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Abstract

An important problem in multiagent systems is consensus, which requires the agents to agree on certain controlled variables of
interest. We focus on the challenge of dealing in a generic way with nonlinear agent dynamics, represented as a black-box with
unknown mathematical form. Our approach designs a reference behavior with a classical consensus method. The main novelty
is using optimistic optimization (OO) to find controls that closely follow the reference behavior. The first advantage of OO is
that it only needs to sample the black-box model of the agent, and so achieves our goal of handling unknown nonlinearities.
Secondly, a tight relationship is guaranteed between computation invested and closeness to the reference behavior. Our main
results exploit these properties to prove practical consensus. An analysis of representative examples builds additional insight
and shows that in some nontrivial problems the optimization is easy to solve by OO. Simulations on these examples accompany
the analysis.
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1 Introduction

Multi-agent systems have applications in a wide variety of domains such as robotic teams, energy and telecommu-
nication networks, collaborative decision support systems, data mining, etc. Each agent typically has only a local,
limited view of the overall system, which means decentralized control approaches are necessary. Requirements on the
coherent behavior of the agents are often expressed in terms of consensus, in which the agents must reach agreement
on controlled variables of interest [21,25,20].

Classical consensus algorithms are designed for agents with linear dynamics, for which the behavior is well under-
stood. In this setting, the literature considers fixed and time-varying communication topologies [24,16], directed or
undirected graphs [21,25], synchronous or asynchronous information exchange [31,5], delayed or immediate trans-
missions [19,15], etc. Consensus approaches also exist for nonlinear agent dynamics, such as second-order systems
with nonlinear acceleration dynamics [28,35], nonholonomic robots [30], and Euler-Lagrange dynamics [14]. These
works usually require an explicit mathematical model of the agents, the form of which is exploited to derive tailored
control laws (often via Lyapunov synthesis).

Our goal here is different: a generic consensus method, applicable without changes to a wide class of nonlinear
agents. To achieve this, we propose an approach that only requires black-box models [27,29] of the agents, thereby
eliminating the dependence on the particular mathematical form of their dynamics. Neural networks are a typical
category of black-box models, e.g. [9,13], but nonstandard models like computer programs are also allowed; such
models are common e.g. in planning [4].

A first ingredient of the approach is a classical consensus algorithm, used to design reference next states for the
agents. The core novelty is the use of optimistic optimization (OO) [17] to solve the control problem of reaching

Email addresses: lucian@busoniu.net (Lucian Busoniu), constantin.morarescu@univ-lorraine.fr (Irinel-Constantin
Morarescu).

Preprint submitted to Automatica



close to these states, formulated as optimal predictive control. OO allows our approach to deal with highly general,
black-box dynamics, since it performs global nonconvex optimization by only simulating the dynamics for some
inputs. Furthermore, the properties of OO allow a tight characterization of the relation between closeness to the
reference states and computation invested, and in particular guarantee arbitrarily small errors as computation
increases. Exploiting all this, our main results prove practical consensus, i.e. that the agents converge close to each
other, as follows.

The main technical requirement is that each agent is controllable in a small number of K steps. The communication
graph is connected, possibly directed, and to keep the focus on the main challenge of general nonlinear agents, we
do not consider for now time-varying graphs, noise, or network effects such as delays or packet dropouts. Then,
under some additional technical assumptions related to optimization, our analysis ensures that the agents converge
to a small region and then return to this region once every K steps. Under stronger regularity conditions including
invertibility, we further guarantee the agents remain close to each other at every step. A measure of problem
complexity called near-optimality dimension [17] modulates the relationship between computation and approximation
error. We analyze this complexity measure and build insight into the meaning of the assumptions for the entire class
of linear systems, as well as for a nonlinear example; and provide simulation results for both cases.

Note that, given controllability and invertibility, if the specific form of the dynamics were known they could be
feedback-linearized before designing the consensus controls, like in [23]. However, here the model is a black box and
its form is unknown, so explicit linearization is impossible. Nevertheless, our approach does obtain an approximately
linear overall behavior (at multiples of K), similarly in this sense to [23]; it is the job of OO to find the controls
achieving this behavior. The approach is also related to model-predictive control, which was applied to the consensus
of linear agents in [12,6]. Our existing work includes [2], where we gave a different approach without analysis; and [1],
which is a preliminary version of the present work. With respect to [1], here we introduce novel analysis that includes:
using the deterministic OO algorithm, handling directed graphs, and a detailed investigation of the computational
aspects; while the examples are also new.

Next, we formalize the problem in Section 2, introduce OO in Section 3, and give our approach in Section 4. Section 5
provides the examples and Section 6 concludes.

2 Consensus problem

We consider a set of M agents with decoupled nonlinear dynamics xi,k+1 = fi(xi,k, ui,k), i = 1, . . . ,M . The dimen-
sionality of x (the order of the dynamical system f), denoted n, is the same for every agent, and we have xi ∈ R

n.

