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Antennas without phase center (AWPC) have been used in direction of arrival (DOA) estimation. The similarity of two or more steering vectors corresponding to widely separated directions in the array manifold causes ambiguity in DOA estimation. Recently, half -space ambiguity resolution has been done by optimizing the structure of the AWPC, based on Crame-Rao bound. This paper further proposes a novel method for resolving whole-space ambiguity in DOA estimation by using a uniform circular array (UCA) with multiple optimal AWPC sensors. The optimal number of AWPC sensors in moderate-size UCAs is also obtained by numerical optimization.

I. INTRODUCTION

Although direction-of-arrival (DOA) estimation is a traditional topic in array signal processing, there is not much literature on the design of the array geometry [START_REF] Gavish | Array geometry for ambiguity resolution in direction finding[END_REF]. A class of antennas without phase center (AWPC) [START_REF] Anh | Antennas without Phase Centers and their Applications in Radio Engineering[END_REF], as shown in Figure 1, have been proposed for multiple source DOA estimation, using the Multiple Signal Classification (MUSIC) algorithm [START_REF] Anh | DOA determination by using an antenna system without phase center and MUSIC algorithm[END_REF], [START_REF] Quynh | Directionof-arrival estimation using special phase pattern antenna elements in uniform circular array[END_REF]. In particular, [START_REF] Anh | DOA determination by using an antenna system without phase center and MUSIC algorithm[END_REF] exploits a linear-phasepattern AWPC prototype while [START_REF] Quynh | Directionof-arrival estimation using special phase pattern antenna elements in uniform circular array[END_REF] applies another prototype of nonlinear-phase-pattern AWPC as a sensor in a Uniform Circular Array (UCA).

These works however face the problem of ambiguity, which is the similarity of two or more steering vectors corresponding to widely separated directions in the array manifold. Recently, array geometries of AWPC have been considered in [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF] in which some parameters of AWPC are optimized to increase accuracy and resolve ambiguity problem for arbitrary estimators. However, it only helps resolve half-space ambiguity, that is ambiguity is free only in the range [-π/2, π/2]. In other words, the AWPC with optimized configuration in [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF] can not apply for whole-space localization.

Based on this motivation, we focus on resolving the ambiguity for whole-space localization in this paper. The idea is to use a UCA with a number of optimal AWPCs. A measure for ambiguity-free level is also introduced in order to optimize the number of sensors needed in the AWPC-UCA.

The paper is organized as follows. Section II briefly describes the AWPC and explains the ambiguity problem when AWPC is used for DOA estimation. Section III develops the new structure of AWPC-UCA for resolving whole-space ambiguity. Section IV presents numerical simulation of DOA estimation to illustrate the effectiveness of the proposed structure. Section V concludes the paper. The AWPC structure is shown in Figure 1. The distance between dipoles I-1 and I-2 of the first couple I is called d 1 , and that for the second couple II is d 2 . The dipole couples are perpendicular to each other, i.e, d 1 ⊥d 2 . The relative phases of I-1, II-2 and I-2 with respect to that of II-1 are 90 • , 180 • and 270 • , respectively. With these conditions, the amplitude pattern, G(θ), and the phase pattern, Φ(θ), of the AWPC are given by [START_REF] Anh | Antennas without Phase Centers and their Applications in Radio Engineering[END_REF] 

II. AWPC AND AMBIGUITY

A. AWPC Structure

G(θ) = sin 2 kd1 2 cos θ + sin 2 kd2 2 sin θ , (1) 
Φ(θ) = tan -1 sin kd1 2 sin θ sin kd2 2 cos θ , ( 2 
)
where θ is the direction of propagation, k is the wave number of the carrier.

B. Ambiguity problem in AWPC

To see the effect of ambiguity in DOA estimation using the AWPC, consider the following example. Assume that we have six sources arriving at azimuth of -60 developed in [START_REF] Quynh | Directionof-arrival estimation using special phase pattern antenna elements in uniform circular array[END_REF] for the AWPC structure with d 1 = d 2 . The estimation result shown in Figure 2 indicates that there are 24 peaks, which should be interpreted as 24 DOAs, while the 6 dotted lines represent the six true DOAs. Those peaks which do not follow the dotted lines are considered as "ghost" peaks. This happens due to the existence of ambiguity, which is the similarity of two or more steering vectors corresponding to widely separated directions in the array manifold.

