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Abstract

The quantitative long time behavior of absorbing, finite, irreducible Markov processes is con-
sidered. Via Doob transforms, it is shown that only the knowledge of the ratio of the values of
the underlying first Dirichlet eigenvector is necessary to come back to the well-investigated situ-
ation of the convergence to equilibrium of ergodic finite Markov processes. This leads to explicit
estimates on the convergence to quasi-stationarity, in particular via functional inequalities. When
the process is reversible, the optimal exponential rate consisting of the spectral gap between the
two first Dirichlet eigenvalues is recovered. Several simple examples are provided to illustrate the
bounds obtained.
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1 Introduction

This paper begins to develop a quantitative theory of rates of convergence to quasi-stationarity, as
in the following example. Consider the simple symmetric random walk on t0, ..., Nu with holding
1{2 at N and absorbing at 0. Let X̄t be the position of the walk at time t P Z` and T be the
absorption time at 0. Let µtpxq ≔ PrX̄t “ x|T ą ts, for x P t1, ..., Nu. Classical theory, reviewed
below, shows that

lim
tÑ`8

µtpxq “ νpxq ≔ Z´1 cos

ˆp2N ` 1 ´ 2xqπ
2p2N ´ 1q

˙

with Z´1
≔ 2 tan

´
π

2p2N´1q

¯
, the normalizing constant. The measure ν is called a quasi-stationary

distribution. How large does t have to be so that these asymptotics are useful? In Section 3, which
is devoted to explicit computations, we prove for the continuous time counterpart of the above
process that for any starting distribution on t1, ..., Nu and for all s ě 0,

}µt ´ ν}
tv

ď 2
?
2

π2
p1 ` OpN´1qq expp´sq (1)

t “ 5

2π2
N2 lnpNq ` s

π2
N2

Thus the quasi-stationary asymptotics takes hold for t larger than N2 lnpNq. In (1), µt and ν

depend on N but the bounds are uniform in N .

We will work mainly in the continuous time setting, which is more convenient to deal with.
We will come back to the discrete time framework in Section 4. Generally, a quasi-stationary
distribution of an absorbing Markov process X̄ ≔ pX̄tqtě0 is a probability measure ν on the state
space S (where the absorbing points have been removed) such that starting from this distribution,
the time marginal laws LpX̄tq remain proportional to ν on S, for all t ě 0. For nice processes X̄ ,
the quasi-stationary distribution is unique and starting from any distribution on S, the conditional
(to non-absorption) law µt ≔ LpX̄t|X̄t P Sq converges toward ν for large times t ě 0. The purpose
of this article is to investigate this convergence quantitatively when S is finite.

More precisely, the framework is as follows. The whole finite state space is S̄ ≔ S\ t8u, where
8 is the absorbing point. There is no loss of generality in assuming there is only one such point, up
to lumping together all the absorbing points. Let L̄ be the generator of the process X̄ on S̄, seen
as a matrix pL̄px, yqqx,yPS̄ . To any given probability measure m0 on S̄, there is a unique (in law)
Markov process X̄ whose generator is L̄ and whose initial distribution LpX̄0q is m0. For any t ě 0,
let mt “ LpX̄tq. Using matrix notation, where measures are seen as row vectors (and functions as
column vectors), we have

@ t ě 0, mt “ m0P̄t

where pP̄tqtě0 is the semi-group pexpptL̄qqtě0 associated to L̄. Except if m0 is the Dirac mass on
8, for any t ě 0, mtpSq ą 0 and we can define the probability measures µt as the restriction to S
of mt{mtpSq. They will be our main objects of interest here. By definition, we have

@ t ě 0, @ f P F , µtrf s “ µ0rP̄trf ss
µ0rP̄tr1Sss (2)

where F is the space of real functions defined on S, also seen as functions defined on S̄ which vanish
at 8 (Dirichlet condition at 8). A probability measure ν on S is said to be a quasi-stationary
measure for L̄ if µ0 “ ν implies that µt “ ν for all t ě 0. We will recall below a convenient
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assumption ensuring there is a unique quasi-invariant measure ν associated to L̄. The objective of
this paper is to quantify the convergence of µt toward ν for large times t ě 0, whatever the initial
distribution µ0.

For any x P S, denote V pxq “ Lpx,8q ě 0, the killing rate at x. The symbol V will designate
the function S Q x ÞÑ V pxq as well as the S ˆ S diagonal matrix whose values on the diagonal are
given by V , namely the multiplication operator by V on F . Let L be the Markov generator on S
which is such that the S ˆ S minor of L̄ can be written L ´ V . Our main assumption is that L
is irreducible. At some point, this hypothesis will be strengthened by a reversibility assumption,
in order to get more explicit results. A traditional application of the Perron-Frobenius theorem
(see for instance the book [5] of Collet, Mart́ınez and San Mart́ın) to L ´ V or to the associated
semi-group, seen as operators on measures on S, ensures that there exists a unique quasi-invariant
measure ν associated to L̄. The probability measure ν gives a positive weight to any point of S.
Furthermore there exists λ1 ě 0 such that νpL´ V q “ ´λ1ν, λ1 is the eigenvalue of V ´ L which
is strictly less than the real parts of the remaining eigenvalues (in C). In the same manner, there
exists a unique invariant measure η for L, charging all points of S. To see the relation between ν
and η, consider the operator L˚ which is adjoint to L in L

2pηq. As a matrix, it is given by

@ x, y P S, L˚px, yq “ ηpyq
ηpxqLpy, xq

The fact that η is invariant is equivalent to the fact that L˚ is a Markovian generator. We can
thus apply the Perron-Frobenius theorem to L˚ ´ V , seen as an operator on F to find a positive
function ϕ˚ on S such that pL˚ ´ V qrϕ˚s “ ´λ1ϕ˚. Let us renormalized ϕ˚ so that ηrϕ˚s “ 1.
Then ν “ ϕ˚ ¨ η, the probability measure admitting the density ϕ˚ with respect to η. Indeed, for
any test function f P F , we have

pϕ˚ ¨ ηqrpL ´ V qrf ss “ ηrϕ˚pL´ V qrf ss
“ ηrpL˚ ´ V qrϕ˚sf s
“ ´λ1ηrϕ˚f s
“ ´λ1pϕ˚ ¨ ηqrf s

so that pϕ˚ ¨ ηqpL ´ V q “ ´λ1pϕ˚ ¨ ηq and by consequence pϕ˚ ¨ ηqP̄t “ expp´λ1tqpϕ˚ ¨ ηq ` p1 ´
expp´λ1tqqδ8.

This relation implies that if the process X̄ is started from the quasi-distribution ν, then the
absorption time τ ≔ inftt ě 0 : X̄t “ 8u is distributed as an exponential distribution of parameter
λ1. Indeed, we have for any t ě 0,

Pνrτ ą ts “ νP̄trSs
“ expp´λ1tq

where Pν is the underlying probability measure, when X̄0 is distributed according to ν. More
generally, from this identity, it is not difficult to deduce that for any initial distribution m0 not
equal to δ8, we have

lim
tÑ`8

lnpPm0
rτ ą tsq “ ´λ0

showing that λ0 is the exponential rate of absorption.
Furthermore, we can find a positive function ϕ P F such that pL ´ V qϕ “ ´λ1ϕ, but we

rather normalize it through the relation ηrϕ2s “ 1. For any positive function f P F , we note
f^ ≔ minxPS fpxq and f_ ≔ maxxPS fpxq.

Finally, consider the Markovian operator rL on S which is defined by its off-diagonal entries via

@ x �“ y P S, rLpx, yq ≔ Lpx, yqϕpyq
ϕpxq (3)

3



Let p rPtqtě0 be the associated Markovian semi-group. Since rL is irreducible, it admits an invariant
probability rη. In next section we will check that it is given by

@ x P S, rηpxq “ ϕpxqϕ˚pxqηpxqř
yPS ϕpyqϕ˚pyqηpyq (4)

To give a first estimate on the convergence of µt toward ν, let us recall that the total variation
of a signed measure m on S satisfying mpSq “ 0 is given equivalently by

}m}
tv
≔ 2 sup

AĂS

|mpAq|

“ sup
fPF , }f}8ď1

mpfq

“
ÿ

xPS

|mpxq|

(where as usual, }f}8 designates the supremum norm of f). Note this definition differs by a factor
of 2 from the probabilist version.

Theorem 1 For any probability measure µ0 on S and for any t ě 0, we have

ϕ^

2ϕ_

›››rµ0 rPt ´ rη
›››
tv

ď }µt ´ ν}
tv

ď 2
ϕ_

ϕ^

›››rµ0 rPt ´ rη
›››
tv

where rµ0 is the probability on S whose density with respect to µ0 is proportional to ϕ. In particular

the asymptotic exponential rate of convergence of }µt ´ ν}
tv

and
›››rµ0 rPt ´ rη

›››
tv

are the same.

Note that in the trivial case where there is no absorption, namely V ” 0, we have ϕ ” 1 ” ϕ˚,
p rPtqtě0 “ pPtqtě0, the Markovian semi-group generated by L, ν “ rη and µt “ µ0 rPt for all t ě 0, so
that the above bounds are optimal, up to the factor 2.

In a forthcoming paper, we investigate the quantity ϕ_{ϕ^, providing different upper bounds
via path and spectral considerations, first step toward the extension of the results presented here
to certain denumerable chains.

