
HAL Id: hal-01002520
https://hal.science/hal-01002520

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Localized Bi-objective Search
Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, Sébastien Verel

To cite this version:
Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, Sébastien Verel. Distributed Localized Bi-
objective Search. European Journal of Operational Research, 2014, 239 (3), pp.731-743.
�10.1016/j.ejor.2014.05.040�. �hal-01002520�

https://hal.science/hal-01002520
https://hal.archives-ouvertes.fr

Distributed Localized Bi-objective Search

Bilel Derbela,b, Jérémie Humeauc, Arnaud Liefooghea,b,∗, Sébastien Vereld

aUniversité Lille 1, LIFL – CNRS, 59655 Villeneuve d’Ascq cedex, France
bInria Lille-Nord Europe, 59650 Villeneuve d’Ascq, France

cÉcole des Mines de Douai, départment IA, 59508 Douai, France
dUniversité du Littoral Côte d’Opale, LISIC, 62228 Calais, France

Abstract

We propose a new distributed heuristic for approximating the Pareto set of
bi-objective optimization problems. Our approach is at the crossroads of par-
allel cooperative computation, objective space decomposition, and adaptive
search. Given a number of computing nodes, we self-coordinate them locally,
in order to cooperatively search different regions of the Pareto front. This
offers a trade-off between a fully independent approach, where each node
would operate independently of the others, and a fully centralized approach,
where a global knowledge of the entire population is required at every step.
More specifically, the population of solutions is structured and mapped into
computing nodes. As local information, every node uses only the positions
of its neighbors in the objective space and evolves its local solution based on
what we term a ‘localized fitness function’. This has the effect of making the
distributed search evolve, over all nodes, to a high quality approximation set,
with minimum communications. We deploy our distributed algorithm using
a computer cluster of hundreds of cores and study its properties and per-
formance on ρMNK-landscapes. Through extensive large-scale experiments,
our approach is shown to be very effective in terms of approximation quality,
computational time and scalability.

Keywords: Multiple objective programming, Combinatorial optimization,
Parallel and distributed computing, Evolutionary computation

∗Corresponding author
Email addresses: bilel.derbel@lifl.fr (Bilel Derbel),

jeremie.humeau@mines-douai.fr (Jérémie Humeau),
arnaud.liefooghe@univ-lille1.fr (Arnaud Liefooghe),
verel@lisic.univ-littoral.fr (Sébastien Verel)

Preprint submitted to European Journal of Operational Research September 10, 2021

1. Introduction

1.1. Context and Motivation

Many real-life problems arising in a wide range of application fields can
be modeled as multi-objective optimization problems. One of the most chal-
lenging issues in multi-objective optimization is to identify the set of Pareto
optimal solutions, i.e., solutions providing the best compromises between the
objectives. It is well understood that computing such a set is a difficult task.
Designing efficient heuristic algorithms for multi-objective optimization re-
quires one to tackle the classical issues arising in the single-objective case
(e.g., intensification vs. diversification), but also and more importantly, to
find a set of solutions having good properties in terms of trade-off distribution
in the objective space.

When dealing with such sophisticated problems, it is with no surprise
that most existing approaches are costly in terms of computational complex-
ity. A natural idea is to subdivide the problem being solved into subtasks
which can be processed in parallel. This is a very intuitive idea when deal-
ing with computing intensive applications, not only in the optimization field
but in computer science in general. Besides, with the increasing popular-
ity of high performance (e.g., clusters), massively parallel (e.g., multi-cores,
GPUs), and large-scale distributed platforms (e.g., grids, clouds), it is more
and more common to distribute the computations among available resources
taking much benefit of the induced huge computational power. Many par-
allel/distributed models and algorithms have been designed for specific op-
timization contexts. This witnesses the hardness of the tackled problems
and the complexity of related algorithmic issues. Multi-objective optimiza-
tion does not stand for an exception, since the multi-objective nature of the
problem being solved induces additional computing intensive tasks.

One can find an extensive literature on designing parallel/distributed
multi-objective solving methods (Van Veldhuizen et al., 2003; Coello Coello
et al., 2007; Talbi et al., 2008; Bui et al., 2009). Most existing approaches are
designed in a top-down manner, starting with a centralized algorithm requir-
ing a global information about the search state; and then trying to adapt its
components to the distributed/parallel computing environment. This design
process usually requires to tackle parallel-computing issues which are chal-
lenging to solve efficiently and/or may impact the performance of the orig-
inal sequential optimization algorithm. In contrast, locality in distributed
computing is a well-known general paradigm that states that global informa-

2

tion is not always necessary to solve a given problem and local information
is often sufficient (see e.g., Peleg (2000)). Therefore, adopting a localized
approach when tackling a given problem can allow one to derive novel algo-
rithms which are by essence parallel and designed in a bottom-up manner.
Those algorithms are more likely to allow distributed resources to coordi-
nate their actions/decisions locally, and to take full benefit of the available
computational power.

1.2. Contribution Overview

In this paper, we describe a new simple and effective generic scheme ded-
icated to bi-objective heuristic search in distributed/parallel environments.
Our approach is inherently local, meaning that it is thought to be indepen-
dent of any global knowledge. Consequently, its deployment on a large-scale
distributed environment does not raise parallel-specific issues.

Generally speaking, each computing node contains a candidate solution
and is able to search in a region of the search space in coordination with
other neighboring nodes. The sub-region where a node operates is delimited
implicitly in an adaptive way based on the relative position of its cooperating
neighbors in the objective space. The way local cooperation is designed, as
well as its induced optimization process, are the heart of our approach. In
our study, we propose novel localized cooperative strategies inspired by the
classical weighted-sum scalarizing function (Ehrgott, 2005) and hypervolume-
based approaches (Zitzler and Thiele, 1999), without requiring any global
knowledge about the search state. The designed rules allow distributed nodes
to self-coordinate their decisions adaptively and in an autonomous way while
communicating a minimal amount of information; thus being effective when
deployed on a real and large-scale distributed environment. To evaluate the
performance of our approach, we conduct extensive experiments involving
more than two hundred computing cores, and using ρMNK-landscapes (Verel
et al., 2013) as a benchmark. As baseline algorithms, we consider both a pure
parallel strategy and an inherently sequential approach. Our experimental
results show that our localized approach is extremely competitive in terms
of approximation quality; while being able to achieve near-linear speed-ups
in terms of computational complexity. Besides, we provide a comprehensive
analysis of our approach highlighting its properties and dynamics.

3

1.3. Outline

In Section 2, we review existing works related to multi-objective opti-
mization, especially those dealing with parallel and distributed issues. In
Section 3, we describe the distributed localized bi-objective search approach
proposed in the paper, and give a generic fully distributed scheme which can
be instantiated in several ways. In Section 4, we provide the experimental
setup of our analysis. In Section 5, we present numerical results and we
discuss the properties of our approach. Finally, we conclude the paper in
Section 6 and we discuss some open research issues.

2. Background on Multi-objective Optimization

In the following, we first introduce the basics of multi-objective optimiza-
tion and then we position our work with respect to the literature.

2.1. Definitions

A multi-objective optimization problem can be defined by an objective
function vector f = (f1, f2, . . . , fM) with M ! 2, and a set X of feasible
solutions in the solution space. In the combinatorial case, X is a discrete set.
Let Z = f(X) ⊆ IRM be the set of feasible outcome vectors in the objective
space. To each solution x ∈ X is then assigned exactly one objective vector
z ∈ Z, on the basis of the function vector f : X → Z with z = f(x).
In a maximization context, an objective vector z ∈ Z is dominated by an
objective vector z′ ∈ Z, denoted by z ≺ z′, iff ∀m ∈ {1, 2, . . . ,M}, zm " z′m
and ∃m ∈ {1, 2, . . . ,M} such that zm < z′m. By extension, a solution x ∈ X
is dominated by a solution x′ ∈ X , denoted by x ≺ x′, iff f(x) ≺ f(x′). A
solution x! ∈ X is said to be Pareto optimal (or efficient, non-dominated),
if there does not exist any other solution x ∈ X such that x! ≺ x. The
set of all Pareto optimal solutions is called the Pareto set (or the efficient
set). Its mapping in the objective space is called the Pareto front. One
of the most challenging task in multi-objective optimization is to identify a
complete Pareto set of minimal size, i.e. one Pareto optimal solution for each
point from the Pareto front.

