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Radix-2r

Arithmetic for Multiplication by a Constant.

It was shown in [START_REF] Reitwiesner | Binary Arithmetic[END_REF] that the number of additions for an N-bit constant in CSD is bounded by (N+1)/2-1 and tends asymptotically to an average value of (N/3)-8/9, which yields 33% saving over the naive add-and-shift approach. Pinch [START_REF] Pinch | Asymptotic Upper Bound for Multiplier Design[END_REF] was the first to prove that the multiplication by a constant is sublinear: O(N/(log(N)) α ) with α<1, where log is the natural logarithm (Napierian). Based on the DBNS arithmetic [START_REF] Dimitrov | Theory and Applications of the Double-Base Number System[END_REF], Dimitrov [START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF] showed that the condition α<1 in Pinch's complexity is not necessary, decreasing therefore the upper limit to O(N/log(N)). Even more, in 2011, Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] estimated the hidden constant in the big-O notation as being less than 2. Since then, 2.N/log(N) is considered as the lowest analytic upper-bound estimated so far. On the other hand, according to [START_REF] Lefèvre | Multiplication by an Integer Constant[END_REF], Ross Donelly was the first to determine in 2000 via an exhaustive search that 699829 is the smallest value (20 bits) that can not be obtained with 5 adders or less. Thong [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF] did better with the exact BIGE algorithm as he conjectured (no proof) that 7 additions are enough up to 32 bits. Though BIGE guarantees optimality via an exhaustive search, it requires an exponential runtime and storage with respect to N [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF]. Nevertheless, with BIGE we can observe how much any heuristic is far from optimality up to 32 bits.

The main purpose of this work is the minimization of the total number of additions. Based on the radix-2 r arithmetic [START_REF] Homayoon | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] [18], a new digit recoding is proposed with an upper limit equal to ( )   ) . This upper-bound is lower than 2.N/log(N) for any value of N. The method described in this paper is actually a variant of Pinch's method: instead of splitting the binary representation into blocks of fixed weight, it is split into blocks of fixed lengths (r).

The paper is organized as follows. Section I outlines the need of addition-cost complexity for large constant bit-widths. Section II introduces the radix-2 r recoding for multiplication by an N-bit constant, while Section III determines its upperbound in number of additions and compares the results to existing heuristics. Section IV presents an illustrative example. Finally, Section V gives some concluding remarks and suggestions for future work.

II. RADIX-2 r FOR MULTIPLICATION BY AN N-BIT CONSTANT

A non-negative N-bit constant C is expressed in radix-2 r as:

( ( ) ) rj r rj r r rj r r N j rj rj rj rj c c c c c c C 2 2 2 2 2 2 1 1 2 2 1 / 1 0 2 2 1 1 0 1 × - + ⋅ ⋅ ⋅ + + + + = - + - - + - - + = + + - ∑ ( ) ∑ - + = × = 1 / 1 0 2 r N j rj j Q , ( 1 
)
where 0 constant C is split into (N+1)/r two's complement slices ( j Q ), each of r bit length because it goes from 2 0 to 2 r-1 . However, j Q needs an additional bit (c rj-1 ) equal to the most significant bit of the previous digit ( 1 j Q ), which could be seen as some form of carry due to the use of signed digits; it comes from the following formula:

1 = = - N c c and
( ) . c c c r rj r rj j r r rj rj r rj r 1 1 1 1 1 1 2 2 2 2 - + - + + - + - + - × = × + × -
This formula expresses the transformation of the conventional radix-2 r representation to the signed-digit radix-2 r one.