Theorem 1 reduces the study of convergence to quasi-stationarity to the much more well-studied
situation of the convergence to equilibrium. One can for instance resort to functional inequality
techniques (see for instance the lecture notes of Saloff-Coste [25]), the simplest of them being the
L
2 approach. Let rL˛ be the additive symmetrization of rL in L

2prηq: it is equal to prL` rL˚q{2, where
rL˚ is the adjoint operator of rL in L

2prηq. The matrix of this Markov generator is described by its
off-diagonal entries:

@ x �“ y P S, rL˛px, yq “ 1

2

ˆ
Lpy, xqϕ

˚pyqηpyq
ϕ˚pxqηpxq ` Lpx, yqϕpyq

ϕpxq

˙
(5)

Its self-adjointness implies that rL˛ is diagonalizable in R and let rλ ą 0 stands for the smallest non-
zero eigenvalue of ´rL˛. Since rL˛ is irreducible, the eigenvalue 0 has multiplicity 1 (with eigenspace
consisting of the constant functions) and rλ is the spectral gap of rL˛. Then we get:

Theorem 2 For any t ě 0, we have

sup
µ0PP

}µt ´ ν}
tv

ď
d

ηrϕϕ˚s
pϕϕ˚ηq^

ϕ_

ϕ^
expp´rλtq

where P stands for the set of probability measures on S.
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We have rλ “ A´1, where A is the smallest positive constant such that the following Poincaré
inequality is satisfied for all f P F ,

ÿ

xPS

pfpxq ´ rηrf sq2 ϕ˚pxqϕpxqηpxq ď A
ÿ

x,yPS

pfpyq ´ fpxqq2 ϕ˚pxqϕpyqηpxqLpx, yq (6)

This variational formulation enables to compare rλ with λ (see for instance Diaconis and Saloff-Coste
[10] and Fill [15]), the spectral gap of the additive symmetrization of L in L

2pµq:

rλ ě ϕ^ϕ
˚
^

ϕ_ϕ˚
_

λ (7)

We will put these considerations into practice in Example 3.4.

Let us now assume that η is reversible for L. Then ´pL ´ V q is self-adjoint in L
2pηq and so

is diagonalizable in R. As it was already mentioned for the general case, its smallest eigenvalue
is λ1 ą 0. Consider its next eigenvalue λ2 ą λ1 (the strict inequality is a consequence of the
irreducibility of L in the Perron-Frobenius theorem). The next result shows that to get a useful
understanding of the convergence of µt toward ν for large t ě 0, only the knowledge of η, of the
ratio of the extrema of ϕ and of λ2 ´ λ1 is required.

Theorem 3 Under the reversibility assumption, for any t ě 0, we have

sup
µ0PP

}µt ´ ν}
tv

ď
d

1

pϕ2ηq^

ϕ_

ϕ^
expp´pλ2 ´ λ1qtq

ď
c

1

η^

ˆ
ϕ_

ϕ^

˙2

expp´pλ2 ´ λ1qtq

Note that (2) can be written in terms of Feynman-Kac integrals. Let pXtqtě0 be a Markov
process starting from the initial law µ0 and admitting L as generator. We have

@ t ě 0, @ f P F̄ , µtrf s “
Eµ0

”
fpXtq exp

´
´

şt
0
V pXsq ds

¯ı

Eµ0

”
exp

´
´

şt
0
V pXsq ds

¯ı

The stability for large times of such expressions have been extensively studied by Del Moral and
his coauthors (see for instance his recent book [7] and the references given there). They also use
estimates on the convergence to equilibrium of Markov processes. Since their assumptions are based
on Dobrushin type conditions on the underlying Markov process (or on some of its modifications,
see e.g. Del Moral and Miclo [8]), the deduced bounds are often quite coarse. While we work
in the same spirit, we will rather resort to spectral techniques, which lead to relatively sharp
estimates, as will be illustrated by several examples. In particular, we obtain in the reversible case
the optimal asymptotical rate λ2 ´ λ1 (see e.g. the review paper of Méléard and Villemonais [21],
with a non-quantified pre-exponential factor). Under appropriate conditions, this rate was deduced
asymptotically for birth and death processes by van Doorn [26] (see also van Doorn and Zeifman
[28] for another example), which are outside the scope of the present note, because the state space
is not finite. We hope that in a future work, we will be able to extend the above quantitative
bounds to more general situations of appropriate denumerable Markov processes or diffusions,
perhaps under the condition there is a unique quasi-invariant measure (usually this requires that
the process comes in from infinity fast enough, see for instance Collet, Mart́ınez and San Mart́ın
[5]). For Brownian motion absorbed on the boundary of a compact domain in Euclidean spaces,
one may see Gyrya and Saloff-Coste [16] and Lierl and Saloff-Coste [20]

The literature on quasi-stationarity is substantial and we are able to call on several comprehen-
sive surveys. One short readable survey, close in spirit to our paper, is by Van Doorn and Pollett
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[27] (discrete state space, continuous time). More general state spaces and applications in biol-
ogy are emphasized by Méléard and Villemonais [21]. A recent book length treatment by Collet,
Mart́ınez and San Mart́ın [5] treats all aspects. All of these review the history (Yaglom, Bartlett,
Darroch-Seneta, ...). A most useful adjunct to these surveys is the annotated online bibliography
kept up to date by Phil Pollett, see http://www.maths.uf.edu.au/„pkp/papers/qsds.html.

We have not found very much literature on the kind of quantitative questions treated here. A
useful review of previous quantitative efforts is in Section 4 of Van Doorn and Pollett [27]. This
is along the lines of spectral gap estimates without consideration of the size of the state space or
the starting distribution. Some quantitative bounds are also deduced in the recent papers of Cloez
and Thai [4] and of Champagnat and Villemonais [3].

The plan of the paper is very simple: the next section presents the proof of the above theorems,
as well as an alternative bound based on logarithmic Sobolev inequalities, the next section contains
some illustrative examples. The final section gives further examples in discrete time.

2 Proofs

The following arguments are based on a simple use of Doob’s transforms, which by a conjugation
by ϕ, replace V by a constant killing rate.

2.1 Proof of Theorem 1

Let Φ be the diagonal matrix corresponding to the multiplication by ϕ operating on F . Thus Φ´1

is just the diagonal matrix corresponding to the multiplication by 1{ϕ. We begin by checking that
the generator matrix rL defined in (3) satisfies

rL “ Φ´1pL´ V ` λ1IqΦ (8)

where I is the identity matrix. Indeed, the off-diagonal entries of the r.h.s. coincide with those of
Φ´1LΦ which are those of rL by (3). Thus it is sufficient to check that the sums of the rows of
Φ´1pL´ V ` λ1IqΦ vanish. The sum corresponding to the row indexed by x P S is

1

ϕpxq pLrϕspxq ´ V pxqϕpxqq ` λ1 “ 0

since by definition, ϕ is an eigenfunction of L´ V associated to the eigenvalue ´λ1.
It is now easy to check (4): it must be seen that

@ f P F , rηrrLrf ss “ 0

From (8), the l.h.s. is equal to

rηrϕ´1pL´ V ` λ1qrϕf ss “ ηrϕ˚pL´ V ` λ1qrϕf ss{ηrϕϕ˚s
“ ηrϕfpL˚ ´ V ` λ1qrϕ˚ss{ηrϕϕ˚s
“ 0

because ϕ˚ is an eigenfunction of L˚ ´ V associated to the eigenvalue ´λ1.
Next rewrite (8) in the form

ΦprL´ λ1IqΦ´1 “ L´ V (9)

and exponentiate this identity to find

@ t ě 0, expp´λ1tqΦ rPtΦ
´1 “ P̄t
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(the r.h.s. is to be understood as the restriction of P̄t to F , as explained after (2)). Thus for any
µ0 P P and f P F , we have

@ t ě 0, expp´λ1tqµ0rϕsrµ0r rPtrf{ϕss “ µ0rP̄trf ss

(recall that rµ0 is the probability on S whose density with respect to µ0 is proportional to ϕ). We
deduce from (2) that

@ t ě 0, µtrf s “ rµ0r rPtrf{ϕss
rµ0r rPtr1{ϕss

(10)

Since rPt converges to rη as t goes to infinity, we get that

lim
tÑ`8

µtrf s “ rηrf{ϕs
rηr1{ϕs

“ νrf s

due to the proportionality between the measures ν, ϕ˚ ¨η and ϕ´1 ¨ rη. Thus the convergence toward
quasi-stationarity has been recovered.

To get an estimate on the speed of convergence, we need the two following basic lemmas.
On a general measurable space, consider two probability measures rµ ! rν, as well as a measurable

function ψ ą 0. Define

µ ≔
ψ

Zrµ
¨ rµ with Zrµ ≔ rµrψs

ν ≔
ψ

Zrν
¨ rν with Zrν ≔ rνrψs

Let rf and f stand for the Radon-Nikodym densities of rµ with respect to rν and of µ with respect
to ν. Obviously, we have

f “ Zrν
Zrµ

rf

Finally, choose rm and m to be medians of rf and f with respect to rν and ν. The following result
is well-known.

Lemma 4 We have
ż

|f ´m| dν ď }µ´ ν}
tv

ď 2

ż
|f ´m| dν

ż ˇ̌
ˇ rf ´ rm

ˇ̌
ˇ drν ď }rµ´ rν}

tv
ď 2

ż ˇ̌
ˇ rf ´ rm

ˇ̌
ˇ drν

Proof

Of course it is sufficient to show the bounds for }µ´ ν}
tv
. They are a consequence of

}µ´ ν}
tv

“
ż

|f ´ 1| dν

and of the following characterization of a median:

ż
|f ´m| dν “ inf

"ż
|f ´ r| dν : r P R

*
(11)
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So the lower bound is immediate and for the upper bound, just note that

|1 ´m| “
ˇ̌
ˇ̌
ż

pf ´mq dν
ˇ̌
ˇ̌

ď
ż

|f ´m| dν

�

The interest of the introduction of the medians comes from:

Lemma 5 We have
ż

|f ´m| dν ď ψ^

ψ_

ż ˇ̌
ˇ rf ´ rm

ˇ̌
ˇ drν

and it follows from the previous lemma that

ψ_

2ψ^
}rµ´ rν}

tv
ď }µ´ ν}

tv
ď 2

ψ^

ψ_
}rµ´ rν}

tv

Proof

From (11), we have
ż ˇ̌

ˇ rf ´ rm
ˇ̌
ˇ drν “ inf

"ż ˇ̌
ˇ rf ´ r

ˇ̌
ˇ drν : r P R

*

“ inf

"ż ˇ̌
ˇ̌Zrν
Zrµ

f ´ r

ˇ̌
ˇ̌ drν : r P R

*

“ Zrν
Zrµ

inf

"ż
|f ´ r| ψ

Zrν
dν : r P R

*

ě Zrν
Zrµ

essinfrνψ
Zrν

inf

"ż
|f ´ r| dν : r P R

*

“ essinfrνψ
Zrµ

ż
|f ´m| dν

ě essinfrνψ
esssuprµψ

ż
|f ´m| dν

ě ψ^

ψ_

ż
|f ´m| dν

�

For any fixed t ě 0, it remains to apply these general bounds with

rµ ≔ rµ0 rPt

rν ≔ rη
ψ ≔ 1{ϕ

Since ψ^{ψ_ “ ϕ_{ϕ^, the conclusion of Lemma 5 implies the wanted bound.

