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Abstract We consider the situation where one wants to maximise a func-
tion f(θ,x) with respect to x, with θ unknown and estimated from observa-
tions yk. This may correspond to the case of a regression model, where one
observes yk = f(θ,xk) + ǫk, with ǫk some random error, or to the Bernoulli
case where yk ∈ {0, 1}, with Pr[yk = 1|θ,xk] = f(θ,xk). Special attention

is given to sequences given by xk+1 = arg maxx f(θ̂k,x) + αkdk(x), with

θ̂k an estimated value of θ obtained from (x1, y1), . . . , (xk, yk) and dk(x) a
penalty for poor estimation. Approximately optimal rules are suggested in
the linear regression case with a finite horizon, where one wants to maxi-
mize

∑N
i=1 wif(θ,xi) with {wi} a weighting sequence. Various examples are

presented, with a comparison with a Polya urn design and an up-and-down
method for a binary response problem.

Key words Adaptive control – Bernoulli trials – binary response – dose-
response – optimum design – parameter estimation – response optimisation
– sequential design

1 Introduction

We consider an optimisation problem, where one wants to maximise a func-
tion f(θ,x) with respect to x ∈ X ⊂ IRq, where θ is an unknown vector of
parameters, θ ∈ IRp. Two cases will be considered. The first one corresponds
to a regression problem, where one observes

yk = f(θ,xk) + ǫk , k = 1, 2, . . . (1)

with ǫi an unobservable error such that E{ǫk|ǫ1, . . . , ǫk−1} = 0 and E{ǫ2k|ǫ1,
. . . , ǫk−1} < ∞, k = 1, . . . almost surely (a.s.).
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In the second case, when the design variable is xk, one observes a
Bernoulli response:

yk ∈ {0, 1} with Pr[yk = 1|θ,xk] = f(θ,xk) , k = 1, 2, . . . (2)

We shall denote Fk the σ-field generated by y1, . . . , yk, E{·|Fk} the cor-
responding posterior expectation and E{·|F0} the prior expectation, with
a prior probability measure µ for θ. In the two cases above, the sequence of
design points {xk} and observations {yk} is used to estimate θ. If the issue
were only to determine the value x∗ that maximises f(θ,x), one could resort
to optimum-design theory for choosing an appropriate sequence of inputs
{xk}, see, e.g., [14,27,3,4,22,24,9]. However, here the objective is also to
have each f(θ,xi) as large as possible. The sequence {xk} must therefore
fulfill two simultaneous (and generally opposite) objectives: (i) help to lo-
cate x∗, (ii) be close to x∗ in order to maximise f(θ,xk), k = 1, 2, . . . The
problem is thus one of dual control, see the pioneering papers by Fel’dbaum
[10–13]. Note that the xi’s will be chosen sequentially, contrary to the case
considered in [26]; that is, xi is Fi−1-measurable, i = 1 . . .

A rather general formulation of the problem (see [15]) is:

maximize E{
∞
∑

i=1

wiyi|F0}/
∞
∑

i=1

wi (3)

with respect to x1,x2, . . ., with {wi} a weighting (discount) sequence. For
instance, the choice wi = 1 for i = N + 1 and wi = 0 otherwise corresponds
to a pure design problem, where emphasis is put on the estimation of x∗

after N observations; wi = 1, i = 1, . . . , N , wN+1 = K and wi = 0 for
i > N + 1 corresponds to the case where the best guess for x∗ at step
N is used for the next K steps; the finite horizon case with no discount
corresponds to wi = 1, i = 1, . . . , N , wi = 0 for i ≥ N + 1, etc.

In the two cases (1,2), E{yi|θ,xi} = f(θ, xi), so that (3) becomes

maximize E{
∞
∑

i=1

wif(θ,xi)|F0}/
∞
∑

i=1

wi . (4)

We shall mainly consider design sequences that are constructed as fol-
lows: at step k, xk+1 maximizes the sum of the predicted value of f , that is,
f(θ̂k,x) with θ̂k the current estimated value of θ, and a weighted penalty
term αkdk(x), with dk(x), the penalty for poor estimation of θ, also a func-
tion of (xi, yi), i = 1, . . . , k:

xk+1 = arg max
x∈X

f(θ̂k,x) + αkdk(x) . (5)

