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Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on
a pyrene derivative confined in parallel-aligned nanochannels of monolithic, mesoporous alumina,
silica, and silicon as a function of temperature, channel radius (3 - 22 nm) and surface chemistry
reveal a competition of radial and axial columnar order. The evolution of the orientational order
parameter of the confined systems is continuous, in contrast to the discontinuous transition in the
bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which
are compatible both with the optical experiments on the collective molecular orientation presented
here and with a translational, radial columnar order reported in previous diffraction studies. For
smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes
model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that
coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase
boundaries are predicted to move from the channel walls to the channel centres upon cooling, and
vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the
scaling behavior of the transition temperatures with channel diameter. The absence of experimental
hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to

the order parameter.

PACS numbers:
I. INTRODUCTION

Molecular assemblies consisting of disc-like molecules
with an aromatic core and aliphatic side chains exhibit
a particularly rich phase transition behavior [1-3]. Be-
cause of the m — w overlap of their aromatic cores they
can stack into columns, which in turn arrange in a two-
dimensional crystalline lattice leading to thermotropic
discotic columnar crystals (DLCs). Thermal fluctuations
give rise to liquid-like properties [4] and even glassy dis-
order can occur [5, 6]. Therefore, DLCs are particularly
interesting systems in order to address fundamental ques-
tions in soft matter science, such as structure-dynamics
and structure-phase transition relationships.

*E-mail: andriy.kityk@univie.ac.at,patrick.huber@tuhh.de

DLCs encompass also advantageous materials proper-
ties, including highly anisotropic visible light absorption,
long-range self-assembly, self-healing mechanisms, high
charge-carrier mobilities along the column axis and a
tuneable alignment of the columns [1, 2, 7, 8]. There-
fore they represent promising systems for active layers in
organic devices, such as field-effect transistors and pho-
tovoltaic cells.

The combination of DLCs with mesoporous solid ma-
trices offers the opportunity to prepare nanowires and
to design hybrid systems [9, 10] with interesting opto-
and opto-electronic properties. However, similarly as the
thermotropic behaviour of rod-like liquid crystalline sys-
tems [11-13] the properties of confined discotic systems
has turned out to be particularly susceptible to nano con-
finement and to be substantially altered in comparison to
the bulk systems [9, 14, 15].

For discotics the number of available experimental and
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FIG. 1: (color online). Molecular ordering types of discotic
liquid crystals. (a) Homeotropic (face-on) ordering on a free
surface. (b) Homogeneous planar ordering on a free surface.
(c) Parallel axial configuration inside a channel. (d) Radial
axial configuration inside a channel with an isotropic core.
(e) Escaped radial configuration (combination of radial axial
cofiguration near the channel wall and a parallel axial con-
figuration in the core region). (f) undeformed parallel axial
configuration inside the channel with a smooth wall. (g) lat-
erally deformed parallel axial configuration inside the chan-
nel with a smooth wall. (i) splay deformation vs normalized
channel diameter. (j) laterally deformed parallel axial config-
uration inside the channel with a rough wall. (k) coexsistence
of parallel axial and radial axial configuration or (1) radial
configuration with isotropic core or (m) escaped radial con-
figuration.

(a)

FIG. 2: (color online). Schematics of radial molecular order-
ing of discotics with long-range, hexagonal columnar order
confined in cylindrical channels. (a) Sideview on two colum-
nar domains. (b) Topview on a radial structure with disloca-
tion defects and a disordered core. (c) Sideview on a radial
multi-domain state with disordered core.

theoretical studies under confinement is much smaller
than for rod-like liquid crystals. Therefore, the goal of
this paper is the exploration of the thermotropic orien-
tational arrangement of a discotic liquid crystal in a se-
lected set of mesoporous matrices (alumina, silica, sili-
con) as a function of channel diameter and depending on
the chemical treatment of the channel surfaces (as pre-
pared, silanized, covered by ink) by high resolution op-
tical polarimetry. These experimental investigations are
discussed with respect to a phenomenological Landau-De
Gennes model in order to arrive at mechanistic insights
in the thermotropic phase behavior of the system.

II. EXPERIMENTAL

The discotic molecule used in our study was the pyrene
1,3,6,8-tetracarboxylic rac-2-ethylhexyl ester (Py4CEH).
It comnsists of a polyaromatic core surrounded by flexible
aliphatic chains. Synthesis details of this molecule are
described in Ref. [16].

The porous alumina membranes (pAl,O3) were pur-
chased from Smart Membranes GmbH (Halle, Germany).
The channel radii and porosities have been determined
by volumetric Nao-sorption isotherms at 7' = 77 K: R =
21.0+2 nm (porosity P=24%, thickness h =100 pm),
15.541.5 nm (P =17%, h =100 pm), 10.0£0.7 nm
(P =16%, h =90 pum), 7.840.5 nm (P =16%, h =80
pm).

To obtain membranes of porous silica (pSiOz), electro-
chemically etched free standing silicon membranes (pSi)
[17] were subjected to thermal oxidation for 12 hours at
T =800 °C under standard atmosphere. By a variation of
the etching time we obtained pSiOs membranes with av-
erage channel radius 3.4+0.2 nm (P = 13%, h =100 pm),
3.840.2 nm (P = 15%, h =120 pym ), 4.6+0.3 nm (P =
30%, h =180 pm ), 5.7+0.4 nm (P = 35%, h =280 pm ),
6.840.5 nm (P = 46%, h =310 pm ), and a pSi membrane
with channel radius 8.5+0.5 nm (P = 65%, h =300 pm
), as determined by recording of volumetric No-sorption
isotherms at T' = 77 K. The mesoporous membranes were
completely filled by capillary action (spontaneous imbibi-
tion) of LCs in the isotropic phase [18-20]. For the bulk
measurements, the sample cells, made of parallel glass
plates (h = 11 pm ), were filled with the discotic LC.
The temperature scans were performed with a heating
and cooling rate of 0.12 K/min