Remark 6 From (10), we could have been tempted to write that for any f P F ,

µtrf s ´ νrf s “ rµ0r rPtrf{ϕss
rµ0r rPtr1{ϕss

´ rηrf{ϕs
rηr1{ϕs

“ 1

rµ0r rPtr1{ϕss
prµ0r rPtrf{ϕss ´ rηrf{ϕsq ` rηrf{ϕs

rηr1{ϕsrµ0r rPtr1{ϕss
prηr1{ϕs ´ rµ0r rPtr1{ϕssq

ď ϕ_

ˇ̌
ˇrµ0r rPtrf{ϕss ´ rηrf{ϕs

ˇ̌
ˇ ` ϕ2

_

ϕ^
}f}8

ˇ̌
ˇrηr1{ϕs ´ rµ0r rPtr1{ϕssq

ˇ̌
ˇ

8



Taking the supremum of f P F satisfying }f}8 ď 1, it appears that

}µt ´ ν}
tv

ď
˜ˆ

ϕ_

ϕ^

˙
`

ˆ
ϕ_

ϕ^

˙2
¸ ›››rµ0 rPt ´ rη

›››
tv

ď 2

ˆ
ϕ_

ϕ^

˙2 ›››rµ0 rPt ´ rη
›››
tv

which is worse than the bound of Theorem 1 by a factor ϕ_{ϕ^.
˝

2.2 Proof of Theorem 2

Since Theorem 1 brings us back to the situation of convergence to equilibrium of Markov processes,
it is sufficient to use the argument of Fill [15]) for non-reversible processes. We recall them below
for the sake of completeness.

To gain a factor 2, it is in fact better not to use Theorem 1, but to directly make a comparison
between L

2 quantities. More precisely, for given µ0 P P and t ě 0, denote by ft (respectively rft)
the density of the probability µt with respect to ν (resp. rµt ≔ rµ0 rPt with respect to rη). We have
by the Cauchy-Schwarz inequality,

}µt ´ ν}
tv

“
ÿ

xPS

|ftpxq ´ 1| νpxq

ď
a
It

where

It ≔
ÿ

xPS

pftpxq ´ 1q2 νpxq

Let us also define

rIt ≔
ÿ

xPS

p rftpxq ´ 1q2 rηpxq

It is easy to compare these quantities:

Lemma 7 For any t ě 0, we have

It ď
ˆ
ϕ_

ϕ^

˙
2

rIt

Proof

One recognizes in It the variance of ft with respect to ν, so that

It “ inf

#
ÿ

xPS

pftpxq ´ rq2 νpxq : r P R

+

Similarly we have

rIt “ inf

#
ÿ

xPS

p rftpxq ´ rq2 rηpxq : r P R

+

9



The same arguments as those used in Lemma 5 give the conclusion without difficulty.
�

Putting together these estimates, we end up with

}µt ´ ν}
tv

ď ϕ_

ϕ^

b
rIt

To study the evolution of rIt with respect to the time t ě 0, recall that

@ x P S, @ t ě 0, Bt rftpxq “ rL˚r rftspxq

This comes from the relation rft “ rP ˚
t rf0s, where rP ˚

t the adjoint operator of rPt in L
2prηq. Thus we

get that for all t ě 0,

BtrIt “ 2rηrp rft ´ 1qBt rfts
“ 2rηrp rft ´ 1qrL˚r rftss
“ 2rηrp rft ´ 1qrL˚r rft ´ 1ss
“ 2rηrrLr rft ´ 1sp rft ´ 1qs
“ 2rηrrL˛r rft ´ 1sp rft ´ 1qs (12)

By definition of rλ, the r.h.s. is bounded above by ´2rλrIt, which leads to the ordinary differential
inequality

@ t ě 0, BtrIt ď ´2rλrIt

Gronwall’s lemma implies that

@ t ě 0, rIt ď expp´2rλtqrI0

so it remains to bound rI0 above. But note that

rI0 “ rηr rf20 s ´ 1

ď rηr rf20 s
“ rµ0r rf0s
ď

››› rf0
›››

8

ď 1

rη^

“ ηrϕϕ˚s
pϕϕ˚ηq^

which, in conjunction with Theorem 1, leads to the bound of Theorem 2.
The expression (5) for rL˛ is a consequence of

@ x �“ y, rL˚px, yq “ rηpyq
rηpxq

rLpy, xq

“ ϕ˚pyqηpyq
ϕ˚pxqηpxqLpy, xq (13)

The Poincaré formulation (6) comes from the variational characterization of the eigenvalues
and from the equality

@ g P F , rηrgrL˛rgss “ rηrgrLrgss

10



already used in (12).

Remark 8 Similarly to the lower bound in Theorem 1, we have also in Lemma 7

@ t ě 0, It ě
ˆ
ϕ^

ϕ_

˙2

rIt

In particular
?
It and

b
rIt have the same asymptotic exponential rate of convergence. This common

rate is the smallest real part of the non-zero eigenvalues of ´rL, but since this operator is not
assumed to be reversible, this rate may be larger than rλ.

˝

Remark 9 It is possible to improve the pre-exponential factor
b

ηrϕϕ˚s
pϕϕ˚ηq^

ϕ_

ϕ^
in Theorem 2, but at

the expense of the rate rλ, via the logarithmic Sobolev inequalities associated to the symmetrization
rL˛ of rL.

Let rα ą 0 be the largest constant such that for all g P F ,

rα
ÿ

xPS

g2pxq ln
ˆ
g2pxq
rηrg2s

˙
ϕ˚pxqϕpxqηpxq ď

ÿ

x,yPS

pgpyq ´ gpxqq2 ϕ˚pxqϕpyqηpxqLpx, yq (14)

Then we have

sup
µ0PP

}µt ´ ν}
tv

ď
d

2 ln

ˆ
ηrϕϕ˚s

pϕϕ˚ηq^

˙
ϕ_

ϕ^
expp´prα{2qtq (15)

The proof of this bound has the same structure as the one of Theorem 2, with the quantities
It and rIt replaced by the relative entropies

Jt ≔
ÿ

xPS

ftpxq lnpftpxqq νpxq

rJt ≔
ÿ

xPS

rftpxq lnp rftpxqq rηpxq

Indeed, Pinsker’s inequality gives the bound

}µt ´ ν}
tv

ď
?
2
a
Jt

Next, taking into account the relations (see Holley and Stroock [17])

Jt “ inf

#
ÿ

xPS

pftpxq lnpftpxqq ´ ftpxq lnprq ´ ftpxq ` rq νpxq : r P R`

+

rJt “ inf

#
ÿ

xPS

p rftpxq lnp rftpxqq ´ rftpxq lnprq ´ rftpxq ` rq rηpxq : r P R`

+

we deduce as in Lemma 5 and Remark ?? that

@ t ě 0,
ϕ^

ϕ_

rJt ď Jt ď ϕ_

ϕ^

rJt

As a consequence, we get

@ t ě 0, }µt ´ ν}
tv

ď
c

2
ϕ_

ϕ^

b
rJt

11



which reduces our task to the investigation of the time evolution of rJt.
By differentiation, it appears that

Bt rJt “
ÿ

xPS

p1 ` lnp rftpxqqqBt rftpxq rηpxq

“
ÿ

xPS

p1 ` lnp rftpxqqqrL˚r rftpxqs rηpxq

“
ÿ

x,yPS

p1 ` lnp rftpxqqqp rftpyq ´ rftpxqq rηpxqrL˚px, yq

To proceed, note (cf. for instance Miclo [22]) that for all x, y P S,

p1 ` lnp rftpxqqqp rftpyq ´ rftpxqq ď rftpyq lnp rftpyqq ´ rftpxq lnp rftpxqq ´
ˆb

rftpyq ´
b

rftpxq
˙

2

and that by invariance of rη with respect to rL˚,
ÿ

x,yPS

´
rftpyq lnp rftpyqq ´ rftpxq lnp rftpxqq

¯
rηpxqrL˚px, yq “ 0

Thus we end up with the refined Jensen type bound:

Bt rJt ď ´
ÿ

x,yPS

ˆb
rftpyq ´

b
rftpxq

˙
2

rηpxqrL˚px, yq

“ ´
ÿ

x,yPS

ˆb
rftpyq ´

b
rftpxq

˙2

rηpyqrL˚py, xq

“ ´
ÿ

x,yPS

ˆb
rftpyq ´

b
rftpxq

˙
2

ϕ˚pxqϕpyqηpxqLpx, yq

where we used (13). The logarithmic Sobolev inequality (14), with g ≔ ft, allows comparison of
the r.h.s. with rJt to give the differential inequality

@ t ě 0, Bt rJt ď ´rα rJt
Gronwall’s lemma implies again that

@ t ě 0, rJt ď expp´rαtq rJ0
ď expp´rαtq lnpp rf0q_q
ď expp´rαtq lnp1{rη^q

The announced bound (15) follows.

