
HAL Id: hal-01002316
https://hal.science/hal-01002316v1

Submitted on 5 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automated design approach to map applications on
CGRAs

Thomas Peyret, Gwenolé Corre, Mathieu Thevenin, Kevin Martin, Philippe
Coussy

To cite this version:
Thomas Peyret, Gwenolé Corre, Mathieu Thevenin, Kevin Martin, Philippe Coussy. An automated
design approach to map applications on CGRAs. GLSVLSI Great Lakes Symposium on VLSI, May
2014, Houston, Texas, United States. pp.229-230, �10.1145/2591513.2591552�. �hal-01002316�

https://hal.science/hal-01002316v1
https://hal.archives-ouvertes.fr

An Automated Design Approach to Map Applications on

CGRAs

Thomas Peyret, Gwenolé Corre, Mathieu Thevenin
CEA, LIST, Electronic Architectures and Sensors Laboratory

F-91191 Gif-sur-Yvette, France
+33 (0)1 69 08 27 85

firstname.lastname@cea.fr

Kevin Martin, Philippe Coussy
Université de Bretagne-Sud, Lab-STICC

Lorient, France
+33 (0)2 97 87 45 65

firstname.lastname@univ-ubs.fr

ABSTRACT

Coarse-Grained Reconfigurable Architectures (CGRAs) are

promising high-performance and power-efficient platforms.

However, their uses are still limited by the capability of mapping

tools. This abstract paper outlines a new automated design flow to

map applications on CGRAs. The interest of our method is shown

through comparison with state of the art approaches.

Categories and Subject Descriptors

B.5.2 [Register-Transfer-Level Implementation]: Design Aids –

Automatic synthesis.

Keywords

CGRA; Mapping; Scheduling; Binding;

1. INTRODUCTION
For the last two decades, Coarse-Grained Reconfigurable

Architectures (CGRAs) have been mainly proposed for

accelerating multimedia applications. CGRA are indeed an

interesting trade-off between FPGAs and many-core architectures

thanks to their power efficiency and programmability [9]. The

literature is very rich in CGRAs architectures, which distinguish

by different features such as the granularity of the Processing

Elements (PE) named tile, homogeneity or heterogeneity of PE,

type of operators, absence/presence of Register Files (RF) or

interconnection network topologies. Figure 1 presents an example

of CGRA.

The result of the “compilation” of an application on a CGRA

(named mapping) is the scheduling and the binding of its

operations on operators and registers. This NP-complete

process [4] must be automated to allow efficient mapping of

complex applications. Several methods have been proposed to

tackle this problem. They are split in two categories i.e. (1)

approaches that solve scheduling and binding separately with

heuristics or meta-heuristics [2, 4, 7] or by combining an heuristic

and an exact method [3] and (2) approaches that solve the whole

problem entirely with exact method [1] or meta-heuristics [6, 8].

This paper presents a unified approach that maps application on

CGRAs. The proposed mapping flow relies on simultaneous

scheduling and binding steps respectively based on a heuristic and

an exact method followed by a pruning step. The graph of the

application is backward traversed and dynamically transformed

allowing a better exploration of the design space. This extended

abstract paper is organized as follows. Section 2 depicts proposed

method. Section 3 presents the experiments and discusses

obtained results. Conclusion is given in Section 4.

2. PROPOSED METHOD
Our design flow is presented in Figure 2. Inputs are a C/C++

application code compiled to obtain a formal Control Data Flow

Graph (CDFG) and the targeted CGRA’s model. Objective of the

method is to minimize latency under resource constraint. The

proposed mapping approach allows exploring the design space

while keeping computation time low.

The key idea is to combine the advantages of exact and heuristic

methods while minimizing as much as possible their respective

drawbacks. CDFG is mapped by processing each Data Flow

Graph (DFG) of basic bloc sequentially. A list-scheduling based

algorithm schedules nodes of each DFG. As it is a local greedy

method, the binding is made simultaneously to ensure that at least

one solution exists, hence avoiding dead-ends, and is realized

incrementally by using an exact method derived from Levi’s
algorithm [5]. However, as exact methods do not scale up [4], a

wise pruning step is executed at the end of each scheduling cycle

to remove redundant partial mappings and thus keep a reasonable

number of solutions during mapping process. Besides, DFGs are

dynamically transformed as needed when no mapping (i.e. during

scheduling or binding) solution is found. DFGs are also backward

traversed to allow for using more different graph transformations.

3. EXPERIMENTS AND RESULTS
The proposed synthesis flow has been fully automated using Java.

GCC has been used to generate CDFGs from applications. Five

applications from signal processing domain have been used for

our experiments: DC filter, Elliptic filter, Moving Exponential

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage, and that copies bear this notice and the full citation on the

first page. Copyrights for third-party components of this work must be honored. For all

other uses, contact the owner/author(s). Copyright is held by the author/owner(s).

GLSVLSI’14, May 21–23, 2014, Houston, Texas, USA.