Similarly, for every agent ui belongs to a compact set U . Define also the collective state x = [x⊤
1 , · · · , x⊤

M ]
⊤ ∈ R

Mn,
containing the states of all the agents. The ideal goal is to achieve full-state consensus:

lim
k→∞

‖xi,k − xj,k‖ = 0 ∀i, j = 1, . . . ,M

where ‖ · ‖ is the Euclidean 2-norm, here as well as in the sequel. We employ the more pragmatic requirement of
practical consensus, defined as the existence, for any given disagreement ∆ > 0, of a finite step k0 so that for all
k ≥ k0, ‖xi,k − xj,k‖ ≤ ∆ for all i, j.

An agent can receive information only from its neighbors on an interconnection graph G = (V, E). The set of
nodes V = {1, . . . ,M} represents the agents, and the edges E ⊆ V × V are the communication links. Denote by
Ni = {j | (i, j) ∈ E } the set of neighbors of node i. The graph may be directed (for some edges (i, j) ∈ E , (j, i) /∈ E),
but we require that it is time-invariant and strongly connected. The latter property means a path exists between
any pair of nodes i, j: a sequence of nodes i = i1, . . . , iL = j so that (il, il+1) ∈ E , 1 ≤ l < L.

Let X0 ⊂ R
n be a user-defined, bounded set of interesting initial agent states, from which consensus might be

required. Let B(xc, R) be the smallest Euclidean ball containing X0, which has center xc and radius R. Then,
define an enlarged set X = B(xc, 3R + ∆+), where ∆+ > 0 is an arbitrarily small constant. Finally, denote by

ũi,k = [u⊤
i,k, . . . , u

⊤
i,k+K−1]

⊤
a sequence of K actions for agent i starting at step k, and by f̃i(xi,k, ũi,k) the resulting

state of the agent after applying ũi,k (K steps later). We impose a controllability assumption on fi in the set X .
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Assumption 1 (Controllability) There exists a finite K such that, for any x, x∗ ∈ X and any agent i, there
exists a sequence ũi ∈ UK so that:

f̃i(x, ũi) = x∗

Remarks: This type of controllability property is thoroughly studied by e.g. [11], where Lie-algebraic conditions
are provided for nonlinear systems, including a characterization of the size of reachable sets. The controllable set is
enlarged to X to deal with the errors made by the algorithm in some special, unfavorable initial conditions, such
as when most agents are close together at one edge of X0 and one agent is diametrally opposite. In fact, for most
initial conditions, we expect the agent to stay close to the convex hull of X0. �

Under this assumption and some other requirements related to the optimization algorithm, our results guarantees
practical consensus at steps that are multiples of K. To guarantee the stronger result of practical consensus at every
step, an additional assumption is imposed. Define an invertibility property of dynamics f̃i, which requires that for
every pair (x, x∗) ∈ X 2 the sequence ũi achieving f̃i(x, ũi) = x∗ is unique. The inverse f̃−1

i : X 2 → UK is defined as
the mapping between state pairs and their corresponding action sequences.

Assumption 2 (Homogeneity and invertibility) The multiagent system is homogeneous: fi = fj =: f, ∀i, j
with common dynamics f that are Lipschitz-continuous in X ×U . Furthermore, the K-step dynamics f̃ has a unique
inverse f̃−1, which is also Lipschitz continuous in its domain X 2.

Remarks: Invertibility conditions are an important topic in nonlinear system theory, and several types of conditions
for discrete-time systems are provided e.g. by [8,34,7]. Since the set of states X and the action space U were
already taken compact, the Lipschitz conditions are not significantly more restrictive. Homogeneity (together with
invertibility) is needed to guarantee the agents behave similarly for similar desired transitions, see Section 5.2 for a
simulation illustrating this. �

It is essential to note that the dynamics fi are only available to the agents as black-box, simulation models, the
inverse dynamics f̃−1 (if they exist) are not available at all, and the sequences ũi of Assumption 1 are unknown;
indeed, the main task of our algorithm will be to approximate them.

3 Background: Optimistic optimization

Our method will use a predictive approach that finds the control actions with some recent global optimization
methods, called optimistic optimization. Two such methods are used, deterministic and simultaneous optimistic
optimization – DOO and SOO. They have some essential advantages in our framework: they only require to sample
the black-box agent model, and they provide a directly implementable procedure with a tight analysis of the relation
between computation invested and near-optimality.

For now, we introduce DOO and SOO generically, following [17], for the maximization of any function r : U → R.
We reuse notations u and U , while keeping in mind the framework remains generic in this section. The optimization
proceeds by hierarchically partitioning the domain U . This partitioning procedure is an input into the algorithms,
and is represented by a tree structure T in which each node (d, j) is labeled by a point ud,j and represents a subset
of U denoted Ud,j ∋ ud,j . Here, d ≥ 0 is the depth in the tree and j is the node index at a given depth. The root of
the tree represents the entire domain U , and the tree is defined so that the children of a node form a partition of
the set represented by their parent. The collection of leaves of the currently explored tree is denoted by L, and the
leaves at depth d by Ld.