Despite the deterioration of exponential rate in (15), this bound can be interesting for not too
large times t ě 0, especially when one looks for “quasi-mixing times”. Diaconis and Saloff-Coste
[11] have shown the following general bound between the logarithmic Sobolev constant rα and the
spectral gap rλ:

rα ě 1 ´ 2rη^

lnp1{rη^ ´ 1q
rλ (16)

(where the factor on the r.h.s. is taken to be 1{2 in the particular case where rη^ “ 1{2). But this
relation is not very pertinent for quasi-mixing times estimates: if τrλ ě 0 and τrα ě 0 are the times
t ě 0 in Theorem 2 and (15) such that the corresponding upper bounds are equal to 1, we get

τrλ “ 1

rλ
plnpϕ_{ϕ^q ` lnp1{rη^qq

τrα “ 2

rαplnpϕ_{ϕ^q ` lnplnp1{rη^qqq

12



and the injection of (16) leads to the disappointing τrλ ! τrα for small rη^ ą 0. Indeed, the interest
of (15) appears when one has good estimates on rα (by tensorization for instance) and rη^ is very
small. Simple examples on product spaces are provided in Subsection 3.5. Nevertheless, we believe
that modified logarithmic Sobolev inequalities (see e.g. the article of Bobkov and Tetali [2]), namely
the consideration of the best constant pα ą 0 such that for all g P F ,

pα
ÿ

xPS

g2pxq ln
ˆ
g2pxq
rηrg2s

˙
ϕ˚pxqϕpxqηpxq

ď
ÿ

x,yPS

p|gpyq| ´ |gpxq|qplnp|gpyq|q ´ lnp|gpxq|qqϕ˚pxqϕpyqηpxqLpx, yq

is better suited to the above entropic approach.
˝

2.3 Proof of Theorem 3

Under the assumption that ν is reversible for L, we have that L˚ “ L. The equations for ϕ and ϕ˚

are thus the same and only the corresponding renormalizations are different. If follows that ϕ and
ϕ˚ are proportional and since only ratios enter the pre-exponential factor of Theorem 2, it can be
replaced by the pre-exponential factor of Theorem 3 (recall the normalization ηrϕ2s “ 1).

But the main advantage of Theorem 3 is the explicit rate λ2 ´ λ1. It is a consequence of the
conjugacy relation (9). It shows first that rL must be reversible with respect to rη (but this can
also be checked directly from the expressions (3) and (4)) and second that the spectrum of rL is
obtained from the spectrum of L ´ V by subtracting the value λ1. In particular the spectral gap
rλ of rL˛ “ rL is equal to λ2 ´ λ1.

Remarks 10

(a) The fact that the spectrum of rL is obtained from the spectrum of L ´ V by subtracting
the value λ1 is always true, but in the non-reversible case it is not clear how to use this possibly
complex valued spectrum to deduce a bound on rλ. In the reversible situation Remark 8 can be

made more precise: the common asymptotic exponential rate of
?
It and

b
rIt is λ2 ´ λ1.

(b) The logarithmic Sobolev inequality approach is equally valid in the reversible case, we get

sup
µ0PP

}µt ´ ν}
tv

ď
d

2 ln

ˆ
1

pϕ2ηq^

˙
ϕ_

ϕ^
expp´prα{2qtq

where rα is the logarithmic Sobolev constant associated to the symmetric operator rL in rη (in
particular (16) is satisfied with rλ replaced by λ2 ´ λ1q.

˝

3 Examples

Several basic examples are provided here, which in particular serve to illustrate some assertions
made in the previous theoretical developments.

13



3.1 A birth and death example with λ1 « λ2 ´ λ1

This example and the next two are birth and death processes on S̄ ≔ J0, NK, with N P N, absorbed
in 0. So S “ J1, NK, 8 “ 0 and L gives positive rates only to the oriented edges px, x ` 1q and
px ` 1, xq where x P J1, N ´ 1K. In this one-dimensional setting, L admits a unique reversible
probability η. Let us assume that the killing rate in 1 is 1, namely V p1q “ L̄p1, 0q “ 1. The other
values of V are taken to be zero.

Specifically for this example, we choose

@ x P J1, N ´ 2K, Lpx, x ` 1q ≔ Lpx` 1, xq ≔ 1 (17)

LpN ´ 1, Nq “ 1 and LpN,N ´ 1q “ 2 (18)

(the value 2 simplifies the analysis of the reflection at N by replacing the forbidden jump to N ` 1
by a supplementary jump at N ´ 1). The reversible probability η is then given by

@ x P S, ηpxq “ 1

N

Let ϕ be the function defined by

@ x P S, ϕpxq ≔ 1

Z
sinpπx{p2Nqq (19)

where Z is the renormalization constant such that ηrϕ2s “ 1. Due to the value 2 in (18), it is
easy to check that pL ´ V qrϕs “ 2pcospπ{p2Nqq ´ 1qϕ. The positivity of ϕ and Perron-Frobenius
theorem imply that ϕ is indeed the function considered in the introduction and that

λ1 “ 2p1 ´ cospπ{p2Nqqq

The density of the quasi-invariant probability measure ν with respect to η is proportional to ϕ.
More generally, define for k P J1, N ´ 1K, the function ϕk by

@ x P S, ϕkpxq ≔ sinpp2k ` 1qπx{p2Nqq

By straightforward calculation, pL ´ V qrϕks “ 2pcospp2k ` 1qπ{p2Nqq ´ 1qϕk. Thus the spectrum
of L´ V is t2pcospp2k ` 1qπ{p2Nqq ´ 1q : k P J0, N ´ 1Ku. In particular

λ2 ´ λ1 “ 2pcospπ{p2Nqq ´ cosp3π{p2Nqq
“ 2 sinpπ{Nq sinpπ{p2Nqq

“ π2

N2
p1 ` OpN´2qq

as N goes to infinity. Since

λ1 “ π2

4N2
p1 ` OpN´2qq

in this situation λ1 and λ2 ´ λ1 are of the same order, meaning that absorption and convergence
to quasi-stationarity happen at similar rates.

From (19), we deduce that

ϕ_

ϕ^
“ 1

sinpπ{p2Nqq

“ 2N

π
p1 ` OpN´2qq

14



Taking into account the classical Riemann sum approximation, we furthermore get

Z2 “ 1

N

ÿ

xPJ1,NK

sin2pπx{p2Nqq

“ p1 ` OpN´1qq
ż

1

0

sin2pπu{2q du

“ 1

2
p1 ` OpN´1qq

The first bound of Theorem 3 asserts that

sup
µ0PP

}µt ´ ν}
tv

ď 2
?
2

π2
N5{2 exp

ˆ
´ π2

N2
tp1 ` OpN´2qq

˙
p1 ` OpN´1qq

(the second bound of Theorem 3, which doesn’t need the estimate on Z, leads to a similar bound
with 2

?
2 replaced by 4). It follows that for any given s ą 0, if

t “ 5

2π2
N2 lnpNq ` s

π2
N2

then

sup
µ0PP

}µt ´ ν}
tv

ď 2
?
2

π2
p1 ` OpN´1qq expp´sq

3.2 A birth and death example with λ1 ! λ2 ´ λ1

The setting is as in the previous example, except that for some r ą 1, we replace (17) and (18) by

@ x P J1, N ´ 1K,

"
Lpx, x` 1q ≔ r

Lpx` 1, xq ≔ 1
(20)

LpN ´ 1, Nq “ 1 and LpN,N ´ 1q “ 1 ` r (21)

The reversible probability η is then given by

@ x P S, ηpxq “ r ´ 1

rN ´ 1
rx´1 (22)

Contrary to the previous example, it seems more difficult to derive explicit formulas for the eigen-
values and eigenfunctions associated to L´ V . To describe them, consider the rational fraction in
X,

PN pXq ≔ X2pN`1q ´X2N ` r1´NX2 ´ r´N´1

X2 ´ r´1

Lemma 11 For N ě 1, PN is a polynomial which admits 2N distinct zeros. Denote by R the set
of zeros. Let Λ be the image of R by the mapping

Ψ : ρ ÞÑ p1 ` rqρ´ 1 ´ rρ2

ρ

For N ą p1`rq{pr´1q, the spectrum of V ´L is Λ and for any λ P Λ, an associated eigenfunction
ϕλ is defined by

@ x P S, ϕλpxq ≔ ρx` ´ ρx´

where

ρ˘ ≔

1

2r
pr ` 1 ´ λ˘

a
pλ´ 1 ´ rq2 ´ 4rq (23)

(with
?¨ standing for the principal value of the complex square root) are the reciprocal images of λ

by Ψ.

15



Proof

Let λ be an eigenvalue of V ´ L and ϕ be an associated eigenfunction on S. With the convention
that ϕp0q “ 0, the values of ϕ satisfy the recursive formula

@ x P J1, N ´ 1K, ϕpx ` 1q “ p1 ` r ´ λqϕpxq ´ ϕpx ´ 1q
r

(24)

It follows that on J1, NK, ϕ is necessarily proportional to the functions ϕλ defined above, where ρ˘

are the solutions of the quadratic equation in X,

rX2 ` pλ ´ 1 ´ rqX ` 1 “ 0 (25)

except if this equation admits a double solution ρ˚, in which case ϕ must be proportional to the
function ϕ˚ defined by

@ x P S, ϕ˚pxq ≔ xρx˚

Whatever the case, we have that

@ x P J1, N ´ 1K, pL ´ V qrϕspxq “ ´λϕpxq

This relation is also satisfied at x “ N if and only if ϕpN ` 1q “ ϕpN ´ 1q (as in the previous
example, this justifies the simplifying choice of LpN,N ´ 1q “ 1 ` r).

‚ Let us first consider the situation where (25) admits a double solution. One computes immedi-
ately that this corresponds to λ “ p1˘?

rq2 and ρ˚ “ ¯1{?
r. The condition ϕ˚pN`1q “ ϕ˚pN´1q

is equivalent to ρ˚ “ ˘
a

pN ´ 1q{pN ` 1q. The assumption N ą p1 ` rq{pr ´ 1q forbids thata
pN ` 1q{pN ´ 1q “ ?

r, so that we are led to a contradiction. Only the next case is possible.