ACM 978-1-4503-2816-6/14/05.

http://dx.doi.org/10.1145/2591513.2591552

Figure 1 A 4×4 CGRA with 2D mesh torus and RF in each tile

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

RF
FU

From Neighbours & Memory

To Neighbours & Memory

Average Filter (EMA), Moving Window Deconvolution (MWD)

and unsharp mask. To obtain a large spectrum of results, several

constraints have been considered: CGRA size, RF size and the

number of tiles the final mapping is allowed to use leading to 16

different set of constraints per application and per method.

The proposed approach is compared with two approaches from

state of the art. The first, named “Method 1”, solves the

scheduling and the binding problem separately as the initial step

of [4]. It uses a forward list scheduling algorithm and binding is

made by using Levi’s algorithm. “Method 2” forward traverses the

graph, schedules nodes by applying statically graph

transformations and tries to find a mapping by using Levi’s
algorithm as proposed in [3] (that have been shown to provide

better results than [8]).

Two metrics were considered: (1) success rate (percentage of time

the method finds a solution when at least one of the compared

methods succeeds) and (2) percentage of time the method gives

the best latency between the compared methods. Figure 3 and

Figure 4 give the comparisons between the three methods for the

previously defined metrics.

Figure 3 shows that Method 1, which solves scheduling and

binding totally separately, leads to the lowest success rate (~56%).

Method 2, which transforms the graph a priori, provides better

results (~67%) but is not as good as the proposed

approach (~98%). Figure 4 shows the percentage of time each

method found the best latency and shows that the Proposed

Method finds it most of the time (~82%) even if it relies on a

heuristic-based scheduling algorithm, while the Methods 1 and 2

find it for respectively 57% and 63% of the benchmark.

4. CONCLUSION
In this paper, a generic method to map applications written in high

level language on CGRA architectures has been presented.

Experimental results show that this method finds 82% of time the

best latency, has the highest success rate and achieves 2.2 times

better mappings throughput compared to the other methods and

thus achieves a very good exploration of the solution space.

5. REFERENCES
[1] Brenner, J.A., Veen, J.C. van der, Fekete, S.P., Oliveira

Filho, J. and Rosenstiel, W. 2006. Optimal Simultaneous

Scheduling, Binding and Routing for Processor-like

Reconfigurable Architectures. Field Programmable Logic

and Applications, International Conference on (2006).

[2] Friedman, S., Carroll, A., Van Essen, B., Ebeling, C., Hauck,

S. and Ylvisaker, B. 2009. SPR: an architecture-adaptive

CGRA mapping tool. Proceedings of the ACM/SIGDA

international symposium on Field programmable gate arrays

(2009), 191–200.

[3] Hamzeh, M., Shrivastava, A. and Vrudhula, S. 2013.

REGIMap: register-aware application mapping on coarse-

grained reconfigurable architectures (CGRAs). Design

Automation Conference (2013).

[4] Lee, G., Choi, K. and Dutt, N.D. 2011. Mapping multi-

domain applications onto coarse-grained reconfigurable

architectures. Computer-Aided Design of Intergrated

Circuits and Systems, IEEE Transactions on. 30, 5 (2011),

637–650.

[5] Levi, G. 1973. A note on the derivation of maximal common

subgraphs of two directed or undirected graphs. Calcolo. 9, 4

(Dec. 1973), 341–352.

[6] Mei, B., Vernalde, S., Verkest, D., De Man, H. and

Lauwereins, R. 2002. DRESC: A retargetable compiler for

coarse-grained reconfigurable architectures. Field-

Programmable Technology, 2002. (FPT). IEEE

International Conference on (2002), 166–173.

[7] Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H. and Kim,

H.-S. 2008. Edge-centric modulo scheduling for coarse-

grained reconfigurable architectures. Proceedings of the 17th

international conference on Parallel architectures and

compilation techniques (2008).

[8] De Sutter, B., Coene, P., Vander Aa, T. and Mei, B. 2008.

Placement-and-routing-based register allocation for coarse-

grained reconfigurable arrays. ACM SIGPLAN Notices. 43, 7

(Jun. 2008), 151.

[9] Taylor, M.B. 2012. Is dark silicon useful?: harnessing the

four horsemen of the coming dark silicon apocalypse. Design

Automation Conference (2012).

Figure 4 General Flow and Algorithm Core

Figure 3 Percentage of a method for obtaining the best latency

C Code Compilation CDFG
Mapping Tool

Schedule &

Binding of Highest

Priority Node
No

Yes

Graph Transformation

Yes

No

Fail
No

Yes

CGRA Model

Prunning

End

List of

Mappings

Solutions ? Last Node ?

Changes ?

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

DC Filter Elliptic Filter EMA Filter MWD Filter Unsharp Mask Average

S
u

cc
e

ss
 R

a
te

Method 1

Method 2

Proposed

Approach

Figure 2 Success Rate

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

DC Filter Elliptic Filter EMA Filter MWD Filter Unsharp Mask Average

B
e

st
 L

a
te

n
cy

 R
a

te Method 1

Method 2

Proposed

Approach