However, in the combinatorial case, generating a complete Pareto set is
often infeasible for two main reasons (Ehrgott, 2005): (i) the number of
Pareto optimal solutions is typically exponential in the size of the problem
instance, and (ii) deciding if a feasible solution belongs to the Pareto set
may be NP-complete. Therefore, the overall goal is often to identify a good

4

Pareto set approximation. To this end, heuristics in general, and evolution-
ary algorithms in particular, have received a growing interest since the late
eighties (Deb, 2001; Coello Coello et al., 2007).

2.2. Literature Overview

A large body of literature exists concerning parallel multi-objective al-
gorithms. Two interdependent issues are usually addressed: (i) how to de-
crease the computational complexity of a specific multi-objective algorithms
and (ii) how to make parallel processes cooperate to improve the quality of
the Pareto set approximation, see e.g., Zhu and Leung (2002); Jozefowiez
et al. (2002); Deb et al. (2003); Coello Coello and Sierra (2004); Melab et al.
(2006); Tan et al. (2006); Coello Coello et al. (2007); Mostaghim et al. (2007);
Hiroyasu et al. (2007); Durillo et al. (2008); Talbi et al. (2008); Figueira et al.
(2010); Mostaghim (2010). Often, parallel and cooperative techniques implic-
itly come with the idea of decomposing the search into many sub-problems
so that a diversified set of solutions, in terms of Pareto front quality, can
be obtained. The main challenge is on defining efficient strategies to either
divide the search space or the objective space.

For instance, the population induced by a particle swarm multi-objective
algorithm is divided by Mostaghim et al. (2007) into sub-swarms which are
then coordinated through a master-slave approach by injecting the so-called
subswarm-guides in each sub-population. The diffusion model (Van Veld-
huizen et al., 2003) and the island model (Tomassini, 2005) have also been
extensively adopted to design distributed cooperative methods. In the so-
called cone separation technique (Branke et al., 2004), the objective space
is divided into regions distributed over some islands. Each island explores
the same search space. When a solution is outside its corresponding objec-
tive space region, it is migrated to neighboring islands. This idea is refined
by Streichert et al. (2005) using a clustering approach. Bui et al. (2009)
propose a distributed framework where a number of adaptive spheres span-
ning the search space and controlled by an evolutionary algorithm is studied.
In Zhu and Leung (2002), a model where fully connected islands exchange
information about their explored regions is considered. A strength Pareto
evolutionary algorithm (Zitzler and Thiele, 1999) is then adopted to form
the backbone for each island, but it is additionally equipped with a so-called
adjusting instructive phenotype/genotype distance measure, computed ac-
cording to the information exchanged with all other islands. In Zhang and

5

Li (2007), the authors described a decomposition-based approach, the so-
called MOEA/D, which associates with each single solution a fixed scalar
single-objective function called a sub-problem. Given a solution and its cor-
responding sub-problem, a new offspring is created using the genotypes of
solutions corresponding to neighboring sub-problems. This process is then re-
peated iteratively for each sub-problem which makes it inherently sequential.
Some recent attempts exist in order to adaptively define the sub-problem pa-
rameters in the sequential setting (Qi et al., 2014). Parallel extensions and
models for MOEA/D are described by Nebro and Durillo (2010) and Durillo
et al. (2011) for shared memory systems. The so-obtained approximation
quality is however shown to deteriorate significantly for more than 8 parallel
processes.

To the best of our knowledge, existing parallel and cooperative algorithms
usually treat a multi-objective optimization process in a global manner and
do not fully explore other more local alternatives when thinking the role of
cooperation.

2.3. Positioning

The approach proposed in this paper can be viewed as a parallel and
cooperative method, since solutions in our approach shall both evolve in par-
allel while cooperating locally. However, the information exchanged between
neighboring nodes does not involve any migration of solutions as it is the case
in most island-based approaches. It can also be viewed as a decomposition-
oriented strategy since it implicitly induces a partition of the global search
in many sub-search processes, focusing on different regions of the objective
space. The search process is however dynamically distributed over the ob-
jective space without relying on any global information, e.g., elite solutions,
external population, global fitness measure, etc. In other words, we do not
explicitly partition the search space through cooperating entities (islands,
processes, etc), nor we explicitly partition the objective space among par-
allel entities. We simply evolve solutions in an adaptive manner based on
localized fitness functions, which are instantiated dynamically. Unlike pre-
vious centralized/sequential adaptive approaches, we focus on distributing
the search among cooperating computing entities, while relying on a strictly
local information learned from neighbors.

6

3. A Distributed Localized Bi-objective Search Approach

Let us consider that we are given a set of n computing nodes scattered
over a network. Our idea is to distribute a population of µ solutions among
the n computing nodes with the aim of (i) evolving them towards a good
Pareto set approximation, and (ii) naturally fitting the distributed nature of
the computing environment to significantly gain in terms of execution time.
For this purpose, we structure the population of solutions following a line
where every solution, except those being at the two extremes of the line,
have exactly two distinct neighbors. According to this logical line structure,
we design local rules based on the relative positions of neighboring solutions
in the objective space. These rules are based on the definition of localized
fitness functions allowing current solutions to be replaced by new candidate
solutions cooperatively; and to evolve distributively while exploring diversi-
fied regions of the objective space. The localized fitness function, denoted
by LF , is the key ingredient of our approach.

In the following, we start describing our approach in the scenario where
each solution is mapped to a single computing node. This specific scenario
shall allow us to better illustrate the locality of our distributed approach and
its parallel nature in a more comprehensive way. Later, we shall show how
we can extend to other scenarios where an arbitrary number of computing
nodes is considered.

3.1. Algorithm Overview

In the following sections, we consider that each solution is assigned to
one computed node such that n = µ. In this case, and since we structure
the population according to a line, we can also view computing nodes as
organized in a logical communication line graph Ln = (v1, v2, · · · , vn), i.e.,
node v1 (resp. vn) holding solution x1 can communicate with neighbor v2

(resp. vn−1) and any other node vi, with i ∈ {2, · · · , n − 1}, holds solution
xi and can communicate with neighbors vi−1 and vi+1, holding respectively
solutions xi−1 and xi+1. In the following, we interchangeably use the terms
node and solution to describe both the evolution and the communication
mechanisms involved in our approach.

The proposed distributed localized bi-objective search (Dlbs) algorithm
is illustrated in the high-level pseudo-code of Algorithm 1. Distributively in
parallel, every computing node in the line graph Ln operates in local rounds
until a stopping condition is satisfied. At each communication round, a

7

Algorithm 1: Dlbs – Pseudo-code for every node vi ∈ Ln

1 xi ← initial solution corresponding to node vi;
2 repeat
3 /* communicate positions */
4 zi ← (zi1, z

i
2) the position of solution xi in the bi-objective space, zi = f(xi);

5 Send zi to neighboring nodes;
6 Zi ← receive neighboring positions;
7 /* variation */
8 Si ← New Solutions(xi);
9 /* selection for replacement */

10 xi ← Select(Si,LFZi

);
11 until stopping condition;

node simply exchanges the current position of its incumbent solution in the
objective space with its neighbors, i.e., every node vi ∈ Ln sends the position
f(xi) = zi = (zi1, z

i
2) of its current solution xi to its neighbors and receives

the positions Z i = (zi−1, zi+1) sent symmetrically by its neighbors.
After each local communication round, a node vi evolves its current so-

lution xi in the following way. First, it generates a bunch of new solutions
Si based on the current solution xi, (function New Solutions, Line 8). This
function is to be understood as any component that, given a solution, is able
to generate a set of candidate solutions Si by means of a problem specific
variation operator. Among the candidate set Si, a new solution is selected
to replace the current one (function Select, Line 10), and so on, concurrently
for all nodes.

The line graph connecting solutions can then be viewed as a line linking
some points in the objective space. The goal is to push the line a little bit
more towards the Pareto front at each round by replacing current solutions
with new ones. The selection for replacement is made on the basis of a
scalar value computed by means of a localized fitness function, denoted by
LF . Notice that function LF is itself parametrized by the pair Z i, referring
to the positions communicated by neighboring nodes. We emphasize the
fact that function LF does not use any other kind of information but the
position of neighboring solutions; thus making it very local in nature. In the
following paragraphs, we describe in detail how the selection for replacement
instruction (Line 10) is instantiated in the proposed Dlbs algorithm.

8

3.2. Selection for Replacement

We start by describing the local rules for both nodes v1 and vn, holding the
extreme solutions x1 and xn, which play a particular role in our distributed
algorithm. In fact, extreme nodes v1 and vn shall guide the search through
the extreme points of the Pareto front, following the lexicographic order
implied by the objective functions. For node v1, we consider that a solution
x is lexicographically better than or equal to a solution x′, if f1(x) > f1(x′)
or if f1(x) = f1(x′) and f2(x) > f2(x′). Symmetrically, for node vn, a
solution x is lexicographically better than or equal to a solution x′, if f2(x) >
f2(x′) or if f2(x) = f2(x′) and f1(x) > f1(x′). Using respectively these
lexicographical orders, the local selection used by nodes v1 and vn to replace
their current solutions is then fully defined. Notice that each lexicographic
optimal solution is a Pareto optimal solution of the initial multi-objective
problem, mapping to an extreme point of the Pareto front (Ehrgott, 2005).