In Section 2 we give an asymptotic result (infinite horizon, no discount)
obtained for the regression problem (1) when f(θ,x) is linear in θ and dk(x)
is the variance function used in the construction of D-optimum designs.
Other penalty functions related to L-optimum design are then suggested.
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Section 3 is devoted to the finite horizon case: approximately optimal strate-
gies are suggested, and a particular sequence of weights {αk} and penalty
function dk(x) for (5) are obtained through a series of approximations of
the original problem (4). Extension to nonlinear problems is presented in
Section 4, where the case of Bernoulli trials (2) is considered through an
example. Finally, Section 5 concludes and points out some open issues and
possible developments.

2 Asymptotic results for linear response optimisation

2.1 D-optimum penalty

Consider the case where the horizon is infinite (N = ∞) and there is no
discount (wi = 1 for any i), and assume that the regression function is linear
in θ, that is, f(θ,x) = r⊤(x)θ. We use the penalty given by the variance
function used in the sequential construction of D-optimum designs, see [29,
8],

dk(x) = dD
k (x) = r⊤(x)M−1

k r(x) , (6)

with Mk the design matrix

Mk =
k

∑

i=1

r(xi)r
⊤(xi) . (7)

Assume that r(x) is continuous on X compact, that the first K0 regressors
r(x1), . . . , r(xK0

) are such that MK0
is positive definite. Also assume for

the moment that θ in (1) takes a deterministic (but unknown) value θ̄ (we
shall come back to Bayesian estimation later), and that r⊤(x)θ̄ has a unique
global maximiser x∗ in X ; that is:

for all β > 0 , there exists ǫ > 0 such that

r⊤(x)θ̄ + ǫ > r⊤(x∗)θ̄ ⇒ ‖x − x∗‖ < β . (8)

We estimate θ by least squares (LS):

θ̂k = arg min
θ∈Θ

k
∑

i=1

[yi − r⊤(xi)θ]
2 , (9)

with Θ a compact subset of IRp such that θ̄ ∈ Θ. The difficulty is that
for a suitable weighting sequence {αk}, the sequence {xk} accumulates at
the value x∗(θ) that maximises f(θ,x) for some θ, but, at the same time,
when p = dim θ > 1, a sequence too concentrated gives a singular design
matrix, and thus does not yield consistent estimates. The following theorem
is proved in [23], using the results in [21] on almost sure convergence of LS
estimates. We denote by ξk the empirical measure of design points generated
by (5) and by ξx the discrete measure that puts weight 1 at the point x.
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Theorem 1 Assume that sequence of weights {αk} in (5) is such that (αk/k)
log αk decreases monotonically and αk/(log k)1+δ increases monotonically
to ∞ for some δ > 0. Then, the sequence {xk} generated by (5) and (6) is

such that θ̂k → θ̄, (1/k)
∑k

i=1 r⊤(xi)θ̄ → r⊤(x∗)θ̄ and ξk
w

−→ ξx∗ (in the
sense of weak convergence of measures) a.s. as k → ∞, with x∗ = x∗(θ̄) =
arg maxx∈X r⊤(x)θ̄.

Assume now that θ̄ has a prior µ. One can first note that from the
Lebesgue dominated convergence theorem, Theorem 1 implies

E{(1/k)

k
∑

i=1

r⊤(xi)θ̄} → E{r⊤[x∗(θ̄)]θ̄}

when µ is supported on Θ compact. Also, using the Bayesian imbedding
approach of [25,19], one can obtain a.s. convergence results under weaker
conditions on {αk} under the assumption that the errors ǫi are i.i.d. and

Gaussian N (0, σ2). Indeed, for Θ = IRp and k > K0 the LS estimator θ̂k

then coincides with the Bayesian estimator E{θ|Fk} for the prior µ given

by N (θ̂K0 , σ2M−1
K0

) (MK0
is positive definite). Let Q denote the probability

measure induced by {ǫk}, and write (µ×Q)-a.s. for a property almost sure
in the sense of the product measure µ×Q. From the martingale convergence
theorem, θ̂∞ = limk→∞ θ̂k exists and is finite and r⊤(x)θ̂∞ is bounded on X ,
(µ×Q)-a.s., and the posterior covariance matrix Ck tends to some limit C∞,
(µ × Q)-a.s. When the smallest eigenvalue of Mk satisfies λmin(Mk) → ∞,

(µ × Q)-a.s., C∞ is the null matrix and θ̂k converges to θ̄, the value of θ
that generates the observations, (µ×Q)-a.s. A straightforward extension of
Theorem 1 is then as follows.

