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Abstract

The paper focuses on the problem of consensus in the framework of hybrid sys-

tems. We consider networks of scalar agents interconnected via directed graphs.

Precisely, the network consists of a large number of agents belonging to several

clusters. Each cluster is represented by a fixed directed strongly connected graph

and almost all the time there is no link between different clusters. In each cluster

there exists a specific agent called leader. At specific instants, the leaders inter-

act via a fixed directed strongly connected graph. In this model the agents have

continuous dynamics but the states of the leaders are reseted at the instants when

they interact between them. In the paper, we first characterize the consensus value

of this model and show it depends only on the initial condition and the interac-

tion topologies. Next, we provide sufficient condition in Linear Matrix Inequality

(LMI) form for the global uniform exponential stability of the consensus in pres-

ence of an almost periodic reset rule. The numerical implementation of this LMI

condition requires a polytopic embedding provided before illustrating the results

using an academic example.

1 Introduction

From biology, ecology and sociology to communication and power systems, diverse

areas of science and engineering deal with complex interconnected systems called net-

works [24, 8, 12, 6, 22, 21]. Throughout this paper, whatever is the domain of appli-

cation, the constitutive elements of the network will be called agents and their number

will define the network dimension. In many fields of application, the encountered net-

works have often large dimension [4, 3, 7] and they are obtained interconnecting several

networks of smaller dimension. In other words, inside large networks we can detect

groups of agents called clusters or communities. The agents belonging to a community

are better connected [17, 16, 14] and they agree/synchronize faster on some quantity of

interest called state.
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The networks are often represented by graphs in which the vertices are the agents

and the links define the interconnections between agents. The problem of agreement of

dynamic agents belonging to a network has been studied in many frameworks depend-

ing on the application. The variations include: whether the edge set of the graph re-

mains fixed or changes over time; whether the graph is undirected or directed; whether

the dynamics is continuous or discrete; whether the state of each agent is scalar or

vectorial; whether the interconnections are affected by delays or not; and whether all

nodes update their states in the same time or not [10, 19, 23, 13, 18, 15]. The agree-

ment speed in different frameworks has also been quantified (see for instance [26, 20]).

Some works have been oriented towards networks in which the global agreement can-

not be reached and only local ones are obtained [14, 25]. Some others studied the

agreement in networks of agents with discrete dynamics in which any agent is linked

with no more than one neighbor at each time [5, 2, 11, 1].

In this work, motivated by some behaviors encountered in social networks we ad-

dress a consensus problem involving a mix of continuous and discrete dynamics. The

network consists of a large number of agents belonging to several clusters. Each clus-

ter is represented by a fixed directed strongly connected graph and almost all the time

there is no link between different clusters. In each cluster there exists a specific agent

called leader. At specific instants, that will be defined in the next section, the leaders

interact via a fixed directed strongly connected graph. We consider a model in which

the agents have continuous dynamics but the states of the leaders are reseted at some

specific instants corresponding to the moments when the leaders interact between them.

This model can be interpreted in terms of opinion dynamics. Each agent has an opin-

ion that continuously evolves towards a local agreement representing the opinion of the

community in which it lies. At specific instants, the leaders of the communities inter-

act and they reset their opinion taking into account the ones of other leaders. The new

opinions of the leaders will reset the values of the local agreements in each community.

Iterating this process all the opinions will tend to a common value that depends only

on the initial conditions and the network topology.

The rest of the paper is organized as follows. In Section 2 we formulate the prob-

lem under consideration. The agreement behavior and the possible consensus value are

studied in Section 3. Sufficient conditions for the global uniform exponential stability

of the consensus are provided in Section 4. This condition is given in the form of a

parametric LMI. In the next section we consider the problem of numerical implemen-

tation of the proposed conditions. Precisely we have shown that only a finite number of

LMIs has to be solved. Section 6 is dedicated to numerical simulation which illustrate

the results. Some conclusions and perspectives are presented at the end of the paper.

