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Automatic Detection of the Number of

Raypaths in a Shallow-Water Waveguide

Longyu Jiang and Jérôme I. Mars Member, IEEE

Abstract

Correct identification and tracking of stable raypaths are critical for shallow-water acoustic tomog-

raphy. According, separating raypaths using high resolution methods is presented to improve resolution

ability based on the prior knowledge of the number of raypaths. It is clear that the precise knowledge

of the number of raypaths largely determines the separation performance. Therefore, a noise -whitening

exponential fitting test (NWEFT) using short-length samples is proposed in this paper to automatically

detect the number of raypaths in a shallow-water waveguide. Two information theoretic criteria are

introduced as comparative methods. Their performances are tested with simulation data and real data

obtained at small scale. The experimental results show that the noise-whitening exponential fitting

test can provide satisfactory detection compared to the two classic information theoretic criteria —

the Akaike information criterion (AIC) and the minimum description length (MDL). Referring to the

performance of AIC and MDL, MDL is asymptotically consistent while AIC overestimates even if

analyzed asymptotically.

Index Terms

Array signal processing, Akaike information criterion (AIC), minimum description length (MDL),

noise whitening exponential fitting test (NWEFT), shallow-water tomography.

I. INTRODUCTION

Shallow water refers to the region from the end of the surf zone out to the continental shelf

break. It is an environment differing from deep water. The principal motivation of shallow-water

research comes from the significant contributions to naval defense issues, to biology, to geology,
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and to physical oceanography. Moreover, easier measurements of the environment parameters

at smaller scale are achieved as seen for bathymetry and the sound-speed fluctuations. Simpler

array deployments are also merits of shallow water due to the shorter array lengths. On the other

hand, acoustic tomography is explored to image the sound-speed variations of the ocean interior.

It was first introduced as a remote-sensing technique in deep water using low-frequency sound

for the large-scale of the ocean [1]. However, acoustic tomography in shallow-water has been

paid more attention in recent studies [2] [3] [4] [5] [6] for the motivation and merits introduced

before.

Specifically, a briefing of ocean acoustic tomography process is described as: the broad acoustic

signals are primarily emitted by a point source. Then, transmitting broad band pulses in the ocean

lead to a set of impulsive arrivals at the receiver which characterize the impulse responses of the

sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy

traveling along geometric raypaths. Acoustic propagation with higher frequencies in shallow

water can be considered as parallel propagation in deep water due to wavelength scaling. A

common way to proceed is to take advantage of the multi-path properties of the wavefield. Each

raypath can provide information on the variation of the sound distribution. Nevertheless, multi-

path propagation not only provides more information but it also produces interferences between

raypaths. Furthermore, it is not possible to obtain satisfying tomography results if the number

of separated raypaths is too small. Thus, ray extraction which refers to the need that the sound

pulse corresponding to each raypath to be parted is defined as the forward problem of the OAT.

There are numerous approaches to source localization and geo-acoustic inversion as well as

acoustic tomography relies on accurate raypath extraction in underwater acoustics. For instance,

a geo-acoustic inversion method was recently reported in [7]. This method estimates range-

dependent geo-acoustic properties by using the relative travel-time and magnitude measurements

of the most significant raypaths. To improve the efficiency of the inversion process, automatic

identification of signal raypaths was developed [7]. A demonstration of these algorithms is

given in [8] with broad-band data from a real experiment during the Shallow Water 2006

experiments. Concerning source localization, in [9] and [10], a Gibbs sampling-maximum a-

posteriori estimator is presented to estimate time delays and amplitudes of arrivals. Bypassing

computationally demanding analysis, Gibbs sampling is proposed as an efficient means for

estimating the necessary posterior probability distributions.
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To extract more raypaths in the context of ocean acoustic tomography, beamforming has been

considered in a point to array configuration. Although benefits of using beamforming in such

configuration have been reported in [1], its major drawback is the limited resolving ability. To

improve the resolution of beamforming, a novel configuration composed of a vertical array of

sources and a vertical array of receivers (i. e. an array to array configuration) was proposed in