Corollary 1 Assume that the errors ǫi are i.i.d. N (0, σ2) and that se-
quence of weights {αk} in (5) is such that αk → ∞ and αk/k → 0.

Then, the sequence {xk} generated by (5) and (6) is such that θ̂k → θ̄,

(1/k)
∑k

i=1 r⊤(xi)θ̄ → r⊤(x∗)θ̄ and ξk
w

−→ ξx∗ (in the sense of weak con-
vergence of measures), (µ × Q)-a.s., as k → ∞.

The condition on αk is weaker in Corollary 1 than in Theorem 1, but
note that there may be a singular set (with respect to the Lebesgue measure)

for θ̄ for which θ̂k is not consistent.
Using the results of [17], the assumption of normality in Corollary 1 can

be relaxed, provided (i) the errors ǫi are i.i.d. with an almost everywhere
strictly positive density h with respect to the Lebesgue measure, such that
h′′ is continuous and (log h)′′ < 0, (ii) the prior measure µ is absolutely
continuous with respect to the Lebesgue measure and (iii) the LS estimates

θ̂k are replaced by E{θ|Fk}.
Both Theorem 1 and Corollary 1 indicate that a penalty of the form

β detMk+1/detMk, see, e.g., [1], which corresponds to taking αk = α con-
stant in (5), is not strong enough: the sequential design that is obtained will
not guarantee convergence of the parameters to θ̄, and {xk} may accumulate
at a value x̂ different from x∗(θ̄).
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2.2 L-optimum penalty

Using an idea similar to previous section, one could use a penalty function
related to L-optimum design; that is,

dk(x) = dL
k (x) = r⊤(x)M−1

k HM−1
k r(x) , (10)

with H a non negative definite matrix. It is shown in [28] that when H is pos-
itive definite and the sequence {xk} is given by xk+1 = arg maxx∈X dL

k (x),
the design measure ξk converges to a L-optimum design measure ξ∗L that
minimises traceHI−1(ξ), where I(ξ) =

∫

X
r(x)r⊤(x)ξ(dx). Further work is

required to check if a property similar to Theorem 1 can be obtained in this
case.

A case that has retained much attention is when the design objective
corresponds to the estimation of the point x∗ where f(θ,x) achieves its
maximum, see [24], especially when f is a quadratic function of a scalar
variable x, see, e.g., [3,9]. Assume that

f(θ, x) = θ0 + θ1x + θ2x
2/2 , (11)

with x ∈ X , a compact subset of the real line. One has x∗(θ) = −θ1/θ2,
and, in the case where the errors ǫi are i.i.d., the asymptotic variance of
x∗(θ̂k), with θ̂k given by (9), is proportional to c⊤M−1

k c, with

c = c(θ) =
∂x∗(θ)

∂θ
= (−1/θ2)

(

0 1 x∗
)⊤

.

Choosing the xk’s to maximise the accuracy of the estimation of x∗(θ)
corresponds to c-optimum design, that is, to L-optimum design with H

given by the rank-one matrix cc⊤. Note that the dependence of c in θ
makes the problem nonlinear. A Bayesian approach is used in [3,6], based
on a design criterion of the type E{c⊤M−1

k c}, where E{·} denotes the
expectation with respect to θ for a given prior. Sequential approaches are
considered in [14,22]. One can also refer to [2] for the use of c-optimal design
in the context of Bayesian estimation and to [5] for a survey on Bayesian
experimental design. Following (10), a penalty function related to c-optimal
design is thus

dk(x) = dc
k(x) = [r⊤(x)M−1

k c(θ̂k)]2 . (12)

Another approach, used in [24], is to derive the design criterion from
the construction of a Bayesian risk related to the maximisation of f(θ,x).