A digit-set ( ) r DS 2 corresponds to eq. ( 1), such as 

( ) { } 1 1 1 1 2 1 2 1 0 1 1 2 2 2 - - - - - - + - - = ∈ r r r r
( ) rj r N j j Q X X C 2 1 / 1 0 × × = × ∑ - + = . (2)
The sign of the Q j term is given by the c rj+r-1 bit, and

j k j m Q j × = 2 , with { } 1 2 1 0 - ∈ r , ... , , , k j and ( ) { } 0 2 U r j OM m ∈
, where

( ) { } 1 2 ..., , 5 , 3 , 1 2 1 - = - r r OM . ( ) r OM 2
is the set of odd positive digits in radix-2 r recoding, with

( ) 2 2 2 - = r r OM . To 0 = j Q corresponds m j =0 .
Finally, the product can be expressed as follows:

( ) ( ) ( ) j r rj k rj r N j j c X m X C + - + = × × × - = × ∑ - + 2 1 1 / 1 0 1 . (3)
Unlike the multiplication by a variable (Y×X) where the entire set of partial-products (m j ×X) must be precomputed, only a subset is needed in the multiplication by a constant (C×X). In fact, the number of partial-products is equal to the number of different values m j induced by the encoding process of the (N+1)/r slices (terms Q j ). Therefore, the generation of partial products (PP) consists first, if m j ≠0, in computing the PP m j ×X if it has not been precomputed before. It is then submitted to a hardwired left-shift of rj+k j positions, and finally, conditionally negated ( )

1 1 - + - r rj c
depending on the sign bit c rj+r-1 of Q j . An illustrative example is given in Section IV.

III. MAXIMUM NUMBER OF ADDITIONS FOR AN N-BIT CONSTANT

On the one hand, there are (N+1)/r iterations in eq. ( 3). Each iteration generates one PP. Thus, the maximal number of PP is (N+1)/r, which requires a maximum of N pp =(N+1)/r-1 additions. On the other hand, a maximum of

1 2 2 - - r
nontrivial PP {3×X, 5×X, 7×X, …, (2 r-1 -1)×X} can be invoked during the PP generation process. They are built using the binary method, from the least significant bit to the most significant bit. That is, the m j elements 3, 5, 7, ..., 2 r-1 -1 are built one after the other, each time by using a single addition between an element that has already been built and a power of two. This process is summarized by the following recurrence relation:

d m p j + = 2
, where p≤r-2 because m j ≤ 2 r-1 -1, and 0 < d < 2 p . Theorem 1. In radix-2 r , the precomputation of the entire set of non-trivial PP {3×X, 5×X, 7×X,…,(2 r-1 -1)×X} yields an adder-cost and an adder-depth of 2 r-2 -1 and r-2, respectively. Proof. Since each new non-trivial digit requires only one addition (recurrence relation), the adder-cost is the number of non-trivial digits:

( )

1 2 1 2 2 - = - = - r r om OM N .
As the binary method is used, the adder-depth is deduced from the maximum number of non-zero bits in the binary representation of a digit: (r-1)-1=r-2. Since there are (N+1)/r PP, the maximum adder-depth (Ath) in cascaded adders is:

Ath(r)       - + + =       - + - + = 3 1 2 1 1 r r N r r N .
We illustrate the construction process of non-trivial PP with the following radix-2 6 Fig. 1 provides all necessary details for hardware implementation. It now becomes clear that eq. ( 3) involves only additions, subtractions, and left-shifts. Note that rightshifts are not allowed since r, j, and k j are non-negative integers.

= + = + = + = + = + = U U U } { , 21 5 
Consequently, the total number of additions required by radix-2 r is equal to:

Upb(r)       - + + = + = - 2 2 1 2 r om pp r N N N . Upb(r) is minimal for ( ) ( ) ) 2 /log( ) 2 log( 1 W 2 ⋅ + ⋅ = N r
, where W is the Lambert Function. The minimum is obtained for one of the two enclosing integers of r (since the upper limit is a convex function of r), and both must be tested. Table I gives the values of r that lead to the minimum number of additions for N ranging from 8 to 8192. It also gives the corresponding adder-depths. Fig. 2 depicts the upper-bounds in number of additions for CSD, DBNS, and RADIX-2 r . CSD Avg = (N/3)-8/9 and CSD Upb= ( ) As for the average number of additions (Avg), it has been exhaustively calculated for values of C varying from 0 to 2 N -1, for N=8, 16, 24, and 32. But for N=64, we have calculated Avg using 10 5 , 10 6 , 10 9 and 10 10 uniformly distributed random values of C. While the difference between the four obtained results is insignificant (<10 -3 ), the value Avg oscillates around 15.7165 additions. Results are reported in Table II. For N=64, RADIX-2 r uses 23.12 % less additions than CSD. This gain seems to grow linearly for low values of N.

