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Formal methods can strongly contribute to improve dependability of controllers during design, by providing means to avoid
flaws due to designers’ omissions or specifications misinterpretations. This paper presents a synthesis method dedicated to logic
controllers. Its goal is to obtain the control laws from specifications given in natural language by symbolic computation.The formal
framework that underlies this method is the Boolean algebra of 𝑛-variable switching functions. In this algebra, thanks to relations
and theorems presented in this paper, it is possible to formally express logical controllers specifications, to automatically detect
inconsistencies in specifications, and to obtain automatically the set of solutions or to choose an optimal solution according to
given optimization criteria. The application of this synthesis method to an example allows illustrating its main advantages.

1. Introduction

Programmable logic controllers (PLCs) are industrial auto-
mation components that receive input signals coming from
sensors and send output signals to actuators, in accor-
dance with control laws implemented into a user program
(Figure 1). The control algorithms that allow the real time
calculation of new output values, according to the current
state of the PLC and the observation of new values of inputs,
are written in standardized languages, such as ladder diagram
(LD), structured text (ST) or instruction list (IL) [1]. A
PLC cyclically performs three tasks: inputs reading, program
execution, and outputs updating. The period of this task may
be constant (periodic scan) or may vary (cyclic scan).

Because of their reliability, even in very severe condi-
tions in terms of temperature, vibrations, electromagnetic
perturbations, and so forth, PLCs are frequently used for
the control of safety-critical systems (energy production,
transport, chemical industry, etc.). In this context, improving
the reliability of the user program has been one of the main
challenges of the past two decades in the field of automa-
tion. Among the different techniques that can be used in
this aim [2], formal verification and validation and formal
synthesis are the most efficient. Verification is the proof that

the internal semantics of a model is correct, independently
from the modeled system. The searched properties of the
models are stability, deadlock existence, and so on . The
validation determines if the model agrees with the designer’s
purpose [3]. Efficient validation/verification techniques of
PLC programs [4], most often based on model-checking
technique, have been proposed by researchers and are now
widely used in industry [5], despite problems of state-space
explosion that arise when treating large scale systems.

Contrary to verification techniques that aim at proving,
after a PLC program has beenmore or less correctly designed
by an expert, that control laws are safe, automatic synthesis
methods aim at systematically generating control laws which
guarantee by construction the respect of expected safety
properties. The avoidance of human errors during the design
of controllers is one of the main reasons for which synthesis
is a very important subject of research in the field of discrete
event systems (DES) since the end of 80’s.

Most part of recent works in this area are still based onto
the Supervisory ControlTheory (SCT) [6] and are aiming for
the synthesis of a supervisor, and not directly to the controller
of an automated system. Furthermore, the use of state models
(Finite Automata, Petri Nets, etc.) and their composition
for the construction of the models of the plant and of
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Program initialization

Inputs reading

Program execution

Ouputs updading

PLCInputs Outputs

...
...

Program:
IF R1 THEN

OFLO: = 0; EMPTY:= 1; PTR := −1;
NI: = LIMIT (MN := 1, IN := N,MX := 128);
OUT: = 0;

ELSIF POP AND NOT EMPTY THEN
OFLO: = 0; PTR := PTR := −1;
EMPTY:= PTR<0;
IF EMPTY THEN OUT := 0;
ELSE OUT:= STK[PTR];
END_IF;

END_IF;

Figure 1: PLC basic principle.

the specifications generates a complexity which remains
problematic for the synthesis of a supervisor for complex
systems [7]. It is therefore interesting to explore other ways
for performing synthesis, such as algebraic approaches. In
previousworks, we proposed amethod specifically developed
to get the control laws that can be directly implemented into
the controller [8]. We have chosen to synthesize these control
laws under the form of recurrent Boolean equations because
of the wide possibilities they offer for the formalization of
safety requirements and for implementation.

Nevertheless, whatever is the used synthesis method,
one of the weak links of the automatic generation of the
control laws is the step of formal transcription by the designer
(within state models or algebraic expressions) of the informal
requirements and safety properties the controller has to
satisfy. In the case of SCT, some authors have proposed more
or less generic approaches for the construction of the models
of the plant [9] or of the specifications [10]. But in any case, the
hypothesis that requirements can be inconsistent has never
been taken into account. Unfortunately in the framework of
industrial collaborations we have been able to verify that it is
always the case. In this paper we show how, in consideration
of specific hypotheses, it is possible to install a correction loop
for helping the designer to formalize these requirements and
so improving the synthesis method robustness to the lack of
precision of the specifications.

This paper is organized as follows. Some basics of alge-
braic synthesis given in Sections 2 and 3 recall the main
steps of our method. Section 4 presents the mathematical
framework of our approach and new results that allow us
to accept inconsistencies in specifications. The strategy we
developed for making the synthesis more robust to the lack
of consistency of the specifications is described in Section 5,
thanks to a case study.

2. Problem Statement

Figure 2 proposes a generic representation of a DES whose
controller has 𝑝 Boolean inputs (𝑢

𝑖
), 𝑞 Boolean outputs (𝑦

𝑗
),

and 𝑟 Boolean state variables (𝑥
𝑙
). Plant and controller are

connected through a closed loop exchanging inputs and
outputs signals. The state variables, needed for expressing
sequential behaviors of the controller, are represented by
internal variables.

Combinational
behavior

State variables
behavior

Controller

Plant

//

/

p q

r

xl yjui

{yj[k] = Fj(u1[k], . . . , up[k], x1[k − 1], . . . , xr[k − 1])

xl[k] = Fq+1(u1[k], . . . , up[k], x1[k − 1], . . . , xr[k − 1])

Figure 2: A sequential DES.

The algebraic modeling of the control laws of the con-
troller necessitates the definition of (𝑞+𝑟) switching functions
of (𝑝+𝑟) variables. Even if this representation is very compact
(the 𝑟 Boolean state variables allow the representation of 2𝑟
different states), the construction by hands of these switching
functions is a very tedious and error-prone task [11]; the
controller of Figure 2 admits 2𝑝 inputs combinations can send

2
𝑞 outputs combinations and can express (22

(𝑝+𝑟)

)

(𝑞+𝑟)

sequen-
tial behaviors. That is the reason why algebraic modeling
approaches have been replaced by methods based on state
models since the middle of 50’s [12, 13]. Nevertheless, thanks
to recent mathematical results obtained onto Boolean alge-
bras [14, 15], the automatic algebraic synthesis of switching
functions is now possible.

In [16] an interesting approach for the systematic con-
struction of a reactive program from its formal specification is
proposed. In this work, the program synthesis is considered
as a theorem proving activity. A program with input 𝑥 and
output 𝑦, specified by the formula 𝜑(𝑥, 𝑦), is constructed
as a byproduct of proving the theorem (∀𝑥)(∃𝑦)𝜑(𝑥, 𝑦).
The specification 𝜑(𝑥, 𝑦) characterizes the expected relation
between the input 𝑥 and the output 𝑦 computed by the
program. This approach is based on the observation that
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the formula (∀𝑥)(∃𝑦)𝜑(𝑥, 𝑦) is equivalent to the second-
order formula (∃𝑓)(∀𝑥)𝜑(𝑥, 𝑓(𝑥)), stating the existence of a
function 𝑓, such that 𝜑(𝑥, 𝑓(𝑥)) holds for every 𝑥.

This approach provides a conceptual framework for the
rigorous derivation of a program from its formal specifica-
tion. It has also been used to synthesize specifications under
the form of finite automata from their linear temporal logic
(LTL) description [17].

The core of our approach is based on this strategy: we aim
at deducing the (𝑞+𝑟) switching functions of (𝑝+𝑟) variables
which define the behavior of the controller from a formula
𝜑(𝑢
𝑖
[𝑘], 𝑥
𝑙
[𝑘 − 1], 𝑦

𝑗
[𝑘], 𝑥
𝑙
[𝑘]) that holds for every 𝑘, every

𝑢
𝑖
[𝑘], and every 𝑥

𝑙
[𝑘 − 1].