Notation. The following standard notation will be used throughout the paper. The

sets of nonnegative integers, real and nonnegative real numbers are denoted by N, R
and R+, respectively. For a vector x we denote by ‖x‖ its Euclidian norm. The trans-

pose of a matrix A is denoted by A⊤. Given a symmetric matrix A ∈ R
n×n, notation

A > 0 (A ≥ 0) means that A is positive (semi-)definite. By Ik we denote the k × k
identity matrix. 1k and 0k are the column vectors of size k having all the components

equal 1 and 0, respectively. We also use x(t−k ) = lim
t→tk,t≤tk

x(t).



2 Problem formulation

We consider a network of n agents described by the digraph (i.e. directed graph) G =
(V, E) where the vertex set V represents the set of agents and the edge set E ⊂ V × V
represents the interactions.

Definition 1 A path in a given digraph G = (V, E) is a union of directed edges
⋃p

k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}.

Two nodes i, j are connected in a digraph G = (V, E) if there exists at least a path in

G joining i and j (i.e. i1 = i and jp = j).

A strongly connected digraph is such that any two distinct nodes are connected. A

strongly connected component of a digraph is a maximal subset such that any of its

two distinct nodes are connected.

In the sequel, we consider that the agent set V is partitioned in m strongly connected

clusters/communities C1, . . . , Cm and no link between agents belonging to different

communities exists. Each community possesses one particular agent called leader and

denoted in the following by li ∈ Ci, ∀i ∈ {1, . . . ,m}. The set of leaders will be

referred to as L = {l1, . . . , lm}. At specific time instants tk, k ≥ 1, called reset times,

the leaders interact between them following a predefined interaction map El ⊂ L × L.

We also suppose that Gl = (L, El) is strongly connected. The rest of the agents will be

called followers and denoted by fj . For the sake of clarity we consider that the leader

is the first element of its community:

Ci = {li, fmi−1+2, . . . , fmi
}, ∀i ∈ {1, . . . ,m} (1)

where m0 = 0, mm = n and the cardinality of Ci is given by

|Ci| , ni = mi −mi−1, ∀i ≥ 1.

In order to keep the presentation simple and making an abuse of notation, each

agent will have a scalar state denoted also by li for the leader li and fj for the follower

fj . We also introduce the vectors x = (l1, f2, . . . , fm1
, . . . , lm, . . . , fmm

)⊤ ∈ R
n and

xl = (l1, l2, . . . , lm)⊤ ∈ R
m collecting all the states of the agents and all the leaders’

states, respectively.

We are ready now to introduce the linear reset system describing the overall network

dynamics:






ẋ(t) = −Lx(t), ∀t ∈ R+ \ T
xl(tk) = Plxl(t

−
k ) ∀tk ∈ T

x(0) = x0

(2)

where T = {tk ∈ R+ | tk < tk+1, ∀k ∈ N, tk reset time}, L ∈ R
n×n is a

generalized Laplacian matrix associated to the graph G and Pl ∈ R
m×m is a Perron

matrix associated to the graph Gl = (L, El). Precisely, the entries of L and Pl satisfies

the following relations:


















L(i,j) = 0, if (i, j) /∈ E

L(i,j) < 0, if (i, j) ∈ E , i 6= j

L(i,i) = −
∑

j 6=i

Li,j , ∀i = 1, . . . , n
, (3)

























Pl(i,j) = 0, if (i, j) /∈ El

Pl(i,j) > 0, if (i, j) ∈ El, i 6= j
m
∑

j=1

Pl(i,j) = 1, ∀i = 1, . . . ,m

. (4)

The values L(i,j) and Pl(i,j) represent the weight of the state of the agent j in

the updating process of the state of agent i when using the continuous and discrete

dynamics, respectively. These values describe the level of ”democracy” inside each

community and in the leaders’ network.

In particular, L has the following block diagonal structure

L =







L1

. . .