  1 2 / 1 - + N .
Regarding DBNS, Dimitrov [START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF] calculated Avg and Upb from 10 5 uniformly distributed random constants, for 32 and 64 bits only (Table III). Note that DBNS Upb will be higher if the worst cases are not attained by the pattern of 10 5 constants.

We have also compared RADIX-2 r to some non-recoding heuristics (CSE and DAG) based on programs and numeric data kindly provided by Lefèvre and Voronenko. While Fig. 3 shows lower values of Avg for non-recoding heuristics as expected due to a larger exploration of the solution space, Table IV exhibits rather a higher value of Upb for Bernstein's heuristic. Significant conclusion: a lower Avg does not guarantee a lower Upb.

Another performance indicator of the recoding is the smallest value that requires q additions, for q varying from 1 to the upper-bound of the recoding. Table V summarizes this information for a 32-bit constant. Note that starting from q=7, higher values are given by RADIX-2 r compared to CSD.

IV. ILLUSTRATIVE EXAMPLE

The product 10599×X is first calculated in CSD, DBNS, and RADIX-2 r . Let us note that (10599) 10 =(10100101100111) 2 . P CSD =(X×2 13 )+( X×2 11 )+( X×2 9 )-(X×2 7 )-(X×2 5 )+(X×2 3 )-X. P DBNS =(( X 1 ×2 1 )+ X 1 )+ (X×2 13 )+ (X×2 3 )-X , with X 1 =(( X 0 ×2 1 )+X 0 )+( X×2 5 ) and X 0 =( X×2 8 ) [START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF].

In order to express the product in P RADIX , a two's complement representation of (10599) 10 is necessary, which is (010100101100111) 2 . Thus, in two's complement notation, the constant size becomes N+1 (14+1=15 for 10599).

X + 3×X X + 2 2 ×X 2 2 ×X 5×X 7×X + 3×X X + 2 3 ×X 2 3 ×X 9×X 11×X + + 2 3 ×X 2 3 ×X 13×X 15×X 5×X 7×X + 2 1 ×X 3×X + 3×X X + 2 4 ×X 2 4 ×X 17×X 19×X + + 2 4 ×X 2 4 ×X 21×X 23×X 5×X 7×X + 11×X + 2 4 ×X 2 4 ×X 25×X 27×X + + 2 4 ×X 2 4 ×X 29×X 31×X 13×X 15×X 9×X
Step #1

Step #2

Step #3

Step #4 Fig. 1. Sequential order of computation of the entire set of partial-products needed by radix-2 6 .

For radix-2 6 , a maximum of 2 715827883 ---*: Lefèvre calculated the values for q up to 9. This means that the common subpattern algorithm (CSP) exhibits an Upb ≥ 9 among all 32-bit constants. +: This is the sole value which has not been confirmed by Lefèvre's exhaustive algorithm. It has been found only by Donelly [START_REF] Lefèvre | Multiplication by an Integer Constant[END_REF], using leftshifts exclusively. If "right-shifts" are allowed, the value is strictly higher since the BIGE solution using right-shifts gives 6 additions, as follows: 5 = (2 2 )+1; 639 = (5×2 7 )-1; 317 = (639-5)×2 -1 ; 5194045 = (317×2 14 )+317; 171393341 = (317×2 19 )+5194045; 171398453 = (639×2 3 )+171393341. Thong [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF] conjectured that 7 additions are enough up to 32 bits, allowing right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2 r heuristic that 11 additions are sufficient up to 32 bits, using left-shifts only. To N=14 corresponds r=3 (see Upb formula). For C=10599, eq. ( 1) and (3) become respectively: . Fig. 4 depicts the five terms Q j . To determine the unknown values c 3j+2 , m j , and k j , the radix-2 3 look-up table (Table VI) is indexed by the terms Q j . Referring to Table VI, the triplets (c 3j+2 , m j , k j ) corresponding to Q 0 , Q 1 , Q 2 , Q 3 , and Q 4 are (1,1,0), (1,3,0), (1,1,1), [START_REF] Avizienis | Signed-digit number representation for fast parallel arithmetic[END_REF][START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF]0), and (0,3,0), respectively. The recoding of C=10599 involves the precomputation of the PP 3×X. Consequently, we can write:

∑ = × =
P RADIX = (3×X)×2 12 -(3×X)×2 9 -(1×X)×2 7 -(3×X)×2 3 -(1×X)
= (X 0 ×2 12 ) -(X 0 ×2 9 ) -(X×2 7 ) -(X 0 ×2 3 ) -X, with X 0 = (X×2)+X .

It has to be noted that for C=10599, P CSD and P DBNS require both 6 additions, while P RADIX requires 5. The naive shift-andadd approach would have required 7 additions. We assume that addition and subtraction have the same area/speed cost, and that shift is costless since it can be realized without any gates, i.e. just by using hard wiring.

Simplifications in eq. ( 3) are possible in case two consecutive terms Q j and Q j+1 with opposite signs exhibit pairs (m j , k j ) of the form (1, r-1) and (1, 0), respectively. This is illustrated by the two following possibilities:

⋅ ⋅ ⋅ ± × + ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± × - × + ⋅ ⋅ ⋅ - + - + + 1) (r rj 1) (r rj 1) r(j 2 X 2 X 2 X ⋅ ⋅ ⋅ ± × - ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± × + × - ⋅ ⋅ ⋅ - + - + + 1) (r rj 1) (r rj 1) r(j 2 X 2 X 2 X
Another interesting idea is to include redundancy in the terms Q j of eq. ( 1). These two tricks will decrease the average number of additions in RADIX-2 r (Table II, III, and Fig. 3).

In addition to higher compression capabilities of RADIX-2 r compared to CSD and DBNS, its runtime complexity is linearly proportional to N as shown by eq. ( 1). Moreover the required memory space is very small (for a 8192-bit constant corresponds a look-up table of 2 9+1 =1024 entries). These two features make RADIX-2 r very useful for huge constants. 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 

Q 0 = -1 Q 1 = -3 Q 2 = -1×2 1 Q 3 = -3 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 c -1 C 15+1 bits Q j 3+1 bits ( ) 10 
0 3 1 6 2 9 3 12 4 10599 2 2 2 2 = + × + × + × + × = Q Q Q Q Q C c2, c5, c8, c11, c14 are sign bits.
Q 4 =3 TABLE VI RADIX-2 3 LOOK-UP TABLE Qj c3j+2 c3j+1 c3j c3j-1 mj kj 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 3 0 0 1 1 0 3 0 0 1 1 1 1 2 1 0 0 0 1 2 1 0 0 1 3 0 1 0 1 0 3 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 Note that for radix-2 3 , { } 2 , 1 , 0 ∈ j k and { } 3 , 1 , 0 ∈ j m .
Since the introduction of H(k) [START_REF] Dempster | Using Signed-Digit Representations to Design Single Integer Multipliers Using Subexpression Elimination[END_REF] in 2004, CSE heuristics have outperformed DAGs at SCM [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF]. This was achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, the search space of CSE can be expanded considering RADIX-2 r recoding instead of SD representation. For such a goal (SCM/MCM), Lefèvre's CSP heuristic [START_REF] Lefèvre | Multiplication by an Integer Constant[END_REF] stands as the best CSE candidate for its lower computational complexity O(N 3 ) in comparison to its CSE counterparts [START_REF] Voronenko | Multiplierless Multiple Constant Multiplication[END_REF].