The local strategy applied by nodes v1 and vn is independent of their
respective neighbors v2 and vn−1. This is essentially due to the fact that we
want the extreme nodes to push the line graph as much as possible to the
extreme regions of the Pareto front. For other nodes vi, i ∈ {2, · · · , n − 1},
the selection for replacement is based on a localized fitness function LF that
depends on neighbors’ positions. At each step, the candidate solution with
the best LF-value is selected for the next round. In the next paragraphs, we
define and discuss the localized fitness functions designed for Dlbs.

3.3. Localized Fitness Functions

Two localized fitness functions, to be used within the Dlbs algorithm, are
proposed below. They are based on two different strategies for aggregating
the objective function values.

3.3.1. Orthogonal-Directed Localized Fitness Function
Our first localized fitness function, denoted by LFOD, is based on a

classical scalarizing approach from multi-objective optimization, namely a
weighted-sum aggregation. At each node vi, i ∈ {2, · · · , n− 1}, let Z i be the
pair of neighboring positions for node vi. More specifically, (zi−1

1 , zi−1
2) (resp.

(zi+1
1 , zi+1

2)) refers to position zi−1 (resp. zi+1) communicated by neighbor
vi−1 (resp. vi+1). Without loss of generality, we assume that zi−1

1 " zi+1
1 ,

otherwise node vi simply interchanges the coordinate of its neighbors in the
following equations. Given a candidate solution x taken from the candidate

9

set Si generated at node vi, x is scored according to the following function.

LFZi

OD(x) = w1 · f1(x) + w2 · f2(x) (1)

where

w1 = zi−1
2 − zi+1

2 , w2 = zi+1
1 − zi−1

1

Notation OD stands for Orthogonal Direction. This is inspired by the di-
chotomic scheme proposed by Aneja and Nair (1979). In such approach,
weighting coefficient vectors are determined according to the position of so-
lutions found in previous iterations. However, in our approach we use the
current neighboring positions at each node to evolve the corresponding so-
lution at runtime. The weighting coefficient vector w = (w1, w2) is then cal-
culated distributively at each node as the orthogonal of the segment defined
by zi−1 and zi+1, as illustrated in Figure 1. This localized fitness function
defines the search direction of the distributed algorithm concurrently at each
node of the line graph. It is important to remark that the computed weight-
ing coefficient vectors can change from one round to another. It may also
happen that a weighting coefficient has a negative value, which should not be
necessarily perceived as a drawback, since it could help to explore diversified
regions. Notice moreover that a number of Pareto optimal solutions, known
as unsupported solutions, are not optimal for any definition of the weighting
coefficients (Ehrgott, 2005). Our distributed strategy using an orthogonal-
directed localized fitness function LFOD will be denoted by DlbsOD in the
remainder of the paper.

3.3.2. A Hybrid Hypervolume-based Localized Fitness Function
The second variant of our localized fitness function, denoted by LFH ,

is based on the hypervolume indicator (Zitzler and Thiele, 1999; Zitzler
et al., 2003). Many efficient evolutionary multi-objective optimization algo-
rithms are based on optimizing the hypervolume value of the output set, see
e.g. Beume et al. (2007); Bader and Zitzler (2011). Given M objective func-
tions, the hypervolume indicator value of a set A of mutually non-dominated
objective vectors can be defined as follows.

IH(A) = Λ
(⋃

z∈A

[z1, z
ref
1]× · · ·× [zM , zrefM]

)
(2)

10

vi+1

vi−1

vi

zi+1
1zi−1

1

zi+1
2

zi−1
2

f2

f1

zi−1
2

f2

vi+1

vi−1

vi

f1
zi−1
1

zi+1
1

zi+1
2

Figure 1: Illustration of the selection for replacement using to the localized fitness function
LFOD (left) and LFH (right). All solutions i ∈ {2, · · ·n − 1} concurrently adopt the
same strategy with respect to their relative neighbors. The crosses without circle are the
candidate solutions Si. The arrow shows the selected candidate solutions that replace the
current one vi.

with zref ∈ Z a reference point and Λ(·) the Lebesgue measure. The hyper-
volume contribution of a point z ∈ Z with respect to a non-dominated set A
is then given as follows (Beume et al., 2007).

∆H(z, A) = IH(A)− IH(A \ {z}) (3)

Dominated points do not contribute to the hypervolume. In the two-objective
case, if we assume that the elements of the non-dominated set A are sorted in
the increasing order with respect to f1-values, the hypervolume contribution
can be reduced as follows.

∆H(z
i, A) = (zi1 − zi−1

1) · (zi2 − zi+1
2) (4)

In our distributed approach, a node does not have a global view of the current
population of solutions being processed in parallel by other nodes. The only
information a node vi can use is the position of its two neighboring solutions
in objective space, i.e. Z i. Without loss of generality, let us assume that
zi−1
1 " zi+1

1 . Our second hybrid hypervolume-based localized fitness function
is defined as follows.

LFZi

H (x) =

{
(f1(x)− zi−1

1) · (f2(x)− zi+1
2) if f1(x) ! zi−1

1 and f2(x) ! zi+1
2

0 otherwise
(5)

11

This is illustrated in Figure 1. Notice that LFH is though to be the local
adaptation/version of Eq. (4). In particular, it intuitively states that, by
selecting those candidate solutions maximizing the local hypervolume con-
tribution at each node, the global hypervolume of the new set of solutions is
likely to be better than the previous one. However, it may happen that all
solutions generated in the candidate set have a LFH-value of 0, e.g. when
they are all dominated by at least one neighboring position. Therefore, in
this special case where no solution has a positive hypervolume contribution,
we use the orthogonal-directed localized fitness function in order to avoid a
random selection and make the current solutions evolving closer to the Pareto
front. When using the hybrid hypervolume-based localized fitness function
LFH , our approach is denoted by DlbsH.

3.4. General Population Mapping
In the previous paragraphs, the number of computing nodes n is assumed

to be equal to the population size µ, i.e., n = µ. However, in order to achieve
a better Pareto set approximation, one might want to use a population size
which is substantially larger than the number of computing nodes available
in practice. In this case, we argue that restrictions on the number of available
computing resources cannot prevent the implementation and the deployment
of the Dlbs approach for a large population size.

For the scenario where n < µ, we shall simply increase the number of
solutions evolving at every computing node. For simplicity, let us assume
that µ is a multiple of n. As done previously, the population is then struc-
tured following a line graph Lµ and every solution in the line graph is evolved
following the previously defined localized rules. However, the line graph is
now split into n contiguous sub-lines of length µ/n. In other words, we
distribute the population evenly among available computing resources by
assigning a unique sub-line to every single computing node. Every node
vj ∈ {1, · · · , n} is then responsible for evolving the whole path of solutions

Lj
n = (x

(j−1)·µ
n +1, · · · , x j·µ

n) according to the same localized rules. It is easy to
see that no communication is required for any solution inside a sub-line Lj

n;
since the position of solutions inside Lj

n are available at the same computing
node vj. Communication is only required in order to exchange the positions

of solutions being at the boundaries of the sub-line, i.e. solutions x
(j−1)·µ

n +1

and x
j·µ
n for computing node vj. Notice that in the case where µ mod n *= 0,

it is also easy to manage the size of the sub-lines to be the same up to a
difference of one.

12

In the remainder of the paper, we use the term granularity to refer to the
number of computing nodes with respect to the population size in Dlbs. The
lowest granularity is for the configuration where n = µ, i.e., one solution per
node as depicted in the pseudo-code of Algorithm 1; and the highest one is for
n = 1, i.e., all solutions are assigned to a single computing node. Different
granularities in these two extreme ranges will be investigated in order to
evaluate the performance of Dlbs from a purely parallel perspective. For
clarity, notation Dlbs(n, µ) shall refer to a configuration with n computing
nodes and a population of size µ. It is important to remark that for a given
population size and a given stopping condition, the granularity induced by
the number of computing nodes n does not have any impact on the quality
of the obtained Pareto set approximation.

4. Experimental Setup

This section summarizes the experimental setting allowing us to analyze
the proposed approach on the bi-objective ρMNK-landscapes, with a broad
range of problems with different structures and sizes.

