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Abstract

Gaussian mixture filters model the evolution of the probability density function, inter alia, when the noise on
the linear measurements is a gaussian mixture. Such a model is relevant when the measurements are subject to
disturbances whose statistcs may vary abruptly, like the GNSS signals in avionics, which are subject to reflections,
scintillation, multipath... The naturally resulting probability density of the hidden state given the observations up
to the current time is also a Gaussian mixture, and thus many computations of interest can be done by using well
known numerical routines. In particular, it enables to use an algorithm which aims at estimating a position such
as its associated protection levels are the smallest (such as the radius of the confidence ball is the smallest). Also,
since the number of components of the gaussian mixture grows exponentially with time, we use an algorithm to
approximate the probability density at each step by a fixed amount of gaussians. This algorithm iteratively merges
the components which result in the smallest changes according to a Kullback-Leibler based metric. Finally, we
assess this algorithm that approximates the optimal filter by comparing the empirical integrity (obtained through
simulations) to the targeted integrity. We also compare this algorithm with a least squares state of the art estimator
by measuring the ratio of their protection levels.

1 Introduction
Gaussian mixture filters (GMF) model the evolution of the probability density function (PDF) when the noise
on the linear measurements is a gaussian mixture (GM). This model appears, inter alia, when the parameters of
the gaussian measurements depend on discrete hidden state variables [Pervan et al., 1998, Pesonen, 2011]. For our
GNSS/INS hybridization, the measurements use GPS/Galileo pseudo ranges, GPS/Galileo carrier phase, gyrometer
and accelerometer increments. The hidden state discrete variables represent the presence of multipaths, scintillation,
ionospheric perturbations. The model we use is revelant when the GNSS signals are subject to disturbances whose
statistics may vary abruptly (but not on the same way for the different hidden states). GMF filtering equations
handle this case under a bayesian framework and have a theoretical formula which can be expressed with a finite
number of usual numerical functions. The drawback is that these equations aren’t usable under their exact form
since the number of components of the GM grows exponentially with time. Various methods have been developed
to reduce the number of components [Runnalls, 2007, Attias, 2000, Bruneau et al., 2010, Pesonen and Piche, 2012].
We adapt the algorithm in [Runnalls, 2007], that iteratively merges the pairs of components of the GM which lead to
the smallest changes of the probability density - according to a Kullback-Liebler divergence based metric. But in our
case, since the filtering algorithm simultaneously keeps track of several GM - one GM conditionally to each hidden
state - we adapt it so as to limit the global number of components instead of limiting the number of components per
hidden state. As a result, the allocation of the global number of components is done in function of the complexities of
each GM associated to a hidden state. To this end, the allocation is done iteratively, and at each step the components
to merge are chosen in the GM for the hidden state in which the minimum change can be achieved. The combination
of both the GMF filter and this modified version of algorithm [Runnalls, 2007] yields an approximation of the PDF
of the true position given the measurements at each time step, but doesn’t yield any estimation of the position.

In avionics the criteria of interest are the protection levels, which are describing the dimensions of a cylinder
centered on the estimated position and ensuring to contain the true position with a tageted probability. Thus,
instead of using the mean of this PDF as a position estimator, which is well known to minimize the average quadratic
error, we use the algorithm [Sendorek et al., 2013] which instead aims at minimizing the size of the protection levels
while ensuring a given integrity level. The algorithm in [Sendorek et al., 2013] takes the PDF of the true position as
input and yields an estimate of the position, without modifying the PDF. This estimate is thus such as the associated
protection levels are minimized. Its purpose is to allow more levels of operation by having protection levels lower
than the alert limit fixed by the requirements [DO229, 2006].

The algorithm in [Sendorek et al., 2013] deals in general with a N-dimensional Gaussian mixture and is under
the form of a steepest descent which optimizes the position of the center of a ball such as its radius decreases
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at each step but still ensures that the sphere centered on the optimized position contains the true position with
the targeted probability. After convergence, the obtained solution is thus locally optimal, however, the results in
[Sendorek et al., 2013] suggest that the solution is globally optimal. The position yield by this algorithm is computed
as being the center of the smallest ball containing a targeted probability to be obtained by the algorithm. Finally,
the presented GMF algorithm approximates a theoretically optimal bayesian algorithm which would keep all the
components of the GM.