The core requirements of the algorithms are stated in terms of a semimetric ℓ : U × U → [0,∞) (a semimetric has
all the properties of a metric except perhaps the triangle inequality).

Assumption 3 (Optimization) The objective function and the partitioning satisfy the following conditions:

3.i There exists an optimum u∗ so that:

r(u∗)− r(u) ≤ ℓ(u, u∗) ∀u ∈ U (1)
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3.ii There exist c > 0 and γ ∈ (0, 1) such that for any d, δd,j ≤ cγd for all nodes j at depth d, where δd,j :=
supu∈Ud,j

ℓ(ud,j , u), a pseudo-diameter of Ud,j.

3.iii There exists a constant ν such that any subset Ud,j contains a ball with center ud,j and radius νcγd in the
semimetric ℓ.

Remarks: Intuitively, ??.i is a local, one-sided Lipschitz property. In our upcoming consensus algorithm, it does
not restrict the dynamics much more than the Lipschitz requirement of Assumption 2. The other two conditions
define the properties of a good partitioning procedure, which should provide well-shaped sets (??.iii) that shrink
with the depth in the tree (??.ii). 1 �

Denote δ(d) = cγd, the maximal diameter at depth d. DOO works by always partitioning further a set that is likely
to contain the optimum of r. It does this by assigning upper bounds to all leaf sets Ud,j , (d, j) ∈ L:

b(Ud,j) = r(ud,j) + δ(d) (2)

so that b(Ud,j) ≥ r(u), ∀u ∈ Ud,j . Then at each iteration, an optimistic leaf set, which maximizes the upper bound,
is expanded (partitioned into its children sets). After n such expansions, DOO returns the sample with the largest
value r(ud,j).

DOO assumes knowledge of ℓ by using δ(d) in the upper bounds. The alternative, SOO, does not require this
knowledge. Instead, at each round, SOO simultaneously expands all potentially optimal leaf sets: those for which the
upper bound could be the largest under any semimetric ℓ. With a little thought, a set can only contain the largest
upper bound if its sample value is at least as good as the values of all sets with diameters larger than its own; we say
that the set is not dominated by larger sets. Since further, δ(d) decreases with d, we only have to compare with leaves
higher up the tree. At each iteration t, the algorithm expands at most one leaf set at each depth. If we define L≤d as
the set of leaf nodes having depths d′ ≤ d, then a leaf (d, j) is only expanded if r(ud,j) = max(d′,j′)∈L≤d

r(ud′,j′); if
there are several such leaves at d, one is chosen arbitrarily. SOO additionally limits the tree depth at each iteration
t with a function dmax(t), a parameter of the algorithm that controls the tradeoff between deeper or more uniform
exploration. A typical schedule is dmax(t) = ta with a ∈ (0, 1). For clarity, Algorithm 1 summarizes SOO.

Algorithm 1 Simultaneous Optimistic Optimization

Input: function r, depth function dmax,
budget N , partitioning of U

1: initialize T ← U0,0; t← 1
2: loop
3: rmax ← −∞
4: for d = 0 to min(depth(T ), dmax(t)) do
5: j† ← argmaxj∈Ld

r(ud,j)
6: if r(ud,j†) ≥ rmax then

7: expand (d, j†), add children to T
8: rmax ← r(ud,j†)
9: t← t+ 1

10: if t > N then stop the algorithm
11: end if
12: end if
13: end for
14: end loop
Output: û = argmax(d,j)∈T r(ud,j)

The convergence of DOO and SOO depends on how smooth the function is in the semimetric ℓ. To formalize this,
define first the near-optimal sets Uε = {u ∈ U | r(u∗)− r(u) ≤ ε}. For any ε, the packing number of Uε is defined
as the maximal number of disjoint ℓ-balls with centers in Uε and equal radii νε (recall ν from Assumption ??.iii).
Finally, the near-optimality dimension is the smallest β > 0 so that there exists a positive constant C, such that the
packing number is smaller than Cε−β . The optimization problem is easier to solve when the semimetric ℓ captures
more closely the smoothness of the objective function r around u∗, in which case β is smaller, with the ideal β being

1 Note that the guarantees can be generalized to the case of diameters that decrease other than exponentially.
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0. In some contrived cases β may be infinite, e.g. when r is constant and a ‘malicious’ semimetric is defined that
shrinks superexponentially around u∗. In order to eliminate these edge cases, a final, technical assumption is needed.

Assumption 4 A finite β exists.

Then, the following results hold [17].

Proposition 1 (Near-optimality) DOO returns a solution û satisfying: 2

r(u∗)− r(û) =

{
O(N−1/β) if β > 0

O(γN/C) if β = 0

where C is the constant from the near-optimality dimension. SOO returns a solution û satisfying:

r(u∗)− r(û) =

{
O(N−(1−a)/β) if β > 0

O(γ
√
N/C′

) if β = 0

where C ′ ≥ 1 is a constant, and we choose dmax(t) = ta (with a > 0) when β > 0 and dmax(t) =
√
t when β = 0.

