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ABSTRACT

Statistical Resolution Limit (SRL), defined as the minimal
separation to resolve two closely spaced signals, is one of
the important tools to evaluate a given system performance.
Based on S.T. Smith’s formulation of the SRL, this paper
provides a methodology to compute an approximate analyt-
ical expression of the resolution limit in the Gaussian model
case. As an application, we consider the particular case of two
sources located in the near field and consider the resolution
limit in terms of minimum angular separation. Discussion and
numerical illustrations are then given to get more insights on
the proposed derivation and to validate our theoretical results.

Index Terms— CRB, Gaussian model, SRL, NFL

1. INTRODUCTION

The SRL is a measure of the minimal difference needed for
two closely spaced parameters (sources) to be detected and
consequently correctly estimated and separated [1]. The SRL,
as defined in [2], is related to a given statistical parametric
model for the observed signal and hence it represents an in-
herent lower bound for the resolution independently of the
considered estimation method.

Many authors have considered the SRL for different ap-
plications including MIMO radar [3], spectral estimation
[4], DOA (Direction Of Arrival) estimation [5, 6], near field
source localization [7] and for passive Polarized Source Lo-
calization [8]. Different approaches have been used for the
derivation of the SRL. In [2], the evaluation of the SRL δ is
based on the estimation accuracy and is obtained by solving
the equation δ =

√

CRB(δ) where CRB refers to the model’s
Cramer Rao Bound. The second approach considered in
[9, 10] is based on the detection theory. Interestingly, the two
approaches are shown in [6] to be closely related and can be
unified by defining the SRL as the solution of the following
equation

δ = γ
√

CRB(δ) (1)

where γ is a proportionality constant corresponding to a given
couple of detection and false alarm probabilities.

To our best knowledge, this paper is the first to pro-
pose analytical expressions for conditional and unconditional
Gaussian models. More precisely, in this paper, we derive
analytical expressions for the SRL (i.e. solution of equation
(1)) based on the Taylor expansion of the CRB. The proposed
SRL expression can be used under certain system conditions
that are commented in this paper. Alternatively, when the
analytical SRL formula cannot be used, we proposed to use
a numerical solution of (1) based on the fixed point method
[11]. Both numerical and analytical solutions are compared
and discussed through numerical simulations.

2. PROBLEM FORMULATION

We consider i.i.d. multivariate observation vectors x(t), t =
0, · · · , T − 1 with a complex circular Gaussian probability
density function of covariance R(θ) and mean value µ(θ)
where θ is the global parameter vector that can be written as:

θT =
[

θT
1 ,θ

T
2 , · · · ,θT

q ,θ
T
n

]

(2)

θi, i = 1, · · · , q corresponds to the unknown parameter
vector of the ith signal component (e.g. a given source in
the array processing context or a sinusoidal component in a
spectral analysis context) and θn represents the nuisance (non
desired) parameter vector. In array processing, such a signal
is written as x(t) = A(θ)s(t) + n(t) and can represent:

1. either the conditional model in which the source signals
s(t) are assumed to be deterministic and the noise n(t)
is Gaussian distributed. The desired parameter vector
θi, i = 1, · · · , q represents the source location param-
eters (e.g. angles of arrival, range, Doppler, etc) and
its related statistical information is given by the mean
value µ(θ),

2. or the unconditional model in which we assume that
the source signals are complex circular Gaussian with
zero mean and unknown covariance Rs. In that case,
we have µ(θ) = 0 and all statistical information is
contained in the covariance matrix R(θ).
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Our main objective is to express analytically the SRL of.
one of the source parameters by using a Taylor expansion of
(1) as explained next.

3. DERIVATION OF AN ANALYTICAL SRL

3.1. Review of the SRL problem

In [2], Smith proposed the following SRL definition: Two sig-
nals are resolvable w.r.t. the DOA if the difference between
the DOA is greater than the standard deviation of the DOA
difference estimation according to the CRB. This criterion has
been extended in [6] within a generalized framework unifying
it with the hypothesis testing-based approaches and leading to
the criterion in (1). In [12, 13], the multiple parameter case
is considered and the SRL formulation has been generalized
and expressed as the minimum distance between two source
parameter vectors for the signal components (sources) to be
separable.

