
HAL Id: hal-01002367
https://hal.science/hal-01002367

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ORDER-STATISTICS MINIMUM ERROR RATE
DETECTOR

Abdelwaheb Boudjellal, Karim Abed-Meraim, Adel Belouchrani, Philippe
Ravier

To cite this version:
Abdelwaheb Boudjellal, Karim Abed-Meraim, Adel Belouchrani, Philippe Ravier. ORDER-
STATISTICS MINIMUM ERROR RATE DETECTOR. DAT Conference, Feb 2014, Alger, Algeria.
�hal-01002367�

https://hal.science/hal-01002367
https://hal.archives-ouvertes.fr


ORDER-STATISTICS MINIMUM ERROR RATE DETECTOR

A. Boudjellal1 K. Abed-Meraim1 A. Belouchrani2 Ph. Ravier1
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ABSTRACT

A new methodology for random signal detection, in presence
of closely spaced interfering signals, is introduced, namely
the Order-Statistics Minimum Error Rate (OS-MER) detector.
The latter is based on the minimization of the error probability
instead of minimizing only the miss probability for aConstant
False Alarm Rate (CFAR). Results show that theOS-MERdetec-
tor is well adapted to this specific problem and overcomes, in
particular, the CFAR-based one.

Keywords: Signal Detection, Order-Statistics, Incoherent In-
tegration, Constant False Alarm Rate, Minimum Error Rate.

1. INTRODUCTION

Detection theory is a statistical tool used for making a deci-
sion about the presence or the absence of a signal of inter-
est. This tool has been extensively studied and largely used
in many fields, including: Radar, Sonar, communication sys-
tems, speech, image processing, biomedicine, control, seis-
mology, etc. [1].

Initially developed for the adaptive radar detection, the
CFAR-based detection technique has been widely used to re-
solve detection problems for other applications:CDMA multi-
user detection and pseudonoise code acquisition,OFDM signal
detection, acquisition of weakGPSsignals, spectrum sensing
in cognitive radio, mobile localization,UWB localization for
trough the wall imaging, distributed detection in sensor net-
works, adaptive subspace detection, failure detection in dy-
namic systems, target recognition for automotive applications
[1, 2, 3, 4, 5]. More applications can be found in [6].

For a fixed and completely controlled false alarm rate, the
CFAR-based detectors trie to do their best for maximizing the
detection probability under a constant false alarm probability
constraint. By doing that, our intention is focused at first on
keeping the first type of detection errors under control while
the second type of detection errors, is minimized at the best
[2, 4, 5].

This way of thinking is well adapted for radar or sonar de-
tection applications were a false alarm, in general, costs more
than a miss event. Nevertheless, in other types of detection

applications, this is not true, and both error types have to be
taken into account when optimizing the detection process. For
example, for time-based localization techniques, when detect-
ing the first peak of the correlation function between the re-
ceived signal and the transmitted pilot sequence, a false alarm
or a miss of detection are equally harmful and both lead to
errors of localization.

In this paper, we introduce a new class of adaptive detec-
tors based on the same scheme and sufficient statistic of the
CFARdetector. In contrast to the above mentioned approaches,
this new methodology, namely theMinimum Error Rate MER,
is based on the minimization of the error probability. The
main difference between theMER-based detectors class and
the CFAR-based one is in the thresholding process by means
of which the detection threshold is obtained.

The proposed method takes into account the two types of
errors, false alarm and a non-detection, and takes advantage
from the prior knowledge about the presence or absence of a
signal of interest.

The MER-based thresholding method is combined here
with Order-Statistics method for the estimation of the back-
ground noise power. The resulted detector is developed for
the detection of incoherently integrated signals in presence of
interfering signals.

This methodology has been used for the time-based mo-
bile localization in the context of multipaths communication
systems. TwoMER variants have been used for the detec-
tion of the first arriving signal; theCell-Averaging Minimum
Error Rate (CA-MER) detector if only one finger is present
within the reference window or if the power of the first peak
is high enough to shadow the other peaks [8], and theOrder-
Statistics Minimum Error Rate (OS-MER) detector if several
closely spaced fingers are present withing the reference win-
dow [9]. In [8] and [9], the optimization of the probability of
error has been done numerically. Herein, theγ that minimizes
the error probability is given in a closed-form.



2. DETECTION SCHEME AND STATISTICAL
ASSUMPTIONS

2.1. Detection Scheme

Fig. 1. Adaptive Detection Scheme.