To cope with combinatorial explosion, switching func-
tions will be handled through a symbolic representation (and
not their truth-tables which contain 2(𝑝+𝑟) Boolean values).
Each input 𝑢

𝑖
(resp., output 𝑦

𝑗
) of the controller will be

represented by a switching function 𝑈
𝑖
(resp., 𝑌

𝑗
). To take

into account the recursive aspect of state variables, each state
variable 𝑥

𝑙
will be represented by two switching functions:𝑋

𝑙

(for time [𝑘]) and
𝑝
𝑋
𝑙
(for time [𝑘 − 1]).

According to this representation, the synthesis of control
laws of a logical system from its specification can now be
transformed into the search of the solutions to themathemat-
ical problem as follows:

(∀𝑈
𝑖
) (∀
𝑝
𝑋
𝑙
) (∃𝑌
𝑗
) (∃𝑋

𝑙
) 𝜑 (𝑈

𝑖
,
𝑝
𝑋
𝑙
, 𝑌
𝑗
, 𝑋
𝑙
) , (1)

where (𝑈
𝑖
,
𝑝
𝑋
𝑙
, 𝑌
𝑗
, 𝑋
𝑙
) are (𝑝 + 𝑞+ 2𝑟) switching functions of

(𝑝 + 𝑟) variables.

3. Overview of Our Method

The input data of the proposed method (Figure 3) are
unformal functional and safety requirements given by the
designer. In practice, these requirements are most often
given in a textual form and/or by using technical Taylor-
made languages (Gantt diagrams, function blocks diagrams,
Grafcet, etc.) or imposed standards.

All the steps of our synthesis method are implemented
into a prototype software tool developed in Python (Case
studies are available online: http://www.lurpa.ens-cachan.fr/-
226050.kjsp). The first step is the formalization of require-
ments within an algebraic description; examples are given
in Section 5.2. Requirements expressed with a state model
can directly be translated into recurrent Boolean equations,
thanks to the algorithm proposed by Machado et al. [18]. In
case where the knowhow of the designer enables him to build
a priori the global form of the solution (or of a part of the
whole solution) it is also possible to give fragments of solution
as requirements [19].

The second step consists in checking the consistency of
the set of requirements by symbolic calculation.The sufficient
condition for checking this consistency has been given in [20]
but no strategy has been proposed for coping with potential
inconsistencies. In this paper we show that thanks to new
theorems the causes of these inconsistencies can be pointed
out. It is then possible for the designer to fix priority rules

Functional and
safety requirements

Formalization1

Set of formalized
requirements

Consistency checking2

Priorities between
requirements

Inconsistency
conditionsSystem of equations

Equation solving3

Parametric
solution

Solution choice4

Control laws

Optimization
criteria

Figure 3: The algebraic synthesis method step by step.

between the concerned requirements that will allow finding,
if exist, solutions despite inconsistencies.

The core of the method is the third step, which consists
in the synthesis of the control laws. This step is performed
by solving the system of equations which represents the set
of consistent requirements.Themathematical results we have
obtained (Theorem 12 given in Section 4.3), allow finding a
parametric expression of the set of solutions.

In the fourth step of the method, a particular solution has
to be chosen among the set of solutions. For that, a specific
value of each parameter of the general solution has to be
fixed. In a previous work [19], we showed how well chosen
heuristics can be used for fixing these parameters. In this
paper, we show that the choice of a particular solution among
the set of solutions can be expressed as an optimization
problem.Wepropose new theorems that allow calculating the
maximum and the minimum of a Boolean formula, and we
show how optimal solutions can be automatically found. For
ergonomic reasons, the synthesized control laws can finally
be displayed under the form of a finite automaton [21].

After the mathematical background of the method has
been recalled, we are going to show how, in consideration
of specific hypotheses, the second step of the method can be
improved by a correction loop helping the designer to formal-
ize the requirements and so improving the robustness of our
synthesismethod to the lack of precision of the specifications.
The strategy to find an optimal solution according to given
criteria will be also presented.

4. Mathematical Foundations

This section is composed of five subsections. Sections 4.1
and 4.2 recall some classical results about Boolean algebras
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and the Boolean algebra of 𝑛-variable switching functions.
Section 4.3 presents how to solve Boolean equations. Sections
4.4 and 4.5 present specific results obtained for the algebraic
synthesis of control laws.

4.1. Boolean Algebra: Typical Feature

Definition 1 (Boolean algebra). (Definition 15.5 of [22]) Let
B be a nonempty set that contains two special elements 0 (the
zero element) and 1 (the unity, or one, element) and on which
we define two closed binary operations +, ⋅, and an unary
operation .Then (B, +, ⋅, , 0, 1) is called a Boolean algebra
if the following conditions are satisfied for all 𝑥, 𝑦, 𝑧 ∈ B:

Commutative Laws:
𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥

Distributive Laws:
𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧)

𝑥 + (𝑦 ⋅ 𝑧) = (𝑥 + 𝑦) ⋅ (𝑥 + 𝑧)

Identity Laws:
𝑥 + 0 = 𝑥

𝑥 ⋅ 1 = 𝑥

Inverse Laws:
𝑥 + 𝑥 = 1

𝑥 ⋅ 𝑥 = 0

0 /= 1.

(2)

Many Boolean algebras could be defined. The most
known are the two-element Boolean algebra: ({0, 1}, ∨, ∧, ¬,
0, 1) and the algebra of classes (set of subsets of a set 𝑆):
(2
𝑆
, ∪, ∩, , 0, 𝑆).

Definition 2 (Boolean formula). (From Section 3.6 of [15])
A Boolean formula (or a Boolean expression) on B is any
formula which represents a combination of members of B
by the operations +, ⋅, or .

By construction, any Boolean formula on B represents
one and only one member of B. Two Boolean formulae are
equivalent if and only if they represent the same member of
B. Later on, a Boolean formula F built with the members
(𝛼
1
, . . . , 𝛼

𝑛
) ofB is denotedF(𝛼

1
, . . . , 𝛼

𝑛
).

Theorem 3 (Boole’s expansion of a Boolean formula). Let
(𝛼
1
, . . . , 𝛼

𝑛
) be 𝑛members ofB \ {0, 1}. Any Boolean Formula

F(𝛼
1
, . . . , 𝛼

𝑛
) can be expanded as

F (𝛼
1
, . . . , 𝛼

𝑛
) = F

0
(𝛼
2
, . . . , 𝛼

𝑛
) ⋅ 𝛼
1
+F
1
(𝛼
2
, . . . , 𝛼

𝑛
) ⋅ 𝛼
1
,

(3)

where F
0
(𝛼
2
, . . . , 𝛼

𝑛
) and F

1
(𝛼
2
, . . . , 𝛼

𝑛
) are Boolean for-

mulae of only 𝛼
2
, . . . , 𝛼

𝑛
. These two formulae can be directly

obtained fromF(𝛼
1
, . . . , 𝛼

𝑛
) as follows:

F
0
(𝛼
2
, . . . , 𝛼

𝑛
) = F(𝛼

1
, . . . , 𝛼

𝑛
)
󵄨󵄨󵄨󵄨𝛼1←0

= F (0, 𝛼
2
, . . . , 𝛼

𝑛
)

F
1
(𝛼
2
, . . . , 𝛼

𝑛
) = F (𝛼

1
, . . . , 𝛼

𝑛
)
󵄨󵄨󵄨󵄨𝛼1←1

= F (1, 𝛼
2
, . . . , 𝛼

𝑛
) .

(4)

The relation equality is not the only defined relation
on a Boolean algebra. It is also possible to define a partial
order relation between members ofB. This relation is called
Inclusion-Relation in [15].

Definition 4 (Inclusion-Relation). (Definition 15.6 of [22].) If
𝑥, 𝑦 ∈ B, define 𝑥 ≤ 𝑦 if and only if 𝑥 ⋅ 𝑦 = 𝑥.

As Relation Inclusion is reflexive (𝑥 ≤ 𝑥), antisymmetric
(if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦), and transitive (if 𝑥 ≤ 𝑦

and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧), this relation defines a partial order
between members ofB (Theorem 15.4 of [22]).

Since in any Boolean algebra, 𝑥 ⋅ 𝑦 = 𝑥 ⇔ 𝑥 ⋅ 𝑦 = 0, we
also have 𝑥 ≤ 𝑦 ⇔ 𝑥 ⋅ 𝑦 = 0.