[3] [4]. The source array provides the emitted angle as an additional discrimination parameter to

separate more raypaths. However, this is still confronted with the disadvantage of low resolution

performance. As a first step of improvement, a smoothing-MUSICAL (MUSIC Active Large-

band) method which is a combination of MUSICAL and spatial-frequency smoothing has been

developed for extracting observations in the context of ocean acoustic tomography [11]. It

turns out that smoothing-MUSICAL achieves better separation and stronger robustness than

beamforming; nevertheless, as one of subspace-based methods, the separation using smoothing-

MUSICAL also requires the correct prior knowledge of the number of rayspaths. Poor selection

of the number of rayspaths would lead to hampered separation.

To determine the subspace dimension, two commonly suggested approaches are the Akaike

information criterion (AIC) and the minimum description length (MDL) [12]. In [13] and [14],

MDL has been obtained based on coding arguments and the minimum description length (MDL)

principle while in [15] and [16], the same rule is derived in a Bayesian framework. Both of AIC

and MDL consist of minimizing the Kullback-Leibler discrepancy between the probability density

function of the data and the probability density function of the model. With ideal assumptions of

ergodic Gaussian random processes, the MDL criterion is shown to be asymptotically consistent,

whereas the AIC tends to overestimate the order of the model. In contrast, these ideal assumptions

may not be fulfilled in practice and several factors can result in the smallest eigenvalues being

dispersed (e. g., reduction in the number of samples or low SNR). Both the AIC and the MDL

tend to overestimate or underestimate the order of the model. For the analysis of the performance

and evaluation of the probability of over or under estimation of the AIC and MDL, theoretical

and simulation results have been presented [17] [18]. In addition, MDL-based processor which

exploits an order statistics approach in the existing solution has been constructed by Fishler and

Messer [19]. This new processor improved the performance at the price of greater complexity.

Moreover, Valaee and Kabal [20] proposed a novel information theoretic algorithm to estimate

the number of signals for coherent signals in array processing. Differing from the MDL, it defined
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the predictive description length (PDL) criterion as the length of a predictive code for the set of

observations. The PDL criterion is computed for the candidate models and is minimized over all

models to select the best model and to determine the number of coherent as well as noncoherent

signals. The simulation results show that the performance of the PDL algorithm is better than

that of the MDL. Practically, a Bayesian information criterion which is needed to sufficiently

fit the data while satisfying parsimony to avoid overparametrization is exploited to decide on

the number of sediment layers in the background of performing inversion of seabed reflection

data. [21]. Two alternative Bayesian methods were also proposed by Djuric [22] [23]. In [23],

maximum a posterior (MAP) rules that has the similar forms as AIC and MDL are developed for

different families of competing models based on their inference that the penalty term has to vary

in the model structure and type of model parameters. By considering the penalty variation which

is in type of model parameters, a model selection criterion is derived by weighting penalties

associated with the amplitude and phase parameters differently than the one attached to the

frequencies in [22].

Another group of methods is the likelihood ratio test [24] [25] [26], which is performed

by direct minimized the Kullback-Leibler of the probability density function of the model.

For example, the nested likelihood ratios [26] are shown to be asymptotically independent and

sufficient for estimating the number of signals and to implement resolutions of superimposed

signals into individual signals. It has been shown that a natural implementation of the information

criterion is a more straightforward way of implementing the generalized likelihood ratio test with

a specific threshold [27].

By first considering the observation limitations, a test for the determination of the dimension

of a signal subspace from short data records was explored by Shah and Tufts [28]. This consisted

of the interpretation of the sum of squares of singular values as energy in a particular subspace.

The constant false alarm rate thresholds were set up based on distributions derived from matrix

perturbation ideas. It is worth noting that a criterion based on eigenvalue ratios can be used to

look for an eigenvalue gap between the noise and the signal eigenvalues [18]. As a following

method, a test that exploits the exponential profile of the ordered noise eigenvalue, which was

originally introduced in [29], is developed to estimate the number of significant targets in time-

reversal imaging [30]. Also, for estimating the number of high-dimensional signals, a sample-

eigenvalue-based procedure using relatively few samples has been presented [31]. This could
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consistently detect the number of signals in white noise when the number of sensors was less

than the number of signals.