‚ Assume that (25) has two distinct solutions ρ` and ρ´, they are given in the statement of
the above lemma. The condition ϕpN ` 1q “ ϕpN ´ 1q amounts to

ρN`1

` ´ ρN´1

` ´ ρN`1

´ ` ρN´1

´ “ 0

But from (25) we see that ρ´ “ 1{prρ`q, so ρ` is a solution of

X2pN`1q ´X2N ` r1´NX2 ´ r´N´1 “ 0

This equation admits two obvious solutions, X “ 1{?
r and X “ ´1{?

r, so that PN is indeed a
polynomial. But these values are not allowable for ρ`, because we would have ρ` “ ρ´. It follows
that ρ` is a root of PN . Note that if ρ P C is a root of PN , the same is true for 1{prρq and that
1{?

r and ´1{?
r are the only fixed points of the involutive mapping ξ : Czt0u Q ρ ÞÑ 1{prρq. As

a consequence, we can group the roots of PN by pairs stable by ξ, say tρ1, ξpρ1qu, tρ2, ξpρ2qu, ...,
tρN , ξpρN qu. Moreover, notice that the mapping Ψ defined in the above lemma is constant on each
of these pairs, so that the cardinality of Λ ≔ ΨpRq is at most N . But it appears from (25) and
from the previous discussion that all the eigenvalues of V ´ L are elements of Λ. From (24) we
deduce that all the eigenvalues of V ´ L are simple and since by reversibility V ´ L is known to
be diagonalizable, it follows V ´ L admits N distinct eigenvalues. Thus Λ must be of cardinality
N and exactly consists of the eigenvalues of V ´ L. It is interesting to remark that it is relatively
difficult to check directly that all the ρ1, ρ2, ..., ρN are different, or equivalently that all the roots
of PN are distinct (try to compute its discriminant).

�

By the Perron-Frobenius theorem, the smallest eigenvalue λ1 of V ´ L is characterized by
the fact that the associated eigenfunction has a fixed sign. This observation in conjunction with
Lemma 11 lead to
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Proposition 12 For large N we have

λ1 „ 1

2
pr ` 1qpr ´ 1q2 1

rN`1

moreover, if ϕ is an associated eigenvector,

ϕ_

ϕ^
“ r

r ´ 1
p1 ` Opr´N qq

Proof

With the notation of Lemma 11, we have ρ`ρ´ “ 1{r (recall (25)). So if ρ` ą 0, then we get
0 ă ρ´ ă ρ`. It follows that the mapping R

˚
` Q u ÞÑ ρu` ´ ρu´ does not vanish and in particular

ϕλ only takes positive values. By consequence, the corresponding λ P Λ is the first Dirichlet
eigenvalue λ1. To work out this program, we begin by showing that for N large enough, there
exists ρ1 P R X R` satisfying

1

r2
ď ρ21 ď 1

r2
` 1

rN`1
(26)

It is enough to show that there exists ρ1 P r1{r,
a

1{r2 ` r´1´N s such that

Qpρ21q ≔ ρ
2pN`1q
1

´ ρ2N1 ` r1´Nρ21 ´ r´N´1 “ 0 (27)

Write h1 “ rN`1pρ2
1

´ 1{r2q and for all h ě 0,

fphq ≔ r2NQ

ˆ
1

r2
` h

rN`1

˙

“
ˆ
1 ` h

rN´1

˙N ˆ
1

r2
´ 1 ` h

rN`1

˙
` h

we just need to check that fp0q ď 0 and fp1q ě 0. The former inequality is immediate and the
latter one is satisfied for N large enough, since limNÑ8 fp1q “ 1{r2.
Next, injecting the a priori bound (26) in (27), it follows that

lim
NÑ8

h1 “ 1 ´ 1

r2

Replacing ρ1 “
a
r´2 ` p1 ´ r´2qr´pN`1qp1 ` ˝p1qq “ r´1 ` p1 ´ r´2qr´N p1{2 ` ˝p1qq in

λ1 “ p1 ` rqρ1 ´ 1 ´ rρ2
1

ρ1

we deduce the first announced behavior. Let ρ1´ and ρ1` be the corresponding values of ρ´ and
ρ`, from ρ1´ρ1` “ 1{r, we obtain

ρ1´ “ ρ1 “ 1

r
` Opr´N q and ρ1` “ 1 ` Opr´N q (28)

Taking into account the expression of ϕ ≔ ϕλ1
given in Lemma 11, we get

ϕ_

ϕ^
“ ϕpNq

ϕp1q

“ ρN
1` ´ ρN

1´

ρ1` ´ ρ1´

“ r

r ´ 1
p1 ` Opr´N qq

17



�

To be in position to use Theorem 3, it remains to evaluate λ2 ´ λ1.
From the previous proof, it appears there is only one eigenvalue λ P Λ such that ρ´ ą 0.

Moreover there is at most one eigenvalue λ P Λ such that ρ´ ă 0. Indeed, in this case we have
ρ´ ă ρ` ă 0 and it follows from Lemma 11 that ϕλpxq ą 0 for x P S odd and ϕλpxq ă 0 for x P S
even, in particular ϕλ has the maximal number of sign changes. The discrete version of Sturm’s
theorem (see for instance Miclo [23]) then implies that λ must be λN , the largest eigenvalue of
V ´ L. Since R is symmetrical with respect to zero, ´ρ1´ and ´ρ1` (with the notation of (28))
also belong to R and this leads to the estimate

λN “ 2p1 ` rq ` Opr´N q

The previous arguments show that except for ρ1´, ρ1`, ´ρ1´ and ´ρ1`, all the other elements
of R are complex numbers which are not real. It follows from Lemma 11 that for λ P Λztλ1, λNu,

pλ´ 1 ´ rq2 ´ 4r ă 0

so that

λ ą 1 ` r ´ 2
?
r “ p1 ´

?
rq2

In particular, for N ą 2, we get

λ2 ą p1 ´
?
rq2

and as announced, for N large,

λ2 ´ λ1 „ λ2 " λ1

meaning that convergence to quasi-stationarity happens at a much faster rate than absorption.
Theorem 3 shows that for any t ě 0,

sup
µ0PP

}µt ´ ν}
tv

ď

d
rN

r ´ 1

ˆ
r

r ´ 1

˙
2

p1 ` Opr´N qq exp
`
´p1 ´

?
r ` Opr´N qq2t

˘

(where Opr´N q is with respect to N , uniformly in t ě 0). It follows that for any fixed s ě 0, if for
N large enough we consider the time

t ≔
1

2p1 ´ ?
rq2 plnprqN ` 2sq

then

sup
µ0PP

}µt ´ ν}
tv

ď r2

pr ´ 1q5{2
p1 ` ˝p1qq expp´sq

Notice that the relaxation time to quasi-stationarity needs to be at least of order N , since it is
already the order of time required by the semi-group associated to rL to get from 1 to N , which
supports a non-negligible part of rη (but starting from N , it can be shown that the relaxation time
to quasi-stationarity is bounded independently from N).
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3.3 A birth and death example with λ1 " λ2 ´ λ1

The setting is as in the previous example, except that r ă 1 in (20) and (21).
The beginning of Subsection 3.2 is still valid: the reversible probability η is given by (22) and

Lemma 11 is true, without the condition N ą p1 ` rq{pr ´ 1q, which is now void. The difference
starts with Proposition 12, which must be replaced by

Proposition 13 For N ě 4, we have

p1 ´
?
rq2 ` 4

?
r sin2pp1 ´ rq{p2N ` 4qq ď λ1 ď p1 ´

?
rq2 ` 4

?
r sin2pπ{p2Nqq

p1 ´
?
rq2 ` 4

?
r sin2pπ{p2Nqq ď λ2 ď p1 ´

?
rq2 ` 4

?
r sin2pπ{Nq

Furthermore, if ϕ is an eigenvector associated to λ1, we have

ϕ_

ϕ^
ď r´pN´1q{2 1

sinpp1 ´ rq{p2N ` 4qq

Proof

First we show that none of the roots of PN is a real number. Consider the function

f : R` Q x ÞÑ xN`1 ´ xN ` r1´Nx´ r´N´1

According to the arguments of Lemma 11, it is sufficient to show that f only vanishes at 1{r. Its
second derivative is given by f2pxq “ pN ` 1qNxN´1 ´ NpN ´ 1qxN´2, for x ě 0. Thus f2 is
negative on p0, pN ´1q{pN `1qq and positive on ppN ´1q{pN `1q,`8q. Furthermore, we compute
that

f 1

ˆ
N ´ 1

N ` 1

˙
“ ´

ˆ
1 ´ 2

N ` 1

˙N´1

` r1´N

This quantity is positive for N ě 2. Thus f is increasing on p0,`8q and can only vanish at 1{r.
Since we know that the roots of PN are given by (23) for λ P Λ Ă R, we deduce that

@ λ P Λ, pλ ´ 1 ´ rq2 ă 4r

It follows that the modulus of ρ˘ in (23) is given by 1{?
r, independently of λ P Λ. More precisely,

there exists a set Θ Ă p0, πq, such that the roots of PN are given by
"

1?
r
expp˘iθq : θ P Θ

*

By using the mapping Ψ of Lemma 11, we get that the spectrum of L is

Λ “ tlpθq ≔ 1 ` r ´ 2
?
r cospθq : θ P Θu

and that corresponding eigenvectors are given by

@ x P J1, NK, ϕθpxq “ r´x{2 sinpθxq (29)

for θ P Θ (note the slight modification of notation with respect to Lemma 11, indexing by elements
of Θ instead of Λ). Ordering Θ into 0 ă θ1 ă θ2 ă ¨ ¨ ¨ ă θN ă π, it appears that

λ1 “ lpθ1q and λ2 “ lpθ2q (30)

From Miclo [23], we deduce that ϕθ1 is non-decreasing and that ϕθ2 changes sign once (more
generally ϕθk changes sign k ´ 1 times, for k P J1, NK). This remark and (29) lead to the bounds

θ1 ď π{N and π{N ď θ2 ď 2π{N
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Taking into account that

@ θ P Θ, lpθq “ p1 ´
?
rq2 ` 2

?
rp1 ´ cospθqq

“ p1 ´
?
rq2 ` 4 sin2pθ{2q

and that sinus is positive and increasing on p0, π{2q, we get that for N ě 4,

λ1 ď p1 ´
?
rq2 ` 4

?
r sin2pπ{p2Nqq

p1 ´
?
rq2 ` 4

?
r sin2pπ{p2Nqq ď λ2 ď p1 ´

?
rq2 ` 4

?
r sin2pπ{Nq

To obtain a lower bound of the same kind for λ1, recall that the elements θ P Θ satisfy the equation