Thus, sub-optimality decreases polynomially with N , depending on problem complexity as expressed by β; and
when β = 0, the decrease is faster – exponential, confirming that the problem is ‘easy’ and solved efficiently by
the algorithm. Note that DOO and SOO have similar guarantees. Since it does not use the semimetric, SOO must
expand more sets, and it converges at a somewhat slower rate. However, for the same reason, SOO has a surprising
advantage: it converges at the fastest rate allowed by any valid semimetric.

4 Consensus for black-box nonlinear agents

Our approach to the consensus problem in Section 2 works as follows. Once every K steps, each agent i computes a
reference (desired) next state, which is a weighted average of the current states of its neighbors Ni. Then, a sequence
of actions is optimized with OO so that after K steps, the reference state is approached as closely as possible. All
agents apply their sequences and the whole process is repeated. The main idea is therefore intuitive: by emulating a
classical consensus algorithm [21], an approximately linear overall agent behavior is obtained, similarly to [23]. The
main novelty is using OO to find the controls, which only requires sampling a black-box model, without knowledge
about its internal structure. The properties of OO tightly connect computation invested with approximation error.
In our analysis, we focus on these computational aspects and on the impact of the error on the consensus guarantees.

4.1 Algorithm

At step k – a multiple of K – each agent i computes a reference state with:

x∗
i,k+K =

M∑

j=1

pi,jxj,k (3)

where pi,j ∈ [0, 1] ∀i, j,
∑M

j=1
pi,j = 1 ∀i,

pi,j 6= 0 iff i = j or (i, j) ∈ E

Since each agent only uses information about its neighbors, these reference states can be computed in a decentralized
way. Matrix P = [pi,j ] should be freely chosen to impose a desired consensus behavior. Several decentralized strategies
to select it are given in [19,33,22].

Then, each agent solves with DOO or SOO the optimal control problem:

ũ∗
i,k = argmax

ũi,k

−‖f̃i(xi,k, ũi,k)− x∗
i,k+K‖ (4)

2 ‘Big-O’ notation g = O(h) means that g asymptotically grows at most as fast as h.
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(recall the definitions of K-step actions and dynamics). This is a type of dynamic inversion control, see e.g. [10], and

similar ideas are widely used among others in adaptive inverse control [32]. A near-optimal extended action ̂̃ui,k is
found, which will reach close to the reference state. Algorithm 2 summarizes the procedure.

Algorithm 2 Nonlinear consensus at agent i

Input: row Pi of P , budget N , partitioning of U ,
OO algorithm to use, if DOO: ℓ, if SOO: dmax

1: k ← 0
2: loop
3: measure xi,k and send it to j ∈ Ni

4: receive xj,k from j ∈ Ni

5: compute reference state x∗
i,k+K using Pi

6: ri,k(ũi,k) := −‖f̃i(xi,k, ũi,k)− x∗
i,k+K‖

7: if using DOO then

8: ̂̃ui,k ← DOO(ri,k, ℓ,N, partitioning of U)
9: else if using SOO then

10: ̂̃ui,k ← SOO(ri,k, dmax, N, partitioning of U)
11: end if
12: apply ̂̃ui,k in open loop
13: k ← k +K
14: end loop

While the number of parameters of OO may seem large, most can be chosen in a standard way. The partitioning
of U is typically defined as a collection of hyperboxes in a Km-dimensional space, where m denotes the number of
action variables. A large hyperbox contains the whole action space, and each node expansion corresponds to splitting
the parent hyperbox into 2Km subboxes, in half along all dimensions. Since this leads to exponential complexity in
K, a practical requirement of our method is that K must be small ; the limit depends on the agent’s computational
power, but to give an idea, say that the product Km should be less 10 (Section 6 points out how future extensions
might avoid this).

For DOO, the semimetric ℓ is a less obvious choice. For some problems, its form may be available from prior
knowledge. In general, defining ℓ can be difficult, in which case SOO should be used. In SOO, a default choice of
dmax(t) is

√
t, expecting that a semimetric that yields a near-optimality dimension of 0 exists; if the optimization

is expected to be difficult, a better schedule is ta with small a, to increase the asymptotic convergence rate, see
Proposition 1. We provide more insight about the semimetric and near-optimality dimension in the examples. The
main parameter is however N , and we dedicate the next section to analyze its effect.

4.2 Computational considerations

Simulating the nonlinear dynamics will usually dominate computation, making the time complexity at each agent
roughly linear in the budget N .