As a long duration of the received signals in the context of ocean acoustic tomography is not

available, an exponential fitting test (EFT) using short-length samples is proposed to determine

the number of raypaths in the following part, which would be considered robust and acceptable.

We define short-length samples as the concept that the number of samples is equal to the number

of sensors.

This paper is organized as follows: In Section II, we state the problem of detecting the number

of ray paths. Then, two information theoretic criteria are introduced as comparative methods in

the Part A of Section III. The EFT is specifically developed in the Part B of Section III. We show

the results of a simulation to illustrate its performance in Section IV. Furthermore, the proposed

test is applied to real data in Section V, which was obtained in a small-scale environment.

Meanwhile, a whitening noise process is used as a preprocessing step because of considering

the existence of colored noise. Section VII provides the conclusion and the future direction of

our studies.

II. THE PROBLEM OF DETECTION OF THE NUMBER OF RAYPATHS

To analyze the problem of efficient detection of the number of raypaths, the suitable model

should be built first. In this paper, the model is built on an acoustic field composed of p raypaths

on a vertical array of M sensors (p < M ). The temporal signal received on the sensors is

modeled as:

x(t) = y(t) + n(t) = Ae(t) + n(t) =
p∑

j=1

a(θj)e(t) + n(t) (1)

With:

• x(t): a M×1 observation vector. The ith component is the received signal on the ith sensor.

• y(t): the noiseless observation vector of size M×1, which spans the signal space generated

by the steering vectors.

• n(t): additive white Gaussian noise of size M × 1 with distribution N (0, σ2I), which is

assumed not to be correlated with the signals.

• A: the matrix of the p steering vectors. Each steering vector a(θj) for the j th raypath is

generally characterized by the parameters of the arrival angles θj .
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• e(t): the emitted signal.

Based on (1), the observation covariance matrix Rx is written as:

Rx = E[x(t)xH(t)] = Ry +Rn = AReA
H + σ2I (2)

With

• Ry is the covariance matrix of y(t).

• Rn is the noise covariance matrix.

• Re is the covariance matrix of e(t), and H denotes the conjugate transpose.

The matrix A is assumed to be of full column rank, and Re is nonsingular. The rank of Ry

equals the number of raypaths p. That is, there exists p nonzero eigenvalues which correspond

to the raypaths. In the same way, the smallest M − p eigenvalues of Ry are equal to zero.

Therefore, if the eigenvalues of Rx are arranged in descending order as λ1 ≥ λ2 · · · ≥ λp, the

value of the smallest p− q eigenvalues which correspond to the noise is:

λp+1 = λp+2 = · · · = λM = σ2 (3)

Hence, it is not difficult to determine p from the multiplicity of the smallest eigenvalue of

Rx. However, in practice, Rx is unknown. It is generally estimated by the sample covariance

matrix:

R̂x =
1

N

N∑

t=1

x(t)xH(t) (4)

Where N is the number of samples. As R̂x is computed from a finite number of samples, the

smallest p− q eigenvalues are no longer equal to each other and σ2 with probability one. Thus,

in most cases the number of raypaths can not be determined directly by the above method.

III. TECHNIQUES FOR DETECTION OF THE NUMBER OF RAYPATHS

A. Information theoretic criteria

As noted in Section I, several methods have been studied for the correct detection of the number

of signals. It is known that two commonly suggested methods, an information theoretic criterion

suggested by Akaike (AIC) [13] [32], and the minimum description length (MDL) proposed by

Schwartz [33] and Rissanen [34], can be used for model selection. Wax and Kailath [12] take

the detection problem as a model selection problem and propose the following formulas for the

detection of the number of signals received by a sensor array:
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1) The Akaike information criterion:

p̂ = arg mink∈0,1,...,M−1

{
−log( g(k)

a(k)
)N(M−k) + k(2M − k)

}
(5)

The first term in the brackets is computed from the log-likelihood of the maximum likelihood

estimator of the parameters of the model. The second term is a bias correction term to make the