To assess its performance, we measure the empirical integrity and compare it to the targeted integrity. Previous
works on GMF defined the estimate of the position as the mean of the gaussian mixture [Pesonen, 2011], which has a
closed form expression in our case. We also assess our algorithm by measuring the improvement in terms of protection
levels achieved with the estimator defined by algorithm [Sendorek et al., 2013] compared to the mean as defined in
[Pesonen, 2011] in presence of disturbances (multipath,...).

The simulations evaluate the performance of our algorithm in function of the global number of components, of
the ratios between the covariances of the noises and the probability of occurence of the outages. The evaluations
are performed by simulating a GNSS/INS hybridization with the associated observation and propagation matrices,
where the discrete hidden states modelize the probability of a multipath and where the covariance and the mean of
the noise for each hidden state modelize the possible threats.

This paper starts by presenting the protection levels in section 2, which are the criteria of integrity of the estimators
in avionics. Then, in section 3 we introduce the model of propagation and observation of the state vector. Section 4
presents the filtering equations. We describe the principle of the algorithm used to reduce the number of components
in the GM in section 5. Section 6 briefly introduces the mecanization equations used to make our simulations, and
further describes some parameters of the model. The experimental protocol and evaluation results will be found in 7

2 Protection Levels
A common measure of integrity of a position estimator X̂ are the protection levels. The protection levels are
dimensions describing a cylinder in the 3-dimensional space that ensures to contain the estimated position with given
probabilities, for any possible disturbance. However in our case, for the purpose of our study, we restrict the possible
disturbances to be the one described by the statistical model from section 3. The cylinder is tangent to the local
WGS84 ECEF [ce ne serait pas plutôt NED ?] horizontal plane and is described by the horizontal protection level
(HPL or horizontal protection radius) and the vertical protection level (VPL or vertical protection radius). The VPL
is a value such that the difference between the altitudes of the true position and the estimated position is smaller
than the VPL with a probability of 1 − αV

req. Similarly, the HPL is a value such that the true position’s horizontal
coordinates lie in a disc centered on the estimated position, of radius HPL and with a probability of 1− αH

req, where
αV

req and αH
req are values derived from the avionics’ requirements [DO229, 2006]. Our study focuses on the VPL for

which the equations in algorithm [Sendorek et al., 2013] can be computed without using the Monte-Carlo methods
but thanks to ordinary numerical routines and thus be used with a greater accuracy and speed. The VPL must satisfy
these constraints for any possible disturbance. Rigorously, if we call PV the projector on the vertical ECEF axis, the
VPL for a position estimator X̂ is a value of the radius r belonging to the set

R =
{
r ∈ R+,P

(
‖PV(X̂ −X)‖ ≤ r

)
≥ 1− αV

req

}
This definition of the protection levels is thus adapted to our context where all the possible disturbances are

supposed to be described by the model from section 3.

3 Model
Assume the propagation and observation model is given by

Xt+1 = Ft.Xt + Ut

Zt = Ht.Xt + EJt .BJt + Vt

with the difference, compared to the usual Gaussian model, that Jt is a hidden discrete variable indicating which
disturbance (multipath, scintillation, ionospheric perturbations) affects the observation, and where

• Xt is the continuous part of the state vector containing, among other values, the error on the position, inertial
measurements errors but also satellite noises (which have a Markovian behaviour). In the following we callXt the
continous part of the state vector (in contrast to Jt) which is a Gaussian process satisfying Xt+1 = Ft.Xt +Ut,
where Ft is a known linear matrix and Ut ∼ N (0, CU ), with a known covariance matrix. We call Qt the
associated transition kernel which satisfies Qt(xt+1|xt) = fXt+1|Xt(xt+1|xt).
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• Zt ∈ RNsat is the pseudo ranges vector at time t. It contains the GNSS measurements of the problem linearized
around a position close to the receiver.