Assume that θ has a normal prior N (θ̂0, σ2Ω), that the errors ǫi are i.i.d.
N (0, σ2) and that the discount factors wi satisfy wi = 1 for i = N + 1 and
wi = 0 otherwise. When x1, . . . ,xN are all chosen at the same time, this
leads to the following (non sequential) LB-optimal design problem:

minimise traceH(θ̂0) (Mk + Ω−1)−1
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with

H(θ̂) =
∂2f [θ,x∗(θ)]

∂θ∂θ⊤ |θ̂
.

The matrix H can easily be proved to be non negative definite when f is
linear in θ, see [24], and

H(θ) =
∂r(x)

∂x⊤ |x∗(θ)

∂x∗(θ)

∂θ⊤
, (13)

which can be expressed analytically when f is quadratic in x ∈ IRq, q ≥ 1.
For instance, in the case where f is given by (11) (with θ2 < 0 in order to
have a function concave in x), one gets

H(θ̂0) = (−1/θ̂0
2)





0 0 0

0 1 x∗(θ̂0)

0 x∗(θ̂0) [x∗(θ̂0)]2



 = −θ̂0
2 c(θ̂0)c⊤(θ̂0) .

This suggests substitution of H(θ̃k) for H in (10) in the case of sequential
design, with θ̃k a Bayesian estimator of θ. Again, in the infinite horizon case
with no discount, the choice of a weighting sequence {αk} in (5) ensuring
convergence of x∗(θ̃k) to x∗(θ̄) and of ξk to ξ

x
∗(θ̄) remains an open issue.

3 Linear response optimisation with finite horizon

Assume the the errors ǫk in (1) are i.i.d. N (0, σ2). We shall use an expansion
in σ2 to obtain an approximate solution to the problem (4). We first need
to prove the following Lemma.

Lemma 1 Let g(x) and h(x) be two times continuously differentiable func-
tions on X , a compact set of IRq. Assume that g has a unique global maxi-
mum at x∗, an interior point of X , with ∂2g(x)/∂x∂x⊤

|x∗
negative definite,

and let x̂ denote the point where f(x) = g(x) + uh(x) reaches its maximum
in X . Then, ‖x̂ − x∗‖ = O(u) and |f(x∗) − f(x̂)| = O(u2), u → 0.

Proof For u small enough, x̂ is an interior point of X so that

∂f(x)

∂x⊤ |x̂
= 0 =

∂g(x)

∂x⊤ |x∗

+ (x̂ − x∗)⊤
∂2g(x)

∂x∂x⊤ |x∗

+ u
∂h(x)

∂x⊤ |x̂
+ o(‖x̂ − x∗‖)

= (x̂ − x∗)⊤
∂2g(x)

∂x∂x⊤ |x∗

+ u
∂h(x)

∂x⊤ |x̂
+ o(‖x̂ − x∗‖) ,

and ‖x̂ − x∗‖ = O(u). Therefore,

f(x∗) = f(x̂) + (x∗ − x̂)⊤
∂f(x)

∂x |x̂

+
1

2
(x∗ − x̂)⊤

∂2f(x)

∂x∂x⊤ |x̂
(x∗ − x̂) + o(‖x̂ − x∗‖2)

= f(x̂) + O(u2) .
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Next theorem shows how to construct an approximate solution to prob-
lem (4).

Theorem 2 Assume that wi > 0, i = 1, . . . , N and wi = 0 otherwise; that
f is linear in θ, that is, f(θ,x) = r⊤(x)θ, with r two times continuously
differentiable in x; that the errors ǫi are i.i.d. N (0, σ2) and the prior distri-

bution for θ is normal N (θ̂0, σ2Ω). Denote x∗(θ) = arg maxx∈X r⊤(x)θ and
θ̃k = E{θ|Fk}, and assume that f(θ̃j ,x) has a unique global maximum at
x∗(θ̃j) which lies in the interior of X , with ∂2f(θ̃j ,x)/∂x∂x⊤

|x∗(θ̃j)
negative

definite, j = 0, . . . , N − 2. Define jk+1(x) as the expected optimal gain to
go at step k when x is applied:

jk+1(x) = E{wk+1f(θ,x) + max
z∈X

wk+2jk+2(z)|Fk} , k = 0, . . . , N − 2 ,

jN (x) = E{wNf(θ,x)|FN−1} .