Many conversion techniques from unsigned or two's complement number to its CSD form are proposed to reduce the hardware complexity and increase the speed of variable multipliers [START_REF] Guo | A Novel Fast Canonical-Signed-Digit Conversion for Multiplication[END_REF]. Based on RADIX-2 r , we proposed several conversion techniques and determined the most efficient one. For more details on our extensive work on RADIX-2 r multiplication problem, reader is referred to [START_REF] Oudjida | A New High Radix-2 r (r ≥ 8) Multibit Recoding Algorithm for Large Operand Size (N ≥ 32) Multipliers[END_REF] [23] [START_REF] Oudjida | New High-Speed and Low-Power Radix-2 r Multiplication Algorithms[END_REF].

V. CONCLUSION AND FUTURE WORK

Based on radix-2 r arithmetic, we have developed a new linear-time recoding (RADIX-2 r ) accompanied with its upperbound complexity. The latter is the lowest upper-bound known so far for the multiplication by a constant. While the bound is for a minimal set of operations (additions, subtractions, and left-shifts), it remains valid if any other operation (such as right-shifts) is allowed.

Not only RADIX-2 r achieves better compression ratio than DBNS and CSD, which yields more speed and less area and power consumption, but also stands as a practical alternative to non-recoding heuristics for large constant bit-widths. Further improvements of RADIX-2 r are possible using redundancy in the recoding.

Our current work deals with exact analytic expressions of the average number of additions as well as the minimal adderdepth of RADIX-2 r , which are still to be determined.
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TABLE I UPPER

 I 

										r	
	N	8 16 32 64 128 256 512 1024 2048 4096	8192
	r	3 3	4	5	5	6	6	7	8	8	9
	Upb(r) 3 6 11 19 32 57 100 177 319	575	1037
	Ath(r) 3 6 10 15 28 46 89	151 262	518	917

-BOUND (Upb), ADDER-DEPTH (ATH), AND r VALUES FOR A NON-NEGATIVE N-BIT CONSTANT USING RADIX-2 Fig. 2. Upb comparison for an N-bit constant.

  example:

	OM	( ) { 2 6 = { } { , 3 , 1 2 5 , 1 1	, 7 1	, 13 2 } { , 11 3 , 9 2	, 17 2 , 5 , 15 1 2	, 19 3	, 23 } { , 21 2 7 3	, 25 1	} 31 11 , 3 , 29 3 2 , 27 , 9

  21×X , 23×X , 25×X , 27×X , 29×X , 31×X }.

	3 13 + = = + 4 Thus, the PP (m j ×X) corresponding to 2 , 17 1 2 15 7 2 , 13 5 2 4 3 3 = + = + = U + 2 , 27 11 2 , 25 9 2 , 23 7 2 4 4 4 4 = + = + = +	2 2 4 4 OM , 19 + 15 = , 29 = + ( ) 6 2	} 31 are .
	subsequently calculated in the following order (6-2=4 steps):
	{3×X} ; {5×X ,7×X } ; {9×X ,11×X ,13×X ,15×X } ;	
	{17×X ,19×X ,		

TABLE II RADIX

 II -2 r VERSUS CSD: AVERAGE NUMBER OF ADDITIONS (Avg)

		AND UPPER-BOUND (Upb)		
	Constant	CSD		RADIX-2 r	Saving
	Bit-width N	Avg	Upb	Avg	Upb	(Avg,%)
	8	1.7882	4	1.8645	3	-4.2668 +
	16	4.4445	8	4.5127	6	-1.5344 +
	24	7.1111	12	6.7994	9	4.3832
	32	9.7777	16	8.9627	11	8.3352
	64	20.4444	32	15.7165*	19	23.1256

*: Obtained from 10 10 uniformly distributed random values of C. +: RADIX-2 r average is higher than CSD's.
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