4.1. ρMNK-landscapes

In the single-objective case, the family of NK-landscapes is a problem-
independent model used for constructing multimodal landscapes (Kauffman,
1993). Feasible solutions are represented as binary strings of size N , i.e. the
solution space is X = {0, 1}N . Parameter N refers to the problem dimension
(i.e. the bit-string length), and K to the number of variables that influence
a particular position from the bit-string (i.e. the epistatic interactions). In
single-objective NK-landscapes, the objective function f : {0, 1}N → [0, 1) is
defined as follows.

f(x) =
1

N

N∑

i=1

ci(xi, xi1 , · · · , xiK) (6)

where ci : {0, 1}K+1→ [0, 1) defines the component function associated with
variable i ∈ {1, · · · , N}, and where K < N . By increasing the number of
variable interactions K from 0 to (N − 1), NK-landscapes can be gradually
tuned from smooth to rugged. In this work, we set the position of these
interactions uniformly at random.

13

In multi-objective NK-landscapes (Aguirre and Tanaka, 2007), compo-
nent values are defined randomly and independently for every objective so
that it results in a set of M independent objective functions. More recently,
multi-objective NK-landscapes with correlated objective functions have been
proposed (Verel et al., 2013). Component values now follow a multivariate
uniform law of dimension M , defined by a correlation matrix. We here con-
sider the same correlation between all pairs of objective functions, given by a
correlation coefficient ρ > −1

M−1 . The same epistasis degree Km = K is used
for all m ∈ {1, · · · ,M}. For more details on ρMNK-landscapes, the reader is
referred to Verel et al. (2013).

4.2. Competing Algorithms

We recall that our distributed strategies are denoted by DlbsOD and
DlbsH when an orthogonal-directed localized fitness function LFOD, or re-
spectively, a hybrid hypervolume-based localized fitness function LFH , is
used. To evaluate the relative approximation quality of our algorithms, we
compare them against a pure parallel approach, denoted by Piws, and a
pure sequential one, denoted by Hemo. They are sketched below.

• Piws (Parallel Independent Weights Search) is a weighted-sum scalar-
ized approach, where weighting coefficient vectors are uniformly defined
a priori, and do not change during the search process. For each node
vi, i ∈ {1, · · · , n}, the weighting coefficient vector is defined as follows.

wi
1 =

n− i

n− 1
and wi

2 = 1− wi
1 (7)

Piws consists in running multiple rounds of parallel independent heuris-
tic search algorithms following different fixed weighting coefficient vec-
tors. Compared to our localized strategies, no information is communi-
cated between nodes when running Piws. This allows us to appreciate
the impact of our localized strategies on approximation quality and also
the impact of distributed communications on running time.

• Hemo is a sequential and global hypervolume-based evolutionary multi-
objective optimization algorithm (Hemo). It is based on dominance-
depth ranking, and on the contributing hypervolume at the second-level
sorting criterion. In other words, the second-level sorting criterion of
NSGA-II (Deb et al., 2002), i.e. the crowding distance, is replaced by

14

the contributing hypervolume, as in the hypervolume-based localized
fitness function, but here used in a more global way. The resulting
algorithm can also be seen as a (µ+λ) variant of SMS-EMOA (Beume
et al., 2007), with a one-shot replacement strategy. Notice that we have
implemented Hemo using the fast O(µ logµ) dominance-depth ranking
procedure (Deb, 2001). Hemo allows us to appreciate how efficient our
local strategies are compared with a global strategy having a full global
knowledge of the search state, i.e. the whole current population.

4.3. Parameter Setting

We remind that N refers to the problem dimension of ρMNK-landscapes.
The number of computing nodes is denoted by n. The population size is
denoted µ. The initial population is generated as random binary strings.
At every round/iteration of Dlbs or Piws, we generate a set of λ off-
spring per solution using an independent bit-flip mutation operator, where
each bit is mutated at random with a probability 1/N . In other words, a
(1 + λ)−evolutionary algorithm iteration with stochastic bit-flip mutation is
performed for each single solution in the population. In the reported results,
we shall consider the case where λ is set to N . For each solution in the
population, we perform N iterations. The total number of evaluations for
Dlbs and Piws is thus µ× λ×N = µ×N2

For the competing Hemo algorithm, the population size µ and the num-
ber of offspring λ are set to same values than Dlbs and Piws, i.e., λ = N .
The Hemo variation operator is also based on bit-flip mutation only; i.e.,
no recombination operator is used. For comparison purposes, the stopping
condition of Hemo is given in terms of a maximum number of evaluations
which is chosen to be same than the other algorithms, i.e., µ×N generations
and hence µ×N2 evaluations in total.

All algorithms have been implemented with the help of the Paradiseo soft-
ware framework (Liefooghe et al., 2011; Humeau et al., 2013), available at
the following URL: http://paradiseo.gforge.inria.fr/. The distributed
implementation and the communication between nodes have been done using
the standard MPI library. In our parallel implementation, every two MPI
processes exchanging the solution positions are implicitly synchronized using
standard MPI send and receive blocking primitives. However, no barrier is
used to synchronize the whole MPI processes. In this way, our implemen-
tation is very faithful to the semi-synchronous pseudo-code given in Algo-
rithm 1. The experiments have been conducted on a cluster of 70 computing

15

nodes inter-connected in a distributed computing environment running un-
der CentOS 5.2, with a total number of 600 cores, 6 TeraFlops, and 1872 GB
RAM. The following nodes have been used during our experiments: up to 30
computing nodes with two quad-core Opterons Shangai processors (2.5 GHz,
16 GB RAM), and up to 22 computing nodes with two quad-core Intel Xeon
L5520 processors (2.26 GHz, 24 GB RAM).

In the following, we conduct an experimental study on the influence
of the problem dimension (N), the non-linearity (K), and the objective
correlation (ρ) for bi-objective ρMNK-landscapes (M = 2) on the perfor-
mance of the algorithms under study in the paper. In particular, we inves-
tigate the following parameters: N ∈ {128, 256, 512, 2048}, K ∈ {4, 8} and
ρ ∈ {−0.7, 0.0,+0.7}. One instance, generated at random, is considered per
parameter setting. The corresponding ρMNK-landscape instances can be
found at the following URL: http://mocobench.sourceforge.net/.

For the Dlbs algorithm, we shall consider several configurations by vary-
ing the population size µ ∈ {8, 16, 32, 64, 128, 256}. If not stated explicitly,
the finest granularity is considered when deploying Dlbs; which corresponds
to the the situation where n is set to be equal to µ (i.e., one single solu-
tion per computing node). Nevertheless, we shall also study Dlbs under
different granularities to experimentally investigate the issues discussed in
Section 3.4. More specifically, for a fixed population size µ, results are re-
ported for n ∈ {1, 8, 16, 32, 64, 128}. For each tuple of parameter setting and
algorithm variant, 30 independent executions are performed.

5. Experimental Results and Analysis

Due to the parallel nature of Dlbs, one should examine simultaneously
approximation quality and running time in order to fully appreciate its per-
formance with respect to other competing algorithms. The running time of
Dlbs depends on the granularity chosen when effectively deploying it on
a computational environment (see Section 3.4). For our first set of experi-
ments, the number of nodes n is set to the population size µ, corresponding
to the finest possible granularity. We start discussing approximation quality
and then we relate it to running time.

5.1. Approximation Quality

A set of 30 runs per instance is performed for each algorithm. In order
to evaluate the quality of the approximations found for every considered in-

16

stance, we follow the performance assessment protocol proposed by Knowles
et al. (2006). Given a ρMNK-landscape instance, we compute a reference
set Z!

N containing the non-dominated points of all the Pareto front approxi-
mations we obtained during all our experiments. To measure the quality of
a Pareto front approximation A in comparison to Z!

N , we use both the hy-
pervolume difference indicator (I−H) and the multiplicative epsilon indicator
(I1ε) (Zitzler et al., 2003). The I

−
H indicator gives the portion of the objective

space that is dominated by Z!
N and not by A. The reference point is set to the

worst objective value on every dimension of the objective space obtained in
all approximation sets found during our experiments. The I1ε -indicator gives
the minimum multiplicative factor by which an approximation A has to be
translated in the objective space in order to dominate the reference set Z!

N .
Note that both I−H - and I1ε -values are to be minimized. The experimental
results report the descriptive statistics on the indicator values, together with
a Wilcoxon signed-rank statistical test with a p-value of 0.05. This proce-
dure has been achieved using R as well as the performance assessment tools
provided in PISA (Bleuler et al., 2003; Knowles et al., 2006). Table 1 gives
the rank of the different competing algorithms for different configurations.
The lower the rank, the better the algorithm.

