
HAL Id: hal-01002332
https://hal.science/hal-01002332

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locally Optimal Confidence Ball for a Gaussian Mixture
Random Variable

Pierre Sendorek, Maurice Charbit, Karim Abed-Meraim, Sébastien Legoll

To cite this version:
Pierre Sendorek, Maurice Charbit, Karim Abed-Meraim, Sébastien Legoll. Locally Optimal Confi-
dence Ball for a Gaussian Mixture Random Variable. 4th Int. Conf. on Indoor Positioning and
Indoor Navigation(IPIN)„ Oct 2013, Belfort, France. �hal-01002332�

https://hal.science/hal-01002332
https://hal.archives-ouvertes.fr


2013 International Conference on Indoor Positioning and Indoor Navigation, 28
th

-31
th

 October 2013 

 

Locally Optimal Confidence Ball for a Gaussian 

Mixture Random Variable 
Pierre Sendorek, Maurice Charbit * 

Karim Abed-Meraim** 

 Sébastien Legoll*** 

 

* Télécom ParisTech, Paris, France 

pierre.sendorek@telecom-paristech.fr 

** Polytech Orléans, Orléans, France 

*** Thales Avionics, Valence, France 

 
Abstract—We address the problem of finding an estimator such 

as its associated confidence ball is the smallest possible in the case 

where the probability density function of the true position (or of 

the parameter to estimate) is a d-dimensional Gaussian mixture. 

As a solution, we propose a steepest descent algorithm which 

optimizes the position of the center of a ball such as its radius 

decreases at each step but still ensures that the ball centered on 

the optimized position contains the given probability. After 

convergence, the obtained solution is thus locally optimal. 

However our benchmarks suggest that the obtained solution is 

globally optimal. 

Keywords — Confidence domain; Gaussian Mixture Model; 

Optimization; Monte-Carlo; Robust Estimation; Accuracy 

I. INTRODUCTION 

In navigation, it is often of practical interest to express the 
accuracy of a position estimator by the dimensions of its 
confidence domain [1]. One may ask which estimator achieves 
the optimal accuracy with respect to this criterion. In a 
Bayesian setting, when the probability density function (pdf) of 
the true position given the measurement is Gaussian, it is well 
known that the smallest ball containing the true position with a 
given probability is centered on the mean. In this case the best 
estimator is the mean. But the problem has less been studied 
when the probability density has less symmetries. However this 
situation naturally appears in navigation. When several sources 
are used to form the measurement vector, taking into account 
the probability of failure of each source results in obtaining a 
pdf of the position expressed as a Gaussian Mixture (GM) [2]. 
In this case it is interesting to have a position estimator such as 
its associated confidence ball is the smallest possible. 

In this paper, we address the problem of finding the 
smallest confidence ball containing the position with a given 
probability. As a solution, we propose a steepest descent 
algorithm which optimizes the position of the center of a ball 
such as its radius decreases at each step but still ensures that 
the ball centered on the optimized position contains the given 
probability. After convergence, the obtained solution is thus 
locally optimal. 

Our algorithm’s solution is compared to the globally 
optimal solution (computed thanks to an exhaustive search) in 
the 1-dimensional case. It is shown that the globally optimal 
solution empirically matches our algorithm's. Thus, when the 

probability density function is only a single Gaussian, the 
obtained solution matches the optimal solution and is the mean.  

II. POSITION OF THE PROBLEM 

A. Probability of being in a ball 

Suppose that the pdf of our d -dimensional parameter of 

interest, say X , is described by a GM. Let 
g

N  be the number 

of gaussians composing the mixture, and for each component 

j  from 1 to
g

N , let
j

  be the weight the Gaussian in the 

mixture, 
j

  the mean of this Gaussian and 
j

C  its covariance. 