It satisfies

jk+1(x) = Jk+1(x) + O(σ4) , k = 0, . . . , N − 2 , (14)

where

Jk+1(x) = (wN + · · · + wk+2)

×

{

r⊤[x∗(θ̃k)]θ̃k +
σ2

2
trace [H(θ̃k)(Ω−1 + Mk)−1]

}

−
σ2

2
trace







H(θ̃k)

N−k−2
∑

j=0

wk+j+2[Ω
−1
j,k + r(x)r⊤(x)]−1







+wk+1r
⊤(x)θ̃k , (15)

with Ωj,k =
{

Ω−1 + Mk + jr[x∗(θ̃k)]r⊤[x∗(θ̃k)]
}−1

and Mk, H(θ) respec-

tively given by (7), (13). Moreover, the strategy defined by xN = x∗(θ̃N−1)
and xk+1 = arg maxx∈X Jk+1(x), k = 0, . . . , N − 2, satisfies

xk+1 = arg max
x∈X

{

wk+1r
⊤(x)θ̃k +

σ2

2

×
N−k−2

∑

j=0

wk+j+2
r⊤(x)Ωj,kH(θ̃k)Ωj,kr(x)

1 + r⊤(x)Ωj,kr(x)

}

, k = 0, . . . , N − 2 , (16)

E

{

N
∑

i=k+1

wif(θ,xi)|Fk

}

= Jk+1(xk+1) + O(σ4) , k = 0, . . . , N − 2 , (17)

and
‖x̂k+1 − xk+1‖ = O(σ4) , k = 0, . . . , N − 2 , x̂N = xN , (18)

where x̂k+1 = arg maxx∈X jk+1(x) corresponds to the optimum strategy.
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Proof Straightforward matrix manipulation shows that xk+1 given by (16)
maximises (15). We prove (14) and (17) by backward induction on k. For
k = N − 2, we have

jN−1(x) = wNE{r⊤[x∗(θ̃N−1)]θ|FN−2} + wN−1r
⊤(x)θ̃N−2

= wNE{r⊤[x∗(θ̃N−1)]θ̃N−1|FN−2} + wN−1r
⊤(x)θ̃N−2 .

When x∗(θ̃N−2) is an interior point of X , a second-order Taylor expansion
around θ̃N−2 similar to that used in [24] gives

jN−1(x) = wN{r⊤[x∗(θ̃N−2)]θ̃N−2 +
σ2

2
trace [H(θ̃N−2)(Ω−1 + MN−2)

−1]}

−wN
σ2

2
trace {H(θ̃N−2)

[

r(x)r⊤(x) + Ω−1 + MN−2

]−1
}

+wN−1r
⊤(x)θ̃N−2 + O(σ4) ,

which proves (14) for k = N − 2. Since E{
∑N

i=N−1 wif(θ,xi)|FN−2} =
jN−1(xN−1), it also proves (17) for k = N − 2.

Assume that (14) is true at step k. At step k − 1 we have jk(x) =
E{wkf(θ,x)+maxz∈X jk+1(z)|Fk−1}. Using Lemma 1 with u = σ2, we get

jk(x) = wkr
⊤(x)θ̃k−1 + E{Jk+1[x

∗(θ̃k)]|Fk−1} + O(σ4) .

Grouping the terms r⊤[x∗(θ̃k)]θ̃k and using a second-order Taylor expansion
around θ̃k−1, we obtain

jk(x) = (wN + · · · + wk+2 + wk+1)
{

r⊤[x∗(θ̃k−1)]θ̃k−1

+
σ2

2
trace [H(θ̃k−1)(Ω−1 + Mk−1)

−1]

}

−(wN + · · · + wk+2 + wk+1)
σ2

2

× trace {H(θ̃k−1)[Ω−1 + Mk−1 + r(x)r⊤(x)]−1}

+(wN + · · · + wk+2)
σ2

2

× trace {H(θ̃k−1)[Ω−1 + Mk−1 + r(x)r⊤(x)]−1}

−
σ2

2
trace







H(θ̃k−1)
N−k−2

∑

j=0

wk+j+2[Ω
−1
j+1,k−1 + r(x)r⊤(x)]−1







+wkr
⊤(x)θ̃k−1 + O(σ4) .