In a typical detection problem we are interested in deter-
mining whether a received signalx(t) contains a reflected
signals(t) embedded in random noisew(t) or, on the con-
trary,x(t) is just a confusing manifestation of the background
noise.

x(t) = s(t) + w(t) (1)

wheres(t) andw(t) are Gaussian complex-valued random
signals such thats(t) ∼ ℵ(0, 2σ2

s) andw(t) ∼ ℵ(0, 2σ2
w).

Thus,x ∼ ℵ(0, σ2
x) whereσ2

x = 2σ2
w(1 + S), S = σ2

s/σ
2
w

being the signal-to-noise ratio.
Assuming that we haven measurements (samples)xi, i =

1, ..., n of the signal under investigation defined in (1) such
thatx1, x2, ...xn iid ∼ ℵ(0, σ2

x). We wish to detect the pres-
ence of the signal considering then samples stacked in the
vectorx = [x1, x2, ...xn].

For more than forty years, adaptive detection has been
used successfully to resolve an important number of detec-
tion problems in several fields [6]. An adaptive detector is an
implementation of the following hypothesis test [3, 4]:

T : S(x) ≷ γ = TZ (2)

The test statisticS(x) is compared with the adaptive threshold
γ which is the product of the noise power estimateZ and the
scaling factorT obtained from a given combination of false
alarm and detection probabilities. The process by means of
which these two parameters are obtained defines the adaptive
detector scheme.

In a typical adaptive detection scheme (see Fig.1), the in-
phase and quadrature components of the received signalxi are
processed by a square-law detector and, eventually, an inte-
grator. The resulting signals are set serially in a shift register.

The square-law detector and the integrator are the implemen-
tation of the sufficient1 statisticS(x).

The noise power is estimated using the measurements
within the reference window composed ofm Reference Cells.
The Guard Cells, immediate neighbours of theCell Under
Investigation (CUI), are excluded from the estimation process
to avoid an eventual spillover from theCUI. The scaling factor
T is obtained via an optimization process where the criterion
is function of the probabilities of the two erroneous decisions,
i.e. miss probabilityPm and false alarm probabilityPfa.

2.2. Statistical Assumptions

Knowing that the signal of interest and the noise are zero-
mean complex-valued Gaussian-distributed random pro-
cesses and that the signal samplessi are i.i.d and independent
from noise sampleswi, the square law detector outputs are
exponentially distributed.

In practice, the detection process is often implemented af-
ter non-coherent integrator, the content of each cell withing
the analyzing window is the sum ofn squared observations.
Thus, theCUI contentS is a Chi-square random variable with
2n degrees of freedom:

fS|Hj
(s|Hj) =

sn−1 e−s/ξ

(ξ)n Γ(n)
; s > 0 (3)

and thus for the two following situations:

ξ =

{

2σ2
w H0 : noise alone

2σ2
w(1 + S) H1 : noise + signal

(4)

Also the reference cell contentsYi, i = 1, 2, ...,m are
Chi-square random variables with2n degrees of freedom
(Yi iid ∼ ξχ2

2n, i = 1, 2, ...,m). Thus, their pdf is given by:

fY |H
′

j
(y|H

′

j) =
yn−1 e−y/ξ

(ξ)n Γ(n)
; y > 0 (5)

and thus for the two following situations:

ξ =

{

2σ2
w : noise alone

2σ2
w(1 + I) : noise + interfering signal

(6)

whereI = σ2
r/σ

2
w is the interference-to noise ratio (σ2

r being
the variance of the interfering signal).

3. ORDER-STATISTICS

The reference cell contents are sorted in increasing order:
Y(1) ≤ Y(2) ≤ ... ≤ Y(k) ≤ ... ≤ Y(m). Then, the noise
power is adaptively estimated as the content of reference cell
having thek-th rank [11]:

Z = Y(k) (7)

1This is the case if the considered signals are gaussian distributed.



Under the assumptions of homogeneous background envi-
ronment, the statistical properties of thekth-rank sampley(k)
are given by [11]:







fZ (z) = kCm
k [1− FY (y)]

m−k
[FY (y)]

k−1
fY (y)

FZ (z) =
∑m

j=k C
m
j [FY (y)]

j
[1− FY (y)]

m−j
(8)

where fZ (z) and FZ (z) represent the probability density
function and the probability distribution function, respec-
tively, of the random variableZ.