The optical polarization setup employs a photoelastic
modulator and a dual lock-in detection system, as de-
scribed in Ref. [21]. It provides an accuracy of the optical
retardation measurements that is better than 5-10~3 deg.
The sample normal, which coincides with the long chan-
nel axis, was tilted out by an angle of 40-45° with re-
spect to the laser beam. Most measurements have been
performed by means of a He-Ne laser with a wavelength
A=633 nm, where almost no optical absorption exists.
An exception are the investigations of the pSi membranes
(h =300 pm), which are not suitable for optical polar-



ization measurements at this wavelength due to strong
light absorption. In this case, the measurements were
performed in the infrared region, at A = 1342 nm for
which pSi is optically well transparent. The refractive
anisotropy in liquid crystal materials and the related op-
tical birefringence result from collective molecular rear-
rangements of positional and/or orientational type. In
principle, DLCs exhibit both of these ordering types.
However, the contribution to the optical birefringence
because of positional ordering, e.g. because of a collec-
tive hexagonal translational order, is much smaller than
the orientational one. To simplify the analysis we will
therefore ignore the positional rearrangement in the fol-
lowing. In uniaxial discotic liquid crystals the degree of
orientational order can be described by the scalar order
parameter S = %(3 cos? ¢ — 1), where ¢ is the angle be-
tween the axis perpendicular to the polyaromatic plane
of a discotic molecule and a direction of preferred local
molecular orientation (director). The brackets denote an
averaging over all molecules under consideration. Op-
tical polarimetry is a particularly suitable technique to
explore orientational order, since it scales linearly with

S.

III. RESULTS AND DISCUSSION

We recall that native surfaces of silica glass, likewise
the inner surfaces of alumina, silica or silicon membranes
exhibit hydrophilic properties enforcing face-on type or-
dering of Py4CEH, see Fig. 1 a) [22]. Accordingly a cell
consisting of parallel glass plates (h=11 pm) filled with
this system leads to perfect homeotropic alignment. In
a confined cylindrical geometry this anchoring type may
lead to a radial columnar (or radial nematic) alignment
close to the channel walls as it is sketched in Fig. 1d or
Fig. le. Leaving aside the ordering in the core region of
the channels, which shall be discussed later, we empha-
size that columnar type ordering was indeed confirmed in
recent small-angle neutron scattering and X-ray diffrac-
tion studies on Py4CEH embedded in anodized alumina
membranes with channels in a diameter range of D=25
to 50 nm [23]. Note, however, that the variation of the in-
tegrated Bragg intensities typical of the columnar order
exhibit a systematic decrease with channel diameter in
that study. A simple extrapolation of this trend predicts
a vanishing of the columnar structure for channel sizes
smaller than 10 nm, which was experimentally proved by
the absence of columnar order in porous silicon with a
channel diameter of 8 nm.

This observation can be traced to the topological frus-
tration arising from the incompatibility between the
homeotropic anchoring condition at the channel wall and
the cylindrical channel symmetry. Independently of the
channel size the curvature of the molecular lamella in-
creases while approaching the channel axis. This can
result in splay distortions or other defect structures (see
Fig. 2) which hamper or even inhibit the growth of or-

dered columnar domains, see 1d. Such defects are also
expected to lower the local transition temperature as we
discuss in a more quantitative manner in the second part
of the manuscript for the case of splay distortions. In par-
ticular, the topological frustration may simply bring the
core region into a disordered (isotropic) state (Fig. 1 d) or
other energetically more favorable structures, like e.g. es-
caped radial configurations as sketched in Fig. le. In fact,
the escaped radial configuration has been experimentally
observed for rod-like nematic liquid crystals confined into
cylindrically shaped sub-micron channels imposing simi-
larly competing geometric constraints [11, 24].

A. Results

In Fig. 3 we present the temperature dependences of
the optical birefringence An measured in heating (red
online color) and cooling (blue online color) runs for dis-
cotic Py4CEH in the bulk state and embedded in meso-
porous matrices of different type, channel size, and chem-
ical treatment.

1. bulk

In the homeotropically aligned, columnar phase bulk
Py4CEH exhibits negative birefringence. The columnar-
to-isotropic transition is accompanied by a jump-like van-
ishing of An, see Fig. 3a. Subsequent cooling reveals a
small temperature hysteresis (~1 K) of the reverse trans-
formation. The temperature variation of the optical bire-
fringence in the columnar discotic phase exhibits satu-
ration. In fact, during cooling to ambient temperature
the absolute magnitude of the bulk birefringence even
decreases slightly. Probably, this unusual behavior can
be attributed to the changes in the positional ordering.
The decrease of the interdisc and intercolumnar distances
upon cooling[23] provide a weak positive contribution on
top of the considerably larger negative birefringence re-
sulting from the saturated homeotropic orientational or-
dering. Note that the value of approx. An =-0.15 is in
good agreement with the birefringence value for A = 633
nm reported in Ref. [25], where wavelength dependent
measurements on Py4CEH-films with unidirectional pla-
nar alignment are reported.

2. Spatial confinement in nanochannels

For the confined Py4CEH the orientational order in-
side the channels results in an excess birefringence, An™,
which appears on the background of the geometric bire-
fringence, Ang typical of the parallel-aligned nanochan-
nels, see the arrow in Fig. 3b and the Egs. (1)-(3)
of Ref. [21]. The measured birefringence represents,
therefore, a superposition of these two contributions, i.e.,
An = Ang + An*. The geometric birefringence depends
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FIG. 3: (color online). The optical birefringence vs. temperature during cooling (blue online color) and subsequent heating (red
online color). (a) bulk Py4CEH, (b)-(1) - the birefringence of confined Py4CEH embedded in different nano channels as indicated
in the figure. The quantity An, and An* labeled in panel (b) mark the geometrical and excess birefringence, respectively.
The arrows in panel (a), labeled T¥pc and Tf5c, mark the bulk phase transition temperatures from the isotropic-to-columnar
discotic phase and vice-versa, respectively. The gray vertical dash-dot lines, labeled T} and T¢, mark the characteristic
temperature of kink position during heating and cooling runs, respectively.



on the difference between the refractive indices of the
host matrix and the guest material. Therefore it is rel-
atively small for entirely filled silica or alumina mem-
branes, however quite large for the silicon membrane.
This can be inferred from the socket values in Fig. 3.
While the geometric birefringence Ang exhibits smooth
and comparably weak temperature variations, caused by
varying refractive indices of host and guest materials as
well as changes of the porosity due to thermal expansion,
the excess birefringence An™ is characteristic of the ther-
motropic molecular orientational ordering and dominates
the measurements as can be seen below.

