 1{4 ‹ ‹ '
The reader may check that discarding the top row and first column of the eigenvector arrays gives the eigenvectors of K.

In this example the quasi-stationary distribution ν is the stationary distribution π of K, both are the Dirac mass at 1 n´2 2. The chain K is itself absorbing. This rock breaking chain is a special case of a host of explicitly diagonalizable Markov chains derived from Hopf algebras [START_REF] Persi Diaconis | Hopf algebras and Markov chains: two examples and a theory[END_REF]. Some other algebraic constructions leading to explicit quasi-stationary calculations may be found in Defosseux [START_REF] Defosseux | Fusion coefficients and random walks in alcoves[END_REF] (fusion coefficients and random walks in alcoves of affine Lie algebras). Symmetric function theory, in various deformations (Sekiguchi-Debiard operators) leads to further explicit diagonalizations in the work of Jiang [START_REF] Jiang | Mixing Time of Metropolis Chain Based on Random Transposition Walk Converging to Multivariate Ewens Distribution[END_REF]. Turning either of these last sets of examples into sharp bounds seems like a fascinating research project.

Geometric theory

The basic path arguments of Holley and Stroock [START_REF] Holley | Simulated annealing via Sobolev inequalities[END_REF], Jerrum and Sinclair [START_REF] Jerrum | Approximating the permanent[END_REF] and Diaconis and Stroock [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] can be applied to absorbing chains. This was done in a sophisticated context in Miclo [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]. The following paragraph develops a simple version in the discrete context. Let S be a finite set, 8 an absorbing point and Q a Markov chain on S ≔ S \ t8u. We suppose as above that the chain is absorbing with probability one and that the chain restricted to S is connected. Suppose that q is a probability on S and consider L 2 pqq endowed with its usual inner product xf, gy q ≔ ř xPS f pxqgpxqqpxq, for f, g P L 2 pqq. Suppose too that qpxq Qpx, yq " qpyq Qpy, xq for x, y P S. When needed, define qp8q " 0 and the functions from L 2 pqq are extended on S by making them vanish at 8. Let β 1 be the largest eigenvalue of Q the restriction of Q to S. The minimax characterization gives Lemma 17 If the Poincaré inequality }f } 2 q ď A xpI ´Qqf, f y q holds for all f P L 2 pqq, then β 1 ď 1 ´1{A.

Remark 18 Of course, the analogue λ 1 of Section 1 satisfies λ 1 " 1 ´β1 . 

Proof

This is simple by directly computing both sides of the equality, separating the cases where x, y P S from the cases where x P S and y " 8.

To bring in geometry, for x P S, let γ x be a path starting at x and ending at 8 with steps possible with respect to Q. If there are many absorbing points, γ x may connect x to any of them. Thus γ x " px 0 " x, x 1 , ..., x l " 8q with Qpx i , x i`1 q ą 0 for 0 ď i ď l ´1. Let the length l of the path be denoted |γ x |.

where θ and c are determined by the boundary values: rϕp0q `p1 ´rqϕp1q " βϕp0q p1 ´sqϕpN ´1q `sϕpN q " βϕpN q Proof This follows from the trigonometric identity @ α, β P R, cospαq `cospβq " 2 cos ˆα `β 2 ˙cos ˆα ´β 2 Ṡince for any θ, c P R, q ˆp q ˙px`1q{2 cospθpx `1q `cq `p ˆp q ˙px´1q{2 cospθpx ´1q `cq " 2 ? pq cospθq ˆp q ˙x{2 cospθx `cq

Zhou [START_REF] Zhou | Examples of multivariate Markov chains with orthogonal polynomial eigenfunctions[END_REF] has shown that the above boundary conditions lead indeed to N `1 eigenvalues.

