
HAL Id: hal-01002266
https://hal.science/hal-01002266v1

Submitted on 5 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of reset strategy for consensus in networks with
cluster pattern

Marcos Cesar Bragagnolo, Irinel-Constantin Morarescu, Jamal Daafouz,
Pierre Riedinger

To cite this version:
Marcos Cesar Bragagnolo, Irinel-Constantin Morarescu, Jamal Daafouz, Pierre Riedinger. Design of
reset strategy for consensus in networks with cluster pattern. 8th European Nonlinear Dynamics
Conference, ENOC 2014, Jul 2014, Vienna, Austria. �hal-01002266�

https://hal.science/hal-01002266v1
https://hal.archives-ouvertes.fr


Design of reset strategy for consensus in

networks with cluster pattern

Marcos-Cesar Bragagnolo, Irinel-Constantin Morărescu,
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Abstract

This work focuses on the problem of consensus in network of agents
with linear reset dynamics. This continues a preliminary work in which
we have characterized the consensus value and its stability for networks
of linear reset systems. The contributions of this work are the charac-
terization of the convergence speed and the design of the interactions
allowing to reach a prescribed consensus value. One numerical example
illustrates the results.

1 Introduction

The problem of agreement of dynamic agents belonging to a network has
been studied in many frameworks depending on the application (see [14]
and the references therein). All existing works agree that the connectivity
of the network is a main ingredient for consensus of agents with linear [8,
12, 13, 10] or nonlinear dynamics [9, 4]. Therefore, some works have been
oriented toward decentralized control design able to preserve the network
connectivity [16, 6]. Whenever the connectivity is lost, clustering behavior
was emphasized [11, 15].

In [3] we considered networks that are partitioned in several clusters.
The agents are able to continuously interact only with neighbors belonging
to the same cluster. Moreover, each cluster contains an agent with powerful
communication capacity called leader. Each leader can interact with some
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other leaders via a network with communication constraints. Thus, the
leaders will interact only at specific isolated instants that will be defined in
the next section as a nearly periodic sequence.

This model can be interpreted in terms of opinion dynamics - decision
making process in social networks. The network is partitioned in a number
of communities. The opinion of each agent continuously evolves taking into
account the opinion of its neighbors. At some discrete times the leaders
interact in a dedicated network and reset their opinion. We show that, if
no external perturbation occurs and the process continues for a long period
of time, all the opinions approach a common one. This global agreement
opinion depends on the centrality ([2]) of each node inside each community
and in the leaders’ network. Roughly speaking the centrality of an agent
expresses the importance of its opinion in the network. Thus, it characterizes
somehow the level of ”democracy” inside the network.

All the clusters as well as the network of leaders are represented by
fixed, strongly connected directed graphs. The agents have a continuous
dynamics but the leaders reset their state when they are communicating
between them. In other words, we address the problem of consensus for
agents subject to both continuous and discrete dynamics. Precisely, we are
focusing on agreement in networks of reset systems, which are a particular
class of hybrid systems (see [1, 5]). The existing literature on reset systems
treats mostly linear dynamics.

In [3] we evaluated and studied the stability of the consensus value when
the leaders interact and reset their state in a near-periodic manner. We
shown that the consensus value depends only on the initial conditions and
the topologies of the involved networks (i.e the networks associated with the
clusters and that associated with the leaders). It is noteworthy that the
consensus value does not depend on the reset period used for the leaders’
opinions. A first objective of this paper is to study the convergence speed
of the algorithm proposed in [3]. A second objective is the design of the
network of leaders allowing to reach an a priori specified consensus value.
In order to reach this goal, we consider that each cluster has a fixed and
known interconnection topology. Therefore, we modify the consensus value
of the whole network by changing the weights in the network of leaders.
The set of consensus values that can be reached is contained in the convex
hull of the initial local agreement values, which, for scalar states, is just the
interval defined by the minimum and maximum initial local agreements.

Notation. The following standard notation will be used throughout the
paper. The sets of nonnegative integers, real and nonnegative real numbers
are denoted by N, R and R+, respectively. For a vector x we denote by ‖x‖



its Euclidian norm. The transpose of a matrix A is denoted by A⊤. Given
a symmetric matrix A ∈ R

n×n, notation A > 0 (A ≥ 0) means that A is
positive (semi-)definite. By Ik we denote the k × k identity matrix. ✶k and
0k are the column vectors of size k having all the components equal 1 and
0, respectively. We also use x(t−k ) = lim

t→tk,t≤tk
x(t).