The pdf of X  thus writes 

1

( ) . ( ) 
gN

X j j

j

p x f x


   (1)  

Where  ;( ) , )(
j j j

f N xx C  is the evaluation at x  of 

the pdf of a Gaussian with a mean j  and with a covariance 

jC . We call A  the probability of X  to be outside a ball of 

center c  and of radius r . The definition of A  is given by  

( , )
( , )) (( , ) P )r( .

X
x B c r

B c r p x dA c xr X


       (2) 

B. The Problem 

The problem is to find a center c  such as the radius r  is 

the smallest under the constraint that X  has to be in this ball 

with an expected probability of 1  . This problem is 

equivalent to the following : 

Find c  such as r  is the smallest possible under the 

constraint ( , )A c r  .  

As the reader may have noticed, we chose to deal with the 
complementary of the probability to be inside a ball. This is 
because the floating representation of a number is more precise 
in the neighborhood of 0 than in the neighborhood of 1 and 
since  is usually closer to 0 than 1 in practical applications, it 

will be preferable, instead of using the cumulative function, to 
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use the complementary cumulative function which is more 
precise in this context. 

III. THE OPTIMIZATION ALGORITHM 

A. Overview 

This section details the principle of our algorithm, which is 
the original contribution of this work. Derivation of the 
equations will be explained in further sections, which will be 
decreasing in the abstraction level. 

Our algorithm proceeds to gN  steepest descents, each steepest 

descent being initialized with jc  . The initialization step 

requires a value of r such as ( , )A c r  . This value of r  

can be found either by interval halving, or by more 
sophisticated methods such as the secant method or Newton 

method, because ( , )r A c r  is a decreasing  function (as a 

complementary cumulative function). When both of these 
values are found, the optimization step starts by finding which 

of the (small)  variations  ( , )c r  of the couple  ( , )c r  do not 

change the probability of X  to be outside the ball. This gives 

a set of possible directions ( , )c r such as 

( , ) ( ., )c rcA c r A r      (3) 

Among all those possible directions for c , we choose the one 

which leads to the greatest improvement in terms of radius : 
hence, the chosen direction is the steepest. The center c  is 

optimized by being replaced by ' cc c   and to finish the 

optimization step, instead of replacing r  by rr   as a radius 

for the following step, the algorithm solves the equality 

( ', )A c r   in the variable r  (e.g. by one of the already 

mentioned methods) which is preferred to avoid the cumulation 
of linearization errors during the successive steps of the 
optimization. Once this optimization step is finished, another 
begins. The process is repeated as long as (the step is not 
negligible) there is an improvement of the radius. 

B. Steepest descent direction 

To find the steepest descent direction, we want to find 

which are the (small) variations ( , )c r  such as (3) is satisfied 

which implies that we want 

, ) ( , ) 0( .c rA rc r A c     (4) 

And because r  and c  are supposed to be small, we replace   

the left term by Taylor's first order approximation 

, ) ( , ) ( , ). (( , ).c r c c r rr A c rA A c r A c rc      , 

where ( , )c A c r  is the gradient, which is the vector of partial 

derivatives according to the components of c  and where 

( , )
r
A c r  is the partial derivative of A  according to r . 

Hence we get the equation 

( , . 0). ( , )
c c r r
A c r A c r     (5) 

or equivalently, since ( , )r A c r  is negative 

( , ). (/ , )
r c c r

A c r A c r     (6) 

Since several directions are possible, the problem is now to 

find the steepest descent direction of c . To do this, we take 

among all the vectors c which have the same (small) norm, 

say | |c  , the one which minimizes r . Finally, since 

Cauchy-Schwartz ensures the inequality 

| ( , ) | . ( , ). | ( , ) | .
c c c c
A c r A c r A c r           (7) 

As a consequence, the value of r , which we want to be 

negative, is minimized when . ( , )/ | ( , ) |
c c c

A c r A c r    

which saturates the left inequality in (7). 