AIC an unbiased estimate of the mean Kulback-Liebler distance between the modeled density

and the estimated density. a(k) and g(k) are the geometric mean and arithmetic mean of the

smallest M − k eigenvalues respectively, which are denoted by (6) and (7). k is the number of

free parameters that specifies a family of probability density functions, and (λ̂1 ≥ λ̂2 · · · ≥ λ̂M)

are eigenvalues generated by sample covariance matrix R̂x in (4). The number of raypaths p̂ can

be estimated as the value of k ∈ 0, 1, ..., p− 1, for which the AIC is minimized.

a(k) =
1

M − k

M∑

i=k+1

λ̂i (6)

g(k) = (
M∏

i=k+1

λ̂i)
1

M−k (7)

2) The minimum description length: Although Schwartz [33] and Rissanen [34] solved the

order selection problem respectively based on Bayesian and information theoretic arguments, it

is highlighted that in the large-sample limit both methods get the same formulation. (8) is quite

similar to the formulation of the AIC except that the correction term is multiplied by 1
2
logN .

MDL is also performed by a recursive process for k ∈ 0, 1, ..., p− 1. The k which leads to the

minimum MDL value is taken as the estimated number of raypaths p.

p̂ = arg mink∈0,1,...,M−1

{
−log( g(k)

a(k)
)N(M−k) + 1

2
k(2M − k)logN

}
(8)

With regard to the performance of these two methods, the MDL criterion is asymptotically

consistent, whereas the AIC tends to overestimate [12]. Actually, they have the same problem

as we estimate the sample covariance matrix R̂x directly: the number of samples is finite in

practice.
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B. The exponential fitting test

It is necessary to propose a method that considers the finite number of samples in view of

practical limitations. For this reason, a test using an analytic expression of the ordered noise

eigenvalues profiles is introduced in this section.

1) Eigenvalue profile under noise only assumption: To establish the mean profile of the

decreasing noise eigenvalues, we need to calculate the expectation of each eigenvalue. For the

zero-mean white Gaussian noise with power σ2, the sample covariance matrix has a Wishart

distribution with N degrees of freedom. It is a multivariate generalization of χ2 distributions and

it depends on M , N , and σ2. In this case, the joint probability of the ordered eigenvalues shown

by (9) and the distributions of each eigenvalue are given in [35] [36] as zonal polynomials, which

are a multivariate symmetric homogeneous polynomials, and a fundamental tool in statistics and

multivariate analysis [15] [16] as well as in random matrix theory [14]. However, the calculation

of the expectation of each eigenvalue from the joint probability shown by (9) and the distribution

of each eigenvalue using zonal polynomials is computationally unwieldy and gives intractable

results for the moment.

ρ(λ1, . . . , λM) = α exp

(
−

1

2σ2

M∑

i=1

λi

)(
M∏

i=1

λi

) 1

2
(N−M−1)∏

i>j

(λj − λi) (9)

As a result, we use an alternative approach to approximate the mean profile of ordered noise

eigenvalue with the help of the first and second order moments of the eigenvalues.

From simulation results, it turns out that an exponential law is a good approximation to the

mean profile of ordered noise eigenvalues. One result as the illustration for M = 15 shown in

Figure. 1. which shows eight realizations for the cases of N = 15 and N = 1025 respectively.

Mathematically, the exponential law can be defined as (10) with the first noise eigenvalue λ1

and the exponential function r.

λi = λ1r
i−1
M,N , i ∈ 2, . . . M (10)

To determine λ1 and r, we consider the first and second moments of the trace of the error of

the noise covariance matrix Ψ, where Ψ is defined by (11).