Lm






, Li ∈ R

ni (5)

with Li1ni
= 0ni

and Pl1m = 1m. Due to the strong connectivity of Ci, i = 1,m
and Gl, 0 is simple eigenvalue of each Li and 1 is simple eigenvalue of Pl.

This model can be interpreted in terms of opinion dynamics or decision making process

in social networks. The network is partitioned in a number of communities. The opin-

ion of each agent continuously evolves taking into account the opinion of its neighbors.

At the time tk the leaders interact in a dedicated network and reset their opinion. We

show that, if no external perturbation occurs and the process continue for a long period

of time, all the opinions will converge towards a common one. This global agreement

opinion depends on the level of ”democracy” inside each community and on the level

of ”democracy” in the leaders’ network.

3 Agreement behavior

In this section we assume that system (2) achieves consensus and we characterize the

possible values for it. Firstly, we show that each agent tracks a local agreement function

which is piecewise constant. In the second subsection we prove that the vector of local

agreements lies in a subspace defined by the system’s dynamics and initial condition.

Therefore, if the consensus is achieved and the corresponding consensus value is x∗

than x∗
1m belongs to the same subspace. Moreover, this value is determined only by

the initial condition of the network and by the interconnection structure.

As we have noticed 1ni
is the right eigenvector of Li associated with the the eigen-

value 0 and 1m is the right eigenvector of Pl associated with the eigenvalue 1. In the

sequel, we denote by wi the left eigenvector of Li associated with the the eigenvalue

0 such that w⊤
i 1ni

= 1. Similarly, let v = (v1, . . . , vm)⊤ be the left eigenvector of

Pl associated with the eigenvalue 1 such that v⊤1m = 1. Due to the structure (1)

of the communities, we emphasize that each vector wi can be decomposed in its first

component wi,l and the rest of its components grouped in the vector wi,f .



3.1 Local agreements

Let us first recall a well known result concerning the consensus in networks of agents

with continuous time dynamics (see [19] for instance).

Lemma 2 Let G be a strongly connected digraph and L the corresponding Lapla-

cian matrix. Consider a network of agents whose collective dynamics is described

by ẋ(t) = −Lx(t). Let us also consider L1 = 0, u⊤L = 0 and u⊤
1 = 1.

Then, the agents asymptotically reach a consensus and the consensus value is given

by x∗ = u⊤x(0). Moreover, the vector u defines an invariant subspace for the collec-

tive dynamics: u⊤x(t) = u⊤x(0), ∀t ≥ 0

Remark 1 When dynamics (2) is considered, Lemma 2 implies that between two reset

instants tk and tk+1, the agents belonging to the same community converge to a local

agreement defined by x∗
i (k) = w⊤

i xCi
(tk) where xCi

(·) is the vector collecting the

states of the agents belonging to the cluster Ci. Nevertheless, at the reset times the

value of the local agreement can change. Thus,

w⊤
i x(t) = w⊤

i xCi
(tk), ∀t ∈ (tk, tk+1) and possibly

w⊤
i xCi

(t) 6= w⊤
i xCi

(tk), for t /∈ (tk, tk+1)

Therefore, the agents whose collective dynamics is described by the hybrid system

(2), may reach a consensus only if the local agreements converge one to each other.

3.2 Consensus value

Before presenting our next result, let us introduce the following vectors:

x∗(t) = (x∗
1(t), x

∗
2(t), ..., x

∗
m(t))⊤ ∈ R

m

u = (v1/w1,l, v2/w2,l, ..., vm/wm,l)
⊤ ∈ R

m
(6)

It is noteworthy that x∗(t) is time-varying but piecewise constant: x∗(t) = x∗(k) ∀t ∈
(tk, tk+1).

Proposition 3 Consider the system (2) with L and Pl defined by (3) and (4), respec-

tively. Then,

u⊤x∗(t) = u⊤x∗(0), ∀t ∈ R+. (7)

Proof: Let us introduce the matrix of the left eigenvectors of the communities:

W =











w⊤
1 0 · · · 0
0 w⊤

2 · · · 0
...