2 Problem formulation

We consider a network of n agents described by the digraph (i.e. directed
graph) G = (V, E) where the vertex set V represents the set of agents and
the edge set E ⊂ V × V represents the interactions.
In the sequel, we consider that the agent set V is partitioned in m strongly
connected clusters/communities C1, . . . , Cm. The state of each agent contin-
uously evolves by taking into account the states of its neighbors belonging
to the same community. On top of that, each community possesses one
particular agent called leader and denoted in the following by li ∈ Ci, ∀i ∈
{1, . . . ,m}. The set of leaders will be referred to as L = {l1, . . . , lm}. At
specific time instants tk, k ≥ 1, called reset times, the leaders interact be-
tween them following a predefined interaction map El ⊂ L × L. We also
suppose that Gl = (L, El) is strongly connected. The rest of the agents will
be called followers and denoted by fj . For the sake of clarity we consider
that the leader is the first element of its community:

Ci = {li, fmi−1+2, . . . , fmi
}, ∀i ∈ {1, . . . ,m} (1)

where m0 = 0, mm = n and the cardinality of Ci is given by |Ci| , ni = mi−
mi−1, ∀i ≥ 1. In order to keep the presentation simple, each agent will have
a scalar state denoted also by li for the leader li and fj for the follower fj .
We also introduce the vectors x = (l1, f2, . . . , fm1

, . . . , lm, . . . , fmm
)⊤ ∈ R

n

and xl = (l1, l2, . . . , lm)⊤ ∈ R
m collecting all the states of the agents and all

the leaders’ states, respectively.
We are ready now to introduce the linear reset system describing the overall
network dynamics:







ẋ(t) = −Lx(t), ∀t ∈ R+ \ T
xl(tk) = Plxl(t

−
k ) ∀tk ∈ T

x(0) = x0

(2)

where T = {tk ∈ R+ | tk < tk+1, ∀k ∈ N, tk reset time}, L ∈ R
n×n is

a generalized Laplacian matrix associated to the graph G and Pl ∈ R
m×m



is a Perron matrix associated to the graph Gl = (L, El). The components
L(i,j) and Pl(i,j) of L and P , represent the weight of the state of the agent
j in the updating process of the state of agent i when using the continuous
and discrete dynamics, respectively. In particular, L has the following block
diagonal structure L = diag(L1, . . . , Lm), Li ∈ R

ni with Li✶ni
= 0ni

and
Pl✶m = ✶m. Due to strong connectivity of Ci, i = 1,m and Gl, 0 is a simple
eigenvalue of each Li and 1 is a simple eigenvalue of Pl.
In the sequel, we denote by wi the left eigenvector of Li associated with
the the eigenvalue 0 such that w⊤

i ✶ni
= 1. Similarly, let v = (v1, . . . , vm)⊤

be the left eigenvector of Pl associated with the eigenvalue 1 such that
v⊤✶m = 1. Due to the structure (1) of the communities, we emphasize that
each vector wi can be decomposed in its first component wi,l and the rest of
its components grouped in the vector wi,f . Let us introduce the matrix of
the left eigenvectors of the communities:

W =











w⊤
1 0 · · · 0
0 w⊤

2 · · · 0
...

...
. . .

...
0 0 · · · w⊤

m











∈ R
m×n. (3)

We also introduce the following vectors:

x∗(t) = (x∗1(t), x
∗
2(t), ..., x

∗
m(t))⊤ ∈ R

m, u = (v1/w1,l, v2/w2,l, ..., vm/wm,l)
⊤ ∈ R

m

(4)
where x∗i (t) is the local agreement value of the cluster i at time t. It is note-
worthy that x∗(t) is time-varying but piecewise constant: x∗(t) = x∗(k) ∀t ∈
(tk, tk+1).

3 Consensus value and its stability analysis

In this section we briefly recall the results that we obtained in [3]. The reset
sequence is defined such that tk+1 − tk = δ + δ′ where δ ∈ R+ is fixed and
δ′ ∈ ∆ with ∆ ⊂ R+ a compact set. Thus the set of reset times T belongs

to the set Φ(∆) ,

{

{tk}k∈N, tk+1 − tk = δ + δ′k, δ
′
k ∈ ∆, ∀k ∈ N

}

of all

admissible reset sequences associated with ∆.

Proposition 1 When the collective state x(·) follows the dynamics (2), one
has u⊤x∗(t) = u⊤x∗(0), ∀t ∈ R+. Moreover, assuming the agents of this

system reach a consensus, the consensus value is

x∗ =
u⊤Wx(0)
∑m

i=1 ui
. (5)



Let us define the disagreement vector y = x − x∗✶n. We also introduce an

extended stochastic matrix Pex = T⊤

[

Pl 0
0 In−m

]

T where T is a permuta-

tion matrix allowing to recover the cluster structure of L.
In the sequel, we define a quasi-quadratic Lyapunov function satisfying The-
orem 1 in [7] by means of LMI conditions.. Therefore, the following result
gives sufficient conditions for the stability of the equilibrium point of x∗✶n
for the system (2).