Remark 5. For the algebra of classes (2𝑆, ∪, ∩, , 0, 𝑆), the
Inclusion-Relation is the well-known relation ⊆ and we have:
𝑥 ⊆ 𝑦 ⇔ 𝑥 ∩ 𝑦 = 𝑥.

Theorem 6 (reduction of a set of relations). (Theorem 5.3.1 of
[15].) Any set of simultaneously asserted relations built with the
members (𝛼

1
, . . . , 𝛼

𝑛
) ofB can be reduced to a single equivalent

relation such as:F(𝛼
1
, . . . , 𝛼

𝑛
) = 0.

To obtain this equivalent relation, it is necessary

(i) to rewrite each equality according to

F
1
(𝛼
1
, . . . , 𝛼

𝑛
) = F

2
(𝛼
1
, . . . , 𝛼

𝑛
)

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
)

+F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0,

(5)

(ii) to rewrite each inclusion according to

F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ≤ F

2
(𝛼
1
, . . . , 𝛼

𝑛
)

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0,

(6)

(iii) to group together rewritten equalities as follows:

{
F
1
(𝛼
1
, . . . , 𝛼

𝑛
) = 0

F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) +F

2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0.

(7)

4.2. The Boolean Algebra of 𝑛-Variable Switching Functions.
To avoid confusion between Boolean variables and Boolean
functions of Boolean variables, each Boolean variable 𝑏

𝑖
is

denoted by
𝑏
𝑏
𝑖
. The set of the two Boolean values

𝑏0 and 𝑏1
is denoted by 𝐵 = {

𝑏0, 𝑏1}.

Definition 7 (𝑁-variable switching functions). (FromSection
3.11 of [15].) An 𝑛-variable switching function is a mapping of
the form

𝑓:𝐵𝑛 󳨀→ 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣󳨀→ 𝑓 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

where 𝐵 = {
𝑏
0,
𝑏
1} .

(8)
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The domain of a 𝑛-variable switching function has 2𝑛
elements and the codomain has 2 elements; hence, there are
2
2
𝑛

𝑛-variable switching functions. Let 𝐹
𝑛
(𝐵) be the set of the

2
2
𝑛

𝑛-variable switching functions.
𝐹
𝑛
(𝐵) contains (𝑛 + 2) specific 𝑛-variable switching

functions: the 2 constant functions (0, 1) and the 𝑛 projection-
functions (𝑓𝑖Proj). These functions are defined as follows:

0:𝐵𝑛 󳨀→ 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣󳨀→

𝑏0

1:𝐵𝑛 󳨀→ 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣󳨀→

𝑏1

𝑓
𝑖

Proj:𝐵
𝑛
󳨀→ 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣󳨀→

𝑏
𝑏
𝑖
,

(9)

𝐹
𝑛
(𝐵) can be equipped with three closed operations (two

binary and one unary operations)

Op. + : 𝐹
𝑛(𝐵)
2
󳨀→ 𝐹
𝑛 (𝐵)

(𝑓, 𝑔) ∣󳨀→ 𝑓 + 𝑔

Op. ⋅ : 𝐹
𝑛(𝐵)
2
󳨀→ 𝐹
𝑛 (𝐵)

(𝑓, 𝑔) ∣󳨀→ 𝑓 ⋅ 𝑔

Op. : 𝐹
𝑛 (𝐵) 󳨀→ 𝐹

𝑛 (𝐵)

𝑓 ∣󳨀→ 𝑓,

(10)

where ∀(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵
𝑛,

(𝑓 + 𝑔) (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

= 𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∨ 𝑔 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ,

(𝑓 ⋅ 𝑔) (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

= 𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∧ 𝑔 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ,

𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) = ¬𝑓 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) .

(11)

(𝐹
𝑛
(𝐵), +, ⋅, , 0, 1) is a Boolean algebra [22]. Then, it is

possible to write a Boolean formula of 𝑛-variable switch-
ing functions and relations between Boolean formula of
𝑛-variable switching functions. In the case of 𝑛-variable
switching functions, relations Equality and Inclusion can also
be presented as follows:

(i) 𝑓 and 𝑔 are equal (𝑓 = 𝑔) if and only if the columns
of the truth-tables of 𝑓, 𝑔 are exactly the same, that
is, ∀(

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵

𝑛, 𝑓(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) = 𝑔(

𝑏
𝑏
1
,

. . . ,
𝑏
𝑏
𝑛
).

(ii) 𝑓 is included into 𝑔 (𝑓 ≤ 𝑔) if and only if the value
of 𝑔 is always

𝑏
1 when the value of 𝑓 is

𝑏
1, that

is, ∀(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵

𝑛, [𝑓(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) =

𝑏0], or
[𝑔(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) =
𝑏1].

Remark 8. Each 𝑛-variable switching function can be ex-
pressed as a composition of (𝑓1Proj, . . . , 𝑓

𝑛

Proj, 0, 1) by opera-
tions +, ⋅ and .

Therefore, the Boolean algebra (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1) is a

mathematical framework which allows composing and to
comparing switching functions. Thanks to the results pre-
sented in the next subsection, this framework allows also
solving Boolean equations systems of switching functions.

4.3. Solutions of Boolean Equations over Boolean Algebra
𝐹
𝑛
(𝐵). In [15], Brown explains that many problems in the

application of Boolean algebra may be reduced to solving an
equation of the form

𝑓 (𝑋) = 0, (12)

over a Boolean algebraB. Formal procedures for producing
solution of this equationwere developed by Boole himself as a
way to treat problems of logical inference. Boolean equations
have been studied extensively since Boole’s initial work (a
bibliography of nearly 400 sources is presented in [14]).These
works concern essentially the two-element Boolean algebra
({
𝑏0, 𝑏1}, ∨, ∧, ¬, 𝑏0, 𝑏1).
In our case, we focus on the Boolean algebra of 𝑛-

variable switching functions 𝐹
𝑛
(𝐵). We consider a Boolean

system composed of 𝑚 relations among members of 𝐹
𝑛
(𝐵)

for which 𝑘 of them are considered as unknowns. Theorems
presented in this section permit to solve any system of
Boolean equations as it exists in a canonic form of a Boolean
system of 𝑘 unknowns and we are able to calculate solutions
for this form.

4.3.1. Canonic Form of a Boolean System of 𝑘 Unknowns over
Boolean Algebra 𝐹

𝑛
(𝐵). Consider the Boolean algebra of 𝑛-

variable switching functions (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1).

(i) Let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵).

(ii) Let (𝑥
1
, . . . , 𝑥

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

unknowns.

For notational convenience, we note “𝑋
𝑘
” as the vector

(𝑥
1
, . . . , 𝑥

𝑘
) of the 𝑘 unknowns and “Proj” as the vector

(𝑓
1

Proj, . . . , 𝑓
𝑛

Proj) of the 𝑛 projection-functions of 𝐹𝑛(𝐵).

Theorem 9 (reduction of a set of relations between 𝑛-variable
switching functions). Any set of simultaneously asserted rela-
tions of switching functions can be reduced to a single equiva-
lent relation such as

F (𝑋
𝑘
, Proj) = 0. (13)

This theorem comes fromTheorem 6.
In order to be able to write a canonic form for a Boolean

system of 𝑘 unknowns over Boolean algebra 𝐹
𝑛
(𝐵), we

introduce the following notation: for 𝑥 ∈ 𝐹
𝑛
(𝐵) and 𝑎 ∈ {0, 1},

𝑥
𝑎 is defined by

𝑥
0
= 𝑥, 𝑥

1
= 𝑥. (14)
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This notation is extended to vectors as follows: for 𝑋
𝑘
=

(𝑥
1
, . . . , 𝑥

𝑘
) ∈ 𝐹

𝑛
(𝐵)
𝑘 and 𝐴

𝑘
= (𝑎
1
, . . . , 𝑎

𝑘
) ∈ {0, 1}

𝑘, 𝑋𝐴𝑘
𝑘

is defined by

𝑋
𝐴𝑘

𝑘
=

𝑖=𝑘

∏

𝑖=1

𝑥
𝑎𝑖

𝑖
= 𝑥
𝑎1

𝑖
⋅ ⋅ ⋅ ⋅ ⋅ 𝑥

𝑎𝑘

𝑘
. (15)

Theorem 10 (canonic form of a Boolean equation). Any
Boolean equation 𝐸𝑞(𝑋

𝑘
, 𝑃𝑟𝑜𝑗) = 0 can be expressed within

the canonic form

∑

𝐴𝑘∈{0,1}
𝑘

Eq (𝐴
𝑘
, Proj) ⋅ 𝑋𝐴𝑘

𝑘
= 0, (16)

where 𝐸𝑞(𝐴
𝑘
, 𝑃𝑟𝑜𝑗) (with 𝐴

𝑘
∈ {0, 1}

𝑘) are the
2
𝑘
𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡𝑠 of 𝐸𝑞(𝑋

𝑘
, 𝑃𝑟𝑜𝑗) = 0 according to 𝑋

𝑘

(the term of “discriminant” comes from [15]).