For membranes with untreated surfaces the excess bire-
fringence is positive, see Fig. 3. This indicates a domi-
nating radial face-on type molecular ordering. Thus, it
is in good agreement with the aforementioned diffraction
studies [23]. In contrast to bulk Py4CEH, which exhibits
a first-order isotropic-to-columnar discotic phase tran-
sition the geometrical constraint renders the transition
in the nanochannels gradual with characteristic kinks at
T = T¢ (cooling) and T = T} (heating), see vertical
gray dash-dot lines in each panel. Please note that
it will become evident from the discussion below that
the characteristic temperatures 7' = T, and T' = Tl](f1 do
not represent phase transition temperatures in a classical
meaning, as e.g. in the case of a bulk state. They rather
characterize a local transition temperature in the molec-
ular layer(s) close to the channel wall. Above TP (TY)
the birefringence changes weakly with temperature. Just
below these characteristic temperatures it exhibits strong
variations with a saturation at lower temperatures. The
larger the channel diameter, the steeper are the An-
decays and -increases. Spatial confinement also strongly
influences the temperature hysteresis. It substantially
increases as the channel diameter decreases. Moreover,
for large channel radii (R > 10.0 nm) the birefringence
measured at cooling exhibits below Ty a staircase-like
variation. By contrast, upon heating the optical birefrin-
gence gradually decreases starting from a saturated value
down to the pure geometrical birefringence, An, for all
systems investigated.

The axial parallel molecular ordering (see Fig. la),
which appears to be desirable for a number of organic
electronic applications, never occurred in our experi-
ments as long as we dealt with untreated membranes.
This fact is evident, since the native hydrophilic sur-
faces of alumina and silica enforce a homeotropic (face-
on) type ordering. Porous silicon is also no exception
in that respect. It is characterized by a native layer of
SiOy and its anchoring properties, as has been experi-
mentally proved recently [26], are the same as for the
silica membranes. Silanization, on the other hand, ren-
ders these surfaces more hydrophobic enforcing thus an
unidirectional planar ordering, see Fig. 1b. The experi-
ment, however, shows that even silanized channel walls
are not able to stabilize the axial parallel molecular order,
although a certain effect of silanization can be observed
in the channels of large diameters, compare e.g. Fig. 3b

and Fig. 3c. We emphasize that parallel axial and ra-
dial types of ordering, as it is sketched in Fig. 1c and
Fig. 1d, respectively, provide an excess birefringence of
opposite signs. Thus these configurations are easily dis-
tinguishable by our optical polarimetry technique. We
find here that silanization increases the temperature hys-
teresis of the isotropic-to-columnar discotic transition,
only. A more detailed inspection of this region, see inset
in Fig. 3c, reveals two kinks at cooling. A weak positive
excess birefringence, which appears just below 360 K,
could be attributable to a nonuniform molecular ordering
with coexisting regions of radial and parallel axial con-
figurations, where a radially ordered component slightly
prevails. Below 351 K, however, the birefringence ex-
hibits a strong positive increase indicating a formation
of a strongly dominated radial configuration.

Coating of the inner surface with gelatine based ink
appears to be more efficient in a stabilization of axial or-
dering, see Fig. 1b. But even in this case the regions of
parallel axial configuration coexist or compete with re-
gions of a radial molecular configuration, see in Fig. 3d.
At cooling the excess birefringence increases first slightly,
but then decreases to a value lower than the level of the
geometrical birefringence Ang, (see extrapolated dashed
line in Fig. 3d). This means that the negative contribu-
tion caused by the parallel axial ordering slightly dom-
inates in this case over the positive contribution due to
the radial arrangement of discotic molecules. The coex-
isting state is stable at least down to 320 K. At subse-
quent heating the coexisting configurations are stable up
to about 358 K. Above this temperature, at about 360
K, first the regions with parallel axial configuration dis-
appear, as is evident from a strongly birefringence rise,
and at even slightly higher temperatures, at about 361.5
K, the regions of radial configuration vanish.

B. Discussion

In the following we extract characteristic quantities of
our polarimetry measurements in order to allow for a
more quantitative evaluation and discussion of our ex-
periments.

1. Phase transition temperature and birefringence versus
channel diameter

In Fig. 4a the R-dependence of the temperature po-
sitions of the kinks, T}? and Ty are plotted. Both tem-
peratures vary nonlinearly with the channel radius, R.
However, T/"(R) changes smoothly in contrast to 7™,
This indicates that the structural transformations upon
heating and cooling follow considerably different path-
ways. In particular it is interesting to note that T}" de-
pends on the channel radius only, i.e. it is the same for
membranes with native and coated surfaces of the same
channel size. This is in strong contrast to the observation



in cooling runs, where the kink position and the overall
evolution of structural ordering strongly depends on the
surface anchoring.

An interesting and challenging question arises with
respect to the R-scaling of the characteristic transi-
tion points, particularly the kink temperature position,
T2(R). In the case of melting or freezing in pores the shift
of the transition temperatures with respect to the bulk
transition is expected to scale according to the Gibbs-
Thomson equation with 1/R [27-30]. In panels (b) and
(c) of Fig. 4 we show T vs R~ and R™2, respectively.
When the entire range of radii is considered, T} ver-
sus R~! evidently exhibits a nonlinear dependence. For
large channel radii, R > 6.8 nm, however, the exper-
imental data fit the linear dependence, see gray dash-
dot line in Fig. 4b and an extrapolation of this depen-
dence to R™' = 0 gives the bulk transition tempera-
ture, Tt The T (R~2)-dependence, on the other hand,
can be well fitted by a linear dependence in practically
the entire range of channel radii, see gray broken line in
Fig. 4c. However, an extrapolation of such a linear fit to
R~2 = 0 gives a temperature of about 5.5 K lower than
the bulk temperature Tjt. Hence, neither the R~1—
nor the R~2— scaling can solely describe the R-shift of
the kink temperature T}*(R): We observe a crossover
from a R~'-dependence at larger channel radii to a R~2-
scaling for small channel radii. In the entire range of
channel radii the 7T} (R)-dependence can be described by
Tﬁ‘ = TI#C&D — a1 R™! — ayR™? with the fit-parameters
T, = 355.2 K, a; = 52.1 K-nm and ay = 241.0 K-nm?.
The parametersa; and as are material specific, since they
depend both on the intermolecular forces of the discotic
molecules and on the interaction of the discotic molecules
with the porous host material.