...
. . .

...

0 0 · · · w⊤
m











∈ R
m×n. (8)

Then, the following relation holds:

x∗(t) = Wx(t) ∀t ∈ R+ \ T (9)



Since wi = (wil, wif ), we define a permutation matrix T such that WT⊤ = U =
(U1, U2). The matrix U1 is a diagonal matrix corresponding to the leaders’ components

wi,l, while U2 is a block diagonal matrix corresponding to the followers’ components

wi,f . In other terms

U1 =











w1,l 0 · · · 0
0 w2,l · · · 0
...

...
. . .

...

0 0 · · · wm,l











∈ R
m×m (10)

U2 =











w1,f 0 · · · 0
0 w2,f · · · 0
...

...
. . .

...

0 0 · · · wm,f











∈ R
m×(n−m). (11)

Finally, we can rewrite equation (9) as:

x∗(t) = WT⊤x(t) = U · (xl(t), xf (t)). (12)

Note that at the reset time tk the vector xf remains the same, i.e. xf (tk) = xf (t
−
k )

. This yields

x∗(tk)− x∗(t−k ) = U · (xl(tk)− xl(t
−
k ), xf (tk)− xf (t

−
k ))

= U · (xl(tk)− xl(t
−
k ), 0)

= U1 · (xl(tk)− xl(t
−
k )) + U2 · 0

= U1(xl(tk)− xl(t
−
k )).

Thus,

x∗(tk) = x∗(t−k ) + U1 · (Pl − Im)xl(t
−
k )). (13)

Multiplying equation (13) by u⊤ and using u⊤U1 = v⊤ one obtains

u⊤x∗(t+k ) = u⊤x∗(t−k ) + u⊤U1(Pl − Im)xl

= u⊤x∗(t−k ) + v⊤(Pl − Im)

= u⊤x∗(t−k ) + v⊤ − v⊤

= u⊤x∗(t−k )

(14)

According to Remark 1, x∗(t) remains constant for all t ∈ (tk, tk+1) leading to

u⊤x∗(t) = u⊤x∗(0) ∀t ∈ R+. (15)

Corollary 1 Consider the system (2) with L and Pl defined by (3) and (4), respectively.

Assuming the agents of this system reach a consensus, the consensus value is

x∗ =
u⊤Wx(0)
∑m

i=1 ui

. (16)



Proof: Let x∗ be the consensus value reached by the system (2). It means that x(t) →
x∗

1n. Thus, when t goes to ∞ in (15) one obtains

u⊤x∗
1n = u⊤x∗(0) = u⊤Wx(0)

leading to (16).

In order to simplify the presentation and without loss of generality, in what follows,

we consider that
∑m

i=1 ui = 1.

Remark 2 It is important to note that the consensus value depends only on the system

matrices L, Pl and does not depend on the reset sequence T . This can be interpreted

as: the consensus depends only on the weight of the agents inside communities and

on the wight of leaders in the leaders’ network. Thus the level of ”democracy” inside

communities and in the leaders’ network are the only factors influencing the consensus

value.

A trivial result which may be seen as a consequence of Corollary 1 is the following.

Corollary 2 If the matrices L,Pl are symmetric (i.e. ith agent takes into account the

state of jth agent as far as jth takes into account the ith one and they give the same

importance one to another) the consensus value is the average of the initial states.

Proof: In this case wi =
1
ni

1ni
and v = 1

m
1m which leads to u = (n1

m
, n2

m
, . . . , nm

m
).

The result follows from (16).