In all cases, the SRL is formulated as a solution of a non
linear equation and solved numerically using standard opti-
mization methods. Explicit SRL expressions have been given
only in very specific, simplified contexts as the one consid-
ered in [8] where source orthogonality is assumed as a sim-
plifying hypothesis.

Now, Numerical solutions might be too expensive in high
dimensional cases due to the FIM (Fisher Information Matrix)
inversion involved in the computation of the CRB. Next, we
propose to solve equation (1) based on a second order Taylor
expansion of the CRB which leads to approximate analytical
expressions of the SRL. In the sequel, we re-parametrize our
model as

κ = f(θ) =
[

δ θ̃
T
]T

(3)

where we set, without loss of generality, δ = θ1(1) − θ2(1)
and θ̃ is the vector of all remaining parameters independent
of δ.

3.2. Taylor expansion of the FIM

Before computing the second order Taylor expansion of the
CRB, we compute first the second order Taylor expansion of
the FIM. For the Gaussian model, the (l,m)th entry of the
FIM (denoted F) with respect to the parameter vector κ is
given by [14]

[F(κ)]lm = Ttr

{

R
−1 ∂R

∂κl

R
−1 ∂R

∂κm

}

+2ℜ

{

∂µ
H

∂κl

R
−1 ∂µ

∂κm

}

(4)
where tr(.) is the trace operator and ℜ(.) refers to the real

part of a complex entity. Since the distribution of the observed
data is expressed as a function of δ, hence the FIM can also
be expressed as a function of δ and one can easily compute its
second order Taylor expansion as

F = F0 + F1δ +
1

2
F2δ

2 +O(δ3) (5)

where O() summarizes the least-significant terms in Taylor
expansion when δ is close enough to 0 and the specific com-
putation of F0 = F(δ = 0), F1 = ∂F

∂δ

∣

∣

δ=0
and F2 =

∂2
F

∂δ2

∣

∣

∣

δ=0
depends on the case at hand.

For the unconditional model, we have :

[F0]ij = Ttr







R
−1 ∂R

∂κi

R
−1 ∂R

∂κj







δ=0

[F1]ij =
∂

∂δ



Ttr







R
−1 ∂R

∂κi

R
−1 ∂R

∂κj











δ=0

= Fp1 + F
T
p1 + Fp2 + F

T
p2

[F2]ij =
∂2

∂δ2



Ttr







R
−1 ∂R

∂κi

R
−1 ∂R

∂κj











δ=0

= Fs1 + F
T
s1 + 2

(

Fs2 + F
T
s2

)

+ 2Fs3 + 2
(

Fs4 + F
T
s4

)

+ 2Fs5 + Fs6 + F
T
s6

where
[

Fp1

]

lm
= Ttr

{

−R
−1 ∂R

∂δ
R

−1 ∂R

∂κl

R
−1 ∂R

∂κm

}

δ=0

[

Fp2

]

lm
= Ttr







R
−1 ∂2

R

∂δ∂κl

R
−1 ∂R

∂κm







δ=0

[Fs1]lm = Ttr









−R
−1 ∂2

R

∂δ2
R

−1
+2R

−1 ∂R

∂δ
R

−1 ∂R

∂δ
R

−1





∂R

∂κl

R
−1 ∂R

∂κm







δ=0

[Fs2]lm = Ttr







−R
−1 ∂R

∂δ
R

−1 ∂2
R

∂δ∂κl

R
−1 ∂R

∂κm







δ=0

[Fs3]lm = Ttr

{

R
−1 ∂R

∂δ
R

−1 ∂R

∂κl

R
−1 ∂R

∂δ
R

−1 ∂R

∂κm

}

δ=0

[Fs4]lm = Ttr







−R
−1 ∂R

∂δ
R

−1 ∂R

∂κl

R
−1 ∂2

R

∂δ∂κm







δ=0

[Fs5]lm = Ttr







R
−1 ∂2

R

∂δ∂κl

R
−1 ∂2

R

∂δ∂κm







δ=0

[Fs6]lm = Ttr







R
−1 ∂2

∂δ2

(

∂R

∂κl

)