According to both indicators, for all instances, the hypervolume-based
localized scalar strategy DlbsH never outperforms the orthogonal-directed
one DlbsOD; which indicates that LFOD is a better localized fitness func-
tion to select locally the next solution when compared to LFH . Although
the hypervolume indicator, when used by global algorithms, can outperform
algorithms using weighted-sum, the local information induced by the hyper-
volume at each node in DlbsH turns to be less efficient to guide the search
process globally compared to orthogonal weighted-sum directions.

When comparing Dlbs to the Piws approach, we can first see that
Dlbs performs substantially better with respect to both indicators (I−H and
I1ε) for all instances. This is obviously attributed to the local information ex-
changed in our cooperative strategies; which is to contrast with Piws where
search directions are fixed statically. In other words, the adaptive search
directions used in Dlbs outperform the directions of Piws, that are fixed
prior to the search process. This result advocates the usefulness of adaptive
search directions, that enable to fit different shapes of the Pareto front.

Comparing the approximation quality of DlbsOD with Hemo, we find
that Dlbs performs better than Hemo for instances with conflicting objec-
tives, i.e. when ρ < 0. With respect to the hypervolume indicator, Hemo per-

17

Table 1: Comparison of the different algorithms with respect to the hypervolume difference
indicator (I−H) and to the multiplicative unary epsilon indicator (I1ε). The first value stands
for the number of algorithms that statistically outperform the one under consideration.
The number in brackets stands for the average indicator-value (lower is better). The
population size is µ = 128.

ρ N K DlbsOD DlbsH Piws Hemo
(n = 128, µ = 128) (n = 128, µ = 128)

I−H (×10−2)

−0.7 128 4 0 (1.846) 0 (1.919) 2 (2.365) 3 (3.667)

−0.7 128 8 0 (1.914) 0 (1.984) 2 (2.275) 2 (2.375)

−0.7 256 4 0 (1.529) 1 (1.618) 2 (1.779) 3 (4.190)

−0.7 256 8 0 (1.580) 1 (1.680) 2 (1.771) 3 (2.906)

−0.7 512 4 0 (0.985) 1 (1.107) 2 (1.253) 3 (3.352)

−0.7 512 8 0 (1.248) 1 (1.318) 2 (1.461) 3 (2.836)

0.0 128 4 1 (1.778) 1 (1.876) 3 (2.491) 0 (1.406)

0.0 128 8 1 (1.677) 2 (1.821) 3 (2.178) 0 (1.043)

0.0 256 4 0 (1.272) 2 (1.390) 3 (1.613) 0 (1.284)

0.0 256 8 1 (1.219) 2 (1.349) 3 (1.582) 0 (0.667)

0.0 512 4 0 (1.038) 1 (1.115) 3 (1.339) 0 (1.068)

0.0 512 8 1 (1.107) 2 (1.214) 3 (1.379) 0 (0.822)

+0.7 128 4 1 (1.518) 2 (1.651) 3 (2.277) 0 (1.255)

+0.7 128 8 0 (0.629) 2 (0.743) 3 (0.968) 0 (0.567)

+0.7 256 4 1 (0.618) 2 (0.695) 3 (0.804) 0 (0.378)

+0.7 256 8 1 (0.526) 2 (0.609) 3 (0.721) 0 (0.329)

+0.7 512 4 1 (0.521) 2 (0.571) 3 (0.647) 0 (0.252)

+0.7 512 8 1 (0.556) 2 (0.623) 3 (0.673) 0 (0.316)

I1ε
−0.7 128 4 0 (1.061) 0 (1.062) 2 (1.076) 3 (1.260)

−0.7 128 8 0 (1.063) 0 (1.065) 2 (1.076) 3 (1.165)

−0.7 256 4 0 (1.061) 1 (1.065) 0 (1.060) 3 (1.312)

−0.7 256 8 0 (1.058) 1 (1.063) 1 (1.064) 3 (1.231)

−0.7 512 4 0 (1.040) 1 (1.044) 2 (1.054) 3 (1.260)

−0.7 512 8 0 (1.048) 0 (1.048) 2 (1.059) 3 (1.216)

0.0 128 4 0 (1.052) 1 (1.056) 3 (1.080) 0 (1.052)

0.0 128 8 1 (1.058) 1 (1.061) 3 (1.077) 0 (1.039)

0.0 256 4 0 (1.048) 1 (1.052) 2 (1.065) 3 (1.071)

0.0 256 8 1 (1.049) 2 (1.051) 3 (1.070) 0 (1.027)

0.0 512 4 0 (1.045) 0 (1.046) 2 (1.061) 2 (1.063)

0.0 512 8 0 (1.049) 0 (1.049) 3 (1.065) 0 (1.048)

+0.7 128 4 0 (1.040) 2 (1.043) 3 (1.065) 0 (1.036)

+0.7 128 8 0 (1.038) 2 (1.042) 3 (1.061) 0 (1.036)

+0.7 256 4 1 (1.039) 2 (1.041) 3 (1.056) 0 (1.025)

+0.7 256 8 1 (1.036) 2 (1.039) 3 (1.055) 0 (1.024)

+0.7 512 4 1 (1.037) 2 (1.039) 3 (1.051) 0 (1.018)

+0.7 512 8 1 (1.036) 2 (1.041) 3 (1.049) 0 (1.022)

18

forms significantly better than DlbsOD on 9 over the 18 instances, whereas
DlbsOD performs better than Hemo on 6 instances. The local information
used in Dlbs seems to be more valuable when the objectives are in con-
flict. In this case, the search directions computed locally enable to explore
more independent and diverse regions of the objective space. On the con-
trary, when the objective correlation is positive, there are more interactions
between the sub-problems induced by the search directions. Thus, diversifi-
cation seems to play a less important role, and a global information allowing
to take into account the interactions between the population is more useful.
At this point of the discussion, we can make two important observations to
better understand how the very local decisions made by Dlbs can be effec-
tively competitive with respect to the global step-by-step decisions made by
the sequential Hemo algorithm.

Firstly, when analyzing in more details the Pareto set approximations
achieved by Dlbs compared to Hemo, we remark that Dlbs is able to
find more diversified solutions spanning a wider range of the Pareto front.
This is illustrated in Figure 2, showing the empirical attainment function of
Dlbs vs. Hemo for six illustrative instances with different problem dimen-
sions and objective correlations. Note that similar observations can be made
with other instances. Empirical attainment functions (López-Ibáñez et al.,
2010) provide the probability, estimated from several executions, that an ar-
bitrary objective vector is dominated by, or equivalent to, a solution obtained
by a single run of the algorithm. The difference between the empirical attain-
ment functions for two different algorithms enables to identify the regions of
the objective space where one algorithm performs better than another. We
can see that for the class of instances with conflicting objectives, where the
Pareto front is likely to be more stretched in the objective space, the local
strategy induced by Dlbs is able to find more points at the extreme regions
of the Pareto front. In the box-plots of Figure 3, we additionally show the
distribution of the achieved hypervolume indicator values for the same set of
instances. We can see that the gap between Dlbs and Hemo is relatively
small for the instances with a high objective correlation. Notice the relatively
high tails of the hypervolume indicator distribution obtained with Hemo.

Secondly, the previous discussion holds when the different approaches are
experimented using the same fixed number of function evaluations; but with
no considerations to execution time. This is one crucial issue in Dlbs due to
its parallel nature. Actually, it turns out that the running time of Hemo is
dramatically worse than Dlbs. Computing complexity is an important issue

19

0.3 0.4 0.5 0.6 0.7
objective 1

0.
3

0.
4

0.
5

0.
6

0.
7

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.3 0.4 0.5 0.6 0.7
objective 1

0.
3

0.
4

0.
5

0.
6

0.
7

ob
je

ct
ive

 2

HEMO

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
objective 1

0.
4

0.
5

0.
6

0.
7

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
objective 1

0.
4

0.
5

0.
6

0.
7

ob
je

ct
ive

 2

HEMO

0.5 0.55 0.6 0.65 0.7 0.75
objective 1

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.5 0.55 0.6 0.65 0.7 0.75
objective 1

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

ob
je

ct
ive

 2

HEMO

0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76
objective 1

0.
55

0.
6

0.
65

0.
7

0.
75

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76
objective 1

0.
55

0.
6

0.
65

0.
7

0.
75

ob
je

ct
ive

 2

HEMO

0.67 0.69 0.71 0.73 0.75 0.77
objective 1

0.
7

0.
72

0.
74

0.
76

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.67 0.69 0.71 0.73 0.75 0.77
objective 1

0.
7

0.
72

0.
74

0.
76

ob
je

ct
ive

 2

HEMO

0.66 0.68 0.7 0.72 0.74 0.76
objective 1

0.
7

0.
72

0.
74

0.
76

ob
je

ct
ive

 2

DLBSOD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.66 0.68 0.7 0.72 0.74 0.76
objective 1

0.
7

0.
72

0.
74

0.
76

ob
je

ct
ive

 2

HEMO

Figure 2: Comparison of DlbsOD and Hemo with respect to the empirical attainment
function. The population size is µ = 128. The problem size is N = 128 (left) and N = 256
(right), the variable interaction is K = 4 and the objective correlation is ρ = −0.7 (top),
ρ = 0.0 (middle) and ρ = +0.7 (bottom).