Theorem 2 Consider the system (2) with T in the admissible reset se-

quences Φ(∆). If there exist matrices S(δ′), S(·) : ∆ 7→ R
n×n continuous

with respect to δ′, S(δ′) = S⊤(δ′) > 0, δ′ ∈ ∆ such that the LMI

(

In − ✶nu
⊤W

)⊤
S(δa)

(

In − ✶nu
⊤W

)

−
(

Y (δa)− ✶nu
⊤W

)⊤
S(δb)

(

Y (δa)− ✶nu
⊤W

)

> 0,

Y (δa) , Pexe
−L(δ+δa)

(6)

is satisfied on span{✶n}
⊥ for all δa, δb ∈ ∆, then x∗ is globally uniformly

exponentially stable for (2). Moreover, the stability is characterized by the

quasi-quadratic Lyapunov function V (t) = V (x(t)) , max
δ′∈∆

(x(t)−x∗✶n)
⊤S(δ′)(x(t)−

x∗✶n) satisfying V (tk) > V (tk+1).

Due to the space limitations we do not provide the proofs of the results
above. However, we point out that Theorem 2 requires to solve a parametric
LMI which can be approximated by a finite number of LMIs using polytopic
embeddings. The set {X ∈ R

n×n | X = e−Lδa , δa ∈ ∆} can be embedded
into the polytopic set defined by the vertices Z1, . . . , Zh+1 where

Z1 = In, Zi =

i−1
∑

l=0

(−L)l

l!
δlmax, ∀i ∈ {2, . . . , h+ 1}

with δmax = max
δ′∈∆

δ′, (−L)0 = In and 0! = 1. Then, Theorem 2 can be

replaced by the following result.

Theorem 3 Consider the system (2) with T in the admissible reset se-

quences Φ(∆). If there exist symmetric positive definite matrices Si, 1 ≤



i ≤ h+ 1 such that the LMI

(

In − ✶nu
⊤W

)⊤
Si

(

In − ✶nu
⊤W

)

−

(

Y (δ)Zi − ✶nu
⊤W

)⊤
Sj

(

Y (δ)Zi − ✶nu
⊤W

)

> 0,

Y (δ) , Pexe
−L(δ)

(7)

is satisfied on span{✶n}
⊥ for all i, j ∈ {1, . . . , h + 1}, then x∗ is globally

uniformly exponentially stable for (2).

4 Main results

4.1 Decay rate analysis

Once the global uniform exponential stability of x∗ ensured by Theorem 2
we can compute the convergence speed of system (2). Denoting it by λ, one

has λ =
lnλd

δ + δmax
(see [7] for details) where δmax = max

δ′∈∆
δ′ and λd is the

decay rate of the linear difference inclusion (LDI)

x(tk+1) ∈ F(x(tk)), k ∈ N (8)

where
F(x) =

{

Pexe
−L(δ+δ′), δ′ ∈ ∆

}

.

Precisely, for the LDI (8) there exist M > 0 and ξ ∈ [0, 1] such that

‖x(tk)− x∗✶n‖ ≤ Mξk‖x(0)− x∗✶n‖, ∀k ∈ N (9)

and λd is defined as the smaller ξ satisfying (9).
Thus, in order to quantify the convergence speed of system (2), we only have
to evaluate λd. Let us denote again y = x−x∗✶n and note that V (y) defined
by Theorem 2 is a norm. That implies there exist α, β > 0 such that

α‖y‖2 ≤ V (y) ≤ β‖y‖2.

Consequently, one obtains that the decay rate λd coincides with the decay
rate of V . Thus, the following result can be derived directly from Theorem
2.



Proposition 4 Assume there exist α > 0, β > 0, ξ ∈ (0, 1] and the matri-

ces S(δ′), S·) : ∆ 7→ R
n×n continuous with respect to δ′, S(δ′) = S⊤(δ′) >

0, δ′ ∈ ∆ fulfilling the following constraints



































αIn ≤ S(δ′) ≤ βIn, ∀δ′ ∈ ∆

ξ2
(

In − ✶nu
⊤W

)⊤
S(δa)

(

In − ✶nu
⊤W

)

−

(

Y (δa)− ✶nu
⊤W

)⊤
S(δb)

(

Y (δa)− ✶nu
⊤W

)

> 0,

Y (δa) , Pexe
−L(δ+δa)

(10)

on span{✶n}
⊥ for all δa, δb ∈ ∆. Then, the decay rate is defined as

λd = min
ξ satisfies (10)

ξ

and

‖x(tk)− x∗✶n‖ ≤
β

α
(λd)

k‖x(0)− x∗✶n‖, ∀k ∈ N.