A more interesting question is what value of N is required to achieve a uniformly small approximation error ε∗. By
essentially inverting the relationships in Proposition 1, we find the following budgets at agent i in collective state x,

where the optimization complexity is characterized by β(i,x). In DOO, N = O(ε∗−β(i,x)), polynomial in 1/ε∗, when
β(i,x) is positive. When β(i,x) = 0, N = O(log(1/ε∗)), logarithmic (much lower). In SOO, taking for simplicity

dmax(t) =
√
t, N = O(ε∗−2β(i,x)) when β(i,x) > 0 and N = O(log2(1/ε∗)) when β(i,x) = 0. So the complexity

behaves similarly but is larger – the polynomial is of double degree (which can be improved by better choosing dmax),
while the logarithm is squared.

In practice, the agents will use the same N everywhere. In that case, any desired ε∗ can be achieved by taking a
sufficiently large N , which is related to the largest β (of course, this large N is conservative where β is smaller,
leading to errors smaller than ε∗ in those situations). This uniform error property is essential to our analysis below.
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4.3 Consensus guarantees

Theorem 2 (Consensus every K steps) Under Assumptions 1, 3, and 4, for large enough N , Algorithm 2
achieves practical consensus at steps multiple of K.

Proof: Denote by Λ the left eigenvector of P associated with the eigenvalue 1 (which will always exist due to the

structure of P ), x̄ = Λ⊤
x0 ∈ R

n, and x̄ = [x̄, . . . , x̄]
⊤
. We will first show (i) that ∃l0,∆ so that for all l ≥ l0,

‖xi,lK − x̄‖ ≤ ∆ for all i, while assuming that the agents remain controllable. Then, it is proven that (ii) they
actually do remain controllable.

(i) P is a row stochastic matrix associated to a strongly connected graph. By iterating the ideal protocol x∗
i,k+K =

∑M
j=1 pi,jx

∗
j,k starting from x0, all agents would converge exponentially to x̄. Next, the effect of the deviation of the

real states from this ideal trajectory is analyzed. Let λ be the largest eigenvalue of P that is different from 1. Then,
0 < |λ| < 1 and:

‖x∗
(l+1)K − x̄‖ = |λ| · ‖xlK − x̄‖ (5)

Since each agent reaches its reference state with at most ε∗ error:

‖xlK − x
∗
lK‖ ≤

√
Mε∗, ∀l (6)

Combining (6) and (5), for arbitrary ∆ > 0 and ρ ∈ (|λ|, 1), ∆-practical consensus with a convergence rate ρ will be

ensured. To this end, choose a large enough budget N to guarantee ε∗ ≤ (ρ− |λ|)∆/
√
M .

Assume first that the initial disagreement is larger than ∆. Then, for all xlK such that ‖xlK − x̄‖ > ∆ one has:

‖x(l+1)K − x̄‖ ≤ ‖x(l+1)K − x
∗
(l+1)K‖+ ‖x∗

(l+1)K − x̄‖
≤
√
Mε∗ + |λ| · ‖xlK − x̄‖

≤ (ρ− |λ|)∆ + |λ| · ‖xlK − x̄‖
< ρ‖xlK − x̄‖

This exponential decay ensures that after a finite l0 =
⌈
logρ ∆/‖x0 − x̄‖

⌉
, the distance to x̄ will drop below ∆. Once

this is true, i.e., if ‖xlK − x̄‖ < ∆, then:

‖x(l+1)K − x̄‖ ≤ ‖x(l+1)K − x
∗
(l+1)K‖+ ‖x∗

(l+1)K − x̄‖
≤
√
Mε∗ + |λ| · ‖xlK − x̄‖

≤ (ρ− |λ|)∆ + |λ|∆ = ρ∆ < ∆

so the state will remain at distance ∆ from x̄. If the initial disagreement is already below ∆, then l0 = 0 and the
derivation of the exponential decay is no longer needed.

(ii) To ensure controllability, the states of all the agents must remain inside set X at each step lK (recall that
X0 ⊆ B(xc, R) and X = B(xc, 3R + ∆+)). Define ∆0 = ‖x − x̄‖, the collective initial disagreement, and ∆a

0 =
maxi ‖xi,0− x̄‖, the per-agent initial disagreement. Take a desired collective disagreement of ∆ ≤ 2R; part (i) allows
imposing any ∆ > 0, and since 2R upper-bounds the diameter of X0, a larger value makes little sense.