This canonic form is obtained by expanding Eq(𝑋
𝑘
,Proj)

according to the 𝑘 unknowns (𝑥
1
, . . . , 𝑥

𝑘
). For example, we

have
Eq (𝑥,Proj) = Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥,

Eq (𝑥
1
, 𝑥
2
,Proj) = Eq (0, 0,Proj) ⋅ 𝑥

1
⋅ 𝑥
2

+ Eq (0, 1,Proj) ⋅ 𝑥
1
⋅ 𝑥
2

+ Eq (1, 0,Proj) ⋅ 𝑥
1
⋅ 𝑥
2

+ Eq (1, 1,Proj) ⋅ 𝑥
1
⋅ 𝑥
2
.

(17)

4.3.2. Solution of a Single-Unknown Equation over 𝐹
𝑛
(𝐵).

The following theorem has initially been demonstrated for
the two-element Boolean algebra [14]. A generalization for
all Boolean algebras can be found in [15], but no detailed
demonstration is given. A new formalization of this theorem
and its full demonstration are given below.

Theorem 11 (solution of a single-unknown equation). The
Boolean equation over 𝐹

𝑛
(𝐵)

𝐸𝑞 (𝑥, 𝑃𝑟𝑜𝑗) = 0, (18)

for which the canonic form is

𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) ⋅ 𝑥 + 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) ⋅ 𝑥 = 0, (19)

is consistent (i.e., has at least one solution) if and only if the
following condition is satisfied:

𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) = 0. (20)

In this case, a general form of the solutions is

𝑥 = 𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝 ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗), (21)

where 𝑝 is an arbitrary parameter, that is, a freely-chosen
member of 𝐹

𝑛
(𝐵).

This solution can also be expressed as

𝑥 = 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) ⋅ (𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝)

= 𝑝 ⋅ 𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝 ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗).

(22)

Proof. This theorem can be proved in four steps as follows:

(a) Equation (18) is consistent if and only if (20) is
satisfied;

(b) Equation (21) is a solution of (18) if (20) is satisfied;
(c) each solution of (18) can be expressed as (21);
(d) if (20) is satisfied, the three parametric forms pro-

posed are equivalent.

Step (a) can be proved as follows: Equation (20) is a
sufficient condition for (18) to admit solutions since 𝑥 =

Eq(0,Proj) is an obvious solution of (18). Equation (20) is
also a necessary condition as if (18) admits a solution, then
(18) can be also expressed thanks to the consensus theorem
as Eq(0,Proj) ⋅𝑥+Eq(1,Proj) ⋅𝑥+Eq(0,Proj) ⋅Eq(1,Proj) = 0
and we have necessarily Eq(0,Proj) ⋅ Eq(1,Proj) = 0.

To prove Step (b), it is sufficient to substitute the expres-
sion for 𝑥 from (21) into (18) and to use (20) as follows:

Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥

= Eq (0,Proj) ⋅ (Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj))

+ Eq (1,Proj) ⋅ (Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj))

= Eq (0,Proj) ⋅ Eq (0,Proj) ⋅ (𝑝 ⋅ Eq (1,Proj))

+ Eq (0,Proj) ⋅ Eq (1,Proj)

+ 𝑝 ⋅ Eq (1,Proj) ⋅ Eq (1,Proj)

= 0 + 0 + 0 = 0.

(23)

To prove Step (c), it is sufficient to find one element 𝑝 of
𝐹
𝑛
(𝐵) for each solution for 𝑥 of (18). Let us consider 𝑝 defined

by “𝑝 = Eq(0,Proj) ⋅ Eq(1,Proj) ⋅ 𝑥” where 𝑥 is a solution to
(18). Then we have

{

{

{

Eq (0,Proj) ⋅ Eq (1,Proj) = 0
Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥 = 0
𝑝 = Eq(0,Proj) ⋅ Eq(1,Proj) ⋅ 𝑥

󳨐⇒ 𝑥 = Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj)

(24)

as

𝑥 = 1 ⋅ 𝑥 = (Eq (0,Proj) + Eq (1,Proj)

+Eq (0,Proj) ⋅ Eq (1,Proj)) ⋅ 𝑥

= Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥

+ Eq (0,Proj) ⋅ Eq (1,Proj) ⋅ 𝑥

= Eq (0,Proj) ⋅ 𝑥 + 0 + Eq (1,Proj)

⋅ (Eq (0,Proj) ⋅ Eq (1,Proj) ⋅ 𝑥)

as Eq (1,Proj) ⋅ 𝑥 = 0
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= Eq (0,Proj) ⋅ 𝑥 + Eq (0,Proj) ⋅ 𝑥

+ Eq (1,Proj) ⋅ 𝑝 as Eq (0,Proj) ⋅ 𝑥 = 0

= Eq (0,Proj) ⋅ (𝑥 + 𝑥) + 𝑝 ⋅ Eq (1,Proj)

= Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj).
(25)

To prove Step (d), it is sufficient to rewrite (21) in the two
other forms by using (20) as follows:

𝑥 = 1 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= (Eq (1,Proj) + Eq (1,Proj)) ⋅ Eq (0,Proj)

+ 𝑝 ⋅ Eq (1,Proj)

= Eq (0,Proj) ⋅ Eq (1,Proj) + (Eq (0,Proj) + 𝑝)

⋅ Eq(1,Proj)

= 0 + Eq(1,Proj) ⋅ (Eq (0,Proj) + 𝑝)

= Eq (1,Proj) ⋅ (Eq (0,Proj) + 𝑝) ,

𝑥 = 1 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= (𝑝 + 𝑝) ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ (Eq (0,Proj) + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj)

+ 𝑝 ⋅ (Eq (0,Proj) ⋅ Eq (1,Proj) + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ (0 + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj).
(26)

4.3.3. Solution of 𝑘-Unknown Equations over 𝐹
𝑛
(𝐵). The

global result presented in the following theorem can be found
in [14] or [15]. However, in these works, the solution is not
expressed with a parametric form, but with intervals only.
The formulation presented in this paper is more adapted
to symbolic computation and is mandatory for practice
optimization.

A 𝑘-unknown equation can be solved by solving suc-
cessively 𝑘 single-unknown equations. If we consider the 𝑘-
unknown equation as a single-unknown equation of 𝑥

𝑘
, its

consistence condition corresponds to a (𝑘 − 1)-unknown
equation.The process can be iterated until 𝑥

1
. After substitut-

ing 𝑆(𝑥
1
) for 𝑥

1
in the last equation, it is possible to find the

solution for 𝑥
2
. Then, it is sufficient to apply this procedure

again (𝑘 − 2) times to obtain successively the solutions 𝑆(𝑥
3
)

to 𝑆(𝑥
𝑘
).