• Ht is the (known) observation matrix at time t. This matrix is not assumed to be full rank. A multiplication
of Xt by this matrix has for effect to sum multiply the position errors of Xt by a geometry matrix and to add
the time correlated errors of Xt

Ht.Xt =
[
Gt 0 I

]
.

 position error components of Xt

other components of Xt

time correlated satellite’s noise of Xt


where Gt is the so called cosine matrix at time t (see [Kaplan and Hegarty, , Parkinson and Spilker, 1996]).

• Vt ∼ N (0, CV ). Vt is independent from Vt′ for t′ 6= t. It’s values will be described in section 6.

• As already mentionned Jt is a hidden discrete random variable. In the following we will call it the discrete
part of the state vector. To encompass a broader amount of cases, we assume that Jt follows a Markov chain
with the transition matrix q(jt+1|jt) = P(Jt+1 = jt+1|Jt = jt). In most of the cases this transition matrix
will be chosen close to identity, to express the fact that if the signal enters in a state (multipath, scintillation,
ionospheric perturbations), it has tendency to stay in this state for some amount of time. It’s value can be
derived from average time of staying in a state and from the frequency of switching from one state to another.
For the purpose of illustrating how our algorithm works, we will assume that Jt is a set containing the satellites
(which are indexed by integers in {1, ..., Nsat}) subject to reflections. This variable is modelled as a hidden
state variable because of its Markovian behaviour.

• EJt = (ei){i∈Jt} is a matrix formed by stacking the canonical line vectors ei = (0, ..., 0, 1, 0, ..., 0) for i ∈ Jt
being the number of the satellite in Jt. If Jt = ∅ then EJt = 0.

• BJt is a column vector which has for length the cardinality of Jt. We assume that in our case it follows δ0
when Jt = ∅ and otherwise it follows N (φJt , SJt). This law describes the behaviour of the signal when there is
a presence of multipath, scintillation, or ionospheric disturbance depending on the value of Jt.

4 Filtering Equations
Filtering equations associated to the model described in section 3 have a closed form expression (and their computation
can be done at each step thanks to a finite amount of calls to ordinary mathematical functions). In this section the
equations are derived from the well known filtering equations. For sake of readability, we denote by Yt = (Xt, Jt) the
whole hidden state vector. The filtering equations (see [Arulampalam et al., , Cappé et al., 2005]) are thus

f(yt+1|z0:t+1) ∝ f(zt+1|yt+1)

∫
f(yt+1|yt)f(yt|z0:t)dyt

Which is written modulo a muliplicative constant, that can be obtained by ensuring that f(yt+1|z0:t+1) sums
to 1 when summing on all possible values of yt+1. Note that

∫
f(yt+1|yt)f(yt|z0:t)dyt = f(yt+1|z0:t) is the proba-

bility density of the “propagated” hidden state vector. The update consists in the multiplication of this density by
f(zt+1|yt+1) (followed by a normalization, implicit here). By developping this equation in our case, since the states
of the pseudo-ranges (Jt)t and the continous state vector (Xt)t are mutually independent sequences, we get

f(xt+1, jt+1|z0:t+1) ∝ f(zt+1|xt+1, jt+1)
∑
jt∈J

∫
q(jt+1|jt).Q(xt+1|xt).f(xt, jt|z0:t).dxt

Assuming that f(x0|j0, z0) is a gaussian, with this model, it is easy to see that f(xt, jt|z0:t) is is a GM for each
t > 0 and for each value of jt ∈ J , thanks to the decomposition

f(xt|jt, z0:t) =
∑

j0:t−1∈J t
f(xt|z0:t, j0:t)f(j0:t|z0:t)

In this decomposition, the states j0:t are given, and f(xt|z0:t, j0:t) is a gaussian PDF, since the conditioning
implies that the transformations are linear. Note that it can be obtained thanks to the ordinary Kalman equations
[Pesonen and Piche, 2012] with the assumption that the initial state f(x0|j0, z0) is gaussian. Hence, since j0:t ∈ J t+1

is a discrete variable, f(xt, jt|z0:t) is a GM. This model fits into the definition of a Conditionally Gaussian Linear
State Space Model (CGLSSM) as described in [Cappé et al., 2005]. Although this formula is explanatory, it lacks of
a development that would allow a recursive implementation, therefore we will develop the filtering equations in the
next section.
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4.1 Propagation
We express the effect of the propagation of the continuous part of the state vector, Xt, thanks to the inertial
measurements, for any given value of jt. This value can be computed without exhibiting the expression of Q but only
by using the fact that the propagation sums up to a linear transform followed by the addition of a gaussian noise.