It is easily seen from ( 1)(2) that

G(θ + π) = G(θ) Φ(θ + π) = Φ(θ) + π, (3) 
due to the natural symmetry of the AWPC. This is called πambiguity error and is for all (d 1 , d 2 ). Hence, the AWPC structure does allow only half-space localization. In other words, steering vectors are colinear at any pair of (θ 1 , θ 2 )

such that θ 2 = θ 1 ± π with any θ 1 ∈ [-π, π]. When d 1 = d 2 ,
we have another antenna symmetry axis and in that case

G(θ + π/2) = G(θ), Φ(θ + π/2) = Φ(θ) -π/2, . (4) 
This is called π/2-ambiguity error. The authors in [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF] have applied numerical optimization to show that the AWPC structure with the following parameters will have no π/2-ambiguity error:

• (d 1 , d 2 ) = (5.2λ, 2.3λ
), where λ is the wavelength of the incident signal, • antenna rotation number M = 17, • antenna rotation angle ∆θ = 2π/M . This APWC structure is referred to in this paper as the optimal AWPC. With the same set-up for the example above, the estimation result based on the these optimized conditions is shown in Figure 3. Clearly, there are no ghost peaks in the range [-π/2, π/2], but there remain 12 ghost peaks outside this range. This indicates that the optimal AWPC is half-space ambiguity-free. However, it still suffers from the π-ambiguity error.

III. WHOLE-SPACE AMBIGUITY RESOLUTION USING AWPC-UCA

A. AWPC-UCA Data Model

In this paper, we aim to resolve ambiguity for the wholespace, by using the UCA configuration composed of multiple AWPCs, each of which has the same structure as the optimal AWPC. As an illustration, Figure 4 shows the 6-sensor AWPC-UCA structure, where R is the radius of circular. In this configuration, the AWPCs are arranged in circle with even spacing among them.

Assume that elevation angle is equal to 90 • and let s 1 (t), s 2 (t), . . . , s D (t) be D uncorrelated, narrowband, zeromean Gaussian sources impinging on the N -sensor AWPC-UCA. Each sensor rotates M angular steps in the clockwise direction. The signal received by sensor n ∈ {1, . . . , N } at rotation step m ∈ {0, . . . , M -1} is modeled as

x n m (t) = D i=1 s i (t)G(θ i + m∆θ)× exp{jΦ(θ i + m∆θ) + Ψ n (θ i )} + w n m (t), (5 
) where θ i is the incident angle of source s i (t), G(θ) and Φ(θ) are the amplitude and phase patterns of the sensor, Ψ n (θ) is the phase shift due to the difference in location of the sensor relative to the origin, and w n m (t) is the spatially zero-mean white Gaussian noise with variance of σ 2 and is independent of the sources. In matrix form, we have the following data model:

x(t) = A(θ)s(t) + w(t), (6) 
or, more explicitly,

   x 1 (t) . . . x M (t)    = a(θ 1 ) . . . a(θ D )    s 1 (t) . . . s D (t)    +    w 1 (t) . . . w M (t)    , (7) 
where s(t), w(t), x(t) and A(θ) are respectively the source vector of size D × 1, the noise vector of size M N × 1, the antenna output vector of size M N ×1, and the steering matrix (a.k.a., array manifold) of size M N × D. The steering vector associated with source i is given by

a(θ i ) = [a 1 (θ i ), a 2 (θ i ), . . . , a M (θ i )] T , (8) 
where

a m+1 (θ i ) = G(θ i + m∆θ)×       e j{Φ(θi+m∆θ)} e j{Φ(θi+m∆θ)+ 2πR λ cos(θi-2π N )} . . . e j{Φ(θi+m∆θ)+ 2πR λ cos(θi- 2π(N -1) N )}       T . (9) 

B. Ambiguity-Free Level

The authors in [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF] have introduced the Ambiguity Checking Function γ(θ 1 , θ 2 ) for the case of single-sensor AWPC structure (N = 1) in order to measure the similarity relationship between two arbitrary steering vectors at directions θ 1 and θ 2 .

Here we reuse this definition, but for multiple sensors, that is

γ(θ 1 , θ 2 ; N ) 1 - |a H (θ 1 )a(θ 2 )| 2 a(θ 1 ) 2 a(θ 2 ) 2 , ( 10 
)
to check the similarity of two steering vectors a(θ 1 ) and a(θ 2 ). Note that, in the right hand side of (10), parameter N is implicitly provided in the length (M N ) of the steering vectors a(θ i ). When a(θ 1 ) and a(θ 2 ) are co-linear, γ(θ 1 , θ 2 ) = 0.