Theorem 12 (solution of a 𝑘-unknown equation). The
Boolean equation over 𝐹

𝑛
(𝐵)

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0 (27)

is consistent (i.e., has at least one solution) if and only if the
following condition is satisfied:

∏

𝐴𝑘∈{0,1}
𝑘

𝐸𝑞
0
(𝐴
𝑘
, 𝑃𝑟𝑜𝑗) = 0. (28)

If (28) is satisfied, (27) admits one or more 𝑘-tuple solutions
(𝑆(𝑥
1
), . . . , 𝑆(𝑥

𝑘
)) such each component 𝑆(𝑥

𝑖
) is defined by

𝑆 (𝑥
𝑖
) = ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

𝐸𝑞
𝑖−1

(0, 𝐴
𝑘−𝑖
, 𝑃𝑟𝑜𝑗)

+ 𝑝
𝑖
⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

𝐸𝑞
𝑖−1

(1, 𝐴
𝑘−𝑖
, 𝑃𝑟𝑜𝑗),

(29)

with

(i) 𝐸𝑞
𝑖
(𝑥
𝑖+1
, . . . , 𝑥

𝑘
, 𝑃𝑟𝑜𝑗) = 𝐸𝑞

𝑖−1
(𝑥
𝑖
, 𝑥
𝑖+1
, . . . , 𝑥

𝑘
,

𝑃𝑟𝑜𝑗)|
𝑥𝑖←𝑆(𝑥𝑖)

(ii) 𝑝
𝑖
is an arbitrary parameter, that is, a freely-chosen

member of 𝐹
𝑛
(𝐵).

The full demonstration of this theorem cannot be given
in this paper because of lack of space (a full demonstration by
mathematical induction can be found in [8]). A description of
the different steps of the proof and the detail of the principal
steps are given below.

Proof (elements of Proof). Equation (27) can be solved by
applying Theorems 3 and 11 𝑘 times according to the
unknowns 𝑥

𝑘
to 𝑥
1
as follows.

According toTheorem 3, (27) is equivalent to

Eq
0
(𝑋
𝑘−1

, 0,Proj) ⋅ 𝑥
𝑘
+ Eq
0
(𝑋
𝑘−1

, 1,Proj) ⋅ 𝑥
𝑘
= 0. (30)

According to Theorem 11, (30) admits solutions in 𝑥
𝑘
if and

only if

Eq
0
(𝑋
𝑘−1

, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−1

, 1,Proj) = 0. (31)

Equation (31) is an equationwith (𝑘−1)unknowns. Each term
of (31) can be expanded according to 𝑥

𝑘−1
and (31) can be

written in the form

(Eq
0
(𝑋
𝑘−2

, 0, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−2

, 0, 1,Proj)) ⋅ 𝑥
𝑘−1

+ (Eq
0
(𝑋
𝑘−2

, 1, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−2

, 1, 1,Proj)) ⋅ 𝑥
𝑘−1

= 0.

(32)

According toTheorem 11, (32) admits solutions in 𝑥
𝑘−1

if and
only if

∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−2

, 𝐴
2
,Proj) = 0. (33)
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Equation (33) is an equation with (𝑘 − 2) unknowns. Each
term of (33) can be expanded according to 𝑥

𝑘−2
and (33) can

be written in the form

( ∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−3

, 0, 𝐴
2
,Proj)) ⋅ 𝑥

𝑘−2

+ ( ∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−3

, 1, 𝐴
2
,Proj)) ⋅ 𝑥

𝑘−2
= 0.

(34)

In the end, we obtain an equation of only one unknown
𝑥
1
defined by

( ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(0, 𝐴
𝑘−1

,Proj)) ⋅ 𝑥
1

+ ( ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(1, 𝐴
𝑘−1

,Proj)) ⋅ 𝑥
1
= 0.

(35)

According to Theorem 11, (35) admits solutions if and
only if

∏

𝐴𝑘∈{0,1}
𝑘

Eq
0
(𝐴
𝑘
,Proj) = 0. (36)

When (36) is satisfied, the 𝑘 equations for 𝑥
1
to 𝑥
𝑘

admit solutions. Equation (27) is then coherent and admits
solutions.

When (36) is satisfied, solutions of (35) for 𝑥
1
are

𝑆 (𝑥
1
) = ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(0, 𝐴
𝑘−1

,Proj)

+ 𝑝
1
⋅ ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(1, 𝐴
𝑘−1

,Proj).
(37)

After substituting 𝑆(𝑥
1
) for 𝑥

1
into (27), we obtain a new

equation Eq
1
(𝑥
2
, . . . , 𝑥

𝑘
,Proj) = 0 involving the (𝑘 − 1)

unknowns (𝑥
2
, . . . , 𝑥

𝑘
), where

Eq
1
(𝑥
2
, . . . , 𝑥

𝑘
,Proj) = Eq

0
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
,Proj) |

𝑥1←𝑆(𝑥1)
.

(38)

By applying the previous procedure, we can obtain 𝑆(𝑥
2
)

and Eq
2
(𝑥
3
, . . . , 𝑥

𝑘
,Proj).Then, it suffices to apply this proce-

dure again (𝑘−2) times to obtain successively solutions 𝑆(𝑥
3
)

to 𝑆(𝑥
𝑘
).

It is important to note that the order in which unknowns
are treated affects only the parametric form of the 𝑘-tuple
solution.This is due to the fact that the same 𝑘-tuple solution
can be represented with several distinct parametric forms.

4.3.4. Partial Conclusions. Thanks to theorems presented
above, it is possible to obtain a parametric representation
of all the solutions of any set of simultaneously asserted
relations with 𝑘 unknowns, if a solution exists. In practice,
due to the complexity of systems to be designed, proposed
set of simultaneously asserted relations is generally incon-
sistent [23]. To simplify the work of the designer, we have
proved complementary theorems to improve the robustness
of our method to the lack of precision of the specifications
(Section 4.4).

When several solutions exist, the comparison of solutions
according to a given criterion can be envisaged since the
Boolean algebra 𝐹

𝑛
(𝐵) is equipped with a partial order. To

simplify the work of the designer too, we have developed a
method to calculate the best solutions according to one or
several criteria (Section 4.5).

4.4.Theorems toCopewith Inconsistencies of Specifications. In
practice, it is very difficult for a designer to specify the whole
requirements of a complex system without inconsistencies. It
is the reasonwhy requirements given by the designer are often
declared as inconsistent according to Theorem 12. Since the
inconsistency condition is a Boolean formula, it is possible to
use it for the detection of the origin of inconsistencies. Two
cases have to be considered as follows:

(i) Several requirements cannot be simultaneously
respected. In this case, a hierarchy between require-
ments can be proposed in order to find a solution.
The requirements which have the lower priority have
to be corrected for becoming consistent with the
requirements which have the higher priority. This
strategy is based onTheorem 14.

(ii) Thedetected inconsistency refers to specific combina-
tions of projection-functions for which the designer
knows that they are impossible blocking the synthesis
process, it is necessary to introduce new assumptions
and to use Theorem 13.

Theorem 13 (solution of a Boolean equation according to an
assumption among the projection-functions). The following
problem

Equationtosolve:

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

Assumptions:

A (𝑃𝑟𝑜𝑗) = 0

(39)

admits the same solutions as the following equation:

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) ≤ A (𝑃𝑟𝑜𝑗) . (40)
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Proof. According to A(Proj) = 0, Eq
0
(𝑋
𝑘
,Proj) = 0 can be

rewritten as

{
Eq
0
(𝑋
𝑘
,Proj) = 0

A (Proj) = 0

⇐⇒ A (Proj) + Eq
0
(𝑋
𝑘
,Proj) = 0

⇐⇒ A (Proj) +A (Proj) ⋅ Eq
0
(𝑋
𝑘
,Proj) = 0

⇐⇒ {
A(Proj) ⋅ Eq

0
(𝑋
𝑘
,Proj) = 0

A (Proj) = 0

⇐⇒ {
Eq
0
(𝑋
𝑘
,Proj) ≤ A (Proj)

A (Proj) = 0.

(41)

EquationA(Proj) ⋅ Eq
0
(𝑋
𝑘
,Proj) = 0 is consistent if and

only if the following condition is true (Theorem 12):

A (Proj) ⋅ ∏

𝐴𝑘∈{0,1}
𝑘

Eq
0
(𝐴
𝑘
,Proj) = 0. (42)

By construction, this new condition is the subset of the
initial condition (∏

𝐴𝑘∈{0,1}
𝑘Eq
0
(𝐴
𝑘
,Proj) = 0) for which the

proposed assumption is satisfied. All the other terms have
been removed.

If (42) is satisfied, (40) admits one or more 𝑘-tuple
solutions where each component 𝑆(𝑥

𝑖
) is defined by

𝑆 (𝑥
𝑖
) = A(Proj)

⋅ ( ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(0, 𝐴
𝑘−𝑖
,Proj)

+ 𝑝
𝑖
⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(1, 𝐴
𝑘−𝑖
,Proj))

+A (Proj) ⋅ 𝑝
𝑖
.