A simplification of the terms on the last three lines gives jk(x) = Jk(x) +
O(σ4), which proves (14). Since xk+1 maximises (15), similar arguments

using (17) and Lemma 1 give E{
∑N

i=k wif(θ,xi)|Fk−1} = Jk(xk) + O(σ4),
and (17) is proved.

Finally, since xk+1 maximises Jk+1(x), (14) and Lemma 1 with u = σ4

give (18).
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Remark 1 The assumptions on f(θ̃j ,x) and x∗(θ̃j) for j = 0, . . . , N − 2, in
Theorem 2 are most often difficult, if not impossible, to check beforehand.
Note, however, that it is always possible to apply the strategy and check
the assumptions afterwards: if they are satisfied, the theorem applies and
the strategy used is approximately optimal in the sense of the theorem.

The property stated in Theorem 2 suggests a simpler suboptimal strat-
egy, as given in the following corollary.

Corollary 2 Under the same conditions, and with the same notations, as
in Theorem 2, the strategy defined by x′

N = x∗(θ̃N−1) and

x′
k+1 = arg max

x∈X

{

wk+1r
⊤(x)θ̃k

+
σ2

2

N−k−1
∑

j=1

j wk+j+1
r⊤(x)Ω0,kH(θ̃k)Ω0,kr(x)

1 + jr⊤(x)Ω0,kr(x)

}

, k = 0, . . . , N − 2 ,(19)

is approximately optimal in the following sense:

max
x∈X

jk+1(x) − E{
N

∑

i=k+1

wif(θ,x′
i)|Fk} = O(σ4) , (20)

|x̂k+1 − x′
k+1| = O(σ2) , (21)

for k = 0, . . . , N − 1.

Proof We first prove that E{
∑N

i=k+1 wif(θ,x′
i)|Fk} = Jk+1(x

′
k+1)+O(σ4),

for k = N − 2, . . . , 1.

For k = N−2 we have again E{
∑N

i=N−1 wif(θ,x′
i)|FN−2} = jN−1(x

′
N−1)

which equals JN−1(x
′
N−1)+O(σ4) from Theorem 2. Assume that the prop-

erty is true at step k. At step k − 1 we have

E{wkf(θ,x) +
N

∑

i=k+1

wif(θ,x′
i)|Fk−1} = wkr

⊤(x)θ̃k−1

+E{Jk+1(x
′
k+1)|Fk−1} + O(σ4) ,

and easy matrix manipulation using (19) and (15) shows that x′
k+1 =

arg maxx∈X [Jk+1(x) + σ2h(x)], for some h(x). Lemma 1 with u = σ2 gives
Jk+1(x

′
k+1) = Jk+1[x

∗(θ̃k)] + O(σ4), and similarly to the proof of Theorem

2, E{wkf(θ,x) +
∑N

i=k+1 wif(θ,x′
i)|Fk−1} = Jk(x) + O(σ4).

Finally, since the optimal strategy x̂k+1 maximises jk+1(x) = Jk+1(x)+
O(σ4), whereas x′

k+1 maximises a function that takes the form Jk+1(x) +
σ2h(x), Lemma 1 gives (20-21).
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Table 1 Empirical means and standard deviations (std) of (1/N)
∑

N

i=1
f(θ̄, xi)

for strategies S1, . . . , S4 in Example 1 (100 repetitions)

mean std

S1 0.1788 0.0523
S2 0.3774 0.0289
S3 0.4234 0.0284
S4 0.4767 0.0484

When wi = 1, i = 1, . . . , N and wi = 0 otherwise, with N large, the
strategy (19) can be further approximated by

x′′
k+1 = arg max

x∈X

{

r⊤(x)θ̃k + (N − k − 1)
σ2

2

r⊤(x)Ω0,kH(θ̃k)Ω0,kr(x)

r⊤(x)Ω0,kr(x)

}

,

k = 0, . . . , N − 2 , (22)

which has the form (5).

Remark 2 It is clear from the proof of Corollary 2 that properties similar
to (20-21) can be obtained for other strategies than (19). What makes this
strategy attractive is that it amounts to substituting r(x) for r[x(θ̃k)] in
Jk+1(x) to construct x′

k+1. This makes the rule (19) suboptimal compared
to (16) that directly maximises Jk+1(x) (compare (21) to (18)), but, on the
other hand, r(x′

k+1) can be expected to be close to r[x(θ̃k)] and the loss can
be expected to be small.