One must emphasize again that the characteristic
point Tﬁ‘ corresponds according to our understanding
to the local transition that takes place in the molec-
ular layer(s) next to the channel wall. Therefore, it
differs from the characteristic transition temperature as
determined by differential scanning calorimetry (DSC),
which corresponds to the fastest temperature variations
of the effective (averaged over the pore volume) order
parameter squared, i.e. the maximum of the derivative
d({S)?)/dT [31]. Hence, considering that the excess bire-
fringence An™ o (S), the temperature position of the
DSC anomaly should coincide with the temperature posi-
tion of the characteristic anomalous peak in d(An*?)/dT
[31]. Fig. 5a presents —d(An*?)/dT, normalized to their
maximum, versus T as determined from the temperature
dependences of the optical birefringence (see Fig. 3) mea-
sured during heating. For large channel diameters their
temperature dependence is characterized by a relatively
sharp peak being located a little bit below the kink po-
sition. For smaller channel radii the peak substantially
broadens and shifts considerably down with respect to
the kink position. Interestingly the temperature behavior
of the derivative —d(An*?)/dT for the membrane with
smallest channel radius, R = 3.4 nm, is characterized

by a very broad anomaly with overlapping double peaks.
This may be caused by a bimodal channel diameter dis-
tribution, nonuniform channel diameter and/or channel
wall roughness. Therefore, we ignore this measurements
in the further analysis. The temperature position of the
derivative maximum, T, measured at heating versus the
inverse channel radius, R~!, is shown in Fig. 5b. It indi-
cates a R~ !-scaling in agreement with recent DSC mea-
surements on this system [32]. Albeit, here we prove the
R~1-scaling for the effective (averaged) phase transition
point to a considerably smaller channel radii, i.e. for
R > 3.8 nm.

The excess birefringence An™ scales with the poros-
ity of the membrane, P. Accordingly, a comparison of
the orientational ordering in samples of different poros-
ity with the bulk state requires its normalization by P.
To characterize a saturated ordering it is useful to com-
pare the normalized excess birefringence inside the chan-
nel, An™ = An*/P, and the saturated bulk birefrin-
gence, Anj ., as the reference value. For the fully devel-
oped (saturated) parallel axial ordering the normalized
excess birefringence is approximately equal to the satu-
rated bulk birefringence, i.e. An**(axial) = An; . For
the fully developed radial ordering, on the other hand,
the normalized excess birefringence equals half of the sat-
urated normalized axial birefringence and it is opposite
in sign, see the discussion on page 4, right column in
Ref. [33], i.e. the following relation holds An**(radial) =
—An*t*(axial)/2 = —Anf /2. At T < T"—30K the ex-
cess birefringence, AnT in all matrices investigated sat-
urates, i.e. AnT (TP —30K) ~ An*t*. It is worthwhile to
compare this quantity with the bulk birefringence value,
Anpui taken at TIhCD —30 K in order to gain information
on the extent of molecular order at low temperature. In
Fig. 6 the ratio —An™ (T — 30K)/Anpuk (Tl — 30K)
is plotted versus the channel radius. For large channel
diameters (2R > 20 nm) this ratio is ~ 0.45, ie. it
is only about 10% smaller than 0.5, corresponding to a
fully developed radial ordering. However, for channels
with smaller diameters this ratio is considerably smaller.
It monotonically decreases with decreasing channel diam-
eter, down to 0.035 for a silica membrane with R =3.4
nm. Obviously the radial ordering inside the channels is
not uniform.

On the one hand, following our recent structural study
[23] the molecular ordering near the channel walls is
known to be either of radial columnar (for large channel
diameters, Bragg peak typical of hexagonal order observ-
able) or radial nematic type (for small channel diameters,
Bragg peak typical of hexagonal order not observable).
In both cases the radial orientational order provides pos-
itive contribution to the excess birefringence. On the
other hand, we do not know much about the translational
and orientational molecular ordering close to the channel
axis, i.e. in the core region. Our experiments are com-
patible with two possibilities: The discotic molecules in
the core region can be either orientationally disordered,
giving no contribution to the excess birefringence, or they
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FIG. 4: (color online). Panel (a): The temperatures of the
kink positions, T{* and Ty, determined from the temperature
dependences of the optical birefringence (see Fig. 3) measured
during heating and cooling, respectively, versus the channel
radius R. Panel (b): T} versus the inverse channel radius,
R™'. Open symbols with error bars are the experimental
data points measured at heating. The dashed-dot line (gray
online color) is the best linear fit for the channel radii larger
than 6 nm. Solid curve (wine online color) represents the best
fit by the function Ty = T/, — a1 R™! — aa R™2 with the fit-
parameters Tfi“éD = 365.2 K, a1 = 52.1 K.-nm and a2 = 241.0
K-nm?. Panel (c): Kink position T} versus the inverse square
of the channel radius, R~2. The broken line is the best linear
fit for the data points that correspond to channel radii R < 10
nm.

1-bulk, 2- pAl,04(21.0 nm), 3- pAl,0,4(15.5 nm), 4- pAl,04(10.0 nm),
5-pSi(8.5 nm), 6-pSiO,(6.8 nm), 7-pSiO,(5.7 nm),
8-pSi0, (4.6 nm), 9-pSi0,(3.8 nm), 10-pSiO,(3.4 nm)
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FIG. 5: (color online). Panel (a): The normalized

temperature derivatives of the excess birefringence squared,
d(An™2)/dT, versus T determined from the temperature de-
pendences of the optical birefringence (see Fig. 3) measured
during heating; All the derivatives are normalized to their
maximum value. Panel (b): The temperature position of the
derivative maximum versus the inverse channel radius, R~'.
Solid line (wine online color) is the linear fit. The data point
corresponding to R =3.4 nm is excluded from the fitting pro-
cedure.

are aligned preferably parallel to the channel axis, pro-
viding thus a negative contribution to the excess bire-
fringence. Those two alternatives are sketched in Fig. 7a
and Fig. 7b, respectively. Presumably, the interface be-
tween the shell, consisting of radially ordered discotic
molecules, and the core is smooth. One probable config-
uration is shown in Fig. 7b, where the director changes
gradually its spatial orientation from radial (at the chan-
nel wall) to parallel axial (in the channel center), which
corresponds to an escaped radial configuration.

C. Phenomenology of the Isotropic-to-columnar
discotic transition in cylindrical channels

In the following a series of phenomenological and geo-
metrical considerations will be presented in order to ar-
rive at an appropriate interpretation of the observations
presented above. They are based on the extensive knowl-
edge existing for defect structures of liquid crystals and
our previous diffraction studies on this discotic system in
nanochannels.