(43)

AsA(Proj) = 0, 𝑆(𝑥
𝑖
) can also be expressed as

𝑆 (𝑥
𝑖
) = ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(0, 𝐴
𝑘−𝑖
,Proj) + 𝑝

𝑖

⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(1, 𝐴
𝑘−𝑖
,Proj).

(44)

When A(Proj) = 0 is satisfied, the solutions of (40) are also
solution to Eq

0
(𝑋
𝑘
,Proj) = 0.

Theorem 14 (Solution of a Boolean equation system accord-
ing to a priority rule between requirements). The following
problem

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑜solve:

𝐻𝑅 FH (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

𝐿𝑅 FL (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

𝑂𝑅 FO (𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑟𝑢𝑙𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛requirements:

𝐻𝑅 ≫ 𝐿𝑅,

(45)

where

(i) FH(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the
requirements which have the higher priority (HR);

(ii) FL(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the
requirements which have the lower priority (LR);

(iii) FO(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the others
requirements (OR);

(iv) 𝐻𝑅 ≫ 𝐿𝑅 is the priority rule between inconsistent
requirements,

admits the same solutions as the system of equations as follows:

FH (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

FL (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) ≤ I (𝑃𝑟𝑜𝑗)

FO (𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0,

(46)

whereI(𝑃𝑟𝑜𝑗) is the inconsistency condition between require-
ments “HR” and “LR”:

I (𝑃𝑟𝑜𝑗) = ∏

𝐴𝑘∈{0,1}
𝑘

(FH (𝐴
𝑘
, 𝑃𝑟𝑜𝑗) +FL (𝐴

𝑘
, 𝑃𝑟𝑜𝑗)) .

(47)

Proof. Thanks to Theorem 12, the inconsistency condition
I(Proj) between requirements “HR” and “LR” can be found
by solving equation FH(𝑋𝑘,Proj) + FL(𝑋𝑘,Proj) = 0. We
have

I (Proj) = ∏

𝐴𝑘∈{0,1}
𝑘

(FH (𝐴
𝑘
,Proj) +FL (𝐴

𝑘
,Proj)) .

(48)

To remove the inconsistency between requirements “HR” and
“LR” according to the priority rule “HR≫ LR”, it is necessary
to restrict the range of requirement “LR” to the part for which
there is no inconsistency, that is, I(Proj) = 0. That is the
case, whenFL(𝑋𝑘,Proj) = 0 is replaced byFL(𝑋𝑘,Proj) ≤
I (Proj).

Thanks to Theorem 12, (49) admits always one or more
𝑘-tuple solutions and it is impossible to find a less restrictive
condition over requirement “LR”.

FH (𝑋
𝑘
,Proj) = 0

FL (𝑋
𝑘
,Proj) ≤ I (Proj) .

(49)
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4.5. Optimal Solutions of Boolean Equations over 𝐹
𝑛
(𝐵). The

goal of this step is to be able to obtain automatically the
parametric form of the 𝑘-tuples solutions of 𝐹

𝑛
(𝐵) which

satisfy not only a given equation (Eq(𝑋
𝑘
,Proj) = 0) of

Boolean functions but also which maximize (or minimize) a
Boolean formula of these Boolean functions (F

𝐶
(𝑋
𝑘
,Proj))

corresponding to the desired optimization criterion.
Generally speaking, the search of the best solution tuples

according to a given criterion when the space of solutions is
composed of discrete values is a complex mathematical issue.
It is sometimes necessary to make a side-by-side comparison
of each solution in order to identify the best one. In our case,
this exhaustive method which cannot be used as 𝐹

𝑛
(𝐵) is only

provided by a partial order; two particular solutions cannot
always be ordered between themselves.

Nevertheless, it is possible to obtain the researched
parametric form of the 𝑘-tuples thanks to the following
results.

(i) When an equation between Boolean functions has
one or more solution tuples in 𝐹

𝑛
(𝐵), every Boolean

formula onto these Boolean functions can be rewrit-
ten thanks to only projection-functions of 𝐹

𝑛
(𝐵) and

free parameters of 𝐹
𝑛
(𝐵) which are describing these

solution tuples.
(ii) Every Boolean formula expressed as a composition

of projection-functions of 𝐹
𝑛
(𝐵) and free parameters

of 𝐹
𝑛
(𝐵) has a unique maximum and a unique

minimum.These extrema can be expressed thanks to
only projection-functions of 𝐹

𝑛
(𝐵).

Hence it is then possible to rewrite the initial problem

Problem to solve:

Eq (𝑋
𝑘
,Proj) = 0

Optimization Criterion:

Maximization of FC (𝑋𝑘,Proj) ,

(50)

into a 2-equation system to solve

Eq (𝑋
𝑘
,Proj) = 0

F
𝐶
(𝑋
𝑘
,Proj) = Max

{𝑋𝑘|Eq(𝑋𝑘 ,Proj)=0}
(F
𝐶
(𝑋
𝑘
,Proj)) . (51)

4.5.1. Extrema of a Boolean Formula according to Freely
Chosen Members of 𝐹

𝑛
(𝐵). Considering the Boolean algebra

of 𝑛-variable switching functions (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1),

(i) let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵);

(ii) let (𝑝
1
, . . . , 𝑝

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

freely chosen members. Let “𝑃
𝑘
” be the corresponding

vector.

Any formula F(𝑃
𝑘
,Proj) for which 𝑃

𝑘
are freely chosen

members of 𝐹
𝑛
(𝐵) defines a subset of 𝐹

𝑛
(𝐵). According to

the relation ≤, elements of this subset can be compared.

In this specific case, the subset defined byF(𝑃
𝑘
,Proj) admits

a minimal element and a maximal element.

Theorem 15 (minimum and maximum of a Boolean for-
mula). Any formulaF(𝑃

𝑘
, Proj) for which 𝑃

𝑘
are freely chosen

members of 𝐹
𝑛
(𝐵) admits a minimum and amaximum defined

as follows:

Min
𝑃𝑘∈𝐹𝑛(𝐵)

𝑘
(F (𝑃

𝑘
, Proj)) = ∏

𝐴𝑘∈{0,1}
𝑘

F (𝐴
𝑘
, Proj)

Max
𝑃𝑘∈𝐹𝑛(𝐵)

𝑘
(F (𝑃

𝑘
, Proj)) = ∑

𝐴𝑘∈{0,1}
𝑘

F (𝐴
𝑘
, Proj) ,

(52)

Proof. To prove this theorem, it is necessary to establish that

(1) ∏
𝐴𝑘∈{0,1}

𝑘F(𝐴
𝑘
,Proj) is a lower bound of F(𝑃

𝑘
,

Proj);
(2) It exists at least one specific combination of 𝑃

𝑘
for

whichF(𝑃
𝑘
,Proj) = ∏

𝐴𝑘∈{0,1}
𝑘F(𝐴

𝑘
,Proj);

(3) ∑
𝐴𝑘∈{0,1}

𝑘F(𝐴
𝑘
,Proj) is an upper bound of F(𝑃

𝑘
,

Proj);
(4) It exists at least one specific combination of 𝑃

𝑘
for

whichF(𝑃
𝑘
,Proj) = ∑

𝐴𝑘∈{0,1}
𝑘F(𝐴

𝑘
,Proj).

Details of this proof can be found in [24].

4.5.2. Optimization Problem. Considering the Boolean alge-
bra of 𝑛-variable switching functions (𝐹

𝑛
(𝐵), +, ⋅, , 0, 1),

(i) let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵). Let “Proj” be the corresponding vector;

(ii) Let (𝑥
1
, . . . , 𝑥

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

unknowns. Let “𝑋
𝑘
” be the corresponding vector;

(iii) Let (𝑝
1
, . . . , 𝑝

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

freely chosen members. Let “𝑃
𝑘
” be the corresponding

vector.;
(iv) Let Eq(𝑋

𝑘
,Proj) = 0 be the Boolean equation to solve;

(v) LetFC(𝑋𝑘,Proj) be the Boolean formula of the given
criterion to optimize (maximization or minimiza-
tion).