3.1 Example 1

We assume that f(θ, x) is given by (11), with X = [−1, 1], and that the
observations yk are generated by (1) for θ = θ̄ = (0 3.2 − 8)⊤ with the

errors ǫk i.i.d. N (0, σ2), σ = 1. The prior for θ is N (θ̂0, σ2Ω), with θ̂0 =
(2 − 4 − 1)⊤ and Ω = 106 I3, with I3 the 3-dimensional identity matrix.
Note that these numerical values give a prior guess for x∗ at -4, whereas the
true location is at 0.4.

We take wi = 1, i = 1, . . . , N and wi = 0 otherwise, with N = 100, and
compare four different strategies: S1 corresponds to (5) with the penalty (6)
and αk = σ2(log k)2, and S2, S3 and S4 correspond respectively to (22), (19)
and (16). Table 1 presents the results obtained for 100 independent repeti-
tions of the experiment (for each experiment, the same values of observa-
tions errors ǫk are used for the four strategies). As expected, performances
improve from S1 to S4.

Figure 1 (resp. 2) presents a typical realization of the sequences {xk}
(resp. {f(θ̄, xk)}) generated by the four strategies. One can notice in Figure
1 that xk converges to x∗ = −θ̄1/θ̄2 = 0.4 for S1 (see Theorem 1), which



Sequential experimental design and response optimisation 11

0 50 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Sequences {xk} generated by strategies S1 to S4 (from left to right) in
Example 1
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Fig. 2 Sequences {f(θ̄, xk)} generated by strategies S1 to S4 (from left to right)
in Example 1. The optimum value f [θ̄, x∗(θ̄)] is indicated by the dashed line

does not seem to be the case for the other strategies. However, the perfor-
mance measured in terms of (4) is much better for the other strategies, in
particular S4 that makes a particularly good compromise between estima-
tion and optimisation, see Figure 2 where the optimum value f [θ̄, x∗(θ̄)] is
indicated by the dashed line.
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4 Extension to nonlinear situations

4.1 Nonlinear regression

Whereas Theorem 1 relies on Corollary 3 of [21], deriving similar asymp-
totic results in the case of a nonlinear regression model would require using
Theorem 2 of [20]. The conditions in [20] being more stringent than those
in [21], one may conjecture that αk should increase faster than any power
of log k when k → ∞, compare with Theorem 1. Using Bayesian estimation
instead of LS would certainly require weaker conditions on αk, as it was the
case for Corollary 1 in comparison with Theorem 1, but deriving precise
results on this is still an open issue.

In the case of finite horizon, the approaches of Section 3 can be used
through a linearisation of the model response. Notice, however, that this
implies that terms of order O(σ2) are neglected, so that the properties (17)
and (18) are no longer true.

4.2 Example 2: Bernoulli trials

We consider the situation defined by (2), with

f(θ, x) =
θ1 + θ2

θ2
[1 − exp(−x/θ1)] exp(−x/θ2) ,

with X = {xmin, xmin + δ, xmin + 2δ, . . . , xmax}, where xmin = 2, xmax =
100, δ = 2, which gives #X = 50. This may correspond to a dose-response
problem, where efficiency is small at low doses x and toxic failures occur at
large doses, see, e.g., [18]. We assume that θ has a normal prior N (θ̂0, Ω),

with θ̂0 = (70 70)⊤ and Ω = 103I2. The observations are generated with
θ = θ̄ = (3 50)⊤. Figure 3 presents the two probabilities f(θ̄, x) (full line)

and f(θ̂0, x) (dashed line) as functions of x. The prior guess x∗(θ̂0) is at
48.52, whereas the true value is at x∗(θ̄) = 8.615.

We estimate θ by the maximum a posteriori estimator and denote

θ̂k = arg max

k
∑

i=1

log{yif(θ, xi) + (1 − yi)[1 − f(θ, xi)]}

−
1

2
(θ − θ̂0)⊤Ω−1(θ − θ̂0) .