4 Stability analysis

The stability analysis of the equilibrium point x∗ will be given by means of some LMI

conditions. Precisely, we recall and adapt some results presented in [9]. Since the con-

sensus value is computed in the previous section we can first define the disagreement

vector y = x−x∗
1n. We also introduce an extended stochastic matrix Pex as follows:

Pex = T⊤

[

Pl 0
0 In−m

]

T (17)

where T is the permutation matrix used in the proof of Proposition 3. It is noteworthy

that L1n = 0n and Pex1n = 1n. Thus, the disagreement dynamics is exactly the same

as the system one:







ẏ(t) = −Ly(t), ∀t ∈ R+ \ T
y(tk) = Pexy(t

−
k ) ∀tk ∈ T

y(0) = y0

. (18)

Now we have to analyze the stability of the equilibrium point y∗ = 0n for the sys-

tem (18). We note that Theorem 2 in [9] cannot be directly applied due to the marginal

stability of the matrices L and Pex.



The reset sequence is defined such that tk+1 − tk = δ + δ′ where δ ∈ R+ is fixed

and δ′ ∈ ∆ with ∆ ⊂ R+ a compact set. Thus the set of reset times T belongs to the

set of all admissible reset sequences associated with ∆:

Φ(∆) ,
{

{tk}k∈N, tk+1 − tk = δ + δ′k, δ
′
k ∈ ∆, ∀k ∈ N

}

(19)

where we always consider t0 = 0.

We recall that for any T ∈ Φ(∆) and any initial condition x0 the system (2) has a

unique solution denoted by ϕT (t, x0).

Definition 4 We say that the equilibrium y∗ = 0n of the system (18) is Globally Uni-

formly Exponentially Stable (GUES) with respect to the set of reset sequences Φ(∆) if

there exist positive scalars c, λ such that for any T ∈ Φ(∆), any y0 ∈ R
n, and any

t ≥ 0

‖ϕ(t, y0)‖ ≤ ce−λt‖y0‖ (20)

The following theorem is instrumental:

Theorem 5 (Theorem 1 in [9]) Consider the system (18) with the set of reset times

T ∈ Φ(∆). The equilibrium y∗ = 0n is GUES if and only if there exists a positive

function V : Rn 7→ R+ strictly convex,

V (y) = y⊤S[y]y,

homogeneous (of second order), S[·] : R
n 7→ R

n×n, S[y] = S⊤
[y] = S[ay] > 0, ∀x 6=

0, a ∈ R, a 6= 0, V (0) = 0, such that V (y(tk)) > V (y(tk+1)) for all y(tk) 6= 0, k ∈
N and any of the possible reset sequences T ∈ Φ(∆).

In the sequel, we define a quasi-quadratic Lyapunov function satisfying Theorem 5

by means of some LMI. Therefore, the following result gives sufficient conditions for

the stability of the equilibrium point y∗ = 0n for the system (18) or equivalently of

x∗
1n for the system (2).

Theorem 6 Consider the system (2) with T in the admissible reset sequences Φ(∆).
If there exist matrices S(δ′), S(·) : ∆ 7→ R

n×n continuous with respect to δ′, S(δ′) =
S⊤(δ′) > 0, δ′ ∈ ∆ such that the LMI

(

In − 1nu
⊤W

)⊤

S(δa)
(

In − 1nu
⊤W

)

−

(

Y (δa)− 1nu
⊤W

)⊤

S(δb)
(

Y (δa)− 1nu
⊤W

)

> 0,

Y (δa) , Pexe
−L(δ+δa)

(21)

is satisfied on span{1n}
⊥ for all δa, δb ∈ ∆, then x∗ is globally uniformly expo-

nentially stable for (2). Moreover, the stability is characterized by the quasi-quadratic

Lyapunov function V (t) = max
δ′∈∆

(x(t)−x∗
1n)

⊤S(δ′)(x(t)−x∗
1n) satisfying V (tk) >

V (tk+1).



Proof: Using the disagreement vector y(t) = x(t)−x∗
1n and supposing that there

exist matrices S(δ′) satisfying (21) for all δa, δb ∈ ∆ we define the Lyapunov matrix

S[y] = S(δ∗(y)) with δ∗(y) = argmax
δ′∈∆

y⊤S(δ′)y (22)

Following [9] the Lyapunov function

V (y) = y⊤S[y]y = max
δ′∈∆

y⊤S(δ′)y,

is convex and homogeneous of the second order.

