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INTRODUCTION

The Constant Modulus Algorithm is one of the most efficient techniques for blind equalization and blind separation of communication signals and has therefore attracted a lot of interest in the literature, e.g. [START_REF] Yang | A Vector Constant Modulus Algorithm for Shaped Constellation Equalization[END_REF][START_REF] Abrar | An Adaptive Constant Modulus Blind Equalization Algorithm and its Stochastic Stability Analysis[END_REF][START_REF] Lin He | A Hybrid Adaptive Blind Equalization Algorithm for QAM Signals in Wireless Communications[END_REF][START_REF] Labed Abdenour | Min-Norm Based Alphabet-Matching Algorithm for Adaptive Blind Equalization of High-Order QAM Signals[END_REF] for the blind equalization and [START_REF] Papadias | Globally Convergent Blind Source Separation Based on a Multiuser Kurtosis Maximization Criterion[END_REF][START_REF] Papadias | Blind Source Separation with Randomized Gram-Shmidt Orthogonalization for Short-Burst Systems[END_REF][START_REF] Van Der Veen | Constant Modulus Beamforming[END_REF] for the blind source separation. All these methods improve and extend the original version introduced more than three decades ago in [START_REF] Godard | Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems[END_REF][START_REF] Treichler | A New Approach to the Multipath Correction of Constant Modulus Signals[END_REF].

In particular, several adaptive algorithms have been proposed for the optimization of the Constant Modulus cost function including the adaptive Analytical CMA (ACMA) in [START_REF] Van Der Veen | Constant Modulus Beamforming[END_REF] considered as one of the most efficient CMA implementations and used below in our comparative study.

Herein, we consider another type of adaptive implementations using unitary Givens rotations. The proposed algorithm has the advantage of fast convergence and improved separation quality for a moderate computational cost with respect to the methods in [START_REF] Papadias | Blind Source Separation with Randomized Gram-Shmidt Orthogonalization for Short-Burst Systems[END_REF][START_REF] Van Der Veen | Constant Modulus Beamforming[END_REF]. Below we provide the data model and a description of the algorithm's development.

PROBLEM FORMULATION

The instantaneous mixture x t of d transmitted sources s t received through an m-antenna array is modeled as follows:

x t = As t + n t ( 1 
)
where A is the m × d mixing matrix and n t is an additive noise of covariance σ2 n I. By stacking T samples of the received data in one matrix

X = [x 1 : x T ], equation (1) be- comes X = AS+N where S = [s 1 : s T ] and N = [n 1 : n T ].
Blind Source Separation aims to recover the unknown sources S from observed mixtures X, relying only on some assumptions on the statistical properties of the original sources 1 . This is equivalent to finding a d × m separation matrix W that lads to the estimated source vector (up to scaling and permutation ambiguities [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]): i.e. Z = WX = S.

GIVENS CONSTANT MODULUS ALGORITHM

Originally, the CMA in [START_REF] Godard | Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems[END_REF][START_REF] Treichler | A New Approach to the Multipath Correction of Constant Modulus Signals[END_REF] was designed in such a way it exploits the fact that the transmitted sources are generated from a finite alphabet having a constant modulus 2 R and try to restore this property by minimizing the deviation of the restored signals modulus from this constant. This leads to the following Constant Modulus Criterion (CMC):

J (W) = m i=1 T j=1 |z ij | 2 -R 2 (2) 
where z ij is the (i, j) th entry of the output matrix Z.

The minimization of (2) has lead to a large number of algorithms belonging to the CMA class. In particular, the authors in [START_REF] Ikhlef | On the Constant Modulus Criterion: A New Algorithm[END_REF] proposed a two-step iterative Jacobi-like algorithm for the minimization of the CMC after data pre-whitening. The bloc version of the GCMA, presented in [START_REF] Ikhlef | On the Constant Modulus Criterion: A New Algorithm[END_REF], estimates the separation matrix W as a product of a m × d whitening matrix B and a d×d unitary matrix U: W = UB. First the data bloc X is whitened by applying the matrix B, estimated using any whitening algorithm e.g. [START_REF] Ikhlef | On the Constant Modulus Criterion: A New Algorithm[END_REF][START_REF] Van Der Veen | Constant Modulus Beamforming[END_REF]. Then, the unitary matrix U is estimated as the minimizer of (2). As presented in [START_REF] Ikhlef | On the Constant Modulus Criterion: A New Algorithm[END_REF], an iterative algorithm is used to minimize (2) where U is rewritten as a product of complex Givens rotations. In other words, at iteration k, the current estimate of the separation matrix 1) , where G (k) (p, q, θ, α) is the complex unitary Givens matrix with diagonal elements equal to one except for the two elements g pp = g qq = cos(θ) and its off-diagonal elements are null except for the elements g pq = -g * qp = e iα sin(θ). The optimization of the CMC in (2) w.r.t. the rotation parameters is equivalent to the minimization of:

W (k-1) is updated as W (k) = G (k) (p, q, θ, α) W (k-
J (θ, α) = 2 u T Qu + λ(u T u -1) (3) 
where λ is the Lagrange multiplier,

Q = T t=1 r t r T t , u = [cos(2θ), sin(2θ)cos(α), sin(2θ)sin(α)]
T , and

r t = 1 2 z (k-1) pt 2 -z (k-1) qt 2 , R z (k-1) pt z (k-1) * qt , I z (k-1) pt z (k-1) * qt T
The couple of angles (θ, α) minimizing the quadratic form in (3) under the constraint u T u = 1 is chosen such that:

cos(θ) = u 1 + 1 2 and e iα sin(θ) = u 2 + iu 3 2(u 1 + 1) (4) 
where

u = [u 1 , u 2 , u 3 ]
T is the unit-norm least eigenvector of Q associated to its smallest eigenvalue.

ADAPTIVE GCMA

We propose here an efficient adaptive GCMA algorithm which proceeds at each time instant t to the following steps.

Step 1: Adaptive whitening

The adaptive whitening is based on the fast subspace tracking algorithm GOPAST in [START_REF] Thameri | Low complexity adaptive algorithms for Principal and Minor Component Analysis[END_REF] where the whitening matrix is computed according to as follows:

B (t) = Λ -1 2 t V H t (5) 
with V t and Λ t are adaptive estimates of the d principal eigenvectors and their corresponding eigenvalue diagonal matrix of the data covariance matrix R x , respectively. The numerical complexity of this adaptive whitening algorithm is equal to 4md + O(d 2 ) flops at each time instant t (see [START_REF] Thameri | Low complexity adaptive algorithms for Principal and Minor Component Analysis[END_REF] for details). The updated matrix is then applied to the current data vector according to:

ȳt = B (t) x t (6) 

Step 2: Adaptive estimation of the unitary factor

The algorithm consists of applying, at each time t, a Givens rotation G (t) (p, q, θ, α) to update the unitary matrix U: i.e.

U (t) = G (t) (p, q, θ, α) U (t-1) (7) 
The angles θ and α are computed such that the following adaptive constant modulus criterion is minimized (0 < β < 1 being a forgetting factor):

H(G (t) , t) = t k=1 β t-k m i=1 |z ik | 2 -R 2 (8) 
Now, if one applies the Givens rotation to the last data vector, only the last term in (8) would contribute to the estimation of the angle parameters. This approach led to poor estimation and tracking performance. To improve the estimation of the Givens parameters, we propose to compute the unitary transformation as if applied to all past data. After some straightforward derivations, the CMC criterion becomes:

J (θ, α) = 2 u T Q (t) u + λ(u T u -1) (9) 
where 1) ȳt , and

r t = 1 2 |y pt | 2 -|y qt | 2 , R y pt y * qt , I y pt y * qt T , y t = U (t-
Q (t) = t k=1 β t-k r k r T k = βQ (t-1) + r t r T t (10) 
The optimal couple of angles (θ, α) that minimizes the quadratic form in (9) under the constraint u T u = 1 is given in ( 4) where u = [u 1 , u 2 , u 3 ] T is the least eigenvector of matrix Q (t) associated to its smallest eigenvalue. Note that we have a set of d(d -1)/2 matrices Q (t) for all index pairs (p, q) to be updated at each time instant. A direct updating using [START_REF] Lin He | A Hybrid Adaptive Blind Equalization Algorithm for QAM Signals in Wireless Communications[END_REF] would cost approximately 81d 2 flops. This cost can be reduced by almost a factor of 10 by exploiting existing redundancy between these matrices. To achieve this, the following quantities have to be updated separately:

         t k=1 β t-k y pk y * qk t k=1 β t-k |y pk | 2 |y qk | 2 t k=1 β t-k |y pk | 2 y pk y * qk t k=1 β t-k y 2 pk y 2 * qk ( 11 
)
and hence, four statistics are defined as follows:

S (t) i = t k=1 β t-k F i1 (y k ) F i2 (y k ) H , i : 1 : 4 (12) 
where:

       F 11 (y k ) = F 12 (y k ) = F 32 (y k ) = y k F 21 (y k ) = F 22 (y k ) = y k y * k F 31 (y k ) = y k y * k y k F 41 (y k ) = F 42 (y k ) = y k y k (13)
being the Hadamard product. At the acquisition of a new sample, the above statistics are updated as follows:

S (t) i = βS (t-1) i + F i1 (y t ) F i2 (y t ) H , i : 1 : 4 (14) 
Initialization: i , i = 1 : 4 using ( 14) Compute Q (t) using (15) Compute G (t) (p, q, θ, α) using (4) Update

