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ABSTRACT

This paper deals with adaptive Constant Modulus Algorithm
(CMA) for the blind separation of communication signals.
Ikhlef et al. proposed in 2010 an efficient block implementa-
tion of the CMA using Givens rotations. We introduce herein
a fast adaptive implementation of this method which exploits
recent developments on whitening techniques together with
appropriate updating of the used statistics and efficient selec-
tion of the Givens rotation parameters. The proposed algo-
rithm shows significantly improved performance with respect
to existing techniques as illustrated by the simulation results.

Index Terms— Constant Modulus Algorithm (CMA),
Adaptive Whitening, Complex Givens Rotations.

1. INTRODUCTION

The Constant Modulus Algorithm is one of the most efficient
techniques for blind equalization and blind separation of com-
munication signals and has therefore attracted a lot of interest
in the literature, e.g. [5, 6, 10, 11] for the blind equalization
and [7, 8, 9] for the blind source separation. All these meth-
ods improve and extend the original version introduced more
than three decades ago in [3, 4].

In particular, several adaptive algorithms have been pro-
posed for the optimization of the Constant Modulus cost func-
tion including the adaptive Analytical CMA (ACMA) in [9]
considered as one of the most efficient CMA implementations
and used below in our comparative study.

Herein, we consider another type of adaptive implementa-
tions using unitary Givens rotations. The proposed algorithm
has the advantage of fast convergence and improved separa-
tion quality for a moderate computational cost with respect to
the methods in [8, 9]. Below we provide the data model and
a description of the algorithm’s development.

2. PROBLEM FORMULATION

The instantaneous mixture xt of d transmitted sources st re-
ceived through an m-antenna array is modeled as follows:

xt = Ast + nt (1)

where A is the m × d mixing matrix and nt is an additive
noise of covariance σ2

nI. By stacking T samples of the re-
ceived data in one matrix X = [x1 : xT ], equation (1) be-
comes X = AS+N where S = [s1 : sT ] and N = [n1 : nT ].
Blind Source Separation aims to recover the unknown sources
S from observed mixtures X, relying only on some assump-
tions on the statistical properties of the original sources1. This
is equivalent to finding a d×m separation matrix W that lads
to the estimated source vector (up to scaling and permutation
ambiguities [14]): i.e. Z = WX = Ŝ.

3. GIVENS CONSTANT MODULUS ALGORITHM

Originally, the CMA in [3, 4] was designed in such a way
it exploits the fact that the transmitted sources are generated
from a finite alphabet having a constant modulus2 R and try
to restore this property by minimizing the deviation of the
restored signals modulus from this constant. This leads to the
following Constant Modulus Criterion (CMC):

J (W) =

m∑
i=1

T∑
j=1

(
|zij |2 −R

)2
(2)

where zij is the (i, j)th entry of the output matrix Z.
The minimization of (2) has lead to a large number of algo-
rithms belonging to the CMA class. In particular, the authors
in [1] proposed a two-step iterative Jacobi-like algorithm for
the minimization of the CMC after data pre-whitening. The
bloc version of the GCMA, presented in [1], estimates the
separation matrix W as a product of a m × d whitening ma-
trix B and a d×d unitary matrix U: W = UB. First the data
bloc X is whitened by applying the matrix B, estimated using
any whitening algorithm e.g. [1, 9]. Then, the unitary matrix
U is estimated as the minimizer of (2). As presented in [1], an
iterative algorithm is used to minimize (2) where U is rewrit-
ten as a product of complex Givens rotations. In other words,

1Standard hypotheses consist of assuming that: (i) The mixing matrix A
is a tall full column rank matrix (m ≥ d), (ii) The original sources are mutu-
ally independent, (iii) The additive noise is white, Gaussian, and independent
from the source signals.

2It has been shown later that the CMA can be applied for any sub-
Gaussian sources [13]. Also, because of the scaling ambiguity, one can chose
R = 1, without loss of generality.



at iteration k, the current estimate of the separation matrix
W(k−1) is updated as W(k) = G(k)(p, q, θ, α) W(k−1),
where G(k)(p, q, θ, α) is the complex unitary Givens matrix
with diagonal elements equal to one except for the two ele-
ments gpp = gqq = cos(θ) and its off-diagonal elements are
null except for the elements gpq = −g∗qp = eiα sin(θ). The
optimization of the CMC in (2) w.r.t. the rotation parameters
is equivalent to the minimization of:

J (θ, α) = 2
(
uTQu

)
+ λ(uTu− 1) (3)

where λ is the Lagrange multiplier, Q =
∑T
t=1 rtr

T
t ,

u = [cos(2θ), sin(2θ)cos(α), sin(2θ)sin(α)]
T , and

rt =

[
1

2

(∣∣∣z(k−1)
pt

∣∣∣2 − ∣∣∣z(k−1)
qt

∣∣∣2) , R(z(k−1)
pt z

(k−1) ∗
qt

)
,

I
(
z
(k−1)
pt z

(k−1) ∗
qt

)]T
The couple of angles (θ, α) minimizing the quadratic form in
(3) under the constraint uTu = 1 is chosen such that:

cos(θ) =

√
u1 + 1

2
and eiα sin(θ) =

u2 + iu3√
2(u1 + 1)

(4)

where u = [u1, u2, u3]
T is the unit-norm least eigenvector

of Q associated to its smallest eigenvalue.

4. ADAPTIVE GCMA

We propose here an efficient adaptive GCMA algorithm
which proceeds at each time instant t to the following steps.

4.1. Step 1: Adaptive whitening

The adaptive whitening is based on the fast subspace track-
ing algorithm GOPAST in [12] where the whitening matrix is
computed according to as follows:

B(t) = Λ
− 1

2
t VH

t (5)

with Vt and Λt are adaptive estimates of the d principal
eigenvectors and their corresponding eigenvalue diagonal
matrix of the data covariance matrix Rx, respectively. The
numerical complexity of this adaptive whitening algorithm is
equal to 4md + O(d2) flops at each time instant t (see [12]
for details). The updated matrix is then applied to the current
data vector according to:

ȳt = B(t)xt (6)

4.2. Step 2: Adaptive estimation of the unitary factor

The algorithm consists of applying, at each time t, a Givens
rotation G(t)(p, q, θ, α) to update the unitary matrix U: i.e.

U(t) = G(t)(p, q, θ, α) U(t−1) (7)

The angles θ and α are computed such that the following
adaptive constant modulus criterion is minimized (0 < β < 1
being a forgetting factor):

H(G(t), t) =

t∑
k=1

βt−k
m∑
i=1

(
|zik|2 −R

)2
(8)

Now, if one applies the Givens rotation to the last data vector,
only the last term in (8) would contribute to the estimation of
the angle parameters. This approach led to poor estimation
and tracking performance. To improve the estimation of the
Givens parameters, we propose to compute the unitary trans-
formation as if applied to all past data. After some straight-
forward derivations, the CMC criterion becomes:

J (θ, α) = 2
(
uTQ(t)u

)
+ λ(uTu− 1) (9)

where rt =
[
1
2

(
|ypt|2 − |yqt|2

)
, R

(
ypty

∗
qt

)
, I
(
ypty

∗
qt

)]T
,

yt = U(t−1)ȳt , and

Q(t) =

t∑
k=1

βt−k rkr
T
k = βQ(t−1) + rtr

T
t (10)

The optimal couple of angles (θ, α) that minimizes the
quadratic form in (9) under the constraint uTu = 1 is given
in (4) where u = [u1, u2, u3]

T is the least eigenvector of
matrix Q(t) associated to its smallest eigenvalue.

Note that we have a set of d(d − 1)/2 matrices Q(t) for
all index pairs (p, q) to be updated at each time instant. A di-
rect updating using (10) would cost approximately 81d2 flops.
This cost can be reduced by almost a factor of 10 by exploit-
ing existing redundancy between these matrices. To achieve
this, the following quantities have to be updated separately:

∑t
k=1 β

t−k ypky
∗
qk∑t

k=1 β
t−k |ypk|2 |yqk|2∑t

k=1 β
t−k |ypk|2 ypky∗qk∑t

k=1 β
t−k y2pky

2∗
qk

(11)

and hence, four statistics are defined as follows:

S
(t)
i =

t∑
k=1

βt−k Fi1(yk) Fi2(yk)H , i : 1 : 4 (12)

where:
F11(yk) = F12(yk) = F32(yk) = yk
F21(yk) = F22(yk) = yk � y∗

k

F31(yk) = yk � y∗
k � yk

F41(yk) = F42(yk) = yk � yk

(13)

� being the Hadamard product. At the acquisition of a new
sample, the above statistics are updated as follows:

S
(t)
i = βS

(t−1)
i + Fi1(yt) Fi2(yt)

H , i : 1 : 4 (14)



Initialization: U(0) = Id
For t = 1, 2, ... do

Compute Λt and Vt using GOPAST [12]
Whitening ȳt = B(t)xt using (5)
Update yt = U(t−1)ȳt

Update Statistics S
(t)
i , i = 1 : 4 using (14)

Compute Q(t) using (15)
Compute G(t)(p, q, θ, α) using (4)
Update U(t) = G(t)(p, q, θ, α) U(t−1)

Update zt = G(t)(p, q, θ, α) yt
Update W(t) = U(t)B(t) (only if needed3)

end For

Table 1. Adaptive GCMA Algorithm.