Our measurements indicate that in none of the investi-
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FIG. 6: (color online). The ratio between the saturated ex-
cess birefringence, An™, of the confined discotic liquid crystal
Py4CEH, taken at T} — 30K, and the saturated bulk bire-
fringence at Tiep — 30K as function of channel radius, R.
Semiopen circles (wine online color) are the magnitudes ob-
tained in the experiment. Dash-dot curve (dark gray online
color) are the calculated values for a radial configuration with
isotropic core. The horizontal, dashed black line is the theo-
retical limit.

gated cases a well developed parallel axial configuration
can be achieved, even in the case when surface anchoring
enforces this type of ordering in the channels. Why is this
the case? Some hints for answering this question may
be found in pure geometrical reasons. It is imaginable
that the the hexagonal lattice accommodates to the cylin-
drical constraints by having undulations of the columns
(with some bend elastic energy)[34]. In principal, a fully
developed parallel axial configuration requires, however,
that the channel diameter is commensurate with the lat-
eral intercolumnar distance, i.e. an integer number of
columns should fit exactly into a circular section of the
channel, as sketched in Fig. 1c or Fig. 1f. Otherwise, a
splay distortion results (see Fig. 1g) which rises the free
energy and possibly renders an alternative radial config-
uration with isotropic core (Fig. 1d) or escaped paral-
lel configuration (Fig. le) more favorable. Assuming an
ideal circular cross-section, the splay distortion equals
zero if 2R = n - d. It reaches a maximum value for
2R = (n—1/2)d, here n is an integer number and d is the
equilibrium intercolumnar distance, see Fig. 1f. For the
condition, 2R = (n —1/2)d, simple geometrical consider-
ations yield the equation, (n — 1/2)usd/2 = sin(nusd/2).
Solving this equation numerically for different n one ob-
tains a decaying dependence for the splay deformation,
us(R/d), see Fig. 1i.

The intercolumnar distance of Py4CEH as determined
from the position of the leading, hexagonal (100)-Bragg
peak is d = 2/v/3 - 21/qioo =2.04 nm [23].  Accord-
ingly, approximately 3 (2R = 6.8 nm) up to about 21
(2R = 42.0 nm) columns may fit into the radial cross-
section of the channels investigated here. From Fig. 1i it

follows that more chances for a realization of that config-
uration have the membranes with large channel diam-
eters, since the splay distortion significantly decreases
with the channel radius R. This agrees with our experi-
mental observation.

The channel wall roughness additionally reduces
chances for the realization of the pure parallel ax-
ial configuration (see illustration in Fig. 1j). Particu-
larly, for channels with small mean diameters the corre-
sponding distortions are spatially inhomogeneous (due to
the roughness induced channel diameter variations) and
strong, rendering the parallel axial configuration unstable
and giving way for the radial configuration with isotropic
core (Fig. 11) or escaped radial configuration (Fig. 1m).

For larger channel diameters, on the other hand, the
splay distortions caused by the geometrical restraint are
considerably smaller thus at adequate anchoring condi-
tions this may lead either to a fully developed parallel
axial structure (never observed in our experiments) or
coexisting regions with the parallel axial and radial con-
figurations, as e.g. sketched in Fig.1k. The latter is
presumably the case for the surfactant ink-coated mem-
branes, at least a "mixed” type of ordering is consistent
with the negative excess birefringence observed in this
experiment.

As mentioned already above for channel radii larger
than 10 nm a Bragg peak typical of the translational,
hexagonal arrangement of the LCs in confinement could
be observed, whereas for smaller pore diameters this sig-
nature was not detectable. Therefore we suggest that for
larger pore diameters either uniaxially, aligned columns
(see Fig. 3) or radial, aligned columns with dislocation
defects are established. Note that splay deformations
are not compatible with the positional columnar order
observed for the larger channel diameter, only with the
nematic-like organization for the small pore diameter.

D. Uniaxially aligned columns or radial columns
with dislocations defects

In the first case the DLC is uniaxially aligned in the di-
rection normal to the nanochannel axes. This mainly ra-
dial configuration without elastic distortion preserves the
hexagonal lattice but exhibits unfavored alignment of the
discotic molecules at the DLC-solid interface and possibly
the coexistence of domains (see Fig. 2). The anchoring
energy is minimized for the face-on (i.e. homeotropic)
orientation with respect to the side-on (planar) orien-
tation, even if the difference of energy has been re-
ported to be relatively small [7], vl o . —ad o x
10=° J/m?. The different channels in a given membrane
being independent, all the radial orientations are aver-
aged in space and are therefore relatively consistent with
the scattering experiments showing mainly intercolum-
nar positional order along the nanochannel direction [23].
Moreover, one can imagine that along the long axis of the
channels the azimuthal orientation of domains of aligned



columns changes, also in agreement with the scattering
results.

In the second case an increasing number of dislocations
(and/or grain boundaries) (see Fig. 2 ) is necessary in
order to fulfill simultaneously the geometrical constraints
of the nano channels and the anchoring conditions. Un-
fortunately, we do not have more detailed experimental
data in order to distinguish between those two, possible
structures.

For the pores with smaller diameters we assume a ra-
dial discotic state with possible short-range, but with no
long-range hexagonal order, i.e. a nematic type of or-
der, which adapts by splay deformations to the confined
geometry.

E. Nematic, radial discotic state
1. Splay deformations and Landau-De Gennes model

In the following we aim at a more quantitative descrip-
tion of the confined radial discotic state without trans-
lational order. To this end we refer to a phenomenologi-
cal Landau-de Gennes analysis of nematic discotic order
subjected to elastic distortions as outlined in Ref.[35] and
explore to what extent our observations can be qualita-
tively and quantitatively captured by such a model. The
free energy density of a nematic state in the case of elastic
distortions can be expressed as:

f = fo+ fe

e B 1ca
fo = GAT=T")S* - 2BS® + 108", (1)
f. = %{bl(ﬁﬁ)ubg[ﬁ-(6xﬁ)]2+b3[ﬁx(6xﬁ)12

— by V[A(V - @) + 171 x (V x )]} S?

where A, B, and C are the Landau-de Gennes free
energy expansion coefficients, 7 is an effective tempera-
ture. The quantity fy represents the free energy density
of the unperturbed liquid crystal in the ground state and
fc is the free energy density describing the coupling be-
tween the nematic order parameter S and different types
of elastic distortions with coupling constants b;-by.