C. The algorithm 

The value   is the size of the step which was supposed to 

be small during the calculations. But in practice, we take   so 

as to halve the dimensions of the actual radius and the 

algorithm works. Also, to avoid oscillations around local 

optima, when a variation of the center leads to an increase of 

radius (whereas the linearization “predicted” a decrease), the 

step is halved. Halving can be repeated at most hN  times, 

after which the algorithm considers that the potential 

improvement is negligible. This translates into the constraint 

/r r Q  , which results in choosing 

. ( , )

| ( , |)

r

c

r A c r

Q A c r



 


 with an initial value 2Q  . Finally, 

the algorithm to find the optimal  ( , )c r  sums up to  

 

MCr    

for( 1: gj N ){ 

 2Q   

 jc   

 find r  such as ( , )A c r   

 do{ 

  
. ( , )

| ( , |)

r

c

r A c r

Q A c r



 


 

. ( , )/ | ( , ) |
c c c

A c r A c r     

old old ( , )( ),c c rr   
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c
c c   

  find r  such as ( , )A c r   

if ( oldr r ) 

 old old(( , ) ),cc r r  

 2Q Q   

 }while( 2 hN
Q  ) 

if( MCr r ){ 

  MC MC,( ) ( , )rc c r }} 

At the end of the algorithm, MC( , )MCc r  will describe the 

locally optimal ball containing X  with a probability1  .  

 

D. Computation of the probability to be in a ball 

The computation of the value of ( , )A c r  implies the use of 

the generalized chi-square cumulative function, which can be 
efficiently computed e.g. using the algorithms in [3,4]. Indeed 

( , )
( , ) ( )

j j
x B c r

j

A c r f x dx


    (8) 

Where 
( , )

( ) Pr( )
j

x B c r
x dx rf 


  , for a variable   which 

follows a generalized non central chi-square law with 
appropriate parameters [4]. In the following sections, this value 
will be computed from its analytical formula for every 
presented algorithm. 

E. Derivative according to the center 

The expression of the gradient ( , )
c
A c r has similarities 

with the expression of ( , )A c r  which makes its Monte-Carlo 

computation comfortable. We derive the expression of the 
gradient by remarking that 

' ( , ) (0, )

( , ( ') ' ( ))
X X

x B c r x B r

p x dx pr x c dxA c
 

      (9) 

Which allows to derive under the sign sum 

(0, )
( , ). ( ).c c c X c

x B r
x c dxA c r p


      

1

1 ' ( , )

. ( ').( ' ) . . '.
gN

j j j j c

j x

T

B c r

f x C dx x 


 

    

F. Derivative according to the radius 

The following derivations refer to a mapping of the 

Euclidean coordinates into the  generalized d -dimensional 

polar coordinates. However, we won't need to explicit the 
integrals since the expression in polar coordinates will only be 
used to obtain the formula of the derivative according to the 
radius. The obtained integral has a pleasant expression to be 
mapped back into Euclidean coordinates, in which we will be 

able to evaluate the integral numerically. Using (9) as a starting 

point, the substitution / | |x x   and | |x   leads to the 

generalized polar coordinates 

1

0

( ) (( ). )( . (, ) )
d

X
r p r c dA dc r



     



     

where   is the Lebesgue measure on the unit sphere [5] 

which we won’t need to make more explicit for calculating the 

derivative 
1

0

1 1

1

1

1' ( , )

(

( ' )
( '

| ' | | ' |

( )
( 1) (( ) ) . ( )

( )

) ( ) . ( )

1
) ( ') '

( , )

g

g

d

X

N T

d

j j j j

jr

N T

j j j j

jx B c r

r

C c f

x c
x

r
d p r c d d

r

c d d

d
C f x d

x x c
x

c

A c r





    




       



 





 








  



 




 




 

 



 
 
 

 
 
 







 

