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ABSTRACT

In this paper we propose two iterative algorithms for the blind
separation of convolutive mixtures of sparse signals. The first
one, called Iterative Sparse Blind Separation (ISBS), mini-
mizes a sparsity cost function using an approximate Newton
technique. The second algorithm, referred to as Givens-based
Sparse Blind Separation (GSBS) computes the separation ma-
trix as a product of a whitening matrix and a unitary matrix
estimated, via a Jacobi-like process, as the product of Givens
rotations which minimize the sparsity cost function. The two
sparsity based algorithms show significantly improved perfor-
mance with respect to the time coherence based SOBI algo-
rithm as illustrated by the simulation results and comparative
study provided at the end of the paper.

Index Terms— Sparsity, Approximate Newton Tech-
nique, Givens Rotations, BSS of EMG Signals.

1. INTRODUCTION

A lot of signals present a sparse nature in the time domain or
in another transformed domain. This property has been ex-
ploited in order to blindly separate a mixture of sources shar-
ing this property. More precisely, recent works have demon-
strated that by assuming that the sources can be represented
sparsely in a given domain, Blind Source Separation (BSS) of
a mixture of these sources is made possible by restoring this
property [5, 6, 8]. Also, sources sparsity has been exploited
for the nonnegative matrix factorization [5], channel decon-
volution and sparse component analysis [7].

The main benefit of such sparse representation based ap-
proaches is the separation of a number of sources exceeding
the number of observed mixtures (underdetermined BSS) [6]
as for single-channel source separation [5]. Note Also that
the use of sparsity can greatly improve the separation quality
in overdetermined cases [1, 2].

Herein, we consider the blind separation of convolutive
mixtures of sparse signals. Two different methods are intro-
duced for minimizing a sparsity-based cost function. The first
technique is an extension to the convolutive mixtures of the
ISBS algorithm presented in [1, 2]. This algorithm has been
used for the separation of instantaneous mixtures of audio sig-
nals based on their sparsity in the time domain [1] and the

time-frequency domain [2]. The second technique proceeds
to the minimization of the sparsity-based cost function using
Givens rotations. The proposed algorithm has the advantage
of fast convergence and good separation quality for a moder-
ate computational cost. The first part of the paper is dedicated
to the algorithms’ development while the second part is de-
voted to the discussion of experimental results in the context
of EMG (Electromyogram) source separation.

2. PROBLEM FORMULATION

In the context of multi-user MIMO systems, the convolutive
mixtures x(t) of d transmitted sources s(t) received through
an m-antenna array is modeled as follows:

x(t) =

L−1∑
l=0

Hl s(t− l) + n(t)
def
= [H(z)]s(t) + n(t) (1)

where x(t) = [x1(t) : xm(t)]T , s(t) = [s1(t) : sd(t)]
T is the

vector of source signals assumed sparse in the time domain,
n(t) = [n1(t) : nm(t)]T is an additive spatially and tempo-
rally white noise independent from s(t) and with covariance
σ2Im, and H(z) =

∑L−1
l=0 Hlz

−l is the m× d mixing matrix
filter assumed full column rank for all z.

Blind Source Separation aims to recover the unknown
sources from observed mixtures, relying only on some as-
sumptions on the statistical or structural properties of the
original sources. This is equivalent to finding a d×m demix-
ing matrix filter W (z) =

∑
rWrz

−r which output is the
estimated source vector (up to a diagonal matrix filter [1]):

ŝ(t) = [W (z)]x(t) =
∑
r

Wr x(t− r) (2)

It has been shown in [3] that the convolutive mixture can be
rewritten as an approximate instantaneous one by restructur-
ing the model in (1) as follows:

x(t) = Hs(t) + n(t) (3)

x(t) = [x(t)T , · · · ,x(t−K+1)T ]T (K ≥ d(L−1)/(m−d)
is a window parameter), and s(t) = [s(t)T , · · · , s(t−K−L+



1)T ]T . The (mK)× d(K + L− 1) matrix H is given by:

H =

 H0 · · · HL−1 0
. . . . . .