However, if r iid interfering signals appear in the refer-
ence window, them reference cell outputs still statistically in-
dependent but are no longer identically distributed. The noise
power estimateZ is chosen as the content of reference cell
having thek-th order picked up from the more general set:

{Ui}i=1,2,...,r ∪ {Yi}i=1,2,...,m−r (9)

whereYi andUi are Chi-square distributed random variables
with 2n degrees of freedom:

{

Yi iid ∼ 2σ2
wχ

2
2n, i = 1, 2, ...,m− r

Ui iid ∼ 2σ2
w (1 + Ir)χ

2
2n, i = 1, 2, ..., r

(10)

Thus, the probability distribution function ofZ is given by:

FZ(z) =

m
∑

i=k

max(i,(m−r))
∑

j=min(0,i−r)

Cm−r
j Cr

i−j [FY (y)]
j
[FU (u)]

i−j

[1− FY (y)]
m−r−j

[1− FU (u)]
r−i+j

(11)

3.1. Performance Analysis

Aiming at evaluating the performance of theOS-MER detec-
tor, the analytical formulas of the false alarm and detection
probabilities have to be developed. Under the hypothesis of
homogeneous background noise, these two entities defined as:

{

Pfa = P (S > TZ|H0)
Pd = P (S > TZ|H1)

(12)

Replacing (3), (4), (6) and (8) in (12), the detection probabil-
ity is given by2:

Pd =
kCm

k

Γ(n)

k−1
∑

i=0

Ck−1
i (−1)k−i−1

m−1−i
∑

j0,...,jn−1

Cm−1−i
j0,...,jn−1

∏n−1
q=0 (q! )

jq

n−1
∑

l=0

(

T

1 + S

)l Γ
(

∑n−1
q=0 qjq + n+ l

)

l!
(

m− i+ T
1+S

)

∑n−1

q=0
qjq+n+l

(13)

2Due to space limitation, all proofs are omitted.

whereCm−1−i
j0,...,jn−1

are the multinomial coefficients andΓ(.) is
the gamma function. The probability of false alarmPfa, in
this case, is got by settingS = 0 in (13).

In the aim of quantifying the degradation in detection per-
formance of theOS-MER detectors caused by the presence of
interfering signals, we can use the closed-form of the detec-
tion and false alarm probabilities defined, in this case, as fol-
lows:

{

Pfa = P (S > TZ|H
′

0)

Pd = P (S > TZ|H
′

1)
(14)

Substituting (3), (4), (6) and (11) into (14), the detectionprob-
ability is given by:

(15)Pd =

(

T
1+S

)n

Γ(n)

m
∑

i=k

min(i,m−r)
∑

j=max(0,i−r)

Cm−r
j Cr

i−j

j
∑

p=0

i−j
∑

q=0

Cj
pC

i−j
q (−1)i−p−q

m−r−p
∑

i1,...,in−1

r−m
∑

j1,...,jn−1

Cm−r−p
i0,...,in−1

∏n−1
p=0 (p! )

ip

Cr−m
j0,...,jn−1

∏n−1
q=0 (q! )

jq

(

1

1 + I

)

∑n−1

q=0
qjq

Γ
(

∑n−1
p=0 pip

∑n−1
q=0 qjq + n

)

(

m− r − p+ T
1+S + r−q

1+I

)

∑n−1

p=0
pip

∑n−1

q=0
qjq+n

The probability of false alarmPfa, in this case, is got by set-
ting S = 0 in (15). Notice that, in absence of interfering
signals within the reference window (r = 0 or I = 0), (15) is
identical to (13).

4. MINIMUM ERROR RATE THRESHOLDING

In order to control the probability of false alarm ofCFAR-
based detector, the scaling factorT is fixed so that the latter
takes a low constant value.

Herein, we introduce a new method that combines the
Order-Statistics technique for the noise power estimationwith
theMER criterion for optimum selection of the scaling factor.
The probability that a binary hypothesis test of two simple
hypothesis generates an error is given by:

Pe = λPfa + (1− λ)Pm (16)

whereλ = P (H0) is the prior about the absence the signal to
be detected andPm = 1− Pd is the probability of miss. The
MER-based thresholding consists in finding the optimal scal-
ing factorT that minimizes the detection error probability. As
can be seen in equations (13) (15), the complex formulas of
Pd andPfa makes the minimization of (16) a complex and
numerically sensitive optimization problem.