R
−1 ∂R

∂κm







δ=0

For the conditional model with a white Gaussian noise of
covariance matrix σ2

I, we have:

[F0]lm =
NT

σ4







∂σ2

∂κl

∂σ2

∂κm







δ=0

+
2

σ2
ℜ







∂µ
H

∂κl

∂µ

∂κm







δ=0

[F1]lm =
2

σ2
ℜ







∂2
µ
H

∂δ∂κl

∂µ

∂κm







δ=0

+
2

σ2
ℜ







∂µ
H

∂κl

∂2
µ

∂δ∂κm







δ=0

[F2]lm =
2

σ2
ℜ







∂3
µ
H

∂δ3∂κl

∂µ

∂κm







δ=0

+
4

σ2
ℜ







∂2
µ
H

∂δ∂κl

∂2
µ

∂δ∂κm







δ=0

+
2

σ2
ℜ







∂µ
H

∂κl

∂3
µ

∂δ3∂κm







δ=0

3.3. Taylor expansion of the CRB

The CRB is computed as the inverse of the FIM and its sec-
ond order Taylor expansion can be achieved according to the
following lemma [15]

Lemma 3.1. If M is asymptotically nilpotent, i.e. Mn → 0

when n → ∞, then the following Taylor expansion holds:

(I+M)
−1

= I−M+M
2 −M

3 + · · · (6)

5530



Now, under the assumption that F0 is non singular, this
lemma can be used for the Taylor expansion of the CRB (de-
noted C) according to

C = F
−1 = (I+ F

−1
0 B)−1

F
−1
0

=
(

I− F
−1
0 B+

(

F
−1
0 B

)2
)

F
−1
0 +O(δ3) (7)

where B = F1δ +
1
2F2δ

2. Replacing B by its expression in
(7) leads to

C = C0 +C1δ +C2δ
2 +O(δ3) (8)

C0 = F
−1
0

C1 = −F
−1
0 F1F

−1
0

C2 = F
−1
0 F1F

−1
0 F1F

−1
0 − 1

2
F

−1
0 F2F

−1
0

This result is verified under the following hypotheses:
(H1) : F0 is non singular.
(H2) : F

−1
0 B is asymptotically nilpotent.

Hypothesis (H1) is generally verified if at least one of
their parameters of interest of the considered sources are dif-
ferent, i.e. if θ1 6= θ2. For example, in the near field localiza-
tion (NFL) problem considered in section 4, the sources are
’separable’ as long as their location is different, i.e. they have
either different angles or different ranges. Hypothesis (H1)
is also verified in the case where extra source information is
available, which is the case for example if one of the source
location is a priori known [6]. In the case where F0 is singu-
lar, one can always use a kind of ’regularization’ by writing
F = (F0 + ǫI)− ǫI+F1δ +

1
2F2δ

2 +O(δ3) where ǫ << 1
is a chosen regularization parameter, in such a way we invert
(F0+ǫI) instead of F0 in the Taylor expansion given in equa-
tion (7). For the second hypothesis (H2) to hold, one needs
often to assume that δ << 1, this is true in many situations
but not in the adverse ones (small array size, small sample
size, very low SNRs, etc) as shown by our simulation results.

3.4. Approximate analytical SRL expression

Now, replacing the CRB by its second order Taylor expansion
in the equation δ2 = γ2CRB(δ), leads to a simple polynomial
rooting problem according to

[C0]11 + [C1]11δ + ([C2]11 −
1

γ2
)δ2 = 0 (9)

where [C]ij refers to the (i, j)th entry of matrix C. The roots
of (9) are given by

δ± =
−[C1]11 ±

√
∆

2
(

[C2]11 − 1
γ2

) (10)

with ∆ = [C1]
2
11 − 4

(

[C2]11 − 1
γ2

)

[C0]11.

The SRL is computed as the absolute value of the solution
of (9) with the smallest absolute value which is

SRL =

∣

∣

∣

∣

∣

∣

−[C1]11 + sign ([C1]11)
√
∆

2
(

[C2]11 − 1
γ2

)

∣

∣

∣

∣

∣

∣

(11)

3.5. Discussion

Below, we provide some comments to clarify certain aspects
of the proposed SRL derivation approach.