In order to employ this model for our confined system,
we have to analyze which type of elastic distortions are
present for different assumed configurations of orienta-
tional order in the channels. While the radial colum-
nar (or radial nematic) ordering near the channel walls
(i.e. in the shell region) has been well established in
neutron experiments [23], a challenging question remains
the structural configuration in the core region. In gen-
eral, it may be disordered or parallel axial ordered, as
it is sketched in Fig. 7a and Fig. 7b, respectively. Al-
though the neutron scattering experiments have not re-
vealed any hints of an existence of an escaped radial con-
figuration with columnar parallel axial ordering in the

core region (Fig. 7b), one cannot exclude an existence of
such a phase.

Nevertheless, we resort here to the most simple case of
a radially ordered shell with an isotropic core, i.e. the
configuration shown in Fig. 7a and do not consider the
possibility of more complicated orientational order distri-
butions. Moreover, we ignore the spatial inhomogeneities
of the scalar order parameter (VS-terms) considered in
Ref. [35] for the sake of simplicity. Hence we assume that
its spatial variation in consequent molecular cylindrical
layers of the nematic shell is weak. This is justified by
a strongly saturated temperature behavior of the scalar
order parameter S(T') observed in the bulk state, which
presumably originates in the strong 7 — 7 interaction be-
tween the polyaromatic cores. Consequently the gradient
terms are omitted in the free energy density (see Equa-
tion 1.

For the radially ordered configuration with isotropic
core the gradients of the order parameter occur most
likely in the interface regions, e.g. near the channel
walls and/or on the isotropic-nematic interface (phase
front). However, we believe that those effects do not
significantly influence the molecular ordering in neigh-
boring molecular layers, again because of the saturation
of the nematic molecular ordering. In other words, in
our simplified model with isotropic core, see Fig. 7a, the
radial dependence of the nematic order parameter S(r)
is approximated as, S(r)=0 at r < r. and S(r) = 1 at
re <r <R.

For a cylindrical geometry with a radial arrangement
of discotic molecules in a nematic shell, as it is sketched
in Fig. 7a, the bend (7 x (V x 7)) and twist (7i- (V x 7))
distortions both equal zero, whereas the splay deforma-
tion, Vit = 1/r, i.e. is inversely proportional to the
distance from the channel axis |].  The free energy
density reads then:

f(R,7) = %A(T—T*(R)+b1A*1/r2)SQ—éBS3+iOS4,

(2)
i.e. it is r-dependent. By solving f = 0 and 9f/0S =
0, one obtains a local temperature of the isotropic-to-
nematic transition, which has a local (r-dependent) char-
acter. It thus renders the transition gradual in accor-
dance with the experimental observation:

T.(r) = T*(R) + 2B?/(9AC) — by A~ /r?,  (3)

Here we consider the competition of volume free energies
(scaling with 1/R?) and interfacial free energies (scal-
ing with 1/R) which results to the depression of the
effective transition temperature, 7*(R) as R~! (Gibbs-
Thomson mechanism with cylindrical phase boundary).
Accordingly, it can be approximated as T*(R) = T*(R —
o0) — g/R where g represents a material constant. The
effective temperature T*(R) depends on the channel di-
ameter. We neglect, however, the channel diameter dis-
tribution in our sample, thus is is assumed to be con-
stant in the entire pore volume. By contrast the third



term of the equation (3), by A~!/r?, depends on r, which
results in a radial dependence of the transition temper-
ature. From Eq. 3 it follows that this ”local” transi-
tion temperature remains constant within the cylindric
layer of radius r < R, but varies in subsequent cylindrical
molecular layers from the channel center (r — 0) to the
periphery (r — R). At r, R — oo it approaches the bulk
transition temperature, Tjcp = T* + 2B?/(9AC). For
cylindrical layers close to the channel axis, i.e. r — 0,
the local transition temperature T.(r) is considerably
shifted down. Thus our model calculation yields an im-
portant prediction with regard to the spatial evolution
of the phase transition: The phase transition starts near
the channel walls upon cooling. Furthermore, it is ac-
companied by a cylindrical phase front, which gradu-
ally propagates from the periphery to the channel center
upon cooling, and vice-versa upon heating. The cylin-
drical front of radius r. (see Fig. 7a) separates the ra-
dially ordered nematic phase (r. < r < R) from the
isotropic core region (r < r.). Note that within such
an approach a disordered core region of final radius
re = [AT*(R)/b1+2B%/(9Cb;)]~'/? is omnipresent, even
for T' — 0, which results from the diverging splay de-
formation in the channel centre. The phenomenological
model evidently fails for small core radii on the order of
the diameter of a single molecule, a value close to the
intercolumnar distance of approx. 2 nm [23].

The analysis above allows for an understanding of our
experimental observations. During cooling the transition
from the isotropic-to-nematic phase starts at the periph-
ery, near the channel walls. Therefore, the interfacial
interaction and the channel roughness play an important
role. Radial homeotropic and axial planar ordering may
simultaneously occur, enforced by specifics of the inter-
facial and/or local geometrical conditions. Accordingly
first a (metastable) coexistence of both states appear and
only at lower temperature the radial molecular ordering
becomes dominating. This explains the observation that
the kink position upon cooling varies from sample to sam-
ple and is sensitive to the surface coating, compare e.g.
Fig. 3b and Fig. 3c.

By contrast, the kink position during heating exhibits a
more systematic evolution as a function of channel diam-
eter. Presumably, there is always an entirely disordered
or highly defect decorated core. It acts as a nucleation for
the high-temperature phase. The phase front starts there
and gradually propagates according to the r-dependent
transition temperature (Eq 2) to the periphery, while
"melting” subsequent radially ordered molecular layers.
The kink position at heating corresponds therefore to the
situation at which the phase front reaches the channel
wall. It is defined mainly by a geometrical factor, i.e.
the channel radius. For channels of radius R with ide-
ally smooth walls its temperature is given by Eq. 3, i.e.
T« = Ticp — gR™" —bi A~'R~2. The material constants
here, as derived from the fit-parameters of the kink po-
sition measured at heating, are Ticp = TfﬁéD = 355.2 K|
g=a, =521Knm and by A~ = gy = 241.0 K-nm?.
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FIG. 7: (color online). Radial configuration with isotropic
core (a) and escaped radial configuration (b). Panel (c): The
left sectorial fragment represents the molecular ordering, the
right sectorial fragment explores the splay distortion due to
a curvature of molecular layers with the local director, 7,
oriented radially. The resulting splay distortion, V7, equals
1/r, i.e. it is spatially inhomogeneous. The gradient in the
splay distortion results in a phase front (see red circle of radius
r¢), which separates a radially ordered shell from an isotropic
core. According to our model calculation it moves during
cooling from the periphery to the channel center, and vice-
versa during heating.