If ∆ ≥ ∆0, then already, for any l ≥ 0, ‖xi,lK − x̄‖ ≤ ‖xlK − x̄‖ ≤ ∆. Thus the agents remain in B(x̄,∆) and since
x̄ ∈ B(xc, R), they remain in B(xc, 3R) ⊂ X . Now if ∆ < ∆0, then for any l and i we have:

‖xi,(l+1)K − x̄‖ ≤ ‖xi,(l+1)K − x∗
i,(l+1)K‖+ ‖x∗

i,(l+1)K − x̄‖
≤ ε∗ +max

j
‖xj,lK − x̄‖

≤ (l + 1)ε∗ +∆a
0 (7)

where the second inequality implies the third by induction. Furthermore, by part (i), as long as the collective
disagreement is larger than ∆ it decreases exponentially:

‖xi,lK − x̄‖ ≤ ‖xlK − x̄‖ ≤ ρl∆0
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This allows taking a finite l1 so that ρl1∆0 ≤ max{∆,∆a
0}, from which ‖xi,lK − x̄‖ ≤ max{∆,∆a

0} ∀i, l ≥ l1.
Combining this with (7), we have ‖xi,lK − x̄‖ ≤ max{∆, l1ε

∗+∆a
0}, ∀i, l ≥ 0. Therefore, finally imposing ε∗ ≤ ∆+/l1

and noticing that ∆a
0 ≤ 2R, the states are guaranteed to remain in X . �

Theorem 3 (Consensus) Under Assumptions 1–4, for sufficiently large N Algorithm 2 achieves practical consen-
sus at every step.

Proof: In Theorem 2, take l ≥ l0. Then ∀i, j, ‖xi,lK−xj,lK‖ ≤ 2∆, due to ‖xlK− x̄‖ ≤ ∆ and the triangle inequality.

Due to Assumption 2, we have ũi,lK = f̃−1(xi,lK , xi,(l+1)K), ũj,lK = f̃−1(xj,lK , xj,(l+1)K) and denoting the Lipschitz

constant of f̃−1 by L−1:

‖ũi,lK − ũj,lK‖
≤ L−1(‖xi,lK − xj,lK‖+ ‖xi,(l+1)K − xj,(l+1)K‖)
≤ 4L−1∆ (8)

Then, at steps lK + k with k = 1, . . . ,K − 1, we have:

‖ui,lK+k − uj,lK+k‖ ≤
√
m ‖ũi,lK − ũj,lK‖∞

≤ 4
√
mL−1∆

Denote L′ = 4
√
mL−1, and L the Lipschitz constant of f . Finally, by a straightforward derivation we get the desired

result:

‖xi,lK+k − xj,lK+k‖ ≤ (Lk + L′ ∑k

k′=1
Lk′

)∆ �

Remarks: From the proof of Theorem 2, a rather strong type of practical consensus is ensured, where agents
exponentially approach and then remain inside a region of size ∆ around x̄ – but only at steps multiple of K. The
size ∆ can be controlled by ε∗, and so indirectly by the budget N , as seen in Section 4.2. In-between these steps
and above l0K, Theorem 3 ensures, under the additional Assumption 2, a weaker practical consensus where agents
are only close to each other and not necessarily to x̄. Indeed, the region containing the states can travel in the state
space, with the constraint that it must always return around x̄ at each multiple of K. Note that the region may
grow somewhat in-between the multiples of K, but its size remains proportional to ∆. Figure 1 illustrates these
guarantees. �

D

lK l K0 ( +1)l K0

ct.D

x

l K+k0

D

Fig. 1. Symbolic illustration of consensus guarantees. The agent states will stay within the shaded area. Dotted contour:
analysis does not constrain the states; solid black contour: guarantees of Theorem 2; thick gray contour: guarantees of
Theorem 3.

5 Analysis and simulations in representative cases

We next exemplify linear agents as a special case of our framework, together with a type of nonlinear agents (although
the method targets nonlinear agents, understanding how it works in the familiar, linear case builds useful insight).
For each type of agents, we analyze the assumptions and present simulation results. It must be emphasized that
these examples are analyzed here in detail for illustrative purposes, using ‘white-box’, full mathematical models of
the agent dynamics. Indeed, the whole point of our algorithm is to avoid the need to use such models; instead, they
are a black box supplied to the algorithm, and it is precisely this which lends the approach its generality. In practice,
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the user simply chooses a sufficiently large Ũ and—provided of course the assumptions hold—does not need to worry
about the other details.

5.1 Linear agents

Consider an agent with linear controllable dynamics:

xk+1 = Axk +Buk

Different agents may have different dynamics if we are only interested in consensus every K steps; otherwise, agents
must be homogeneous due to Assumption 2. In both cases, we drop the agent index since the development is generally
valid for any linear dynamics.

Analysis. The set of interesting initial states considered is X0 = B(0, R). It follows that X = B(0, 3R +∆+) for
an arbitrary ∆+ > 0. Denote RX = 3R + ∆+. For now, K is taken equal to the order n of the dynamics, and the
K-step dynamics are:

xk+K = Ãxk + B̃ũk = AK + [AK−1B,AK−2B, . . . , B]ũk

Since the system is controllable B̃ is full row rank, and for any xk at least one ũ∗
k exists that reaches an arbitrary

x∗
k+K (there may be more):

ũ∗
k = B̃‡(x∗

k+K − Ãxk) (9)

where ‡ denotes left pseudoinverse. Then ‖ũ∗
k‖ ≤ ‖B̃‡‖(1 + ‖Ã‖)‖xk‖, and an action space Ũ including a ball of

radius RU = ‖B̃‡‖(1 + ‖Ã‖)RX ensures Assumption 1 (‖ · ‖ denotes the induced norm for matrices).