1

rN`1
exppi2pN ` 1qθq ´ 1

rN
exppi2Nθq ` 1

rN
exppi2θq ´ 1

rN`1
“ 0 (31)

and in particular gpθq “ 0, where the mapping g is defined by

@ θ P R, gpθq ≔ sinp2pN ` 1qθq ´ r sinp2Nθq ` r sinp2θq (32)

One computes that g1p0q “ 2Np1 ´ rq ` 2 ` r and that

@ θ P R,
ˇ̌
g2pθq

ˇ̌
ď 4pN ` 1qpN ` 2q (33)

By consequence, the first zero of g after 0 is larger than p2Np1 ´ rq ` 2 ` rq{p4pN ` 1qpN ` 2qq
and in particular

θ1 ě 2p1 ´ rqpN ` 1q
4pN ` 1qpN ` 2q

“ 1 ´ r

2pN ` 2q (34)

leading to the announced lower bound on λ1.
Furthermore, if ϕ ≔ ϕθ1 , we have

ϕ_

ϕ^
“ ϕθ1pNq

ϕθ1p1q

ď r´pN´1q{2 1

sinpθ1q

ď r´pN´1q{2 1

sinpp1 ´ rq{p2N ` 4qq
�

Working for fixed r P p0, 1q in the asymptotic N Ñ 8, we deduce that

p1 ´
?
rq2 `

?
rp1 ´ rq2 1

N2
p1 ` ˝p1qq ď λ1 ď p1 ´

?
rq2 ` π2

N2
p1 ` ˝p1qq

p1 ´
?
rq2 ` π2

N2
p1 ` ˝p1qq ď λ2 ď p1 ´

?
rq2 ` 4π2

N2
p1 ` ˝p1qq

and

ϕ_

ϕ^
ď 2N

p1 ´ rqrpN´1q{2
p1 ` ˝p1qq

In particular, we get

λ2 ´ λ1 ď 4π2 ´ ?
rp1 ´ rq2
N2

p1 ` ˝p1qq

λ1 „ p1 ´
?
rq2
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and, as announced, for N large,

λ2 ´ λ1 ! λ1

meaning that absorption happens at a much faster rate than convergence to quasi-stationarity.
To exhibit an approximate quantitative estimate for the latter convergence, we need a lower

bound on λ2 ´ λ1.

Lemma 14 For N large enough, we have

λ2 ´ λ1 ě p1 ´ rq2?
r

2N2
p1 ` ˝p1qq

Proof

With the notation of the proof of Proposition 13, begin by obtaining a lower bound on θ2 ´ θ1.
Considering the function g defined in (32), θ2 is larger than the zero of g following θ1. We have

g1pθ1q ≔ 2pN ` 1q cosp2pN ` 1qθ1q ´ r2N cosp2Nθ1q ` 2r cosp2θ1q

From (31), we also obtain

cosp2pN ` 1qθ1q ´ r cosp2Nθ1q ` r cospθ1q ´ 1 “ 0

so that

g1pθ1q “ 2Np1 ´ r cospθ1qq ` 2 cosp2pN ` 1qθ1q ` 2r cosp2θ1q
ě 2Np1 ´ rq ´ 2p1 ` rq

Taking into account (33), we deduce that

θ2 ´ θ1 ě Np1 ´ rq ´ p1 ` rq
2pN ` 1qpN ` 2q

“ 1 ´ r

2N
p1 ` ˝p1qq

Next, we have

´ cospθ2q ě ´ cospθ1q ` min
θPrθ1,θ2s

sinpθqpθ2 ´ θ1q

“ ´ cospθ1q ` p1 ` ˝p1qqθ1pθ2 ´ θ1q

ě ´ cospθ1q ` 1 ´ r

2pN ` 2q
1 ´ r

2N
p1 ` ˝p1qq

where we used (34). The announced bound is now a consequence of (30).
�

Putting together the previous estimates, with η^ „ p1 ´ rqrN´1, we get

sup
µ0PP

}µt ´ ν}
tv

ď 4N2

p1 ´ rq5{2r3pN´1q{2
p1 ` ˝p1qq exp

ˆ
´p1 ´ rq2?

r

2N2
p1 ` ˝p1qqt

˙

In particular, for any given ǫ ą 0, if we consider

tN ≔ 4p1 ` ǫq N
2 lnpNq

p1 ´ rq2?
r

then

lim
NÑ8

sup
µ0PP

}µtN ´ ν}
tv

“ 0
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3.4 A non-reversible example

Let N P N be fixed. We consider S̄ “ S \ t8u, with S “ ZN . The generator L̄ allows with rate 1
jumps of size 1 in ZN and a jump at rate 1 from 0 P ZN to 8, the absorbing point. Namely, the
generator L is given by

@ x, y P ZN , Lpx, yq ≔

$
&
%

1 , if y “ x` 1
´1 , if y “ x

0 , otherwise

whose invariant probability measure η is the uniform distribution. The potential V takes the value
1 at 0 and 0 otherwise. The spectral decomposition of the highly non-reversible operator L´ V is
given by:

Lemma 15 Let C be the set of (complex) solutions of the equation XN ` XN´1 ´ 1 “ 0. Its
cardinality is N (i.e. all the solutions of the equation are distinct), the set of eigenvalues of L´ V

is tc ´ 1 : c P Cu and corresponding eigenvectors are given by the functions ϕc, for c P C, defined
by

@ x P J0, N ´ 1K, ϕcpxq ≔
"

1 , if x “ 0
cx´N , otherwise

(where ZN is naturally identified with J0, N ´ 1K).

Proof

We begin by checking that all the roots of the polynomial XN ` XN´1 ´ 1 are simple. Indeed,
if c P C had multiplicity at least two, it would also satisfy NcN´1 ` pN ´ 1qcN´2 “ 0, namely
c “ p1 ´ Nq{N (because 0 does not belong to C). The equation cN ` cN´1 “ 1 could then be
rewritten

1

N

ˆ
1 ´N

N

˙N´1

“ 1

but this is impossible, because the absolute value of the l.h.s. is strictly less than 1.
Next we compute that for c P C,

@ x P ZN , Lrϕcspxq “
"
c1´N ´ 1 , if x “ 0
pc ´ 1qϕcpxq , otherwise

Note that

c1´N ´ 1 “ c1´N ´ c` pc ´ 1qϕcp0q
“ 1 ` pc´ 1qϕcp0q
“ V p0qϕcp0q ` pc ´ 1qϕcp0q

Thus it appears that on ZN ,

pL ´ V qrϕcs “ pc ´ 1qϕc

which is the wanted result, since we have exhibited exactly N eigenvalues.
�

Necessarily C contains some real numbers, due to the Perron-Frobenius theorem which asserts
that the smallest eigenvalue λ1 of V ´ L satisfies

λ1 “ 1 ´ maxtc : c P C X Ru

By the strong irreversibility of L, the set C X R is in fact very restricted, an observation which
enables easy deduction of the asymptotic behavior of λ1 for N large:
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Lemma 16 If N is odd, C X R “ t1 ´ λ1u and if N is even, C X R consists of two points. In both
cases, C X R` “ t1 ´ λ1u and we have for N large

λ1 „ lnp2q
N

Proof

Consider the function

g : R Q x ÞÑ xN ` xN´1 ´ 1

The study of its variations leads to the two first announced results by differentiating it twice.
Indeed, if N is odd, g is increasing on p´8, p1´Nq{Nq, decreasing on pp1´Nq{N, 0q and increasing
on p0,`8q. As was already seen in the proof of the previous lemma, gpp1 ´Nq{Nq ă 0, so that g
admits a unique real root contained in p0,`8q. For N even, g is decreasing on p´8, p1 ´ Nq{Nq
and increasing on pp1 ´ Nq{N,`8q. Since gpp1 ´ Nq{Nq ă 0 and lim˘8 g “ `8, g admits two
real roots, the largest one being the unique one belonging to p0,`8q, since gp0q “ ´1.

Let y ą 0 be given and for N ą y consider xN “ 1 ´ y{N . It appears that

lim
NÑ8

gpxN q “ 2 expp´yq ´ 1

It follows that the unique root cN of g in p0,`8q satisfies for N large

cN ´ 1 „ ´ lnp2q
N

which amounts to the last announced result.
�

Let ϕ “ ϕ1´λ1
, with the notation of Lemma 15, be an eigenvector associated to λ1. We have,

for N large

ϕ_

ϕ^
“ ϕp1q

ϕp0q
“ p1 ´ λ1q1´N

„ expplnp2qq “ 2

In addition, note that L˚, the dual operator of L in L
2pηq, is given by

@ x, y P ZN , L˚px, yq ≔

$
&
%

1 , if y “ x´ 1
´1 , if y “ x

0 , otherwise

It corresponds to the conjugation of L with the involutive transformation of ZN given by ι : ZN Q
x ÞÑ ´x (or J1, N ´ 1K Q x ÞÑ N ´ x and ιp0q “ 0). It follows that the function ϕ˚ considered
in the introduction is proportional to ϕ ˝ ι, so that the mapping ϕϕ˚ is constant. In particular
the probability rη defined in (4) is equal to η, the uniform distribution on ZN . Furthermore, we
compute that the generator rL defined in (3) is given by

@ x, y P ZN , rLpx, yq ≔

$
’’’’&
’’’’%

p1 ´ λ1q , if x �“ 0 and y “ x ` 1
´p1 ´ λ1q , if x �“ 0 and y “ x

p1 ´ λ1q1´N , if x “ 0 and y “ 1
´p1 ´ λ1q1´N , if x “ 0 and y “ 0
0 , otherwise
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Its additive symmetrization rL˛ in L
2pηq gives the rate p1 ´ λ1q{2 to any oriented edge px, x ` 1q

or px ` 1, xq of ZN , except to the edges p0, 1q and p1, 0q, which have the rate p1 ´ λ1q1´N {2. By
comparison with the usual continuous-time random walk on ZN , we deduce that the spectral gap
rλ of rL˛ satisfies

p1 ´ cosp2π{Nqqp1 ´ λ1q ď rλ ď p1 ´ cosp2π{Nqqp1 ´ λ1q1´N

namely, asymptotically for N large,

2π2

N2
p1 ` ˝p1qq ď rλ ď 4π2

N2
p1 ` ˝p1qq

Relying on (7), we would have obtained

rλ ě 1 ` ˝p1q
4

λ

where λ is the spectral gap of the additive symmetrization of L in L
2pηq, which is the usual

continuous-time random walk on ZN , so that λ „ 2π2{N2. Thus it only leads to a slight deterio-
ration on the estimate of rλ obtained by working directly with (6).

