Thomas Peyret

Gwenolé Corre

Mathieu Thevenin

Kevin Martin

Philippe Coussy

An Automated Design Approach to Map Applications on CGRAs

Keywords: B.5.2 [Register-Transfer-Level Implementation]: Design Aids -Automatic synthesis CGRA, Mapping, Scheduling, Binding

Coarse-Grained Reconfigurable Architectures (CGRAs) are promising high-performance and power-efficient platforms. However, their uses are still limited by the capability of mapping tools. This abstract paper outlines a new automated design flow to map applications on CGRAs. The interest of our method is shown through comparison with state of the art approaches.

INTRODUCTION

For the last two decades, Coarse-Grained Reconfigurable Architectures (CGRAs) have been mainly proposed for accelerating multimedia applications. CGRA are indeed an interesting trade-off between FPGAs and many-core architectures thanks to their power efficiency and programmability [START_REF] Taylor | Is dark silicon useful?: harnessing the four horsemen of the coming dark silicon apocalypse[END_REF]. The literature is very rich in CGRAs architectures, which distinguish by different features such as the granularity of the Processing Elements (PE) named tile, homogeneity or heterogeneity of PE, type of operators, absence/presence of Register Files (RF) or interconnection network topologies. Figure 1 presents an example of CGRA.

The result of the "compilation" of an application on a CGRA (named mapping) is the scheduling and the binding of its operations on operators and registers. This NP-complete process [START_REF] Lee | Mapping multidomain applications onto coarse-grained reconfigurable architectures[END_REF] must be automated to allow efficient mapping of complex applications. Several methods have been proposed to tackle this problem. They are split in two categories i.e. [START_REF] Brenner | Optimal Simultaneous Scheduling, Binding and Routing for Processor-like Reconfigurable Architectures[END_REF] approaches that solve scheduling and binding separately with heuristics or meta-heuristics [START_REF] Friedman | SPR: an architecture-adaptive CGRA mapping tool[END_REF][START_REF] Lee | Mapping multidomain applications onto coarse-grained reconfigurable architectures[END_REF][START_REF] Park | Edge-centric modulo scheduling for coarsegrained reconfigurable architectures[END_REF] or by combining an heuristic and an exact method [START_REF] Hamzeh | REGIMap: register-aware application mapping on coarsegrained reconfigurable architectures (CGRAs)[END_REF] and (2) approaches that solve the whole problem entirely with exact method [START_REF] Brenner | Optimal Simultaneous Scheduling, Binding and Routing for Processor-like Reconfigurable Architectures[END_REF] or meta-heuristics [START_REF] Mei | DRESC: A retargetable compiler for coarse-grained reconfigurable architectures[END_REF][START_REF] De Sutter | Placement-and-routing-based register allocation for coarsegrained reconfigurable arrays[END_REF]. This paper presents a unified approach that maps application on CGRAs. The proposed mapping flow relies on simultaneous scheduling and binding steps respectively based on a heuristic and an exact method followed by a pruning step. The graph of the application is backward traversed and dynamically transformed allowing a better exploration of the design space. This extended abstract paper is organized as follows. Section 2 depicts proposed method. Section 3 presents the experiments and discusses obtained results. Conclusion is given in Section 4.

PROPOSED METHOD

Our design flow is presented in Figure 2. Inputs are a C/C++ application code compiled to obtain a formal Control Data Flow Graph (CDFG) and the targeted CGRA's model. Objective of the method is to minimize latency under resource constraint. The proposed mapping approach allows exploring the design space while keeping computation time low.

The key idea is to combine the advantages of exact and heuristic methods while minimizing as much as possible their respective drawbacks. CDFG is mapped by processing each Data Flow Graph (DFG) of basic bloc sequentially. A list-scheduling based algorithm schedules nodes of each DFG. As it is a local greedy method, the binding is made simultaneously to ensure that at least one solution exists, hence avoiding dead-ends, and is realized incrementally by using an exact method derived from Levi's algorithm [START_REF] Levi | A note on the derivation of maximal common subgraphs of two directed or undirected graphs[END_REF]. However, as exact methods do not scale up [START_REF] Lee | Mapping multidomain applications onto coarse-grained reconfigurable architectures[END_REF], a wise pruning step is executed at the end of each scheduling cycle to remove redundant partial mappings and thus keep a reasonable number of solutions during mapping process. Besides, DFGs are dynamically transformed as needed when no mapping (i.e. during scheduling or binding) solution is found. DFGs are also backward traversed to allow for using more different graph transformations.

EXPERIMENTS AND RESULTS

The proposed synthesis flow has been fully automated using Java. GCC has been used to generate CDFGs from applications. Five applications from signal processing domain have been used for our experiments: DC filter, Elliptic filter, Moving Exponential Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). Copyright is held by the author/owner(s). Average Filter (EMA), Moving Window Deconvolution (MWD) and unsharp mask. To obtain a large spectrum of results, several constraints have been considered: CGRA size, RF size and the number of tiles the final mapping is allowed to use leading to 16 different set of constraints per application and per method.

GLSVLSI'14,

The proposed approach is compared with two approaches from state of the art. The first, named "Method 1", solves the scheduling and the binding problem separately as the initial step of [START_REF] Lee | Mapping multidomain applications onto coarse-grained reconfigurable architectures[END_REF]. It uses a forward list scheduling algorithm and binding is made by using Levi's algorithm. "Method 2" forward traverses the graph, schedules nodes by applying statically graph transformations and tries to find a mapping by using Levi's algorithm as proposed in [START_REF] Hamzeh | REGIMap: register-aware application mapping on coarsegrained reconfigurable architectures (CGRAs)[END_REF] (that have been shown to provide better results than [START_REF] De Sutter | Placement-and-routing-based register allocation for coarsegrained reconfigurable arrays[END_REF]).

Two metrics were considered: (1) success rate (percentage of time the method finds a solution when at least one of the compared methods succeeds) and (2) percentage of time the method gives the best latency between the compared methods. Figure 3 and Figure 4 give the comparisons between the three methods for the previously defined metrics.

Figure 3 shows that Method 1, which solves scheduling and binding totally separately, leads to the lowest success rate (~56%). Method 2, which transforms the graph a priori, provides better results (~67%) but is not as good as the proposed approach (~98%). Figure 4 shows the percentage of time each method found the best latency and shows that the Proposed Method finds it most of the time (~82%) even if it relies on a heuristic-based scheduling algorithm, while the Methods 1 and 2 find it for respectively 57% and 63% of the benchmark.

CONCLUSION

In this paper, a generic method to map applications written in high level language on CGRA architectures has been presented. Experimental results show that this method finds 82% of time the best latency, has the highest success rate and achieves 2.2 times better mappings throughput compared to the other methods and thus achieves a very good exploration of the solution space.

Figure 4 GeneralFigure 3

 43 Figure 4 General Flow and Algorithm Core

4×4 CGRA with 2D mesh torus and RF in each tile

 May 21-23, 2014, Houston, Texas, USA.

					From Neighbours & Memory
	PE PE PE Figure 1 A PE	PE PE PE PE	PE PE PE PE	PE PE PE PE	RF To Neighbours & Memory FU
	ACM 978-1-4503-2816-6/14/05.				
	http://dx.doi.org/10.1145/2591513.2591552