The expression of f(θ, x) gives x∗(θ) = −θ1 log[θ1/(θ1 + θ2)] and

c(θ) =
∂x∗(θ)

∂θ
=

(

−θ2/(θ1 + θ2) − log[θ1/(θ1 + θ2)]
θ1/(θ1 + θ2)

)

.

The design matrix Mk is replaced by Mk(θ̂k), with

Mk(θ) =

k
∑

i=1

∂f(θ, xi)

∂θ

∂f(θ, xi)

∂θ⊤
1

f(θ, xi)[1 − f(θ, xi)]
,
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Fig. 3 Probabilities f(θ̄, x) (full line) and f(θ̂0, x) (dashed line) as functions of
x in Example 2

that would be the Fisher information matrix evaluated at θ if the design
levels xi were nonrandom constants. Note that it still has the form (7), with
now

r(x) = r(θ, x) =
1

{f(θ, x)[1 − f(θ, x)]}1/2

∂f(θ, x)

∂θ
.

We shall compare four strategies. S1 and S2 are defined by (5) with
the weights αk = k1/4, and penalty functions (6) and (12) respectively.
S3 corresponds to a randomized Polya urn design, see [7], and S4 to an
optimizing up-and-down design, see [18]. S3 is initialized by putting one
ball of each label in the urn, S4 samples by pairs, at (Pk − δ/2, Pk + δ/2)
at step k, and we take P1 at the median of X .

Figure 4 (resp. 5) presents a typical realization of the sequences {xk}
(resp. {f(θ̄, xk)}) generated by the four strategies. On Figure 5, the op-
timum value f [θ̄, x∗(θ̄)] is indicated by the dotted line. Figure 6 presents
histograms of the values of xk generated by the four strategies.

Convergence to the maximum of f(θ, x) is faster for S1 and S2 than for
S3 and S4. The difference in performance is even stronger when δ decreases,
that is, when the number of points in X increases. Whereas the value of
δ has no significant effect of S1 and S2, decreasing δ makes the behaviour
of S3 more erratic and increases the time S4 requires to move away from
the initial values of xk. This effect is already apparent on Figures 4 to 6. A
possible compromise strategy would be to start with S3 or S4 and a large
value of δ (that is, few point in X ), and then decrease δ and switch to S1

or S2.
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Fig. 4 Sequences {xk} generated by strategies S1 to S4 (from left to right) in
Example 2
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Fig. 5 Sequences {f(θ̄, xk)} generated by strategies S1 to S4 (from left to right)
in Example 2. The optimum value f [θ̄, x∗(θ̄)] is indicated by the dotted line

5 Conclusions and further developments

We considered the problem of choosing a sequence of values xk for x that
maximize some function f(x) in two different situations: f(xk) is observed
with errors (regression model), or binary responses are observed, the proba-
bility of a positive response at xk being f(xk). Assuming that a parametric
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Fig. 6 Histograms of the values of xk generated by strategies S1 to S4 (from left
to right) in Example 2

form is known for f , that is, f(x) = f(θ,x) with θ unknown, different
strategies have been suggested.

An approximately optimal strategy has been constructed in the case
of a linear regression model with finite horizon. In more general situa-
tions, we considered sequences constructed according to the rule xk+1 =
arg maxx f(θ̂k,x)+αkdk(x), with θ̂k an estimated value of θ obtained from
(x1, y1), . . . , (xk, yk) and dk(x) a penalty for poor estimation. This is easily
implemented in the case of binary responses, and numerical examples illus-
trate that such strategies may outperform more traditional ones, like Polya
urn designs and up-and-down methods. Such a result should not be a sur-
prise, since methods based on a parametric form of f use more information
than model-free approaches. On the other hand, their asymptotic behaviour
is more difficult to study, due to the intricate connection between estima-
tion of θ and optimisation. Only the linear regression case, with a penalty
related to D-optimum design, seems to have been considered so far, see
[23]. Extension to nonlinear regression problems is currently under study.
In practice, it might be reasonable to start with a model-free approach, in
order to gather enough information about the form of f , and then switch
to a parametric approach of the type considered here. This raises many is-
sues (choice of model structure, choice of switching time, robustness with
respect to model mis-specification, etc.) which, together with comparisons
with other approaches (e.g., the bandit design of [16]), deserve further study.
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