As we can see, (16) is a simple version of theBayes Risk.
It can be shown that the derivation for theMER-based detector



can be seen as a special case of the more general Bayesian de-
tector given by theConditional Likelihood Ratio Test (CLRT)

[1]:

Λ(x) =
P (x|H1)

P (x|H0)
≷ η =

PH0

PH1

(17)

which is equivalent in our context to the following test:

S(x) ≷ γ = Tσ2
w (18)

with S(x) is the resulting sufficient statistic andT is the scal-
ing factor that minimises the probability of error in (16). It
can been shown that the scaling factor is given as follows:

T = log
[

((1 + S)ηn)
1+S
S

]

(19)

It is clear that the thresholdγ is a function of the noise power
σ2
w. If the latter is unknown, it should be adaptively estimated

and injected in the thresholding process. The resulting test is
referred to asGeneralized Conditional Likelihood Ratio Test
(GCLRT), given by:

S(x) ≷ γ = TZ (20)

Notice that the probability of error remains invariant if
the threshold is considered as the product of a constant scal-
ing factorT and the estimate of the noise powerZ or as the
product of a random scaling factorT

′

= T Z
σ2
w

and the true
noise power:

γ = TZ = T
′

σ2
w (21)

Thus, in this case, the scaling factor that minimizes (16) isa
random variable. IfZ is a consistent estimator of the noise
power, then the scaling factorT in (19) will be a good ap-
proximation ofT

′

. Reference [7] explores and illustrates the
relationships between the estimation and the detection theo-
ries for a binary composite hypothesis test.

For the OS-based detector,T
′

is a parametric function of
the SNR depending on three parameters; the reference cell
numberm, the prior about the absence of a signal within the
analyzing windowλ, and the order of the noise samplek,
chosen as an estimate of the noise power.

5. NUMERICAL RESULTS

To assess the performance of theOS-MERthresholding method
and to compare its behavior w.r.t.OS-CFARdetector, different
scenarios have been simulated. In the following simulations,
the size of the reference windowm is set to20, the rank of the
reference cell chosen as estimate of the noise powerk is set to
3/4m, the number of interfering signalsr is set to0, and the
pre-fixed probability of false alarm of theOS-CFARdetector is
set to10−5.

Fig.2 depicts the behavior of the probability of error vs.
SNR. One can see that the error probability of theOS-MER is

less than that of theOS-CFAR. The gap between the two curves
becomes more significant for highSNRvalues (SNR> 50 dB).
The reason of this is that the error probability of theOS-CFAR

detector is dominated by the prior fixed probability of false
alarm for high SNR values.

The same results can be obtained for relatively lowSNR if
incoherent pulse integration process is used which is advan-
tageous for theOS-MER detector. Fig.3 and Fig.5 show that
we obtain similar results at30dB for n = 2 and at0dB for
n = 3).

−10 0 10 20 30 40 50 60 70 80 90 100

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

P
ro

b
a 

o
f 

E
rr

o
r

 

 

n=1, Pe
OS

(T
Emp

)

n=1, Pe
OS

(T
Th

)

n=1, Pe
CFAR

(T
CFAR

)

Fig. 2. Probability of error vs.SNR for OS-MER and OS-CFAR
detectors (n = 1).
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Fig. 3. Probability of error vs.SNR for OS-MER and OS-CFAR
detectors (n = 2).

In Fig.4 we show that for highSNR (SNR> 50 dB) a small
loss in the detection probability of theOS-MER detector w.r.t
the OS-CFAR is noticed. However, the false alarm rate of the
latter is thousands times higher than the false alarm rate ofthe
OS-MER.
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Fig. 5. Probability of error vs.SNR for OS-MER and OS-CFAR
detectors (n = 3).

The set of curves presented in Fig.2, Fig.3 and Fig.5 show
also the effect of approximating the scaling factor by its the-
oretical formulas presented in (19). Forn = 1 no difference
between the probability of error computed using the theoret-
ical scaling factor , referred to asTTh, and the probability of
error computed using the empirical scaling factor , referred to
asTEmp, which is obtained by minimizing (16) numerically.

Fig.3 and Fig.5 show that the gap between the two curves
increases asn increases.

6. CONCLUSION

In this paper, the Order-Statistics based detector that mini-
mizes the error probability has been introduced.

The proposed method takes into account the prior about
the presence or absence of a signal of interest rather than con-

sidering only the false alarm rate as a criterion to be main-
tained constant.

The presented results clearly demonstrate the efficiency
of the proposed method, i.e. theOS-MER, as compared toOS-

CFAR detector, while presenting a small detection loss. The
MER-based thresholding can be used for any symmetrical de-
tection problem in which a false alarm and a non-detection
event have the same cost. Perspective works include the in-
vestigation of the detector robustness w.r.t. erroneous prior
information and theOS-MERperformance in presence of inter-
fering signals (considered in section 3.1 but not investigated
in our simulation results).
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