IV. MONTE CARLO COMPUTATIONS 

Our choice is oriented towards numerical integration since 

the analytical formulae of the derivatives are unknown to the 

authors in the general case. Among numerical methods, we 

chose Monte-Carlo which is known to be insensitive to the 

increase of dimensionality and is an efficient way to sample 

the integration space at points where the integrand has 

significant values (far from zero). Indeed, the derivatives 

( , )
c
A c r  and ( , )

r
A c r  can both be expressed, modulo the 

adequate choice of the functions 
j

g , as 

1

( ). ( )
g

d

N

j j j

j x

df x g x x
 

  

where each 
th

j term of the sum can  be computed thanks to 

Monte-Carlo with Importance Sampling. Thus the integral  

 

( ). ( )
d

j j

x

f x g x dx



     (10) 

 

is numerically computed by sampling the iid variables 

, 1...
( )

dj t t N
X


 each one according to the law 

( , . )
j j

N m C where m is a value greater than 1. Such a 

choice of m  favors realizations of 
,j t

X  outside ( , )B c r  

which is a set where the functions 
j

g  are null. Thus the pdf of 

each random variable 
,j t

X  is ( ; , )
j j

x N x mC . Monte-

Carlo approximates (10) by 
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,

,

1 ,

,

1 ,

( )
( )

( ; , )

1
.

( )

( ; , )

d

d

N

j j t

j j t

t j t j j

N

j j t

d

td j t j j

f X
g X

N X mC

f X

N N X
N

mC












  

which tends to the ratio of the expectations  

( )
( ) ( ; , )

( ; , )

( ')
( '; , ) '

( '; , )

j

j j j

j j

j

j j

j j

f x
g x N x mC dx

N x mC

f x
N x mC dx

N x mC











 

which is indeed the desired value (10), when 
dN  tends to 

infinity. However the strength of importance sampling in this 

case is that only a small amount 
d

N  of drawings suffices to 

make the algorithm work, because the possible errors in the 

computation of 
c
 and   at each step are approximately 

corrected at the next step thanks to the computation of the new 

values of 
c
 and   which only take the current value of 

( , )c r in consideration as a starting point to the descent. 

V. BENCHMARKS 

 In a mono dimensional setting, we compare the solution 

obtained by our algorithm to the globally optimal solution 

obtained by a greedy search on the discretized space. Our 

algorithm is assessed on 100 Gaussian Mixtures with 

randomly drawn parameters : 
g

N  is drawn as 2G   

where G follows a geometric law of mean 4 (to avoid the 

trivial case 1
g

N  ),  j  is drawn according to a centered 

Gaussian with a variance of 1 and the / 3
j j

C K  (which are 

scalars in the 1D case) where 
j

K  is drawn according to a chi-

square law with 3 degrees of freedom. The variances are thus 

drawn of the same order of magnitude than the spacing 

between the means of the Gaussians. This is done so because 

the problem is easier when the variances are too small in 

comparison to the spacing between the means of the 

Gaussians. Finally the weights
j

  are drawn as 

1

/
gN

j j i

i

U U


  , where the variables 
j

U are iid chi-squared 

variables with 1 degree of freedom. For each set of these 

parameters, we compare the obtained radius MCr  with the 

globally optimal radius Gr by computing their ratio. The 

evaluation is made on several sets of parameters ( , , )
d

m N   

and for each one, a histogram of the ratio /
MC G

r r  is made in 

figure (1). The radius obtained by our algorithm is in most of 

the cases the global optimum although our algorithm searches 

for the best among 
gN local optima. The use of importance 

sampling enables to converge to the right result with few (100) 

particles even when 
7

10  . 

VI. CONCLUSION 

This paper has proposed a position estimator under the form of 

an algorithm which minimizes its associated confidence ball in 

the case when the position’s probability density function is 

expressed as a Gaussian mixture in multiple dimensions. The 

algorithm has been assessed in one dimension, where a 

comparison against greedy algorithm is possible.  Numerical 

computations showed that the obtained confidence ball is the 

globally optimal one. 

Figure 1.  Histogram of the ratios of the obtained radius with the globally 

optimal radius. 
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