Ψ = R̂n −Rn = R̂n − σ2I (11)
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Given that E(tr[Ψij]) = 0, we obtain (12) :

Mσ2 =
M∑

i=1

λi (12)

According to the definition of the error covariance matrix, the element Ψij of Ψ is expressed

as:

Ψij =
1

N

N∑

i=1

ni(t)n
∗

j(t)− σ2δij (13)

Consequently, E[‖Ψij‖
2] can be computed as follows:

E
[
‖Ψij‖

2
]
= E



∥∥∥∥∥
1

N

N∑

i=1

ni(t)n
∗

j(t)− σ2δij

∥∥∥∥∥

2



= E



∥∥∥∥∥
1

N

N∑

i=1

ni(t)n
∗

j(t)

∥∥∥∥∥

2

+ E

[∥∥∥σ2δij
∥∥∥
2
]

+E

[
−2ℜ

{
σ2δij

1

N

N∑

i=1

ni(t)n
∗

j(t)

}]
(14)

Where ℜ represents the real part of a complex value. Each term in (14) can be computed

individually:

E



∥∥∥∥∥
1

N

N∑

i=1

ni(t)n
∗

j(t)

∥∥∥∥∥

2

 =

1

N2
Nσ4 =

1

N
σ4

E
[∥∥∥σ2δij

∥∥∥
2
]
= σ4δij

E

[
−2ℜ

{
σ2δij

1

N

N∑

i=1

ni(t)n
∗

j(t)

}]

= −
2σ2δij
N

E

[
ℜ

{
N∑

i=1

ni(t)n
∗

j(t)

}]

= −
2σ2δij
N

(
Nσ2

2

)
= −σ4δij

Finally,

E
[
‖Ψij‖

2
]
=

1

N
σ4 + σ4δij − σ4δij =

1

N
σ4 (15)

Since the trace of a matrix remains unchanged when the base changes, it follows that:

∑

i,j

E
{
‖Ψij‖

2
}
= E(tr[R̂n −Rn]

2) = M2σ
4

N
(16)
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and using an approximation,

M2σ
4

N
=

M∑

i=1

(λi − σ2)2 (17)

With the combination of (10) and (12), we obtain:

Mσ2 =
M∑

i=1

λ1r
i−1 (18)

λ1 = MJMσ2 (19)

where:

JM =
1− r

1− rM
(20)

and it can obtain that:

(λi − σ2) = (MJri−1 − 1)σ2 (21)

By combining (21) with (17), the decay rate r is obtained from the following equation:

M +N

MN
=

(1− r)(1 + rM)

(1− rM)(1 + r)
(22)

In (10), r should be an exponential function. In our study, we assume that r is equal to e−2a

based on two reasons. One reason is that the shape of e−2a is similar to the profile of ordered

noise of assumption of short length (Fig. 1. a). The other reason is that it is easier to acquire

the value of a through (21) thanks to the even index. By substituting r = e−2a, (22) becomes:

Mtanh(a)− tanh(a)

Mtanh(Ma)
=

1

N
(23)

where tanh is the hyperbolic tangent function, given by:

tanh(a) =
sinh (a)

cosh (a)
=

e2a − 1

e2a + 1
(24)

The 4th order Taylor series expression of tanh(a) is written as follows,

tanh(a) = a−
a3

3
+

2a5

15
(25)

Inserting (25) in (23), the following biquadratic equation is produced:
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σ4 −
15

M2 + 2
a2 +

45M2

N(M2 + 1)(M2 + 2)
= 0 (26)

The positive solution of (26) is given by:

a(M,N) =

√√√√√ 15

2(M2 + 2)


1−

√√√√4M(M2 + 2)

5N(M2 − 1)


 (27)

2) Principle of the recursive exponential fitting test: With the assumption of p decorrelated

or partly correlated raypaths, the recursive EFT is mainly based on the comparison between the

profile of ordered eigenvalues of the observation covariance matrix and the theoretical profile of

the ordered noise eigenvalues. A break point occurs when signal eigenvalue appears. The general

test strategy is demonstrated by Figure 2. , where two eigenvalues corresponding to raypaths are

contained in the profile of the observable eigenvalues. When the eigenvalue corresponding to a

raypath appears, a gap makes the profile of recorded eigenvalue break from the EFT profile.