The optimal control at step k must maximize:

r(ũk) = −‖xk+K − x∗
k+K‖ = −‖B̃ũk − B̃ũ∗

k‖

where ũ∗
k is the (unknown) action that exactly reaches x∗

k+K . We have:

r(ũ∗
k)− r(ũk) = 0 + ‖B̃ũk − B̃ũ∗

k‖ ≤ ‖B̃‖‖ũk − ũ∗
k‖

So, a semimetric ℓ(ũ, ũ′) = γ‖ũ− ũ′‖ with γ ≥ ‖B̃‖ (in fact a metric) ensures the weak-Lipschitz property ??.i. Note

that r(ũ∗
k) = 0, and also that ‖B̃‖ plays the role of Lipschitz constant for r. If the prior knowledge that ℓ is a good

metric in the linear problem is available, then DOO should be applied with this metric. Otherwise, SOO should be
used. Further, it is clear that if we take a hyperbox UK and create a natural, exponential partitioning by recursively
splitting it into smaller hyperboxes along each dimension (2Km new hyperboxes at each step), Assumptions ??.ii
and ??.iii hold.

Next, the near-optimality dimension β is investigated (omitting the proof). If mK > n, there are multiple optimal
solutions and β is upper-bounded by ϕ = mK − n, the number of extra degrees of freedom in the solution (9).
This can intuitively be understood as OO having to uniformly explore the ϕ-dimensional subspace of equally good
near-optimal solutions, and provides yet another incentive for having K as small as possible. Since β is bounded,
Assumption 4 holds.

So far, we only imposed Assumption 1. Note now that the direct and inverse dynamics are Lipschitz. Further requiring
Assumption 2, invertibility in K steps, boils down to rank(B̃) = mK [26]. Since due to controllability rank(B̃) = n,
we must have K = n/m, and controllability must hold in K < n steps. In effect, all this leads to a square, invertible

B̃. So, the condition is significantly more restrictive than Assumption 1. However, due to invertibility β is now 0,
and the optimization problem is easy to solve.

Simulation results. Consider the classical example of double-integrator agents [20]:

xp
i,k+1 = xp

i,k + Tsx
p
i,k, xv

i,k+1 = xv
i,k + Tsuik

9



where xp is the position, xv the velocity, the input is uik, and Euler discretization is used with sampling time
Ts = 0.5 s. The system is controllable in K = 2 steps (note that n = Km, leading to β = 0).

Five agents are considered, having the (undirected) connection graph from Figure 2 (top), initial positions 0, 1, 2, 3, 4,
and initial velocities −3,−1, 0, 1, 3. In all our experiments, the neighbor weights are set with the method of [19]: the
agents first agree on a value α ∈ (0, 1

maxi|Ni| ), and then agent i sets pi,i = 1−α |Ni| and pi,j = α, ∀j ∈ Ni. We set α =

0.2. The action space is taken large enough to ensure controllability (specifically, Ũ = [−200, 200]2). To characterize
performance in each experiment, an inter-agent disagreement is computed at every step: ∆k =

∑
i<j ‖xi,k − xj,k‖,

and the average of ∆k over the entire trajectory is reported.

We will study the performance for varying budget N = 15, 25, 50, 75, 100, 200, . . . , 700, in three cases. First, DOO is
applied, using the ‘ideal’ metric with constant γ = ‖B̃‖. In the second, more realistic case, γ is overestimated as 4‖B̃‖.
Third, the metric is no longer assumed known and SOO is applied. As seen in Figure 2 (middle), performance largely
increases withN for all optimization methods, although monotonicity is not guaranteed. Moreover, as expected, DOO
with the ideal metric performs best, obtaining near-optimal performance for small budgets. Since it does not use the
metric, SOO lags slightly behind, but quickly reaches near-optimal performance as well. DOO with the overestimated
metric performs poorly, falling behind SOO. Figure 2 (bottom) shows a trajectory for SOO and N = 200. Practical
consensus is obtained in under 20 s. Since the desired agent state x∗

i,k+2 is designed without knowing the structure
of the dynamics, the resulting trajectory is not smooth.
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Fig. 2. Top: Connection graph for double integrators, with initial velocities symbolized by arrows. Middle: Results for varying
N . Bottom: A representative trajectory.

5.2 Hammerstein nonlinear agents

To illustrate the framework in the nonlinear case, we consider an example where linear dynamics are affected by an
algebraic input nonlinearity – a Hammerstein system, taken from the literature [3]. 3 The example is adapted to our

3 For analysis and experiments on agents with nonlinearities in the state transitions, see [1].
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framework by transforming it in the state-space form and eliminating the noise, leading to:

xk+1 = Axk +Bzk =

[
1.6 −0.8
1 0

]
xk +

[
1

0

]
zk

zk = g(uk) = uk + 0.5u2
k + 0.25u3

k

(10)

where again we do not include the agent index.