Let us show now that S(·) solution of (21) ensures that V (·) defined above satisfies

Theorem 5.

We note first that any x(tk) ∈ R
n can be decomposed as x(tk) = x̄(tk) + x̃(tk)

with x̄(tk) ∈ span{1n}
⊥ and x̃(tk) ∈ span{1n}. Moreover,

(

In − 1nu
⊤W

)

x̃(tk) = 0,
(

Y (δa)− 1nu
⊤W

)

x̃(tk) = 0

hence

(

In − 1nu
⊤W

)

x(tk) =
(

In − 1nu
⊤W

)

x̄(tk),
(

Y (δa)− 1nu
⊤W

)

x(tk) =
(

Y (δa)− 1nu
⊤W

)

x̄(tk)

Thus, the LMI (21) yields

x(tk)
⊤
(

In − 1nu
⊤W

)⊤

S(δa)
(

In − 1nu
⊤W

)

x(tk) >

x(tk)
⊤
(

Y (δa)− 1nu
⊤W

)⊤

S(δb)
(

Y (δa)− 1nu
⊤W

)

x(tk),

∀δa, δb ∈ ∆

Consequently, using u⊤Wx(tk) = x∗ one gets

(

x(tk)− 1nx
∗
)⊤

S(δa)
(

x(tk)− 1nx
∗
)

>

(

Y (δa)x(tk)− 1nx
∗
)⊤

S(δb)
(

Y (δa)x(tk)− 1nx
∗
)

,

∀δa, δb ∈ ∆, x(tk) ∈ R
n

(23)

For any {tk}k∈N ∈ Φ(∆) we have x(tk+1) = Y (δ′k)x(tk) with some δ′k ∈ ∆. Thus,

for δa = δ′k, (23) rewrites as:

(

x(tk)− x∗
1n

)⊤

S(δ′k)
(

x(tk)− x∗
1n

)

>

(

x(tk+1)− x∗
1n

)⊤

S(δb)
(

x(tk+1)− x∗
1n

)

∀δ′k, δb ∈ ∆, x(tk) ∈ R
n



or equivalently

y(tk)
⊤S(δ′k)y(tk) > y(tk+1)

⊤S(δb)y(tk+1) ∀δ′k, δb ∈ ∆

Taking δb = δ∗(y(tk+1)), defined by (22) one obtains

V (y(tk)) > y(tk)
⊤S(δ′k)y(tk) > V (y(tk+1))

for all y(tk), which ends the proof.

5 Numerical implementation

In order to render this paper self-contained, in this section we consider the problem

of approximation of the parametric LMI (21) by a finite number of conditions using

polytopic embeddings.

5.1 Periodic resets

If ∆ = {0} i.e. the resets take place periodically with the period δ, Theorem 6 is

rephrased as follows.

Corollary 3 If there exists a positive definite matrix S such that the LMI

(

In − 1nu
⊤W

)⊤

S
(

In − 1nu
⊤W

)

−

(

Y (δ)− 1nu
⊤W

)⊤

S
(

Y (δ)− 1nu
⊤W

)

> 0,

Y (δ) , Pexe
−L(δ)

(24)

is satisfied on span{1n}
⊥, then x∗ is globally uniformly exponentially stable for (2).

Moreover, the stability is characterized by the quadratic Lyapunov function V (t) =
(x(t)− x∗

1n)
⊤S(x(t)− x∗

1n) satisfying V (tk) > V (tk+1).

In this case the parametric LMI (21) is simply replaced by the LMI (24) and no

numerical difficulties arise.