The recursive test is started from P = 1. Assuming the smallest P eigenvalues are noise

eigenvalues, the previous eigenvalue λM−P is tested to determine if it corresponds to noise or

to a raypath. For each value of P , the test is performed by two steps:

In the first step, we predict the value of λM−P according to the exponential model, as in (19):

λ̂M−P = (P + 1)JP+1σ̂
2 (28)

where:

JP+1 =
1− rP+1

1− rP+1
P+1

(29)

σ̂2 =
1

P + 1

P∑

i=0

λi (30)

The prediction equation is obtained by combination of (28), (29) and (30):

λ̂M−P = JP+1

P∑

i=0

λM−i (31)

rP+1 is calculated by first getting a using (27) and then using the relationship r = e−2a, where

(P + 1) should be used instead of M .

In the second step, two hypotheses are defined as follows:

• HP+1: λM−P is an eigenvalue corresponding to noise.
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• HP+1: λM−P is an eigenvalue corresponding to a raypath.

To decide between these two hypotheses, the absolute errors of λM−P and λ̂M−P are calculated

and then compared with a threshold ηP . That is:

HP+1 :
∣∣∣λM−P − λ̂M−P

∣∣∣ ≤ ηP (32)

HP+1 :
∣∣∣λM−P − λ̂M−P

∣∣∣ > ηP (33)

If the absolute error of a certain value P is smaller than the related threshold, P is reset to

P +1 and the test is repeated until P = M − 1; otherwise, the recursive process is stopped with

the detection result of p = M − P . Finally, we use the empirical distribution of the noise-only

eigenvalue profile to find a suitable threshold. For instance, 10, 000 realizations are generated for

N = 15 samples as well as an array of M = 15 sensors. Merely eight realizations are displayed

for a clear explanation in Figure 1a. The mean profile of the ordered noise eigenvalue can be

computed and it is represented by the middle curve. For each eigen index, there exist the largest

noise eigenvalue and the smallest one. Half of the distance between them can be taken as the

threshold η.
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Fig. 1. Profile of ordered noise eigenvalues for eight realizations (a) Profile of ordered noise eigenvalues estimated by 15

samples. (b) Profile of ordered noise eigenvalues estimated by 1025 samples.
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Fig. 2. Profiles of eigenvalue with two eigenvalues corresponding to raypaths. When the eigenvalue corresponding to a raypath

appears, there is a break exists between the profile of EFT and the profile of recorded eigenvalues.

IV. SIMULATIONS

In this section, we illustrate the performance of EFT with simulation data. The simulation

is composed of two groups of experiments. In the first group, we test the general performance

of EFT for various SNRs. In the second group, the performance of EFT is addressed when the

raypaths are very close.

A. Performance for various signal-to-noise ratios

For various SNRs and different number of samples, six experiments are carried out in the

first group of experiments. In these experiments, five coherent raypaths arrive on 15 sensors. As

the noise is added to the synthetic received signals, they could be considered as being partly

correlated. As an illustration, two figures (Fig. 3 and Fig. 4) respectively plot the received raypaths

and ordered eigenvalue profile for a specific SNR and number of samples. These eigenvalues

are normalized by the largest one in each case. As comparative methods, the AIC and the MDL

are also applied to these experiments. Considering the asymptotically consistent property of the

AIC and the MDL, we chose N = 1025, which is much larger than the number of sensors. In

this case, the AIC and the MDL still overestimate the number of raypaths. The possibility of

overestimation or underestimation mainly depends on the distribution of the dispersed eigenvalue.

This obeys the qualitative results in [18]. For a fixed number of samples, over-modeling becomes
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more likely for the increasing of the noise eigenvalue dispersion. For a fixed dispersion, over-

modeling becomes more likely for increasing the number of data samples. Under-modeling might

happen in cases where the signal eigenvalues are not well separated from the noise eigenvalues

and the noise eigenvalues are clustered sufficiently closely. The results are shown in Table 1.

The detection results for the case of N = 15 imply that the EFT can detect relatively correctly

for moderate or high SNRs. For the example of SNR= 5 dB, because of the correlation between

raypaths and noise, EFT tends to overestimate. Obviously, the AIC and MDL cannot correctly

detect the number of raypaths for short-length samples on account of asymptotically consistent

performance.