For large N , Theorem 2 leads to

sup
µ0PP

}µt ´ ν}
tv

ď 2
?
Np1 ` ˝p1qq exp

ˆ
2π2

N2
p1 ` ˝p1qqt

˙

In particular, for any given ǫ ą 0, if we consider

tN ≔ p1 ` ǫqN
2 lnpNq
4π2

then

lim
NÑ8

sup
µ0PP

}µtN ´ ν}
tv

“ 0

3.5 A product example

Let us first come back to the general setting of the introduction (which is then tensorized). Let
d P N, be given. On Sd, consider the Markovian generator

Lpdq
≔

1

d

ÿ

kPJ1,dK

Lk

where Lk acts like L on the k-th coordinate of Sd. Define furthermore the potential V pdq by

@ x ≔ px1, ..., xdq P Sd, V pdq
≔

1

d

ÿ

kPJ1,dK

V pxkq

Note that the associated L̄pdq is not of the form p1{dq ř
kPJ1,dK L̄k, because the underlying state

space would be pS̄qd and not Sd \ t8u as it should be. One recovers the subMarkovian generator
Lpdq ´ V pdq by modifying p1{dq

ř
kPJ1,dK L̄k so that all the points of tx ≔ px1, ..., xdq P pS̄qd : D k P

J1, dK with xk “ 8u become absorbing.
The invariant measure ηpdq associated to Lpdq is ηbd and we have

Lpdq ´ V pdq “ 1

d

ÿ

kPJ1,dK

pL´ V qk
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It appears in particular that the first eigenvalue of V pdq ´Lpdq is λ1, the same as that of V ´L and
the associated quasi-stationary distribution (respectively first eigenfunction) is νbd (resp. ϕbd). It
follows that rLpdq, the Doob transform of Lpdq ´ V pdq by ϕbd, satisfies

rLpdq “ 1

d

ÿ

kPJ1,dK

rLk

and that its invariant probability rηpdq is rηbd. In a similar way, we have that

L˚pdq “ 1

d

ÿ

kPJ1,dK

L˚
k

and the first eigenvector of ´L˚pdq is pϕ˚qbd. Finally rL˛pdq, the additive symmetrization of rLpdq

in L
2prηbdq, is equal to p1{dq ř

kPJ1,dK
rL˛
k, so that its spectral gap rλ (respectively its logarithmic

Sobolev constant rα) is equal to that of rL˛ (for such tensorization properties, see for instance the
book [1] of Ané et al.).

With obvious notation, Theorem 2 then leads to the fact that for any t ě 0, we have

sup
µ

pdq
0

PPpdq

›››µpdq
t ´ νbd

›››
tv

ď
˜d

ηrϕϕ˚s
pϕϕ˚ηq^

ϕ_

ϕ^

¸d

expp´rλtq

Under the reversibility condition of Theorem 3, we get that for any t ě 0,

sup
µ

pdq
0

PPpdq

›››µpdq
t ´ νbd

›››
tv

ď
˜c

1

η^

ˆ
ϕ_

ϕ^

˙
2
¸d

expp´pλ2 ´ λ1qtq (35)

The bound (15) can be rewritten in the form

sup
µ

pdq
0

PPpdq

›››µpdq
t ´ νbd

›››
tv

ď

d

2d ln

ˆ
ηrϕϕ˚s

pϕϕ˚ηq^

˙ ˆ
ϕ_

ϕ^

˙d

expp´prα{2qtq

or under the reversibility condition,

sup
µ

pdq
0

PPpdq

›››µpdq
t ´ νbd

›››
tv

ď

d

2d ln

ˆ
1

η^

ϕ_

ϕ^

˙ ˆ
ϕ_

ϕ^

˙d

expp´prα{2qtq (36)

It is easy to construct an example showing that (36) can lead to a better estimate than (35).
Take

S ≔ t1, 2u, L ≔

ˆ
´1 1
1 ´1

˙
, V ≔

ˆ
1
1

˙

for which ϕ ” 1, η “ p1{2, 1{2q, λ2 ´ λ1 “ 2 and rα “ 1 (recall the convention after (16), which is
an equality in this two-points case, see Diaconis and Saloff-Coste [11]). The r.h.s. of (35) and (36)
are respectively 2d{2 expp´2tq and

a
2d lnp2q expp´t{2q. The first bound leads to a mixing time

(the first time t ą 0 the quantity sup
µ

pdq
0

PPpdq

›››µpdq
t ´ νbd

›››
tv

goes below a fixed level such as 1{2)
of order d, while the second bound rather gives order lnpdq.
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For a little less artificial example, one can come back to Subsection 3.3, with N “ 2 and r ą 0
very small. Indeed, one computes that

λ2 ´ λ1 “ 2
a
rp1 ` rq

ϕ_

ϕ^
“

c
1 ´ r

r

η^ “ r

1 ` r

rη^ “ 1 ´ r

2

It follows from (16) that for 0 ă r ! 1,

rα ě r

lnpp1 ` rq{p1 ´ rqqpλ2 ´ λ1q

„ λ2 ´ λ1

2

For r ą 0 small, we get from (35) and (36) that the leading term in d P N in the deduced upper
bounds on the mixing time are respectively 3d{p4?

rq lnp1{rq and d{p2?
rq lnp1{rq, showing thus a

little advantage for the estimate coming from (36).

4 Some discrete time models

Of course the theory can be developed in discrete time as well. We briefly carry this out here
and treat some higher dimensional examples where all the spectral information is available. Let
S̄ ≔ S\t8u be the extended state space with 8 the absorbing state. Denote by N the cardinality
of S. The transition matrix can be written

¨
˚̊
˚̊
˚̊
˚̋

1 0 ¨ ¨ ¨ 0
a1

... Q

aN

˛
‹‹‹‹‹‹‹‚

with Q an N ˆ N matrix, here assumed to be irreducible. Let ψ and ϕ be positive left and right
eigenvectors of Q with eigenvalue β ą 0 of largest size. Set

@ x, y P S, Kpx, yq ≔ Qpx, yq ϕpxq
βϕpyq

This is a Markov transition matrix on S with stationary distribution π given by

@ x P S, πpxq ≔ ϕpxqψpxqř
yPS ϕpyqψpyq

It has the probabilistic interpretation of the transition probabilities for the original chain condi-
tioned on non-absorption (for all time). The quasi-stationary distribution is given by

@ x P S, νpxq ≔ ψpxqř
yPS ψpyq

observe that the ratio r ≔ ϕ_{ϕ^ allows the bounds

@ x P S, r´1νpxq ď πpxq ď rνpxq
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If Q above is diagonalizable, with right eigenfunctions pfiqiPJNK and left eigenfunctions pgiqiPJNK

for eigenvalues pβiqiPJNK, normalized so that
ř

xPS gipxqfjpxq “ δi,j for any i, j P JNK, then

@ l P Z`, @ x, y P S, Qlpx, yq “
Nÿ

k“1

βlkfkpxqgkpyq

thus

P rXl “ y|X0 “ x, T ą ls “ Qlpx, yq
Qlpxq

with Qlpxq “ ř
yPS Q

lpx, yq and where pXnqnPZ` is the underlying absorbing Markov chain and T
is its absorbing time.

Explicit diagonalizations are available surprisingly often. For example, for a birth and death
chain on t0, 1, ..., 2Nu, symmetric with respect to N , take the starting point to be zero and the
absorbing point to be N . If pϕiqiPJ0,2NK are the right eigenvectors of the original chain, often
available as orthogonal polynomials, ϕ1, ϕ3, ..., ϕ2N´1 all vanish at N and so restrict to the needed
pfiqiPJNK. Because birth and death chains are reversible, these determine the family pgiqiPJNK and
the ingredients for analysis are available. The Ehrenfest urn and the example at the end of this
section are two cases where we have carried this approach out to get sharp answers (matching
upper and lower bounds for convergence to quasi-stationarity). It is only fair to report that the
analysis involved can require substantial effort.

4.1 Example of rock breaking

In this example the matrix Q is not irreducible, nevertheless the above results can be applied,
because the function ϕ is (strictly) positive. To justify this observation, replace for ǫ P p0, 1q, Q by
p1 ´ ǫqQ` ǫJ , where J has all its entries equal to 1{N , apply the previous results and let ǫ go to
zero.

Let n P N be given and S̄ ≔ Ppnq, the set of all partitions of n. Thus if n “ 4, S̄ “
t4, 31, 22, 211, 1111u. An absorbing Markov chain on S̄, modeled on a rock breaking Markov chain
studied by Kolmogorov, is developed in Diaconis, Pang and Ram [9]. Briefly, if λ “ pλ1, λ2, ..., λlq,
with λ1 ě λ2 ě ¨ ¨ ¨ ě λl ą 0, λ1`¨ ¨ ¨`λl “ n, the chain proceeds from λ by independently choosing,

for i P J1, lK, binomial variables λ
p1q
i of parameters pλi, 1{2q, so that we can write λi ≕ λ

p1q
i ` λ

p2q
i .