If they are orthogonal, meaning |a H (θ 1 )a(θ 2 )| = 0, then γ(θ 1 , θ 2 ) = 1. Generally, the array geometry has no ambiguity if 0 γ(θ 1 , θ 2 ) ≤ 1. In this paper, we further define another measure, Ambiguity-Free Level (AFL), in order to quantify the depth of such that Fig. 5. Plot of γ(θ 1 , θ 2 ; 1) for the optimal AWPC. the of π-ambiguity. For the UCA structure with N AWPC sensors, the AFL function is defined as

η(N ) min θ1,θ2 γ(θ 1 , θ 2 ; N ) s.t. 1 < |θ 1 -θ 2 | < 2 , (11)
where 1 and 2 are two predefined thresholds (in rads) for the optimization constraint. A higher value of η(N ) corresponds to a lower amplitude of ghost peaks in the spatial spectrum; hence, the ambiguity error decreases. When η = 0, ambiguity occurs.

Figure 5 plots the γ(θ 1 , θ 2 ; 1) of the optimal APWC. As we see, the π-ambiguity error occurs for the angle pairs: (θ 1 ∈ [-π, π], θ 2 = θ 1 ±π). In such cases, the optimal AWPC cannot be applied for the whole-space localization.

C. Ambiguity Resolution with AWPC-UCA

We compute the γ(θ 1 , θ 2 ; N ) for N = 3, . . . , 15, and then obtain the corresponding η(N ) using (11) with the following constraint:

|θ 1 -θ 2 | > π 2 .
Define the normalized AFL as

η(N ) = η(N ) η opt ,
where η opt is the AFL computed for the optimal AWPC. Then, Figure 6 gives the normalized AFL expressed in dB. With η(3) = 43.25 dB, which means η(3) is much higher than η opt , the π-ambiguity error occurred in the optimal AWPC is now resolved by using the UCA with 3 AWPC sensors. In addition, η(N ) > η(3) for N = 4, . . . , 15. Therefore, the AWPC-UCA with such numbers of sensors can be applied for the wholespace localization.

In addition, with respect to moderate-size antenna structures (N ≤ 10), there exists a local maximum for η in the range of [START_REF] Anh | DOA determination by using an antenna system without phase center and MUSIC algorithm[END_REF]10]; that is, at N = 8. With this optimal number of AWPC sensors, the ambiguity is best resolved.

IV. NUMERICAL SIMULATION

We continue with the same set-up as in the example provided in Section II-B in order to illustrate the effectiveness of the AWPC-UCA is resolving the ambiguity in the whole space. Six sources are presented at azimuth of -60 • , -40 • , -20 • , 20 • , 40 • , 60 • and the Signal-to-Noise ratio is set at 25 dB. The MUSIC estimator is applied to 1000 random data snapshots (for more details on the estimator, see for examples [START_REF] Quynh | Directionof-arrival estimation using special phase pattern antenna elements in uniform circular array[END_REF], [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF]).

Figures 7 and8 both show that the UCA with 3 or 8 AWPC sensors has resolved the ambiguity for the whole space, as opposed to the π-ambiguity error remained in the optimal 1sensor AWPC. Moreover, we can observe that the amplitudes of several tiny ghost peaks outside the range [-π/2, π/2] in Figure 7 have been reduced in Figure 8. This is because the AFL of 8-sensor AWPC-UCA is higher than that of the 3sensor one.

V. CONCLUSIONS

In this paper we have proposed a method to resolve the ambiguity in the whole space in the problem of DOA estimation using AWPCs. Extending from the optimal AWPC structure developed in [START_REF] Quynh | On optimization of single-sensor antennas without phase center for DOA estimation[END_REF], which is only free of ambiguity in halfspace localization, we are able to have ambiguity free for the whole space if using an UCA with multiple optimal AWPC sensors. In addition, by quantifying the level of ambiguity, we recommend to use 8 sensors for the AWPC-UCA given that the antenna design is limited to having a moderate-size. Once again, we assert that the proposed structure is ambiguity-free in the whole-space for DOA estimation with less sensors than sources; these are two notable advantages of the AWPC-UCA, compared to conventional ULA and UCA arrays.

Fig. 1 .

 1 Fig. 1. AWPC structure.
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 2 Fig. 2. Ambiguity occurs for d 1 = d 2 : 6 true DOAs (peaks along dotted lines), and 18 ghost DOAs.

  Fig. 3. Half-space ambiguity free with the optimal AWPC. 12 ghost peaks remain outside the range [-π/2, π/2].
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 4 Fig. 4. Uniform cicurlar array of AWPCs.
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 6 Fig. 6. Levels of free-ambiguity for UCAs with different numbers of AWPC sensors.

  Fig. 8. DOA estimation using the 8-sensor AWPC-UCA.

  • , -40 • , -20 • , 20 • , 40 • , 60 • , and that we apply the MUSIC-based DOA estimator
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