20

DLBSOD DLBSH PIWS HEMO

0.
01

0.
02

0.
03

0.
04

rho = −0.7

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

DLBSOD DLBSH PIWS HEMO

0.
01

0.
02

0.
03

0.
04

rho = 0.0

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

DLBSOD DLBSH PIWS HEMO

0.
01

0.
02

0.
03

0.
04

rho = 0.7

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

DLBSOD DLBSH PIWS HEMO

0.
00

0.
01

0.
02

0.
03

0.
04

rho = −0.7

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

DLBSOD DLBSH PIWS HEMO

0.
00

0.
01

0.
02

0.
03

0.
04

rho = 0.0

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

DLBSOD DLBSH PIWS HEMO

0.
00

0.
01

0.
02

0.
03

0.
04

rho = 0.7

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

Figure 3: Comparison of DlbsOD and Hemo with respect to the hypervolume difference
indicator (I−H) values (lower is better). The population size is µ = 128. The problem size is
N = 128 (top) and N = 256 (bottom), the variable interaction is K = 4 and the objective
correlation is ρ = −0.7 (left), ρ = 0.0 (center) and ρ = +0.7 (right).

which is analyzed in more details in the next section.

5.2. Running Time

In Figure 4, we show the relative execution time of our competing algo-
rithms as a function of the population size µ. Since Hemo is inherently a
sequential algorithm, we also experiment the ‘sequential’ variant of Dlbs by
fixing n = 1. This means that Dlbs is executed on a single computing node
(i.e., no parallelism is involved). Two main observations can be extracted
from Figure 4. Depending on the size of the considered instance, the execu-
tion time of Dlbs is many magnitudes lower than Hemo, even for n = 1.
This is with no surprise, since in contrast to Hemo, the Dlbs approach does
not need sophisticated global operation like non-dominated sorting and rank-
ing. In particular, this suggests that, by allowing Dlbs to consume slightly
more evaluations, inducing a very marginal increase in execution time, the

21

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

C
PU

 ti
m

e
(in

 s
ec

on
ds

)

population size (µ)

HEMO
DLBSOD(n = 1, µ)
DLBSOD(n = µ, µ)

DLBSH(n = µ, µ)
PIWS

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250
C

PU
 ti

m
e

(in
 s

ec
on

ds
)

population size (µ)

HEMO
DLBSOD(n = 1, µ)
DLBSOD(n = µ, µ)

DLBSH(n = µ, µ)
PIWS

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

C
PU

 ti
m

e
(in

 s
ec

on
ds

)

population size (µ)

HEMO
DLBSOD(n = 1, µ)
DLBSOD(n = µ, µ)

DLBSH(n = µ, µ)
PIWS

Figure 4: Influence of the population size µ ∈ {16, 32, 64, 128, 256} on the average CPU
time required by the different approaches for K = 4 and ρ = 0.0 (from left to right
N = 128, N = 256, and N = 512). Notice the log-scale.

 0.014
 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03
 0.032

 0 50 100 150 200 250 300

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

population size (µ)

DLBSOD(n = µ, µ)
DLBSH(n = µ, µ)

PIWS(n = µ, µ)

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022

 0 50 100 150 200 250 300

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

population size (µ)

DLBSOD(n = µ, µ)
DLBSH(n = µ, µ)

PIWS(n = µ, µ)

 0.009
 0.01

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018

 0 50 100 150 200 250 300

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

population size (µ)

DLBSOD(n = µ, µ)
DLBSH(n = µ, µ)

PIWS(n = µ, µ)

Figure 5: Influence of the population size µ ∈ {16, 32, 64, 128, 256} on the hypervolume
difference indicator (I−H) values (lower is better) for K = 4 and ρ = 0.0 (from left to right
N = 128, N = 256, and N = 512).

approximation found by Dlbs can be substantially improved with respect
to Hemo. We also notice that the execution time of Dlbs increases very
marginally with respect to the population size µ, compared to Piws. This
shows that the local communications and the semi-synchronized nature of
Dlbs do not have a significant impact on the parallel execution time, even
in the fine-grained granularity of n = µ.

In Figure 5, we push the latter discussion further by studying the ap-
proximation quality obtained by DlbsOD, DlbsH, and Piws as a function
of the population size µ, for three instances of different sizes and in the finest
grained scenario of n = µ. We can see that the approximation quality, in
terms of hypervolume, increases with the population size. Although the in-
crease in quality slows down with the population size, these results show that
Dlbs can handle increasing population size while providing better approxi-
mation quality and a very small increase in parallel execution time.

22

5.3. Parallel Efficiency and Computational Speed-up
In the previous sections, we were mostly concerned with the analysis

of the approximation quality of Dlbs and its relation to execution time.
However, from a parallel efficiency perspective, Dlbs exhibits interesting
intrinsic properties that we shall study following three complementary axis:
(i) the impact of the fitness function evaluation time (Figure 6), (ii) the
acceleration ratio with respect to a sequential execution (Figure 7), and (iii)
the speed-up obtained with different granularities (Figure 8).

In Figure 6, we first report the parallel efficiency obtained with Dlbs for
increasing problem sizes N ∈ {128, 256, 2048} and for n = µ = 128. The
reported values refer to the average ratio of computing time over execution
time (including communication). This reflects the proportion of time spent
by a node in processing the optimization problem and the proportion of time
that a node pays when communicating using message exchange. We observe
that the parallel efficiency increases sharply from 64% for N = 128 to up to
96% for N = 2048. This behavior relates directly to the time it takes for a
node to evaluate a solution. In fact, as N increases for the ρMNK-landscapes
we are considering, the time needed to evaluate a solution increases linearly.
In contrast, since only solution coordinates are communicated in Dlbs, the
amount of information exchanged by two neighboring nodes is independent of
the problem size and stays constant. As a consequence, Dlbs cannot suffer
any performance drop and its parallel efficiency reaches relatively high trade-
offs. This interesting property is to contrast with classical parallel evaluation
model, see e.g. (Talbi et al., 2008), where the whole solution genotypes have
to be periodically distributed over computing nodes. Therefore, Dlbs can
be highly accurate for real-world applications where the fitness evaluation
function is usually very time-consuming.

In Figure 7, we show the acceleration ratio obtained when runningDlbs for
two different problem sizes N ∈ {128, 2048} with respect to the population
size µ > 1, and using n = µ computing nodes, compared to the Dlbs version
where only a single computing node is used. More specifically, in order to
analyze the performance of Dlbs in the extreme case of the lowest gran-
ularity (n = µ) with respect to the case where no parallelism is available
at all (highest granularity of n = 1), we report the ratio of the execution
time of Dlbs(n = µ,µ) over the execution time of Dlbs(n = 1,µ). Here, it
is important to remark that the so-experimented Dlbs(µ,µ) and Dlbs(1,µ)
algorithms are exactly the same from a solution quality perspective; only
the execution time is different. As one can see in Figure 7, the acceleration

23

128 256 512 2048

0.
6

0.
7

0.
8

0.
9

problem size (N)

no
de

s
ef

fic
ie

nc
y

Figure 6: Impact of the fitness function evaluation time: Computing efficiency (average
ratio of computing time over execution time) with respect to the problem size N . Box-
plots are for µ = n = 128, λ = N , and a total number of λ ×N function evaluations per
computing node (i.e. N parallel generations per node).

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

C
PU

 ti
m

e
D

LB
S(

n,
µ

=n
) /

 C
PU

 ti
m

e
D

LB
S(

1,
µ

=n
)

number of computing nodes (n)

N=128
N=2048

linear acceleration

Figure 7: Average acceleration ratio of
Dlbs(n = µ,µ) compared toDlbs(1,µ) with
respect to the population size µ. Results are
for N ∈ {128, 2048}, λ = N , and a total
number of λ × N function evaluations per
computing node.