Next, after discarding any zeros and reordering the λ
p1q
i , λ

p2q
i , for i P J1, lK, we get the new position

of the chain. It is absorbing at p1nq. The natural starting place is pnq.
In [9], the eigenvalues are shown to be 1, 1{2, 1{4, ..., 1{2n , with 1{2n´l having multiplicity

ppn, lq, the number of partitions of n into l parts. In particular the second eigenvalue is 1{2, with
multiplicity 1. The eigenvectors are given explicitly and these restrict to give explicit left and right
eigenbases of Q. With notation as above, for β “ 1{2, for all λ “ pλ1, λ2, ..., λlq P Ppnq,

ϕpλq “
ÿ

iPJ1,lK

ˆ
λi

2

˙

ψpλq “
"

1 , if λ “ p1n´2, 2q
0 , otherwise

Thus ϕ_{ϕ^ “
`
n
2

˘
{1 “

`
n
2

˘
. When n “ 4, the original transition matrix is

14 122 22 13 4
14

122
22

13
4

¨
˚̊
˚̊
˝

1 0 0 0 0
1{2 1{2 0 0 0
1{4 1{2 1{4 0 0
0 3{4 0 1{4 0
0 0 3{8 1{2 1{8

˛
‹‹‹‹‚
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The left (right) eigenvectors are given as the rows (columns) of the two arrays

¨
˚̊
˚̊
˝

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 0 1 0
1 6 3 4 0

˛
‹‹‹‹‚

¨
˚̊
˚̊
˝

1 0 0 0 0
´1 1 0 0 0
1 ´2 1 0 0
2 ´3 0 1 0

´6 12 ´3 ´4 1

˛
‹‹‹‹‚

So ψ “ p1, 0, 0, 0q, ϕ “ p1, 2, 3, 6qt . The adjusted transition matrix K is given by

122 22 13 4
122
22

13
4

¨
˚̊
˝

1 0 0 0
1{2 1{2 0 0
1{2 0 1{2 0
0 1{4 1{2 1{4

˛
‹‹‚

The reader may check that discarding the top row and first column of the eigenvector arrays gives
the eigenvectors of K.

In this example the quasi-stationary distribution ν is the stationary distribution π of K, both
are the Dirac mass at 1n´22. The chain K is itself absorbing. This rock breaking chain is a
special case of a host of explicitly diagonalizable Markov chains derived from Hopf algebras [9].
Some other algebraic constructions leading to explicit quasi-stationary calculations may be found
in Defosseux [6] (fusion coefficients and random walks in alcoves of affine Lie algebras). Symmetric
function theory, in various deformations (Sekiguchi-Debiard operators) leads to further explicit
diagonalizations in the work of Jiang [19]. Turning either of these last sets of examples into sharp
bounds seems like a fascinating research project.

4.2 Geometric theory

The basic path arguments of Holley and Stroock [17], Jerrum and Sinclair [18] and Diaconis and
Stroock [14] can be applied to absorbing chains. This was done in a sophisticated context in
Miclo [24]. The following paragraph develops a simple version in the discrete context. Let S be a
finite set, 8 an absorbing point and K a Markov chain on S̄ ≔ S \ t8u. We suppose as above
that the chain is absorbing with probability one and that the chain restricted to S is connected.
Suppose that q is a probability on S and consider L

2pqq endowed with its usual inner product
xf, gyq ≔

ř
xPS fpxqgpxqqpxq, for f, g P L

2pqq. Suppose too that qpxqKpx, yq “ qpyqKpy, xq for

x, y P S. When needed, define qp8q “ 0 and the functions from L
2pqq are extended on S̄ by

making them vanish at 8. Let β1 be the largest eigenvalue of K restricted to S. The minimax
characterization gives

Lemma 17 If the Poincaré inequality }f}2q ď A xpI ´Kqf, fyq holds for all f P L
2pqq, then β1 ď

1 ´ 1{A.

Remark 18 Of course, λ1 of Section 1 satisfies λ1 “ 1 ´ β1.
˝

Define a Dirichlet form E on L2pqq, by

@ f P L
2pqq, Epf, fq ≔ 1

2

ÿ

x,yPS̄

pfpyq ´ fpxqq2 qpxqKpx, yq
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Lemma 19 For f P L
2pqq, we have

Epf, fq “ xpI ´Kqf, fyq ´ 1

2

ÿ

xPS

f2pxqqpxqKpx,8q

ď xpI ´Kqf, fyq

Proof

This is simple by directly computing both sides of the equality, separating the cases where x, y P S
and the cases where at least one of them is equal to 8.

�

To bring in geometry, for x P S, let γx be a path starting at x and ending at 8 with steps
possible with respect to K. If there are many absorbing points, γx may connect x to any of them.
Thus γx “ px0 “ x, x1, ..., xl “ 8q with Kpxi, xi`1q ą 0 for 0 ď i ď l ´ 1. Let the length l of the
path be denoted |γx|.

Proposition 20 With the notation as above, A in Lemma 17 may be taken as

A “ max
xPS, yPS̄

2

qpxqKpx, yq
ÿ

zPS : px,yqPγz

|γz| qpzq

Proof

Let x P S be given and write γx “ px0, x1, ..., xlq. The idea is to expand

f2pxq “ pfpx0q ´ fpx1qq ` pfpx1q ´ fpx2qq ` ¨ ¨ ¨ ` pfpxl´1q ´ fpxlqqq2

ď |γx|
l´1ÿ

i“0

pfpxiq ´ fpxi`1qq2

Thus for f P L
2pqq,

ÿ

xPS

f2pxqqpxq “
ÿ

xPS

˜
ÿ

ePγx

fpe´q ´ fpe`q
¸

2

qpxq

ď
ÿ

xPS

|γx| qpxq
ÿ

ePγx

pfpe´q ´ fpe`qq2

“
ÿ

xPS, yPS̄

pfpxq ´ fpyqq2 qpxqKpx, yq
qpxqKpx, yq

ÿ

zPS : px,yqPγz

|γz| qpzq

ď AEpf, fq

�

Remark 21 Path technology has evolved: with many choices of paths, one may choose randomly,
see Diaconis and Saloff-Coste [12], weights may be used in the Cauchy-Schwarz bound, as in
Diaconis and Saloff-Coste [13]. This can be important when the stationary distributions varies a
lot. Paths may be used locally, see Diaconis and Saloff-Coste [12]. Any such variation is easy to
adapt in the above proposition.

˝
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4.3 Other examples in discrete time

The following calculations are classical. The neat form presented here is borrowed from the thesis
work of Hua Zhou [29] and provides an alternative approach to Examples 3.1, 3.2 and 3.3. Consider
a birth and death chain on J0, NK with transition matrix

¨
˚̊
˚̊
˚̋

r 1 ´ r

p 0 q
. . .

p 0 q

1 ´ s s

˛
‹‹‹‹‹‚

with p P p0, 1q, q “ 1 ´ p, r, s P r0, 1s.

Proposition 22 The eigenvalues and right eigenfunctions are of form

β ≔ 2
?
pq cospθq, @ x P J0, NK, ϕpxq ≔

ˆ
p

q

˙x{2

cospθx` cq

where θ and c are determined by the boundary values:

rϕp0q ` p1 ´ rqϕp1q “ βϕp0q
p1 ´ sqϕpN ´ 1q ` sϕpNq “ βϕpNq

Proof

This follows from the trigonometric identity

@ α, β P R, cospαq ` cospβq “ 2 cos

ˆ
α ` β

2

˙
cos

ˆ
α´ β

2

˙

Since for any θ, c P R,

q

ˆ
p

q

˙px`1q{2

cospθpx` 1q ` cq ` p

ˆ
p

q

˙px´1q{2

cospθpx´ 1q ` cq “ 2
?
pq

ˆ
p

q

˙x{2

cospθx` cq

Zhou [29] has shown that the above boundary conditions lead indeed to N ` 1 eigenvalues.
�

As an example, take p “ q “ 1{2 “ r, s “ 1. This gives the simple random walk on J0, NK
absorbing at N with holding at 0. The above proposition gives the equations

cospcq ` cospθ ` cq “ 2 cospθq cospcq, cospNθ ` cq “ 0 or θ “ 0

These have solutions c “ θ{2, θ “ jπ{p2N ´ 1q, for j “ 0, 1, 3, ..., 2N ´ 1. It follows that the chain
has eigenvalues βj ≔ cospjπ{p2N ´ 1qq, for j “ 0, 1, 3, ..., 2N ´ 1 with right eigenfunctions ϕj given
by

@ x P J0, NK, ϕjpxq ≔ cos

ˆp2x ` 1qjπ
2p2N ` 1q

˙

The left eigenfunctions are ψ0pxq “ δN pxq and for j “ 1, 3, ..., 2N ´ 1,

@ x P J0, NK, ψjpxq ≔
#
ϕjpxq , if x P J0, N ´ 1K
p´1qpj`1q{2

2
cot

´
jπ

2p2N´1q

¯
, if x “ N
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In particular, the quasi-stationary distribution has probability density given by

@ x P J0, N ´ 1K, νpxq ≔ ψ1pxqř
yPJ0,N´1K ψ1pyq

“ 2 tan

ˆ
π

2p2N ´ 1q

˙
cos

ˆ p2x ` 1qπ
2p2N ´ 1q

˙

Consider the geometric bound from Proposition 20. From the discussion above,

β1 “ cos

ˆ
π

2N ´ 1

˙
“ 1 ´ π2

2p2N ´ 1q2 ` O

ˆ
1

N4

˙

The reversing probability q on J0, N ´ 1K is the uniform distribution. There is a unique choice
of (not self-intersecting) paths from x to N . The quantity A is obviously maximized at the edge
pN ´ 1, Nq. Then, it is

A “ 4N

N

ÿ

xPJ0,N´1K

N ´ x “ 2NpN ` 1q

This gives β1 ď 1 ´ 1

4NpN`1q which compares reasonably with the correct answer.

In this problem, ϕ_{ϕ^ is of order N2 and our bounds show that order N2 lnpN2q steps suffice
for convergence to quasi-stationarity. Using all of the spectrum, classical analysis shows that order
N2 steps are necessary and sufficient. Zhou [29] gives similar exact formulae for reflecting and
absorbing boundaries at zero. He also derives the exact spectral data for some absorbing birth and
death chains from biology (Morans model with various types of mutation).
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