0 H0 · · · HL−1


By stacking T samples of the restructured data vector x(t) in
one matrix X = [x(1) : x(T )], the model (3) becomes:

X = HS + N (4)

where S = [s(1) : s(T )]. After the above transformation,
recovering the unknown sources S from the observed data X,
is equivalent to finding a separation matrix W which output is
the estimated source vector (up to inherent ambiguities), i.e.:

Z = WX = Ŝ (5)

Next, we present two methods for recovering the unknown
sources by restoring their sparse nature which is measured by
their lp norm where 0 ≤ p < 2. The following cost function
is used for quantifying the sparsity of the data:

Gp(Z) = 1
m

∑m
i=1 (Jp (zi))

1
p

Jp(zi) = 1
T

∑T
j=1 |zij |

p (6)

where zij is the (i, j)th entry of the output data matrix Z.

3. ITERATIVE SPARSE BLIND SEPARATION
ALGORITHM (ISBS)

The Iterative Sparse Blind Separation (ISBS) algorithm [1]
has been proposed for the separation of instantaneous mix-
tures of audio signals characterized by their sparse nature in
the time domain. It has been extended to the convolutive
mixtures [2] by reformulating the data model in the time-
frequency domain. Herein, we propose to use the ISBS for
the separation of convolutive mixtures by rearranging them
into instantaneous mixtures as done in (3). The ISBS algo-
rithm computes a separating matrix W as the minimizer of
the sparsity criterion Gp and updated iteratively according to:

Z(k) = (Id + µ(k−1))Z(k−1)

W(k) = (Id + µ(k−1))W(k−1) (7)

The ’gradient’ matrix µ(k) is determined from a local lin-
earization of Gp. This optimization tool is an approximate
Newton technique where the matrix µ(k) can be very simply
computed without any Hessian inversion as done in the New-
ton method. A first order Taylor expansion of (6) leads to:

(8)Gp(Z(k)) = Gp(Z(k−1))+
1

m
R
{
Tr
(
µ(k−1)Q(k−1)

)}
where R stands for the real part of a complex number,

Q
(k−1)
qi = p

T

∑T
j=1

∣∣∣z(k−1)
ij

∣∣∣p−1

e−Φ
(k−1)
ij z

(k−1)
qj with Φ

(k−1)
ij

is the argument of the complex number z(k−1)
ij . Using a gra-

dient technique, the solution µ(k−1) that minimizes (8) is:

µ(k−1) = −λQ(k−1) H . (9)

λ > 0 being a chosen step size parameter. Note that the ISBS
algorithm is applied on the raw data without whitening stage.
However, a whitening step represents a good starting point
and prevents the algorithm from convergence to local minima.

4. GIVENS-BASED SPARSE BLIND SEPARATION
ALGORITHM (GSBS)

We propose herein a new algorithm, referred to as GSBS
based on Givens rotations for the minimization of the sparsity
criterion. Its first step is a data whitening where the whitening
matrix B is computed by using the classical eigendecompo-
sition of the covariance matrix of the received signal Rx (i.e.
the inverse square root of the data covariance matrix [4]). The
whitened signal can then be written as:

Y = BX ≈ UHS + noise (10)

where U = AHBH is a d× d unitary matrix. From (10), the
separator can simply be expressed as: W = UB, which, in
the noiseless case, results in Z = WX = UBX = S.

We recall that any d × d unitary matrix U can theoreti-
cally be decomposed into a product of d(d− 1)/2 elementary
Givens rotations (a sweep of rotations) [4]. However, min-
imizing the sparsity criterion in (6) w.r.t. U when using
exactly d(d − 1)/2 Givens rotations is a complex multi-
dimensional optimization problem and, to the best of our
knowledge, there is no simple solution or efficient algo-
rithm to solve it. Hence, similarly to the Jacobi-like ap-
proaches, several sweeps are used in order to avoid this
multi-dimensional optimization (i.e. only the parameters of
the current rotation matrix are estimated at each step).

We propose herein an iterative Jacobi-like algorithm
where the unitary matrix U is approximated by a finite prod-
uct of elementary Givens rotations G(k)(i, j, θ, α) such that:

U =

Nsd(d−1)/2∏
k=1

G(k)(i, j, θ, α) (11)

where Ns refers to the number of sweeps and G(k) is the
complex unitary Givens matrix with diagonal elements equal
to one except for the two elements gii = gjj = cos(θ) and its
off-diagonal elements are null except for the elements gij =
−g∗ji = eiα sin(θ). Hence, at each iteration k the data matrix
is updated according to Z(k) = G(k)Z(k−1). The optimiza-
tion of the sparsity criterion in (2) for p = 1 w.r.t. the rotation
parameters is equivalent to the minimization of:

L =
1

T

T∑
t=1

(√
rTt u+ βt +

√
−rTt u+ βt

)
+λ(uTu−1) (12)



where λ is a Lagrange multiplier, βt = 1
2

(∣∣∣z(k−1)
it

∣∣∣2 + ∣∣∣z(k−1)
jt

∣∣∣2),

u = [cos(2θ), sin(2θ)cos(α), sin(2θ)sin(α)]T , and

rt =

[
1

2

(∣∣∣∣z(k−1)
it

∣∣∣∣2 − ∣∣∣∣z(k−1)
jt

∣∣∣∣2
)

, R
(
z
(k−1)
it

z
(k−1) ∗
jt

)
, I

(
z
(k−1)
it

z
(k−1) ∗
jt

)]T

Then, the desired solution satisfies:

∂L
∂u

=
1

T

∑
t=1

rt√
rTt u + βt

− rt√
−rTt u + βt

+2λu = 0 (13)

Considering the approximation 1√
1+x
≈ 1− 1

2x+ o(x2), the
zeroing of the derivative in (13) leads to:

(V − 2λI3)u = 0 (14)

with V =
∑T
t=1 βt

−3/2rtr
T
t /T . Hence, the desired solution

is an eigenvector of matrix V. To find out which one should
be considered, let’s express the second order Taylor expansion
of L for ‖u‖= 1 (using

√
1 + x = 1 + 1

2x−
1
8x

2 + o(x3)):

L ≈ 2

T

T∑
t=1

√
βt −

1

4
uTVu

and consequently the criterion is minimized when u is
equal to the principal unit norm eigenvector of V. Once
u = [u1, u2, u3]

T is computed, the couple of angles (θ, α)
minimizing equation (13) is given by:

cos(θ) =

√
u1 + 1

2
and eiα sin(θ) =

u2 + iu3√
2(u1 + 1)

(15)

5. APPLICATION TO EMG SIGNALS

Skeletal Muscles are controlled by groups of motor units
(MU). Each MU is made up of one Motor Neuron (MN) and
a set of fibers that it innervates. The MN generates an im-
pulse, called action potential (AP), which is transmitted to all
the innervated muscle fibers of that particular MU [11]. The
sum of all this electrical activity is referred to as a Motor Unit
Action Potential (MUAP). Many motor units coordinate the
contractions of a single muscle. The process of recording and
evaluating the electrical activity produced by activated mus-
cles is known as Electromyography (EMG) [10]. The EMG
signal generated by the j−th MN is modeled as follows:

sj(t) = Mj(t) ∗ Pj(t) (16)

where Pj(t) =
∑
k∈N δ(t − kTj + τj,k) is called the pulse

nerve train (see [13] for details) and Mj(t) is the waveform
characterizing each MN. Each signal sj(t) will be transmit-
ted to many muscle fibers across different channels (axons).
The resulting electrical activity generated by the different re-
ceived copies sj(t) constitute one MUAP. For enervating one
muscle, many MUAPs are needed. The resulting electrical ac-
tivity, observed via an m-antenna array, can be modeled as a

convolutive mixture of the d-transmitted MUAPs [12]. Signal
separation is needed here for a proper analysis of the MUAP
components and sparsity is considered due to the sparse na-
ture of the sources as illustrated in figure 2.

6. SIMULATION RESULTS

To assess the performance of the two proposed algorithms,
two simulation scenarios have been handled using (i) ran-
domly generated sparse signals and (ii) EGM signals, respec-
tively. In these simulation experiments, a 3 × 5 (i.e. d = 3
and m = 5) MIMO system is considered. The channel ma-
trices {Hl, l = 0, · · · , L− 1} are generated randomly at each
Monte Carlo run with i.i.d. Gaussian variables entries. The
filter length L is set to 3 and the window parameter K is cho-
sen equal to 3. The algorithm’s performance are compared
to those of SOBI algorithm [4] through the Mean Rejection
Level (MRL) [4] averaged over 500 Monte Carlo runs. The
parameter p is chosen equal to 1 for the ISBS and GSBS al-
gorithms.

A convolutive mixture of random sparse signals is gener-
ated in the first simulation experiment. In figure 1, the plots
represent the steady state MRL (obtained after 500 iterations)
versus the sparsity degree of the randomly generated sparse
signals. We note here that the higher is the sparsity degree the
less sparse is the signal. We observe that SOBI is not suitable
to that context while GSBS leads to the best separation qual-
ity. Also, severe performance degradation is observed when
the degree of sparsity decreases.