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

C
PU

 ti
m

e
D

LB
S(

n,
µ

=1
28

) /
 C

PU
 ti

m
e

D
LB

S(
1,
µ

=1
28

)

number of computing nodes (n)

N=128
N=2048

linear speedup

Figure 8: Impact of granularity: Average
speedup of Dlbs for a fixed population size
µ = 128 with respect to the number n of
available computing nodes. Results are for
N ∈ {128, 2048}, λ = N , and a total number
of λ×N function evaluations per computing
node.

24

ratio is linear in the population size, independently of the problem size N .
Interestingly, the slope of the acceleration (0.58 for N = 128 and 0.92 for
N = 2048) roughly corresponds to the parallel efficiency depicted before in
Figure 6. From this set of experiments, we can say that the fine-grained par-
allelization strategy of Dlbs (i.e., n = µ) scales efficiently with increasing
population sizes. Moreover, the more the problem-dependent fitness function
is time consuming, the more Dlbs is able the attain high acceleration ratios,
which is in accordance with the results of Figure 6, e.g., from 76 up to 118
acceleration using 128 computing nodes.

To study the performance of Dlbs with a variable granularity, we conduct
a new set of experiments where the population size is now fixed to µ = 128.
We then deploy Dlbs with a variable number n of computing nodes ranging
in {8, 16, 32, 64, 128}. In this scenario, the µ = 128 solutions are distributed
evenly over the n nodes, as discussed previously in Section 3.4. In Figure 8,
we report the obtained speed-ups; that is the execution time of the sequen-
tial Dlbs(1,128) divided by the execution time of the parallel Dlbs(n,128).
We can see that the scalability of Dlbs depends on the time needed for
fitness evaluation which is again in accordance with the results of Figure 6.
Overall, we can conclude that for a fixed population size, Dlbs is able to
scale efficiently with the number of available nodes. A near-linear speedup is
obtained for the largest instance, even with the configuration with the high-
est communication cost (n = µ = 128). In practice, deploying Dlbs with
a large number of computing nodes (or a large population size) can thus be
guaranteed to be very efficient independently of the chosen granularity and
without extra-design efforts.

5.4. Algorithm Dynamics and Convergence Analysis

We conclude our analysis by providing some insights into the dynamics
and the behavior of our distributed strategy.

In Figure 9, we provide qualitative observations to illustrate how the
population is cooperatively evolving closer towards a better Pareto front ap-
proximation. For instance in Figure 9 (bottom-left) — showing the average
distance of solution objectives to the origin — we see that, as distributed
computations are going on, it becomes more and more difficult to push solu-
tions further. This is obviously attributed to the fact that the more solutions
are far away from the origin, the more difficult it is for the mutation oper-
ator to produce improving solutions. The interesting observation is that,

25

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

f2

f1

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

f2

f1

t=0

t=16

t=32

t=112

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140

di
st

an
ce

 to
 o

rig
in

iteration

3π/16

π/4

5π/16

 0 20 40 60 80 100 120 140

an
gl

e

iteration

Figure 9: Dynamics of DlbsOD(n = 128, µ = 128) for K = 4, ρ = 0.0, N = 128 and
n = µ = 128. Top-left: Evolution of the nodes trajectory. Top-right: Evolution of
the neighborhood graph. Bottom-left: Evolution of the average distance (and standard
deviation) between node positions and the origin in the objective space. Bottom-right:
Evolution of node angles (the first objective being the reference). For the sake of clarity,
we did not plot all 128 points and restrict ourselves to a comprehensive subset of solutions.

whenever it becomes difficult to get closer to the Pareto front, some solu-
tions start zigzagging right and left in the objective space. As one can see in
the trajectories depicted in Figure 9 (top-left), this has the effect of making
nodes traveling parallel to the front instead of going straightly towards it.
In Figure 9 (top-right), one can further see that the line graph defining the
neighborhood in the objective space is not planar, meaning that the line is
not automatically disentangled. Actually, this is due to the fact that it is
difficult to distributively maintain the solutions sorted. This behavior may
also be influenced by the stochastic nature of the mutation operator and to
the difficulty of finding dominating solutions as nodes are becoming closer

26

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5 10 15 20

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

number of evaluations (x 105)

 DLBSOD DLBSH
 PIWS

 HEMO

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5 10 15 20

hy
pe

rv
ol

um
e

di
ffe

re
nc

e
number of evaluations (x 105)

 DLBSOD DLBSH
 PIWS

 HEMO

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5 10 15 20

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

number of evaluations (x 105)

 DLBSOD DLBSH
 PIWS

 HEMO

Figure 10: Convergence plot for the hypervolume difference indicator (I−H) values (lower is
better). The population is µ = 128. The problem size is N = 128, the variable interaction
is K = 4 and the objective correlation is ρ = −0.7 (left), ρ = 0.0 (center), and ρ = +0.7
(right).

to the Pareto front. Notice however the nice distribution of nodes in the
objective space. Although the line graph is not planar, Figure 9 (bottom-
right) reveals that the distribution of node angles is rather uniform. This
means that the distributed strategy succeeds in guiding nodes to different
and diverse regions of the objective space. Moreover, one can see that some
solutions stay stable in the sense that their angles are not moving, whereas
some others are moving smartly around some fixed values.

Figure 10 complements the above observations by reporting the evolu-
tion of the hypervolume difference indicator value achieved by Dlbs and
Piws during the execution. We can clearly see that, independently of the
type of objective correlation, Piws is quickly stuck with a relatively bad ap-
proximation set while Dlbs is able to continue improving the hypervolume
indicator. This shows that the local decisions made in Dlbs do allow solu-
tions to continue evolving dynamically through a better approximation set.

6. Conclusion

6.1. Discussion

In this paper, we presented and experimented a new cooperative dis-
tributed heuristic search approach for identifying a Pareto set approximation
for bi-objective optimization problems. In the proposed approach, the region
of the Pareto front where every solution in the population operates is adap-
tively defined according to other solutions’ positions in the objective space.
A line graph connecting solutions is assumed, so that this region evolves

27

during the search process. Two localized fitness functions have been pro-
posed. One is based on a weighted-sum aggregation, while the other consists
in improving the hypervolume in-between the neighboring node positions.
As a consequence, only a minimum local information is exchanged between
solutions.

Our distributed algorithmic scheme has been successfully implemented
and experimented throughly using up to 256 computing nodes and ρMNK-
landscapes of different structures and sizes. First of all, our experiments
confirmed that the algorithm dynamics behave as expected, the localized
strategies on each node being able to improve the overall quality of the Pareto
set approximation. On the one hand, when compared against a fully inde-
pendent parallel approach, the information communicated between nodes
lead to a very marginal overhead in terms of computational time, whereas
clear improvements were shown in terms of approximation quality. On the
other hand, even with a very basic single solution-based randomized hill-
climbing algorithm performed on every node, competitive results were ob-
tained against a fully centralized sequential evolutionary multi-objective op-
timization algorithm. We also studied the parallel properties of our scheme
by deploying it in different computing configurations and with different gran-
ularities. Overall, we find that our approach is highly efficient; in particular
by reaching near-linear acceleration and parallel speed-up.

6.2. Future Works

Although our approach can potentially be generalized to more than two
objective functions by introducing a multidimensional grid instead of the line
graph, and by adapting the localized fitness functions accordingly, it is still
an open question to know how it would perform against state-of-the-art par-
allel and sequential evolutionary multi-objective optimization algorithms for
problems with three objective functions and more. Furthermore, extending
the experimental analysis conducted in the paper to other multi-objective
optimization problems would allow a better understanding of the pros and
cons of the proposed algorithmic scheme.

We believe that many other extensions of our approach are also possible
and would provide further gains in performance. One of them consists in
designing advanced strategies for generating the candidate set and select-
ing the ‘best’ performing candidate solution. For instance, one can imagine
other localized strategies based on, e.g. some localized fitness function vari-
ants, some adaptive strategies for selecting a new current solution, or some

28

recombination operators for generating the mating pool. This can then be
plugged within our scheme as far as the decisions are made on the basis of
the local information exchanged with neighboring nodes. Notice however
that using recombination operators requires to communicate incumbent so-
lutions, and not only node positions. This would result in an increase of
communication cost, especially when dealing with heavy solution representa-
tions. Another extension would be to design a collaborative and decentralized
archiving strategy, at each computing node, in order to avoid loosing non-
dominated solutions as the distributed search is going on in parallel. In fact,
our distributed scheme is oblivious, meaning that we do not remember the
set of previously visited solutions. We believe that in case a node is trapped
in a local optima or it is dominated, the information learned during the col-
laborative search process can highly serve for diversification purposes and
would enable to reach better regions of the objective space. In the same
spirit, our approach does not guarantee that the line graph is fully planar;
this is because of the very local view that each solution owns on the popu-
lation. A possible extension would be to try to sort the solutions from the
population at every iteration, and to experiment the gain one may obtain by
doing so. Deploying this idea is obviously not straightforward without loss in
execution time, since nodes would have to communicate more information.
At last, compared to our semi-synchronized distributed implementation of
Dlbs, one may ask whether thinking about a fully asynchronous variant can
enable: (i) to adapt the local computations according to the power of the
possibly heterogeneous parallel computing units, and (ii) to distribute the
load evenly for those solutions being in relatively more difficult regions of the
Pareto front, e.g. when some sub-problems require more computing effort.