There is another remarkable peculiarity in the phase
transition scenario outlined above. Since the size of the
isotropic core decreases gradually as the temperature
lowers, its diameter can reach an integer number of col-
umn diameters at certain temperatures. The splay /bend
distortions caused by the geometrical constraint vanish
in this case, which could result in a parallel axial order-
ing in the vicinity of the channel axis. Hence, the direc-
tor, 77 would change its spatial orientation from a radial,
near the channel wall, to a parallel axial orientation near
the channel axis (see e.g. Fig. 3b), which corresponds
to the escaped radial configuration known from rod-like
nematic liquid crystals[11, 24]. Moreover, the molecular
configurations may be stable in a certain temperature
interval, only. The radially ordered shell tries to induce
radial order in the neighbouring core region. This may
lead to a new metastable configuration with less number
of axially aligned molecules in the core region. One may
speculate that the staircase-type ordering phenomenolo-
gies observed in a couple of the cooling scans are hints
of such mixed radial/axial transition states with well-
defined numbers of columns in the channel center.



2. Order parameter evolution at the isotropic-to-discotic
columnar transition

Encouraged by the reasonable agreement between our
experimental findings and the predictions of the simpli-
fied model, we extend now our analysis and calculate the
temperature evolution of the optical birefringence, that
is the evolution of the nematic order.

We recall that in the case of rod-like systems con-
fined in silica channels a remarkably well agreement with
Landau-de-Gennes models for the evolution of nematic
order could be achieved in the past [13, 31, 36, 37].
Note, however, that a principle difference exists between
the confined axially ordered rod-like nematics considered
there and the radially ordered discotics discussed here.
For the rod-like systems the confinement effects were
mainly represented by an effective ordering field, o, which
results from the anchoring condition of the molecules at
the channel walls. The strength of this field depends on
the channel size (o(r) oc 7=1), but it is spatially homo-
geneous. Depending on the actual o-value, which may
be either subcritical (o < 1/2) or overcritical (o > 1/2),
the transition in a spatially confined geometry is of first
or second order, respectively. Bilinear coupling between
the nematic order parameter S and the ordering field o
(oS-term) breaks the symmetry of the isotropic state.
Therefore there exists a weak residual nematic ordering
(called also paranematic state) at temperatures even far
above the bulk isotropic-to-nematic phase transition. It
is preferentially located in the interface region near the
channel walls. Here we consider a strong gradient in
the splay distortion, which radially develops inside the
channels. Biquadratic coupling between the nematic or-
der parameter S and a splay distortion ((V -7)252-term)
obviously does not break the symmetry of the isotropic
state. Thus pretransitional effects are not expected. The
deformed state of the molecular layers does not change
the first order character of the phase transformation. It
only extents the temperature range in which the cylin-
drical front shifts from the periphery to the channel axis
or vice-versa.

These considerations are again in good agreement with
our experimental results: For channel diameters down to
5.7 nm there are indeed no pretransitional effects. How-
ever, for smaller channel radii small tails are observable.
They may originate: i) in an increasing influence of spa-
tial inhomogeneity in the channel diameter, what directly
leads to a smearing of the kink in the dependence An vs
T and ii) in a rising weight of surface effects resulting
from a certain disorder induced in few molecular layers
next to a rough channel wall.

Now, we calculate the temperature behavior of the ex-
cess birefringence An™. It is proportional to the effective
order parameter, (S), representing the average value of
the local order parameter S(r) over the channel volume,
ie. (S) =V~ [S(r)dV. In our calculations the radial
dependence of the local transition temperature is taken
as To(r) = TféD — a1 R — agr—2, where Tl’ém a; and
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FIG. 8: (color online). Panel(a): The effective order param-
eter, (S) vs T, calculated by averaging S(r) over the cylindri-
cal channel volume for the radial ordered configuration with
isotropic core (Fig. 7a). In relevant simulations it is assumed
that the temperature dependence of S(r) exhibits fully sat-
urated spatial variation in consequent cylindrical layers, i.e.
S(ry =0at T > Tc(r) and S(r) = 1 at T < Tc(r), where
T.(r) is the local transition temperature. Excess birefrin-
gence, An™, is proportional to (S).  Panel(b): Tempera-
ture derivatives, —d((S)?)/dT, normalized to their maximum
values versus T as calculated from the (S(T))-dependences
shown in Panel (a).

ae are the fit values as determined above by fitting of
the experimental TI?(R)—dependence. The dependence
T.(r), defined in this way, correctly describes the local
transition temperature in the molecular layer(s) near the
channel wall, it may however somewhat deviate from this
value in the higher molecular layers. We believe that this
difference is not significant. The core region is assumed
to be isotropic, being separated from the radially ordered
shell by a sharp boundary. We also assume that the tem-
perature dependence of S(r) exhibits a fully saturated
behavior in cylindrical layers, i.e. S(r) =0 at T > T,(r)
and S(r) =1 at T < T.(r). In such a case the effective
order parameter is given by the analytical expression,
(S(T)) = 1=[re(T)/R]* = 1=02R™*/(Tfyp —an R~ =T).

In Fig. 8a the calculated order parameter (S) vs T is
displayed for a selected set of channel diameters, R. It
can be directly compared with the temperature variations
of the measured optical birefringence shown in Fig. 3.



The simple model reproduces not only the temperature
shift of the kink position very well, but also correctly
describes the evolution of the curve shape: For larger
channel diameters the temperature variations of the ef-
fective order parameter are steeper. Thus (S) reaches
quickly the corresponding saturated level. Moreover, the
saturated value of the effective order parameter decreases
monotonically with decreasing channel radius. This ef-
fect can be attributed to an increasing weight factor of
the isotropic core. Also the calculated temperature
derivatives, —d((S)?)/dT (see Fig. 8b), exhibit a very
asymmetric shape similar to the ones observed in the ex-
periment, see Fig. 5a. The anomalies are quite sharp at
large channel diameters, but considerably broaden with
decreasing R.