U (0) = I d For t =
U (t) = G (t) (p, q, θ, α) U (t-1) Update z t = G (t) (p, q, θ, α) y t Update W (t) = U (t) B (t) (only if needed 3 ) end For Table 1. Adaptive GCMA Algorithm.
Once the statistics are updated, entries of Q (t) are computed according to:

q (t) 11 = 1 4 (s (t) 1,pp + s (t) 1,qq -2s (t) 1,pq ) q (t) 12 = 1 4 (s (t) 2,pq + s (t) 2,pq -s (t) 2,qp -s (t) 2,qp ) q (t) 13 = 1 4j (s (t) 2,pq -s (t) 2,pq -s (t) 2,qp + s (t) 2,qp ) q (t) 22 = 1 4 (s (t) 3,pq + s (t) 3,qp + s (t) 
1,pq ) q

(t) 23 = 1 4j (s (t) 3,pq -s (t) 
3,qp ) q

(t) 33 = 1 4 (s (t) 3,pq + s (t) 3,qp -2s (t) 1,pq ) (15) 
Remarks:

1) Note that different strategies can be used for the selection of the rotation indices (p, q) in the adaptive scheme [START_REF] Thameri | Low complexity adaptive algorithms for Principal and Minor Component Analysis[END_REF].

For simplicity, we have considered the automatic selection where the indices p and q of the Givens rotations are automatically incremented at the current time instant, in such a way one sweeps, periodically, all matrix positions after each d(d -1)/2 time iterations. 2) Our adaptive algorithm costs 4md + O(d 2 ) flops per time instant. Comparatively, the adaptive ACMA [START_REF] Van Der Veen | Constant Modulus Beamforming[END_REF] used below in our simulation comparison costs approximately 4md+O(d 3 ) flops per iteration.

SIMULATION RESULTS

To illustrate the performance of the proposed adaptive GCMA, we consider a 7 × 5 MIMO system (i.e. d = 5, m = 7). The inputs are i.i.d 8 -P SK modulated sequences and the channel matrix A is generated randomly at each Monte Carlo run but with controlled conditioning (its entries are generated as i.i.d. Gaussian variables). The separation quality is measured by the Signal to Interference and Noise Ratio (SINR) averaged over 500 Monte Carlo runs. The adaptation factor β is set to 0.99 in all the simulations.

In figure 1, we compare the convergence rates and separation quality of our algorithm with the adaptive ACMA while in figure 2, the plots represent the steady state SINR (obtained after 1000 iterations) versus the SNR. One can observe, in this simulation context, that GCMA leads to high separation quality comparatively to the ACMA algorithm. The two algorithms have approximately the same convergence rate i.e. few hundreds of iterations are sufficient to reach the steady state level.

In figure 3, the SNR is set to 20dB and the plots represent again the steady state SINR versus the number of sources d. The number of antenna is set to m = d + 2. The two algorithms present the same performance in the case of two transmitted sources. When the number of sources increases, performance degradation is observed for the two algorithms with a significant advantage for the GCMA when the source number 4 is less than 7.

In figure 4, the plots illustrate the algorithm performance when applied to non constant modulus signals. In this experiment the sources are generated from 16 -QAM constellation. As we can see, the performance of the two algorithms are degraded comparatively to the constant modulus case presented in figure 1 and the GCMA still outperforms the adaptive ACMA. 

CONCLUSION

A two steps adaptive constant modulus algorithm has been introduced using complex Givens rotation. The proposed algorithm is of moderate complexity and has the advantage of fast convergence rate and high separation quality. The simulation results illustrate its effectiveness with respect to the adaptive implementation of ACMA. They show, in particular, that the adaptive GCMA performs better than the adaptive ACMA when applied to more than two sources. The performance of the two algorithms are degraded when applied to the separation of non constant modulus sources. To improve the performance of the proposed technique, more elaborated cost functions which combine the CMC with alphabet matching criteria have to be optimized, e.g. [START_REF] Lin He | A Hybrid Adaptive Blind Equalization Algorithm for QAM Signals in Wireless Communications[END_REF][START_REF] Labed Abdenour | Min-Norm Based Alphabet-Matching Algorithm for Adaptive Blind Equalization of High-Order QAM Signals[END_REF].
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Standard hypotheses consist of assuming that: (i) The mixing matrix A is a tall full column rank matrix (m ≥ d), (ii) The original sources are mutually independent, (iii) The additive noise is white, Gaussian, and independent from the source signals.

[START_REF] Boudjellal | Sliding Window Adaptive Constant Modulus Algorithm Based on Complex Hyperbolic Givens Rotations[END_REF] It has been shown later that the CMA can be applied for any sub-Gaussian sources[START_REF] Regalia | On the Equivalence Between the Godar and Shalvi-Weistein Schemes of Blind Equalization[END_REF]. Also, because of the scaling ambiguity, one can chose R = 1, without loss of generality.

For large number of sources it will be better to use adaptive algorithm based on sliding window, e.g.[START_REF] Boudjellal | Sliding Window Adaptive Constant Modulus Algorithm Based on Complex Hyperbolic Givens Rotations[END_REF], which are more expensive but more efficient in such a case.