SNR (dB) AIC (N = 1025) MDL (N = 1025) EFT (N = 15)

20 14 14 5

10 14 14 5

5 14 12 11

TABLE I

NUMBER OF RAYPATHS DETECTED BY THE AIC, MDL AND EFT IN THE FIRST GROUP OF EXPERIMENTS (THE REAL

NUMBER OF RAYPATHS p = 5)

B. Performance for close raypaths

To fully illustrate the performance of our algorithm when raypaths arrive more closely together,

two experiments (SNR= 20 dB) for N = 1025 and N = 15 are performed. In these experiments,

the difference is not only that the first two raypaths are closer than the examples in the first

group of experiments but also the third raypath crosses the first two because of the negative

arrival angle (shown in Fig.5a.). The detection results are shown in Table II. EFT still correctly

detects while the AIC and MDL overestimate caused by the same reason in the discussion in

Part A of Section IV. Figure. 5b, c illustrates the profiles of the ordered eigenvalue for N = 1025

and N = 15, respectively.
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Fig. 3. Profile of the ordered eigenvalues in the first group of experiments when SNR = 20 dB (a) The received signals on 15

sensors. (b) Profile of ordered eigenvalues estimated by 1025 samples. (c) Detection with EFT (the first group of experiments

when SNR = 20 dB)

SNR (dB) AIC (N = 1025) MDL (N = 1025) EFT (N = 15)

20 14 14 5

TABLE II

NUMBER OF RAYPATHS DETECTED BY THE AIC, MDL AND EFT IN THE SECOND GROUP OF EXPERIMENTS (THE REAL

NUMBER OF RAYPATHS p = 5)

V. THE SMALL-SCALE EXPERIMENT

A. the noise-whitening process

As noted before, EFT is based on the assumption of white Gaussion noise. Conversely, in a

practical environment there is colored noise. The interference of colored noise can be reduced
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Fig. 4. Profile of the ordered eigenvalues in the first group of experiments when SNR = 5 dB (a) The received signals on 15

sensors. (b) Profile of the ordered eigenvalues estimated by 1025 samples. (c) Detection with EFT (the first group of experiments

when SNR = 5 dB)
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Fig. 5. Profile of the ordered eigenvalues in the second group of experiments when SNR = 20 dB (a) The received signals

on 15 sensors. (b) Profile of the ordered eigenvalues estimated by 1025 samples. (c) Detection with EFT (the second group of

experiments when SNR = 20 dB)
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if a noise-whitening process is included. Several methods can be used to estimate the noise

covariance matrix. Here, we only discuss the residual analysis method proposed by Roger [37].

The noise estimation is made simply through the inverse of its covariance matrix, which is first

used to modify the principal components transform with noise adjustment [37] [38]. Then, the

noise subspace projection based on the residual method is developed to estimate the number

of hidden nodes for a radial basis function neural network [39] and to determinate the intrinsic

dimensionality of hyperspectral imagery [40].

Exploiting the signal model in Section II, the observation covariance matrix Rx is decomposed

as:

Rx = DRERDR (34)

where DR is a diagonal matrix of standard deviations and that is given by DR = diag {σ1, σ2, . . . , σM}

with {σ2
l }

M
m=l being diagonal elements of Rx, and ER, which is represented by (35), has 1 on

its principal diagonal and its other terms are the correlation coefficients between sensors.

ER =




1 ρ12 ρ13 · · · ρ1M

ρ21 1 ρ23 · · · ρ2M

ρ31 ρ32
. . .

. . .
...

...
...

. . .
. . . ρ(M−1)M

ρM1 ρM2 · · · ρM(M−1) 1




(35)

Specifically, ρp,q being the correlation coefficient at the (p, q)th entry of Rx and p 6= q.

In analogy with (34), the similar decomposition of the inverse matrix of Rx can be obtained

as follows:

R−1
x = DR−1ER−1DR−1 (36)

where DR−1 is a diagonal matrix given by DR−1 = diag {ς1, ς2, · · · , ςM} with {ς2l }
M
m=1 being
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the values in the diagonal of R−1
x and

ER−1 =




1 ξ12 ξ13 · · · ξ1M

ξ21 1 ξ23 · · · ξ2M

ξ31 ξ32
. . .

. . .
...

...
...