Analysis. Like before, X0 = B(0, R), leading to X = B(0, RX ) with RX = 3R + ∆+. Note that the input
nonlinearity g is strictly increasing and bijective. From the 2-step dynamics:

xk+2 = A2xk + B̃z̃k = A2xk + [AB,B][zk, zk+1]
⊤

with a full-rank B̃, the linear system is controllable in K = 2 steps, and due to the bijective nonlinearity the same
remains true of the nonlinear system. Furthermore, the inverse dynamics are:

ũk = [g−1(zk), g
−1(zk+1)]

⊤
, z̃k = B̃−1(x∗

k+2 −A2xk)

From the fact that 0.5|u| ≤ |g(u)|, we have |u| ≤ 2‖z̃k‖ ≤ 2‖B̃−1‖(1 + ‖A2‖)RX , where the second part is taken
from the linear case above. So, a compact input box of this size is sufficient to make the system controllable in X .
Since the direct and inverse dynamics are also Lipschitz, Assumptions 1 and 2 have been verified.

The objective function of the optimal control problem is r(ũk) = −‖xk+2 − x∗
k+2‖. To find a semimetric ℓ satisfying

??.i, note that:

r(ũ∗
k)− r(ũk) = ‖xk+2 − x∗

k+2‖ ≤ ‖B̃(z̃k − z̃∗k)‖
≤ ‖B̃‖

∥∥∥[g(uk)− g(u∗
k), g(uk+1)− g(u∗

k+1)]
⊤
∥∥∥
1

≤ (1 +RX + 0.75R2
X )‖B̃‖ ‖ũk − ũ∗

k‖1

(11)

where the last step is due to |g(u)− g(u∗)| = |u− u∗ +0.5(u2 − u∗2) + 0.25(u3 − u∗3)| ≤ |u− u∗| · |1+ 0.5(u+ u∗) +
0.25(u2 + u∗2 + uu∗)| ≤ (1 + RX + 0.75R2

X )|u − u∗|. Therefore, an appropriate metric is ℓ(ũk, ũ
∗
k) = γ ‖ũk − ũ∗

k‖1
with a ‘Lipschitz constant’ γ greater than the multiplying factor above. Noticing that under this metric the natural
partitioning into squares satisfies the remaining conditions ??.ii and ??.iii, Assumption 3 is validated.

Finally, to find the near-optimality dimension β, we study the sets:

Ũε = {ũ | r(ũ∗)− r(ũ) ≤ ε} ⊆
{
ũ
∣∣ γ ‖ũk − ũ∗

k‖1 ≤ ε
}

The inclusion holds due to r(ũ∗)− r(ũ) = ‖B̃(z̃k − z̃∗k)‖ ≥
√
λmin(B̃⊤B̃)/2 ‖z̃k − z̃∗k‖1. Further, by the monotonicity

of g, around any u∗ we have |z−z∗| = |g(u)−g(u∗)| ≥ α|u−u∗| with some positive α. Thus, Ũε is included in a ℓ-ball
of radius proportional to ε, and therefore the packing number is constant, leading to a near-optimality dimension of
0: Assumption 4 is satisfied and the optimization problem is easy to solve.

Simulation results. Five agents with dynamics (10) are connected with the directed graph shown at the top-left
of Figure 3. We apply SOO consensus with N = 200 and neighbor weight α = 0.2, from uniformly random initial
states xi,0 ∈ [−5, 5]2 (the action space is then taken sufficiently large, Ũ = [−300, 300]2). Figure 3 (bottom) shows
the resulting trajectories of the agents. The algorithm easily deals with these nonlinear dynamics. Note that, unlike
for the double integrator, here the consensus state is not an equilibrium, so the states no longer reach a constant ball
around it; instead, they synchronously travel in the state space as predicted by the analysis, see Figure 3 (top-right)
and again Figure 1.
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Fig. 3. Consensus of Hammerstein systems. Top-left: Communication graph. Bottom: State trajectories (the sampling time is
taken 0.1 s). Top-right: zoom-in on the last portion of the x2 trajectory; note the agents are synchronized.

6 Conclusions and perspectives

We presented a generic consensus method for nonlinear agents. Its main component is an optimistic optimization
algorithm used to find the control actions, which works by sampling a black-box model of the agent, and can
therefore be applied without changes to a large class of nonlinear dynamics. An analysis of representative examples
clarified the meaning of the assumptions, showed that in certain problems the optimization is easy to solve, and was
complemented by simulations.

The method works in increments of a small number K of steps, which is its main limitation; a natural extension to
large or unknown K is to apply long-horizon optimistic planning methods [18,13, Ch. 22]. Future work also includes
extending the approach, by exploiting similar analysis techniques, to other open problems in nonlinear consensus,
e.g. maintaining connectivity with limited communication range and dealing with perturbations such as noise, time
delays or packet dropouts.
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