Acknowledgements. The authors would like to gratefully acknowledge the anony-
mous referees for their valuable feedback that highly contributed to improve the
quality of the paper.

References

Aguirre, H. E., Tanaka, K., 2007. Working principles, behavior, and performance
of MOEAs on MNK-landscapes. European Journal of Operational Research
181 (3), 1670–1690.

Aneja, Y. P., Nair, K. P. K., 1979. Bicriteria transportation problem. Management
Science 25 (1), 73–78.

29

Bader, J., Zitzler, E., 2011. HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19 (1), 45–76.

Beume, N., Naujoks, B., Emmerich, M., 2007. SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Re-
search 181 (3), 1653–1669.

Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003. PISA — A platform and
programming language independent interface for search algorithms. In: Interna-
tional Conference on Evolutionary Multi-Criterion Optimization (EMO 2003).
Vol. 2632 of Lecture Notes in Computer Science. Springer, Faro, Portugal, pp.
494–508.

Branke, J., Schmeck, H., Deb, K., Reddy, M., 2004. Parallelizing multi-objective
evolutionary algorithms: Cone separation. In: IEEE Congress on Evolutionary
Computation (CEC 2004). Portland, USA, pp. 1952–1957.

Bui, L. T., Abbass, H. A., Essam, D., 2009. Local models — An approach to
distributed multi-objective optimization. Computational Optimization and Ap-
plications 42 (1), 105–139.

Coello Coello, C. A., Lamont, G. B., Van Veldhuizen, D. A., 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd Edition. Springer, New
York, USA.

Coello Coello, C. A., Sierra, M. R., 2004. A study of the parallelization of a co-
evolutionary multi-objective evolutionary algorithm. In: Mexican International
Conference on Artificial Intelligence (MICAI 2004). Vol. 2972 of Lecture Notes
in Computer Science. Springer, Mexico City, pp. 688–697.

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester, UK.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2002. A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6 (2), 182–197.

Deb, K., Zope, P., Jain, A., 2003. Distributed computing of Pareto-optimal solu-
tions with evolutionary algorithms. In: International Conference on Evolution-
ary Multi-Criterion Optimization (EMO 2003). Vol. 2632 of Lecture Notes in
Computer Science. Springer, Faro, Portugal, pp. 534–549.

30

Durillo, J., Zhang, Q., Nebro, A., Alba, E., 2011. Distribution of computational
effort in parallel MOEA/D. In: International Conference on Learning and Intel-
ligent Optimization (LION 5). Vol. 6683 of Lecture Notes in Computer Science.
Springer, Rome, Italy, pp. 488–502.

Durillo, J. J., Nebro, A. J., Luna, F., Alba, E., 2008. A study of master-slave ap-
proaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel
and Distributed Processing (IPDPS 2008). Miami, USA, pp. 1–8.

Ehrgott, M., 2005. Multicriteria optimization, 2nd Edition. Springer, Berlin, Ger-
many.

Figueira, J. R., Liefooghe, A., Talbi, E.-G., Wierzbicki, A. P., 2010. A parallel
multiple reference point approach for multi-objective optimization. European
Journal of Operational Research 205 (2), 390–400.

Hiroyasu, T., Yoshii, K., Miki, M., 2007. Discussion of parallel model of multi-
objective genetic algorithms on heterogeneous computational resources. In: Ge-
netic and Evolutionary Computation Conference (GECCO 2007). ACM, Lon-
don, UK, pp. 904–904.

Humeau, J., Liefooghe, A., Talbi, E.-G., Verel, S., 2013. ParadisEO-MO: From fit-
ness landscape analysis to efficient local search algorithms. Journal of Heuristics
19 (6), 881–915.

Jozefowiez, N., Semet, F., Talbi, E.-G., 2002. Parallel and hybrid models for multi-
objective optimization: Application to the vehicle routing problem. In: Inter-
national Conference on Parallel Problem Solving from Nature (PPSN VII). Vol.
2439 of Lecture Notes in Computer Science. Springer, Granada, Spain, pp. 271–
280.

Kauffman, S. A., 1993. The Origins of Order. Oxford University Press, New York,
USA.

Knowles, J., Thiele, L., Zitzler, E., 2006. A tutorial on the performance assessment
of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland.

Liefooghe, A., Jourdan, L., Talbi, E.-G., 2011. A software framework based
on a conceptual unified model for evolutionary multiobjective optimization:
ParadisEO-MOEO. European Journal of Operational Research 209 (2), 104–
112.

31

López-Ibáñez, M., Paquete, L., Stützle, T., 2010. Exploratory analysis of stochastic
local search algorithms in biobjective optimization. In: Experimental Methods
for the Analysis of Optimization Algorithms. Springer, Ch. 9, pp. 209–222.

Melab, N., Talbi, E.-G., Cahon, S., 2006. On parallel evolutionary algorithms
on the computational grid. In: Parallel Evolutionary Computations. Vol. 22 of
Studies in Computational Intelligence. Springer, pp. 117–132.

Mostaghim, S., 2010. Parallel multi-objective optimization using self-organized
heterogeneous resources. In: Parallel and Distributed Computational Intelli-
gence. Vol. 269 of Studies in Computational Intelligence. Springer, pp. 165–179.

Mostaghim, S., Branke, J., Schmeck, H., 2007. Multi-objective particle swarm
optimization on computer grids. In: Genetic and Evolutionary Computation
Conference (GECCO 2007). ACM, London, UK, pp. 869–875.

Nebro, A. J., Durillo, J. J., 2010. A study of the parallelization of the multi-
objective metaheuristic MOEA/D. In: International Conference on Learning
and Intelligent Optimization (LION 4). Vol. 6073 of Lecture Notes in Computer
Science. Springer, Venice, Italy, pp. 303–317.

Peleg, D., 2000. Distributed computing: A locality-sensitive approach. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J., 2014. MOEA/D with adaptive
weight adjustment. Evolutionary Computation 22 (2), 231–264.

Streichert, F., Ulmer, H., Zell, A., 2005. Parallelization of multi-objective evolu-
tionary algorithms using clustering algorithms. In: International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2005). Vol. 3410 of Lecture
Notes in Computer Science. Springer, Guanajuato, Mexico, pp. 92–107.

Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello,
C. A., 2008. Parallel approaches for multiobjective optimization. In: Multiob-
jective Optimization – Interactive and Evolutionary Approaches. Vol. 5252 of
Lecture Notes in Computer Science. Springer, pp. 349–372.

Tan, K., Yang, Y. J., Goh, C., 2006. A distributed cooperative coevolutionary
algorithm for multiobjective optimization. IEEE Transactions on Evolutionary
Computation 10 (5), 527–549.

Tomassini, M., 2005. Spatially Structured Evolutionary Algorithms: Artificial Evo-
lution in Space and Time. Natural Computing Series. Springer, Berlin, Germany.

32

Van Veldhuizen, D. A., Zydallis, J. B., Lamont, G. B., 2003. Considerations in
engineering parallel multiobjective evolutionary algorithms. IEEE Transactions
on Evolutionary Computation 7 (2), 144–173.

Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C., 2013. On the structure of mul-
tiobjective combinatorial search space: MNK-landscapes with correlated objec-
tives. European Journal of Operational Research 227 (2), 331–342.

Zhang, Q., Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation 11 (6),
712–731.

Zhu, Z.-Y., Leung, K.-S., 2002. Asynchronous self-adjustable island genetic algo-
rithm for multi-objective optimization problems. In: IEEE World on Congress
on Computational Intelligence (WCCI 2002). Honolulu, USA, pp. 837–842.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: A compara-
tive case study and the strength pareto approach. IEEE Transactions on Evo-
lutionary Computation 3 (4), 257–271.

Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C. M., Grunert da Fonseca, V.,
2003. Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on Evolutionary Computation 7 (2), 117–132.

33