5.2 Nearly-periodic resets

In this case, to replace the parametric LMI (21) by a finite number of LMIs we have

to deal with the parametric uncertainty δ′k in the definition (19) of the admissible reset

sequence. As in [9] the matrix exponential e−Lδa is approximated by its h− order

Taylor expansion

h
∑

i=0

(−L)i

i!
δia. Thus the set {X ∈ R

n×n | X = e−Lδa , δa ∈ ∆} can

be embedded into the polytopic set defined by the vertices Z1, . . . , Zh+1 where



Z1 = In

Zi =

i
∑

l=0

(−L)l

l!
δlmax, ∀i ∈ {1, . . . , h+ 1}

with δmax = max
δ′∈∆

δ′. Then, Theorem 6 can be replaced by the following result.

Theorem 7 Consider the system (2) with T in the admissible reset sequences Φ(∆).
If there exist symmetric positive definite matrices Si, 0 ≤ i ≤ h+ 1 such that the LMI

(

In − 1nu
⊤W

)⊤

Si

(

In − 1nu
⊤W

)

−

(

Y (δ)Zi − 1nu
⊤W

)⊤

Sj

(

Y (δ)Zi − 1nu
⊤W

)

> 0,

Y (δ) , Pexe
−L(δ)

(25)

is satisfied on span{1n}
⊥ for all i, j ∈ {0, . . . , h + 1}, then x∗ is globally uniformly

exponentially stable for (2).

Proof: Assume that the set of LMIs (25) is satisfied for a set of matrices Si, 0 ≤ i ≤
h+ 1. Thus,

(

In − 1nu
⊤W

)⊤
(

h+1
∑

i=1

µiSi

)

(

In − 1nu
⊤W

)

−

(

Y (δ)

h+1
∑

i=1

µiZi − 1nu
⊤W

)⊤
(

h+1
∑

i=1

µjSj

)

×

(

Y (δ)

h+1
∑

i=1

µiZi − 1nu
⊤W

)

> 0,

is satisfied for all µi, µj ∈ [0, 1], i, j ∈ {1, . . . , h + 1} such that

h+1
∑

i=1

µi =

h+1
∑

j=1

µj =

1. It is noteworthy that the polytopic embedding provided above implies that for all

δa ∈ [0, δmax] there exists the set of scalars µi ∈ [0, 1] such that e−Lδa =

h+1
∑

i=1

µiZi

and

h+1
∑

i=1

µi = 1. In other words, Theorem 6 holds with S(δ′) =

h+1
∑

i=1

µi(δ
′)Si.

6 Illustrative Example

An academic example consisting in a network of 5 agents partitioned in 2 clusters

(n1 = 3, n2 = 2) is used in the sequel to illustrate the theoretical results. We consider

the dynamics (2) with



L =













4 −2 −2 0 0
−1 1 0 0 0
0 −2 2 0 0
0 0 0 3 −3
0 0 0 −1 1













, Pl =

[

0.4500 0.5500
0.2500 0.7500

]

(26)

and the reset sequence given by δ = 0.5 and δ′k randomly chosen in ∆ = [0, 0.2]. The

initial condition of the system is x(0) = (1, 4, 9, 2, 5) and the corresponding consensus

value computed by (16) is x∗ = 4.1587. The convergence of the 5 agents towards x∗

is illustrated in Figure 1 emphasizing that the leaders trajectories are non-smooth while

the followers trajectories are. The jumps, convexity and decreasing of the Lyapunov

function defined by Theorem 6 are pointed out in Figure 2.

Figure 1: The state-trajectories of the agents converging to the calculated consensus

value.

Larger networks have also been numerically analyzed but due to the space limita-

tion we do not provide the simulations here.

7 Conclusions and perspectives

In this paper we have considered the problem of consensus for linear reset systems.

The contribution of the paper is twofold: firstly, we define the consensus value for the

systems under consideration and secondly, we provide their stability analysis using the

Lyapunov framework. The results are easy to implement since the sufficient conditions

for stability are given in LMI form and the corresponding Lyapunov function is defined

by the solutions of these LMIs.

An interesting issue that will be considered in future works is the design of the reset

mapping that allows to reach a prescribed consensus value.



Figure 2: The behavior of the Lyapunov function given by Theorem 6.
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