As an example, take p " q " 1{2 " r, s " 1. This gives the simple random walk on 0, N absorbing at N with holding at 0. The above proposition gives the equations cospcq `cospθ `cq " 2 cospθq cospcq, cospN θ `cq " 0 or θ " 0

These have solutions c " θ{2, θ " jπ{p2N `1q, for j " 0, 1, 3, ..., 2N ´1. It follows that the chain has eigenvalues β j ≔ cospjπ{p2N `1qq, for j " 0, 1, 3, ..., 2N ´1 with right eigenfunctions ϕ j given by @ x P 0, N , ϕ j pxq ≔ cos ˆp2x `1qjπ 2p2N `1q

Ṫhe left eigenfunctions are ψ 0 pxq " δ N pxq and for j " 1, 3, ..., 2N ´1, @ x P 0, N , ψ j pxq ≔ # ϕ j pxq , if x P 0, N ´1 reversing probability q on 0, N ´1 is the uniform distribution. There is a unique choice of (not self-intersecting) paths from x to N . The quantity A is obviously maximized at the edge pN ´1, N q. Then, it is

A " 4N N ÿ xP 0,N ´1 N ´x " 2N pN `1q
This gives β 1 ď 1 ´1 4N pN `1q which compares reasonably with the correct answer.

In this problem, ϕ _ {ϕ ^is of order N and our bounds show that order N 2 lnpN q steps suffice for convergence to quasi-stationarity. Using all of the spectrum, classical analysis shows that order N 2 steps are necessary and sufficient. Zhou [START_REF] Zhou | Examples of multivariate Markov chains with orthogonal polynomial eigenfunctions[END_REF] gives similar exact formulae for reflecting and absorbing boundaries at zero. He also derives the exact spectral data for some absorbing birth and death chains from biology (Morans model with various types of mutation).

Lemma 4 have ż |f ´m| dν ď }µ ´ν} tv ď 2 ż |f ´m| dν ż ˇˇr f ´r m ˇˇdr ν ď }r µ ´r ν} tv ď 2 ż ˇˇr f ´r m ˇˇdr ν* ( 10 )Lemma 5

 42105 We Proof Of course it is sufficient to show the bounds for }µ ´ν} tv . They are a consequence of }µ ´ν} tv " ż |f ´1| dν and of the following characterization of a median: ż |f ´m| dν " inf "ż |f ´r| dν : r P R So the lower bound is immediate and for the upper bound, just note that |1 ´m| " ˇˇˇż pf ´mq dν ˇˇď ż |f ´m| dν The interest of the introduction of the medians comes from: We have ż |f ´m| dν ď ψ ψ _ ż ˇˇr f ´r m ˇˇdr ν and it follows from the previous lemma that ψ _ 2ψ ^}r µ ´r ν} tv ď }µ ´ν} tv ď 2 ψ ψ _ }r µ ´r ν} tv Proof From (10), we have ż ˇˇr f ´r m ˇˇdr ν " inf "ż ˇˇr f ´rˇˇˇd r ν : r P R * " inf

Remark 9

 9 It is possible to improve the pre-exponential factor b ηrϕϕ ˚s pϕϕ ˚ηq^ϕ _ ϕ^i n Theorem 2, but at the expense of the rate r λ, via the logarithmic Sobolev inequalities associated to the symmetrization r L ˛of r L. Let r α ą 0 be the largest constant such that for all g P F, r α ÿ xPS g 2 pxq ln ˆg2 pxq r ηrg 2 s ˙ϕ˚p xqϕpxqηpxq ď ÿ x,yPS pgpyq ´gpxqq 2 ϕ ˚pxqϕpyqηpxqLpx, yq (15)

  Under the reversibility condition of Theorem 3, we get that for any t ě 0,

) are respectively 2

 2 d{2 expp´2tq and a 2d lnp2q expp´t{2q. The first bound leads to a mixing time (the first time t ą 0 the quantity sup µ pdq fixed level such as 1) of order d, while the second bound rather gives order lnpdq.