Finally, it is interesting to compare the calculated ra-
tio of the saturated excess birefringence for the discotic
nematic in the confined and bulk states, —An™ (T} —
30K)/Anpuk(Tiep — 30K) as a function of channel ra-
dius R (Fig. 6, dash-dot line, dark gray online color)
with the one derived from the experiment, see Fig. 6.
In general the evolution of the experimental data is re-
markably well captured. However, in all cases the ex-
periment shows significantly lower values than the cal-
culated one and the deviations considerably increases at
small channel diameters. These discrepancies can have
several causes: The molecular ordering near the channel
walls may be reduced due to interface roughness. Partic-
ularly at smaller channel radii the relative contribution
of these molecules, not considered in our model, con-
siderably rises. Moreover for smaller channel sizes our
continuum model may systematically underestimate the
confinement effects. Note that for R =3.4 nm only about
4 layers fit into the channel space. Here the simple phe-
nomenological model systematically underestimates the
elastic deformations and microscopic molecular dynam-
ics simulations would be the adequate method in order
to quantify the confinement effects.

IV. SUMMARY AND CONCLUSION

We presented a systematic optical polarimetry study
aimed at an exploration of the thermotropic collec-
tive orientational order of discotics confined in parallel-
aligned nanochannels of mesoporous alumina, silicon,
and silica. In agreement with a former diffraction study
the temperature-variation of the optical birefringence
indicates collective orientational order, typical of the
columnar hexagonal bulk phase. The phase transition
temperatures both in cooling and heating decrease with
decreasing channel radius, whereas the width of the tran-
sition hysteresis increases. The negative magnitude of
the birefringence indicates a radial columnar phase for
the native and silanized channel surfaces, also in agree-
ment with the previous diffraction experiments. Only
for the peculiar case of an ink-coated alumina surface we
could achieve parallel axial columnar order. But even
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there a radial ordered state occurs as a transition state.
Upon cooling we found several hints for a stair-case type
ordering, which could be hints of transition states with
integer number of axially ordered columns in the centre.
Interestingly, this is reminiscent of the quantized evolu-
tion of smectic order known to occur at the free surface
of rod-like liquid crystals [38].

The existence of long range translational order, as indi-
cated by previous scattering experiments on the identical
systems (for R > 10 nm), and the results here indicate
a radial order, which is presumably significantly affected
by grain boundaries and dislocation defects in order to
allow for translational and orientational order under the
confining constraints.

For the smaller pore diameters (R < 10 nm) where no
hints of long-range translational order have been found,
we anticipate a radial, nematic order dominated by splay
deformations. A Landau-De Gennes model considering
elastic splay deformations in cylindrical layers of radially
arranged molecule columns and an orientationally dis-
ordered core, resulting from competing geometrical con-
straints in the channel centre, yields semi-quantitative
agreement with the observations in our experiments,
both with respect to the temperature-dependence of the
birefringence and with respect to its evolution as a func-
tion of channel diameter. The model predicts a nucle-
ation of the columnar phase at the channel wall and its
gradual propagation to the channel centre upon cooling.
By contrast upon heating the isotropic state nucleates
in the channel centre. The cylindrical phase boundary
propagates towards the channel wall. Since the latter
process is nucleated in the channel centre, the transi-
tion upon melting is more reproducible and predictable,
not affected by metastable phases. More generally spo-
ken, the pronounced hysteresis effects observed originate
on the different nucleation sites of the low-temperature
phase upon cooling and the high-temperature phase upon
heating, respectively.

The local transition temperature detected in the
molecular layer(s) near the channel walls, exhibits two
types of scaling: (i) at large channel diameters it scales
with 1/R, in good agreement with the Gibbs-Thomson
prediction for a phase transition of first order in confine-
ment; and (ii) for small channel diameters it scales with
1/R?, caused by the increasing impact of splay distor-
tions. The effective (averaged) transition temperature,
determined from the temperature derivatives of the ex-
cess birefringence squared, exhibits 1/R scaling in agree-
ment with recent DSC measurements, although our op-
tical studies proves the validity of this scaling up to pore
radii R > 3.8 nm. The biquadratic coupling of the splay
deformations to the order parameter are consistent with
the absence of experimental hints of a paranematic state.
This is in strong contrast to the nematic order/disorder
transition in confined calamatic nematics, where a bilin-
ear coupling with a homogeneous surface field leads to
a pronounced paranematic behavior upon nano confine-
ment.



It is also interesting to compare our findings for this
disc-like system with melting of spherical building-blocks,
e.g. argon in nanochannels. Also for this first-order bulk
transition the movement of the ordering/disordering in-
terface has been intensively discussed and experimentally
explored in the past [27, 29, 30, 39]. Interfacial melting
with a radial moving solid/liquid boundary has been pro-
posed based on filling fraction dependent investigations
[28, 29, 40, 41]. Note however, that here the high tem-
perature (liquid) phase is believed to be nucleated at the
pore wall and hence the movement of the front boundary
is opposite to the scenario outlined here for the melting
of the columnar discotic state.

The validity of the Gibbs-Thomson equation is the
base of thermoporometry, that is the determination of
pore diameter distributions from the temperature shifts
of phase transitions [42-45]. Therefore we want to stress
that we provide here an example, where geometrical con-
straints render the 1/R-scaling law inappropriate for a
conversion of phase transition shifts into pore radii dis-
tributions, if one relies purely on the bare optical birefrin-
gence measurements. Rather an appropriate conversion
of these data sets to a quantity which corresponds to a
specific heat signal, that is the temperature-derivative of
the square of the birefringence, follows the simple 1/R-
scaling.

Despite the fact that our simple continuum model cal-
culations reasonably well agree with our experimental
findings, we believe that molecular dynamic simulations
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of confined discotics will allow for more detailed com-
parisons and insights with regard to the confinement ef-
fects. In fact such calculation on rod-like systems have
successfully contributed to a more detailed understand-
ing of the isotropic-nematic transition in confinement
[12, 46-48]. A recent molecular dynamics study docu-
mented even radial movements of phase fronts analogous
to the ones inferred here, however for a rod-like system
in nanochannels[49]. Finally, diffraction experiments on
partial fillings [50] may allow for complementary struc-
tural information on the propagation of the phase bound-
aries in channel space and thus shed light on the remark-
ably different pathways found here for freezing and melt-
ing of discotics.
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