Remark 1 It is noteworthy that 0 < λd ≤ 1 and for a priori fixed values

of α, β we can use the bisection algorithm to approach as close as we want

the value of λd.

Remark 2 To complete the decay rate analysis, we can consider that Pex, L
and λd are fixed and perform a line search to find the nominal reset period

δ that ensures the convergence speed constraint. In other words, we check

if (10) has solutions for ξ = λd and δ heuristically sweeping the positive

real axis. Moreover, we can progressively decrease λd and re-iterate the line

search in order to find the smaller reachable decay rate.

4.2 Convergence toward a prescribed value

In what follows we assume that the value x∗ is a priori fixed and at least
a vector u satisfying (5) exists. Under this assumption we are wondering if
there exists a matrix Pl that allows system (2) to reach the consensus value
x∗. It is worth noting that the network topology is still considered fixed
and known for each cluster. Under these assumptions, a consensus value is
imposed by a certain choice of v such that v⊤✶m = 1 and v left eigenvector
of Pl associated with the eigenvalue 1. In other words we arrive to a joint
design of Pl and the Lyapunov function V guaranteeing that the trajectory
of (2) ends up on x∗.



Theorem 5 Let us consider the system (2) with T in the admissible reset

sequences Φ(∆) and let x∗ be a priori fixed by a certain choice of v. If

there exist matrices R(δ′), R(·) : ∆ 7→ R
n×n continuous with respect to δ′,

R(δ′) = R⊤(δ′) > 0, δ′ ∈ ∆ and Pl ∈ R
m×m such that the LMI





Z(δa)
(

Y (δa)− ✶nu
⊤W

)⊤

(

Y (δa)− ✶nu
⊤W

)

R(δb)



 > 0,

Y (δa) , Pexe
−L(δ+δa)

Z(δa) ,
(

In − ✶nu
⊤W

)⊤
+
(

In − ✶nu
⊤W

)

−R(δa)

(11)

with the constraints

v⊤Pl = v⊤, Pl✶m = ✶m, Pl(i,j) ≥ 0

is satisfied on span{✶n}
⊥ for all δa, δb ∈ ∆, then x∗ is GUES for (2). More-

over, the stability is characterized by the quasi-quadratic Lyapunov function

V (t) = max
δ′∈∆

(x(t)− x∗✶n)
⊤R(δ′)−1(x(t)− x∗✶n) satisfying V (tk) > V (tk+1).

Proof: First notice that
(

(In − ✶nu
⊤W )⊤S(δa)− In

)

S(δa)
−1 ×

(

S(δa)(In − ✶nu
⊤W )− In

)

≥ 0

leads to

(In − ✶nu
⊤W )⊤S(δa)(In − ✶nu

⊤W ) ≥ (In − ✶nu
⊤W )⊤ + (In − ✶nu

⊤W )− S(δa)
−1

Thus, once the solution to the LMI problem (11) is obtained we can define
S(δa) = R(δa)

−1 and S(δb) = R(δb)
−1. Then:





Z(δa)
(

Y (δa)− ✶nu
⊤W

)⊤

(

Y (δa)− ✶nu
⊤W

)

S(δb)
−1



 > 0

where
Z(δa) = (In − ✶nu

⊤W )⊤ + (In − ✶nu
⊤W )− S(δa)

−1

and hence




Z̄(δa)
(

Y (δa)− ✶nu
⊤W

)⊤

(

Y (δa)− ✶nu
⊤W

)

S(δb)
−1



 > 0



where
Z̄(δa) = (In − ✶nu

⊤W )⊤S(δa)(In − ✶nu
⊤W ).

By Schur complement, the last LMI is nothing than (6) in Theorem 2.
Moreover, the constraints v⊤Pl = v⊤, Pl✶m = ✶m and the coefficients of Pl

positive ensure the matrix Pl is row stochastic and the consensus value is
exactly x∗.