. . .
. . . ξ(M−1)M

ξM1 ξM2 · · · ξM(M−1) 1




(37)

with ξp,q being the correlation coefficient at the (p, q)th entry of R−1
x and p 6= q. Referring to

statistical theory and multiple linear regression [41] [42], the degree of correlation of the received

signal of the mth sensor on the other M − 1 sensor can be described by the multiple correlation

coefficient r2M−m. This linear relation explains the r2M−m proportion of received signal is the

variance corresponding to raypaths. The residual variance is σ2
m(1− r2M−m). Further, it turns out

that [41] [42] the ςm is the reciprocal of the residual standard deviation. Thus, (38) is obtained:

ςm = σ−1
m (1− r2M−m)

−
1

2 =
1√

σ2
m(1− r2M−m)

(38)

The major advantage of using ςm over σm is that ςm removes its correlation on other ςk for k 6=

m. Therefore, the noise covariance matrix Rn can be estimated by: Rn = diag {1/ς21 , 1/ς
2
2 , . . . , 1/ς

2
M}.

Based on the above discussion, the sample covariance matrix Rx can be whitened using the

estimated noise covariance Rn:

Rw = R−1/2
n RxR

−1/2
n (39)

B. The small-scale experiment

A small-scale experiment is discussed in this part, so that we can further illustrate the

performance of our methods. The experimental setup is illustrated in Figure. 6. The principle

on which these experiments are based is as follows: if the frequency of signals is multiplied

by a factor and the spatial distances are divided by the same factor, the physical phenomena

occurring in the environment remain the same. This promotes a reduced cost and provides a

totally controlled experiment. The experiments presented here were performed at the ISTerre

(Institut des Sciences de la Terre) in an ultrasonic tank which was developed by P. Roux. In
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this tank, a waveguide of 5-10 m in depth and 1.0-1.5 m in length was constructed. A steel bar

acts as the bottom, which is very reflective and perfectly flat. In particular, a sensor is set at

0.0263 m in depth range as the source. A vertical array composed of 64 sensors is used as a

receiver. The depth of the first receiver is 3.55× 10−3m. The interval of two adjacent receivers

is 0.75×10−3m. The distance between the source and the reference receiver is 1.1437 m and the

source signal has 1 MHz frequency bandwidth with a central frequency of 1.2 MHz. Figure. 7a

shows that the first 5, 000 points in the time domain of received signals with sampling frequency

Fe = 50MHz.

Waveguide

Acquisition system
LECOEURTank

array
Source−Receive

Fig. 6. Experimental setup of small-scale experiment at the ISTerre

To satisfy the criterion of short-length samples, 64 samples of a recorded signal were chosen

for analysis. To evaluate the effectiveness of EFT and NWEFT, the separation result of the

beamforming is provided in Figure. 7b. It matches by the theoretical locations denoted in the

form of the crosses. The eigenvalue profile is shown by Figure. 7c. EFT detects 6 raypaths.

Meanwhile, the detection result of NWEFT is 6. Compared to the reference value 7 in Fig. 7

(b), these methods can be taken as being acceptable. Based on these experiments, we can see that

the overestimation caused by the correlation between the raypaths and noise, especially when

the SNR is relatively low. Underestimation is caused by the correlations between the raypaths.
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Fig. 7. (a) The received signals on 64 sensors for 5000 samples. (b) Separation result of beamforming with theoretical locations

for 64 samples. This provides a reference value for checking the detection results of the proposed method. (c) Detection with

EFT (real data obtained from the small-scale experiment).

we have applied AIC and MDL using 760 samples on the same set of real data. Their detection

results are both equal to 63.

VI. CONCLUSIONS

In this paper, a NWEFT method is proposed to automatically detect the number of raypaths in

a shallow-water waveguide. As the AIC and the MDL are confined by the duration of the received

signal, they fail to correctly detect the number of raypaths. In contrast, the proposed method

can determine the number of raypaths using short-length samples. Due to the noise whitening
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process, this can be applied to the real application environment. In future, the detection method

to consider quantitatively the influence of correlations between raypaths as well as correlations

between raypaths and noise, should be studied further. This method can also be extended to

medium-length samples.
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