Themethod we propose, to obtain the parametric form of
the 𝑘-tuple of switching functions solution of Eq(𝑋

𝑘
,Proj) =

0 according to a given optimization criterionFC(𝑋𝑘,Proj) is
composed of five steps as follows.

(i) The first step is to establish the parametric form of the
𝑘-tuple solution to Eq(𝑋

𝑘
,Proj) = 0 only, thanks to

Theorem 12.
(ii) The second step is to establish the parametric form

of the given optimization criterion FC(𝑋𝑘,Proj) by
substituting 𝑆(𝑥

𝑖
) for 𝑥

𝑖
. Let FSC(𝑃𝑘,Proj) be the

result of this substitution.
(iii) The third step is to calculate the extremum

of FSC(𝑃𝑘,Proj) according to Theorem 15. Let
FEC(Proj) be the Boolean formula of this extremum.
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Pump1

Pump2

To the distributing system

Tank

Figure 4: Structure of the water supply system.

(iv) The fourth step is to replace the given criterion by the
equivalent relation

F
𝐶
(𝑋
𝑘
,Proj) = FEC (Proj) . (53)

(v) The fifth step is to establish the parametric form of the
𝑘-tuple solution of the equivalent problem

Eq (𝑋
𝑘
,Proj) = 0

FCrit (𝑋𝑘,Proj) = FExtCrit (Proj) .
(54)

4.5.3. Partial Conclusions. Thanks to theorems presented
in this section, it is now possible to obtain a parametric
representation of the optimal solutions according to a given
criterion, of any set of simultaneously asserted relations with
𝑘 unknowns if a solution exists.

The proposed method also permits to associate simulta-
neously or sequentially several criteria.

(i) When several criteria are treated simultaneously, the
optimization problem can admit no solution. That is
the case when the given criteria are antagonist.

(ii) When several criteria are treated sequentially, the
obtained solutions satisfy the criteria with a given
priority order. An example of optimization with
several criteria treated sequentially is presented in the
next section.

5. Algebraic Synthesis of Logical
Controllers with Optimization Criteria
and Incoherent Requirements

5.1. Control System Specifications. The studied system is the
controller of a water supply system composed of two pumps
which are working in redundancy (Figure 4). The water
distribution is made when it is necessary according to the
possible failures of elements (the pumps and the distributing
system).

The expected behavior of the control system regarding
the application requirements can be expressed by the set of
assertions given hereafter:

(i) The two pumps never operate simultaneously.
(ii) A pump cannot operate if it is out of order.

(iii) When a global failure is detected, no pump can
operate.

(iv) Pumps can operate if and only if a water distribution
request is present.

(v) Priority is given according to “pr” (pump1 has priority
when “pr” is true).

(vi) In order to reduce the wear of the pumps, it is
necessary to restrict the number of starting of the
pumps.

5.1.1. Inputs and Outputs of the Controller. The Boolean
inputs and outputs of this controller are given in Figure 5(a).
Each pump is controlled thanks to a Boolean output (“p1”
and “p2”). The controller is informed of water distribution
requests thanks to the input “req.” Inputs “f1” and “f2” inform
the controller of a failure of the corresponding pump and “gf ”
indicates a global failure of the installation. The values o or 1
of input “Pr” decide which pump has priority.

5.1.2. Control Laws to Synthetize. Our approach does not
allow identifying automatically which state variables must
be used. They are given by the designer according to its
interpretation of the specification.

For the water distribution system, we propose to use 2
state variables, one for each output. According to this choice,
2 7-variable switching functions (𝑃1 and 𝑃2) have to be
synthesized (Figure 5(b)). They represent the unknowns of
our problem. For this case study, the 7 projection-functions
of 𝐹
7
(𝐵) are therefore as follows.

(i) The 5 switching functions (Rq, F1, F2, GF, and Pr)
which characterize the behavior of the inputs of the
controller and are defined as follows:

Rq:𝐵7 󳨀→ 𝐵

(rq [𝑘] , . . . , p2 [𝑘 − 1]) ∣󳨀→ rq [𝑘] .
(55)

(ii) The 2 switching functions (
𝑝
𝑃1 and

𝑝
𝑃2) which char-

acterize the previous behavior of the state variables of
the controller and are defined as follows:

𝑝
𝑃1: 𝐵7 󳨀→ 𝐵

(rq [𝑘] , . . . , p2 [𝑘 − 1]) ∣󳨀→ p1 [𝑘 − 1] .
(56)

5.2. Algebraic Formalization of Requirements. The complete
formalization of the behavior of the water distribution system
is given in Figure 5(c). In order to illustrate the power
of expression of relations Equality and Inclusion, several
examples (generic assertions and equivalent formal relations
illustrated in the case study) are given hereafter. It is impor-
tant to note that the relation Inclusion permits to express
distinctly necessary conditions and sufficient conditions.This
relation is the cornerstone of our approach.

(i) Pump1 and Pump2 never operate simultaneously:𝑃1⋅
𝑃2 = 0;

(ii) If Pump1 operates, Pump2 cannot operate: 𝑃1 ≤ 𝑃2;
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(a) Inputs and Outputs of the Controller

Control of
the water

distribution
system

(Request of water) rq
(Pump1 failure) f1
(Pump2 failure) f2
(Global failure) gf

(Priority to Pump1) pr

p1 (Command of Pump1)

p2 (Command of Pump2)

(b) General form of the Expected Control Laws

p1 [𝑘] = P1 (rq [𝑘] , f1 [𝑘] , f2 [𝑘] gf [𝑘] , pr [𝑘] , p1 [𝑘 − 1] , p2 [𝑘 − 1])

p2 [𝑘] = P2 (rq [𝑘] , f1 [𝑘] , f2 [𝑘] gf [𝑘] , pr [𝑘] , p1 [𝑘 − 1] , p2 [𝑘 − 1])

p1 [0] =
𝑏0 p2 [0] =

𝑏0

(c) Formal Specification

Requirements:

R1 P1 ⋅ P2 = 0 (∗The two pumps never operate simultaneously.∗)
R2 F1 ≤ P1 (∗Pump 1 cannot operate if it is out of order (F1).∗)
R3 F2 ≤ P2 (∗Pump2 cannot operate if it is out of order (F2).∗)
R4 GF ≤ (P1 ⋅ P2) (∗When a global failure is detected (GF), no pump can operate.∗)
R5 (P1 + P2) ≤ Rq (∗It is necessary to have are quest for pumps operate.∗)
R6 Rq ≤ (P1 + P2) (∗It is sufficient to have a request for pumps operate.∗)

Priority rules:

R4 ≫ R6 (∗Failure requirements has priority on a functional requirement.∗)
{R2,R3} ≫ R6 (∗Failure requirements has priority on a functional requirement.∗)

Optimization criteria:

(1) Minimization of: ((P1 ⋅
𝑝
𝑃1) + (P2 ⋅

𝑝
𝑃2)) (∗Minimization of the possibility to start a pump.∗)

(2) Maximization of: ((Pr ⋅ P1) + (Pr ⋅ P2)) (∗Maximization of the priority order between the two pumps.∗)

(d) Solution obtained by symbolic calculation

P1 = Rq ⋅ GF ⋅ F1 ⋅ (F2 + Pr ⋅ (
𝑝
𝑃1+
𝑝
𝑃2) +

𝑝
P 1 ⋅
𝑝
𝑃2)

P2 = Rq ⋅ GF ⋅ F2 ⋅ (F1 + Pr ⋅ (
𝑝
𝑃2+
𝑝
𝑃1) +

𝑝
P 2 ⋅
𝑝
𝑃1)

(e) Control laws of the water distribution system

p1 [𝑘] = rq [𝑘] ∧ ¬gf [𝑘] ∧ ¬f1 [𝑘] ∧ (f2 [𝑘] ∨ pr [𝑘] ∧ (p1 [𝑘 − 1] ∨ ¬p2 [𝑘 − 1]) ∨ p1 [𝑘 − 1] ∧ ¬p2 [𝑘 − 1])

p2 [𝑘] = rq [𝑘] ∧ ¬gf [𝑘] ∧ ¬f1 [𝑘] ∧ (f1 [𝑘] ∨ pr [𝑘] ∧ (p2 [𝑘 − 1] ∨ ¬p1 [𝑘 − 1]) ∨ p2 [𝑘 − 1] ∧ ¬p1 [𝑘 − 1])

p1 [0] =
𝑏0 p2 [0] =

𝑏0

Figure 5: Details of the case study.
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(iii) It is necessary to have a request for pumps operate:
(𝑃1 + 𝑃2) ≤ Rq;

(iv) It is sufficient to have a request for pumps operate:
Rq ≤ (𝑃1 + 𝑃2);

(v) When Pump1 is failed, it is sufficient to have a request
for Pump2 operate: F1 ⋅ Rq ≤ 𝑃2;

(vi) When Pump1 is failed, it is necessary to have a request
for Pump2 operate: F1 ⋅ 𝑃2 ≤ Rq.