5 Illustrative examples

5.1 Academic example

An academic example consisting in a network of 5 agents partitioned in 2
clusters (n1 = 3, n2 = 2) is used in the sequel to illustrate the theoretical
results. We consider the dynamics (2) with

L =













4 −2 −2 0 0
−1 1 0 0 0
0 −2 2 0 0
0 0 0 3 −3
0 0 0 −1 1













, Pl =

[

0.45 0.55
0.25 0.75

]

(12)

and the reset sequence given by δ = 0.5 and δ′k randomly chosen in ∆ =
[0, 0.2]. The initial condition of the system is x(0) = (8, 7, 9, 2, 3) and the
corresponding consensus value computed by (5) is x∗ = 4.6757. The conver-
gence of the 5 agents towards x∗ is illustrated in Figure 1 emphasizing that
the leaders trajectories are non-smooth while the followers trajectories are.

The table below collects the first 10 time intervals between consecutive
reset instants. As expected, these time intervals have random lengths within
[0.5, 0.7] and no monotony occurs.

t1 − t0 0.6189 s t6 − t5 0.5979 s

t2 − t1 0.6131 s t7 − t6 0.5372 s

t3 − t2 0.6433 s t8 − t7 0.6401 s

t4 − t3 0.6023 s t9 − t8 0.6965 s

t5 − t4 0.6553 s t10 − t9 0.6613 s

The jumps and decreasing of the Lyapunov function defined by Theorem
2 are pointed out in Figure 2.



Figure 1: The state-trajectories of the agents converging to the calculated
consensus value.

Figure 2: The behavior of the Lyapunov function given by Theorem 2.

To find the decay rate λd we use the bisection algorithm as stated in
Remark 1. The value of λd obtained was λd = 0.855 and the number of
iterations of the bisection algorithm is k = 30.

The consensus value is always a convex combination of the initial agree-
ment values of the clusters. In the present case, one has two clusters and
the two initial agreements are 2.75 and 7.5. Thus, we can try to reach only
consensus values belonging to [2.75, 7.5]. In Figure 3 the consensus value
was fixed at x∗ = 6.5.



Figure 3: The states of a system (x∗ = 6.5).

The obtained Pl matrix was

Pl =

[

0.6870 0.3130
0.7825 0.2175

]

.

In Figure 4 the consensus value was fixed as x∗ = 3.5. The obtained Pl

matrix was

Pl =

[

0.3010 0.6990
0.0874 0.9126

]

. (13)

Figure 4: The states of a system (x∗ = 3.5).



5.2 Larger network analysis

In order to prove that the algorithms are implementable in real networks we
consider in the following a larger system. Precisely, we present an example
consisting of a network of 100 agents partitioned in 3 clusters. The size
of the clusters as well as the connections between agents are randomized,
resulting in non-symmetric matrices L and Pl. The random initialization
leads at n1 = 59, n2 = 20, n3 = 21 and

Pl =





0.1538 0.8080 0.0382
0.4886 0.3876 0.1238
0.1266 0.2805 0.5929



 . (14)

The initial condition is also randomized but, in order to guarantee a rel-
atively large interval for the possible consensus value, for the first cluster the
initial states of the agents are randomly chosen within [0, 3], for the second
one within [3, 7] and for the third one within [7, 10]. The corresponding ini-
tial local agreement values are 1.2970, 5.2578 and 8.7556, respectively. We
illustrate the theoretical results by using the dynamics (2) with the reset
sequence given by δ = 0.5. The corresponding consensus value computed by
(5) is x∗ = 4.2562. The convergence of the 100 agents towards x∗ is shown
in Figure 5.

Figure 5: The state-trajectories of the agents converging to the calculated
consensus value.

To find the decay rate λd we use the bisection algorithm as stated in Re-
mark 1. In Figure 6 we demonstrate that the initial conditions of Lyapunov



function may vary due to the conditioning of the matrix S(δ), but the decay
rate remains the same. The value of λd obtained was λd = 0.9712 and the
number of iterations of the bisection algorithm is k = 10.

Figure 6: Lyapunov function for different conditionings

The consensus value is always a convex combination of the initial agree-
ment values of the clusters. Therefore, for the initialization above, any
consensus value can be imposed between 1.2970 and 8.7556. In Figure 7 the
consensus value was fixed at x∗ = 6.5 and one obtained Pl matrix is

Pl =





0.0643 0.3720 0.5637
0.3064 0.0358 0.6578
0.0360 0.1917 0.7723



 .

6 Conclusions and perspectives

In this work we have considered networks of linear agents partitioned in
several clusters disconnected one of each other. Each cluster has a linear
impulsive leader that resets its state nearly periodically by taking into ac-
count the state of some neighboring leaders. In [3] we have characterized
the consensus value for this type of networks and we have performed its
stability analysis. In this work we provided the convergence speed towards
consensus and we designed the interconnection network between the leaders
allowing to reach a prescribed consensus value.



Figure 7: The states of a system (x∗ = 6.5).
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