• As shown earlier, equation (9) has generally two real
valued solutions and we selected the one with the small-
est absolute value. Indeed, since the Taylor expansion
is valid only in a small interval centered at zero, one
needs to select the meaningful solution within this in-
terval and disregard any other polynomial root which
does not correspond to our approximate equation. This
choice corresponds well with the observations made in
our simulation experiments.

• The analytical SRL solution in (9) should be validated
only if ∆ ≥ 0 (since δ is real valued) and if hypothe-
sis (H2) is met, i.e. one should check a posteriori that
matrix F

−1
0 B is asymptotically nilpotent. In the case

where ∆ < 0 or if condition (H2) is not met one should
disregard the solution of (9) and consider a numerical
method to solve (1).

• The usefulness of the analytical SRL resides in its po-
tential use for interpretable expressions1 and for reduc-
ing the numerical cost when the FIM is of large dimen-
sional matrix form. For example, in the deterministic
NFL problem with 2 sources and T=100 samples, we
will have an FIM of size 404×404. Fixed point method
needs several iterations to converge, each of them re-
quires the inversion of this large FIM. By cons, our ap-
proach needs only one inversion of the FIM.

4. NUMERICAL RESULTS

In this section, we illustrate our approach by considering
a particular case where a uniform linear array (ULA) with
N sensors receives the signals emitted by two narrow band
sources located in the near field. The observed signal is cor-
rupted by additive complex circular white Gaussian noise of
zero mean and covariance matrix σ2

IN . Hence, the observed
vector is expressed by [16]

x(t) = As(t) + n(t) (12)

where s(t) = [s1(t) s2(t)]
T , si(t) is assumed to be Gaus-

sian with zero mean and variance σ2
si

, A = [a1 a2], ai =

1This is the focus of our future work, where some interesting develop-
ments of the SRL expression in the NFL case will be provided.
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Fig. 1:   SRL versus SNR,     N = 8,    θ = 0o
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Analytical expression:T = 2000

[

1 ejτi(1) · · · ejτi(N−1)
]T

, i = 1, 2 and

τi(n) =
2πri
λ

(
√

1 +
n2d2

r2i
− 2nd sin θi

ri
− 1

)

(13)

where d is the inter element spacing, λ is the propagation
wavelength and (ri, θi), i = 1, 2, are the polar coordinates
of the sources. In the following, we are interested only by
the Angular Resolution Limit (ARL). The numerical SRL is
computed using fixed point method, and is presented by red
and black curves in both Fig. 1 and Fig. 2 and by red curve in
the remaining figures.

Fig. 1 and Fig. 2 present the variation of the SRL w.r.t.
the SNR for different values of N and T . One can observe
that: (i) the analytical SRL fits well with the numerical one in
the non-adverse situations and for a large range of system pa-
rameter values; (ii) in the adverse situations (very low SNRs,
small sample size or small antenna size) the fitting between
the analytical and numerical SRL expressions is lost. In that
case, we observe that for the analytical SRL, hypothesis (H2)
is not satisfied or the discriminant ∆ is negative valued, this
corresponds to the intervals where the analytical SRL plots
are truncated. In the adverse cases, we have used the fixed
point method to compute the solution of (1). We have ob-
served a very fast convergence of the latter method (typically,
we have less than 10 iterations in our simulation context. Fi-
nally, (iii) we can see from this experiment that the range of
’validity’ of the analytical SRL expression increases when the
context becomes more favorable: For example, for T = 200
and N = 8, we observe that the SRL expression is valid if the
SNR is higher than 2 dB while for T = 200 and N = 20 it is
valid for an SNR approximately higher than -16 dB.

Fig. 3, 4 and 5 illustrate the variation of the SRL w.r.t.
different system parameters, namely the look up direction, the
number of sensors and the sample size, respectively. One can
observe, in particular, that the SRL increases significantly in
the lateral directions (i.e. when |θ| → 90o) as compared to
the central direction (i.e. when |θ| → 0o).
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Fig. 2:   SRL versus SNR,     N = 20,    θ = 0o
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