In the second experiment, the three algorithms are applied
to a convolutive mixture of EMG signals. Figure 2 represents
an illustration example where we can see a sample of the orig-
inal sources, an observed mixture and the separated sources
using ISBS and GSBS, respectively.

The MRLs of the three algorithms versus the number of
iterations are presented in figure 3. One can observe that, for
EMG signals, the ISBS outperforms the GSBS in terms of
convergence rate and separation quality.

7. CONCLUSION

In this paper, two new iterative algorithms have been intro-
duced for the BSS of convolutive mixture of sparse signals.
The two methods are based on the iterative minimization of
sparsity-based cost function. The minimization of this latter
is achieved via an approximate Newton method in the case of
the ISBS algorithm and the use of Givens rotations in the case
of GSBS algorithm. The simulation results illustrate their ef-
fectiveness as compared to SOBI algorithm which exploits
the fact that the original sources are coherent over the time.
For strongly sparse signals, the GSBS outperforms the ISBS
while the latter leads to better results for real-life EMG source
separation.



Fig. 1. MRL vs. Sparsity

Fig. 2. EMG Sources.

8. REFERENCES

[1] A. Aissa-El-Bey, H. Bousbia-Salah, K. Abed-Meraim and
Y. Grenier ”Audio Source Separation Using Sparsity”, Proc.
IWAENC, Sep. 2006.

[2] A. Aissa-El-Bey, K. Abed-Meraim and Y. Grenier ”Blind
Audio Source Separation Using Sparsity based Criterion for
Convolutive Mixture Case”, Proc. ICA, Sep. 2007.

[3] Cedric Fevotte and Christian Doncarli, ”A Unified Presenta-
tion of Blind Separation Methods for Convolutive Mixtures
Using Block-Diagonalization”, Proc. ICA, April 2003.

[4] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E.
Moulines, ”A blind source separation technique using
second-order statistics”, IEEE Tr. on SP., Feb 1997.

[5] B. Gao, W. L. Woo, and S. S. Dlay, ”Adaptive Sparsity Non-
Negative Matrix Factorization for Single-Channel Source
Separation”, IEEE J. of Selected Topics in SP, Sep. 2011

Fig. 3. MRL vs. Iterations: EMG Sources.

[6] Y. Li, S-I. Amari, A. Cichocki, D. W. C. Ho, and S. Xie,
”Underdetermined Blind Source Separation Based on Sparse
Representation”, IEEE Tr. on SP, Feb. 2006.

[7] P. D. OGrady, B. A. Pearlmutter, and S. T. Rickard, ”Survey
of Sparse and Non-Sparse Methods in Source Separation”,
Int. Journal of Imaging Systems and Technology, 2005.

[8] R. Gribonval and S. Lesage, ”A Survey of Sparse Component
Analysis for Blind Source Separation : Principles, Perspec-
tives, and New Challenges”, Proc. ESANN, April 2006.

[9] J. Bobin, J. L.Starck, Y. Moudden, and M. J. Fadili, ”Blind
Source Separation: the Sparsity Revolution”, Chapter in Ad-
vances in Imaging and Electron Physics (Peter Hawkes, ed.),
Academic Press, Elsevier, vol. 152, pp. 221-306, 2008.

[10] J. V. Basmajian and C. J. DeLuca, ”Muscle Alive:
Their Functions Revealed by Electromyography”, Publisher:
William and Wilkins; Editor: Baltimore MD, 1985.

[11] R. Merletti and P. A. Parker, ”Electromyography Physiology,
Engineering and Noninvasive Applications”, John Wiley &
Sons, INC., IEEE Press, ISBN 0-471-67580-6, 2004.

[12] D. Farina, C. Févotte, Ch. Doncarli and R. Merletti, ”Blind
separation of Linear Instantaneous Mixtures of Nonstation-
ary Surface Myoelectric Signals”, IEEE Trans Biomed Eng,
vol. 51, pp. 1555-1567, Sep. 2004.

[13] J. Roussel, M. Haritopoulos, Ph. Ravier, and O. Buttelli,
”Cyclostationary Analysis of Electromyographic Signals”, in
Proc. EUSIPCO, 2013.