It is possible to prove that some of these formal expres-
sions are equivalent (e.g., the first two). When a designer
hesitates between two forms, he has the possibility, by using
symbolic calculation, to check if the proposed relations are
equivalent or not.

As 𝑃1 and
𝑝
𝑃1 represent the behavior of pump1 at,

respectively, times [𝑘] and [𝑘−1], it is also possible to express
relations about starts and stops of this pump as follows.

(i) It is necessary to have a request to start pump1: (𝑃1 ⋅
𝑝
𝑃1) ≤ Rq.

(ii) When pump1 operates, it is sufficient to have a global
failure to stop pump1: (

𝑝
𝑃1 ⋅ GF) ≤ (𝑃1 ⋅

𝑝
𝑃1).

5.3. Synthesis Process. In traditional design methods, the
design procedure of a logic controller is not a linear process,
but an iterative one converging to an acceptable solution. At
the beginning of the design, requirements are neither com-
plete nor without errors. Most often, new requirements are
added during the search of solutions, and others are cor-
rected. This complementary information is given by the
designer after analysis of the partial solutions he found
or when inconsistencies have been detected. If we do not
make the hypothesis that the specifications are complete and
consistent, designing a controller with a synthesis technique
is also an iterative process in which the designer plays an
important role.

5.3.1. Analysis of Requirements. For this case study, we choose
to start with requirements R1 to R6. For this subset of
requirements, the result given by your software tool was the
following inconsistency condition:I = Rq ⋅GF+Rq ⋅F1 ⋅F2.

Since requirements are declared inconsistent, we have to
give complementary information to precise our specification.
By analyzing each term of this formula, it is possible to detect
the origin of the inconsistency:

(i) Rq ⋅ GF: what happens if we have simultaneously
a request and a global failure? We consider that
requirement R4 is more important than requirement
R6 (R4 ≫ R6) as no pump can operate for this
configuration.

(ii) Rq ⋅ F1 ⋅ F2: what happens if we have simultaneously
a request and a failure of each pump? We consider
that requirements R2 and R3 aremore important than
requirement R6 ({R2,R3} ≫ R6).

With these priority rules, all the requirements are now
coherent and the set of all the solutions can be computed.

5.3.2. Optimal Solutions. For choosing a control law of the
water supply system among this set of possible solutions, we
will now take into account the given optimization criteria.
The first criterion aims at minimizing the number of starting
of each pump in order to reduce its wear.The second criterion
aims atmaximizing the use of the pump indicated by the value
of parameter Pr. The method we propose allows proving that
proposed criteria cannot be treated simultaneously since they
are antagonist (to strictly the priority use of the pump fixed
by parameter Pr, it is necessary to permute pumps when Pr
changes of value, implying a supplementary start of a pump).
Details can be found in [25].

All the priorities rules and optimization criteria used for
this case study are given in Figure 5(c).The solutionwe obtain
is proposed in Figure 5(d).

5.3.3. Implementing Control Laws. The synthesized control
laws presented in Figure 5(e) have been obtained by trans-
lating the expression of the two unknowns according to
the projection-functions into relations between recurrent
Boolean equations. These control laws can be automatically
translated in the syntax of the ladder diagram language [1]
before being implemented into a PLC.The code is composed
of only 4 rungs (Figure 6).

The synthesized control laws can be given under the
form of an automatically built input/output automaton with
guarded transitions [21] (Figure 7).

6. Discussion

In our approach, the synthesis of control laws is based on
the symbolic calculation, a prototype software tool has been
developed to avoid tedious calculus and to aid the designer
during the different steps of the synthesis. This tool (that
can be obtained on request by the authors) performs all the
computations required for inconsistencies detection between
requirements and for control laws generation. In this tool,
all the Boolean formulas are stored in the form of reduced
ordered binary decision diagrams, which allows efficient
calculations. For example, the computations for synthesizing
a controller for the water supply system that we developed
above have been made in less than 10ms onto a classical
laptop.

Our approach has been tested on several studies cases
(some of them are available online: http://www.lurpa.ens-
cachan.fr/-226050.kjsp). The feedbacks of these experiences
allowed us to identify some of its limits and its possibilities;
the most important are given below.

We have first to recall that our method can only be used
for binary systems (systems whose inputs and outputs of their
controller are Boolean values).Nevertheless, in practicemany
systems, like manufacturing systems, transport systems, and
so on, are fully or partially binary.

In our opinion the main advantage of our approach
is that, contrary to traditional engineering approaches, the
synthesized control laws are not depending on designer’s skill
or of his correct interpretation of the system requirements.
On the other hand, the quality of the synthesis results highly
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Figure 6: Ladder diagram of the code to implement into the PLC.

Table 1: Futures concerning a same case study.

Formal requirements Synthesized controller PLC program (structured text)

Supervisory Control Theory
Plant behavior: 11 finite automata
(481 states and 1330 transitions)
Specifications: 11 finite automata

Finite automaton of 45
states and 70 transitions 130 lines

Algebraic synthesis 8 equations and 2 priority rules 2 6-variable switching
functions 4 lines

E0-1 = rq ∧ ¬gf ∧ ¬f1∧ (f2 ∨ pr)
E0-2 = rq ∧ ¬gf ∧ ¬f2 ∧ (f1∨ ¬pr)

E1-0 = ¬rq ∨ gf ∨ f1 ∧ f2

E2-0 = ¬rq ∨ gf ∨ f1 ∧ f2
E2-1 = rq ∧ ¬gf ∧ f2 ∧ ¬f1
E2-1 = rq ∧ ¬gf ∧ f2 ∧ ¬f1

E2-0 E0-2

E0-1

E1-0

E 2-
1

E 1-
2

0 1

2

{ } {p1}

{p2}

E1-2 = rq ∧ ¬gf ∧ f1 ∧ ¬f2{
Figure 7: State model of the obtained control law.

depends on the relevance of the requirements proposed by
the designer.This step of formalization, by the designer, of the
informal requirements of the system to be controlled is the
Achilles heel of all synthesis methods, including the Supervi-
sory Control Theory (SCT), and cannot be automated.

The objective comparison of our approach with other
synthesis methods, and more especially with SCT, is very
difficult because the models used and the theoretical basics
are very different. Nevertheless, we tested both approaches on
same study cases. One of them, the control of an automatic
parking gate, has been published in [26].The results obtained
in this case are summarized in Table 1.

Furthermore, one may note that the supervisor that
is synthesized by SCT is optimal in the sense where it

is the most permissive; that is, the one that reduces the
less the plant behavior in order to force it to respect the
specifications. As shown in this paper our method allows
to cope with inconsistencies in specifications, what is not
possible with SCT, and also allows to find optimal controllers
by choosing different optimization criteria (most permissive,
most restrictive, most safe controller, etc.).

7. Conclusion

Many research works in the field of DES aim at formalizing
steps of the systems life cycle. Since 20 years, significant
progresses have been obtained for the synthesis, verification,
performance evaluation, and diagnosis of DESs. Neverthe-
less, one of the common difficulties of these works is the
translation of informal expression of the knowledge of a
system into formal requirements. Few works have paid
attention to this important task which is very error prone. In
this paper, we proposed an iterative process that allows coping
with inconsistencies of the requirements during the synthesis
of the controller. The framework in which we proposed this
approach is an algebraic synthesis method. Since the problem
is located in the frontier between formal and informal,
intervention of the designer is necessary. Nevertheless, we
have shown that this intervention can be guided by the results
of the formal method provides.
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