Once the statistics are updated, entries of Q(t) are computed
according to:

q
(t)
11 = 1

4 (s
(t)
1,pp + s

(t)
1,qq − 2s

(t)
1,pq)

q
(t)
12 = 1

4 (s
(t)
2,pq + s

(t)
2,pq − s

(t)
2,qp − s

(t)
2,qp)

q
(t)
13 = 1

4j (s
(t)
2,pq − s

(t)
2,pq − s

(t)
2,qp + s

(t)
2,qp)

q
(t)
22 = 1

4 (s
(t)
3,pq + s

(t)
3,qp + s

(t)
1,pq)

q
(t)
23 = 1

4j (s
(t)
3,pq − s

(t)
3,qp)

q
(t)
33 = 1

4 (s
(t)
3,pq + s

(t)
3,qp − 2s

(t)
1,pq)

(15)

Remarks:
1) Note that different strategies can be used for the selec-
tion of the rotation indices (p, q) in the adaptive scheme [12].
For simplicity, we have considered the automatic selection
scheme where the indices p and q of the Givens rotations are
automatically incremented at the current time instant, in such
a way one sweeps, periodically, all matrix positions after each
d(d− 1)/2 time iterations.
2) Our adaptive algorithm costs 4md + O(d2) flops per time
instant. Comparatively, the adaptive ACMA [9] used below in
our simulation comparison costs approximately 4md+O(d3)
flops per iteration.

5. SIMULATION RESULTS

To illustrate the performance of the proposed adaptive GCMA,
we consider a 7 × 5 MIMO system (i.e. d = 5,m = 7). The
inputs are i.i.d 8− PSK modulated sequences and the chan-
nel matrix A is generated randomly at each Monte Carlo run
but with controlled conditioning (its entries are generated as
i.i.d. Gaussian variables). The separation quality is measured
by the Signal to Interference and Noise Ratio (SINR) aver-
aged over 500 Monte Carlo runs. The adaptation factor β is
set to 0.99 in all the simulations.

In figure 1, we compare the convergence rates and separa-
tion quality of our algorithm with the adaptive ACMA while
in figure 2, the plots represent the steady state SINR (obtained

after 1000 iterations) versus the SNR. One can observe, in
this simulation context, that GCMA leads to high separation
quality comparatively to the ACMA algorithm. The two algo-
rithms have approximately the same convergence rate i.e. few
hundreds of iterations are sufficient to reach the steady state
level.

In figure 3, the SNR is set to 20dB and the plots repre-
sent again the steady state SINR versus the number of sources
d. The number of antenna is set to m = d + 2. The two
algorithms present the same performance in the case of two
transmitted sources. When the number of sources increases,
performance degradation is observed for the two algorithms
with a significant advantage for the GCMA when the source
number4 is less than 7.

In figure 4, the plots illustrate the algorithm performance
when applied to non constant modulus signals. In this exper-
iment the sources are generated from 16 − QAM constella-
tion. As we can see, the performance of the two algorithms
are degraded comparatively to the constant modulus case pre-
sented in figure 1 and the GCMA still outperforms the adap-
tive ACMA.

Fig. 1. SINR vs. Time Index.

6. CONCLUSION

A two steps adaptive constant modulus algorithm has been
introduced using complex Givens rotation. The proposed al-
gorithm is of moderate complexity and has the advantage of
fast convergence rate and high separation quality. The sim-
ulation results illustrate its effectiveness with respect to the
adaptive implementation of ACMA. They show, in particu-
lar, that the adaptive GCMA performs better than the adaptive
ACMA when applied to more than two sources. The perfor-
mance of the two algorithms are degraded when applied to the

4For large number of sources it will be better to use adaptive algorithm
based on sliding window, e.g. [2], which are more expensive but more effi-
cient in such a case.



Fig. 2. SINR vs. SNR.

Fig. 3. SINR vs. Source Number.

separation of non constant modulus sources. To improve the
performance of the proposed technique, more elaborated cost
functions which combine the CMC with alphabet matching
criteria have to be optimized, e.g. [10, 11].
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