Definea 2 ÿ

 2 Dirichlet form E on L 2 pqq, by@ f P L 2 pqq, Epf, f q ≔ 1 x,yPSpf pyq ´f pxqq 2 qpxq Qpx, yq Lemma 19 For f P L 2 pqq, we haveEpf, f q " xpI ´Qqf, f y q ´1 2 ÿ xPS f 2 pxqqpxq Qpx, 8qď xpI ´Qqf, f y q

  The spectral gap r λ is the highest constant such that r λ r ηrpf ´r ηrf sq 2 s ď ´r ηrf r L ˛rf ss for any f P F. Equivalently, r λ " A ´1, where A is the smallest positive constant such that the following Poincaré inequality is satisfied for all f P F,

	ÿ xPS	pf pxq ´r ηrf sq 2 ϕ ˚pxqϕpxqηpxq ď	A 2	ÿ x,yPS

Theorem 2 For any t ě 0, we have sup µ 0 PP }µ t ´ν} tv ď d ηrϕϕ ˚s pϕϕ ˚ηq ^ϕ_ ϕ ^expp´r λtq where P stands for the set of probability measures on S. pf pyq ´f pxqq 2 ϕ ˚pxqϕpyqηpxqLpx, yq

  Opr ´N qq exp `´p1 ´?r `Opr ´N qq 2 t (where Opr ´N q is with respect to N , uniformly in t ě 0). It follows that for any fixed s ě 0, if for N large enough we consider the time

			p1 ´?rq 2
	and as announced, for N large,	
		λ 2 ´λ1 " λ 2 " λ 1
	meaning that convergence to quasi-stationarity happens at a much faster rate than absorption.
	Theorem 3 shows that for any t ě 0, sup µ 0 PP }µ t ´ν} tv ď d 2r N ´r ´1 r 2 ´1 ˆr r ´1 d r N r ´1 ˆr r ´1 ˙2 p1 `t ≔ ˙2 p1 `Opr ´N qq exp `´p1 ´?r `Opr ´N qq 2 t 1 2p1 ´?rq 2 plnprqN `2sq	ď
	then		
	sup µ 0 PP	}µ t ´ν} tv ď	r 2 pr ´1q 5{2 p1 `˝p1qq expp´sq
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Proposition 20 With the notation as above, A in Lemma 17 may be taken as A " max xPS, yP S : Kpx,yqą0 2 qpxq Qpx, yq ÿ zPS : px,yqPγz |γ z | qpzq Proof Let x P S be given and write γ x " px 0 , x 1 , ..., x l q. The idea is to expand f 2 pxq " ppf px 0 q ´f px 1 qq `pf px 1 q ´f px 2 qq `¨¨¨`pf px l´1 q ´f px l qqq 2

Thus for f P L 2 pqq,

pf pxq ´f pyqq 2 qpxq Qpx, yq qpxq Qpx, yq

Remark 21 Path technology has evolved: with many choices of paths, one may choose randomly, see Diaconis and Saloff-Coste [START_REF] Diaconis | Nash inequalities for finite Markov chains[END_REF], weights may be used in the Cauchy-Schwarz bound, as in Diaconis and Saloff-Coste [START_REF] Diaconis | What do we know about the Metropolis algorithm?[END_REF]. This can be important when the stationary distributions varies a lot. Paths may be used locally, see Diaconis and Saloff-Coste [START_REF] Diaconis | Nash inequalities for finite Markov chains[END_REF]. Any such variation is easy to adapt in the above proposition.

4.3

Other examples in discrete time

The following calculations are classical. The neat form presented here is borrowed from the thesis work of Zhou [START_REF] Zhou | Examples of multivariate Markov chains with orthogonal polynomial eigenfunctions[END_REF] and provides an alternative approach to Examples 3.1, 3.2 and 3.3. Consider a birth and death chain on 0, N with transition matrix ¨r 1 ´r p 0 q . . .

with p P p0, 1q, q " 1 ´p, r, s P r0, 1s.