∫
Q(xt+1|xt).f(xt, jt|z0:t).dxt =

Ngauss(jt)∑
i=1

w(jt,i)N (xt;Ft.µ(jt,i), Ft.C(jt,i).F
T
t + CU )

The propagation of the whole state vector is obtained by taking in account the transitions between the discrete
states

f(xt+1, jt+1|z0:t) =
∑
jt∈J

q(jt+1|jt)
Ngauss(jt)∑

i=1

w(jt,i)N
(
xt;Ft.µ(jt,i), Ft.C(jt,i).F

T
t + CU

)
For each jt+1, this probability is thus expressed as a linear combination of probabilities under the form of a GM.

It is thus also a GM. We express it in a simpler way with generic notations as

f(xt+1, jt+1|z0:t) =

Ngauss(jt+1)∑
i=1

w(jt+1,i)N (xt+1;µ(jt+1,i), C(jt+1,i))

4.2 Observation term
The update is accounted by multiplying the propagated density by the likelihood of the propagated state

f(zt+1|xt+1, jt+1) = N (zt+1;Ht+1.xt+1 + Ejt+1
.φjt+1

, Ejt+1
.Sjt .E

T
jt+1

+ CV )

which can be rewritten as = γ. exp

{
−1

2
‖xt+1 −m‖2S

}
(1)

where γ = |Γ|
1
2

√
2π

dim(z) exp
{
− 1

2 ‖(I − P )(E − z)‖2Γ
}
, with Γ = (Ejt+1

.Sjt .E
T
jt+1

+ CV )−1 and P = H(Γ
1
2H)†Γ

1
2

which is the orthogonal projector on Im(H) related to the norm ‖.‖Γ (see appendix 9.1). The precision matrix is
S = HTΓH and the mean m = (Γ

1
2H)†Γ

1
2 (z −E). We denote by H = Ht+1, E = Ejt+1

.φjt+1
. The pseudo inversion

used here is the general pseudo inversion (for a system which is both overdetermined and underdetermined).

4.3 Update by the observation
First, note that if we denote by X̂ = (C−1 + S)−1(C−1µ+ Sm) we can rewrite

‖x− µ‖2C−1 + ‖x−m‖2S =
∥∥∥x− X̂∥∥∥2

(C−1+S)
−
∥∥∥X̂∥∥∥2

(C−1+S)
+ ‖µ‖2C−1 + ‖m‖2S

We can remark that S is only a positive semi definite matrix since Ht+1 is not a full rank matrix, but the sum
C−1 + S is an inversible matrix since C is positive definite as a covariance matrix. We can note the similarity with
Kalman filter’s updated state’s mean by noticing that

X̂ =(C−1 + S)−1(C−1µ+ Sm)

=µ− (C−1 + S)−1(C−1 + S)µ+ (C−1 + S)−1(C−1µ+ Sm)

=µ+ (C−1 + S)−1S(m− µ)

Finally we can express the pdf of the state vector given all the observation up to the current time

f(xt+1, jt+1|z0:t+1) ∝f(zt+1|xt+1, jt+1).f(xt+1, jt+1|z0:t)

∝γjt+1 .e
− 1

2‖xt+1−mjt+1‖
2

Sjt+1 .

Ngauss(jt+1)∑
i=1

w(jt+1,i)N (xt+1;µ(jt+1,i), C(jt+1,i))

∝
Ngauss(jt+1)∑

i=1

γjt+1 .w(jt+1,i)w
′
(jt+1,i)

|(C−1
(jt+1,i)

+ Sjt+1
)| 12

|C(jt+1,i)|
1
2

N
(
xt+1; X̂(jt+1,i), (C

−1
(jt+1,i)

+ Sjt+1)
−1
)
(2)
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where
log(w′(jt+1,i)

) = −1

2

∥∥µ(jt+1,i)

∥∥2

C−1
(jt+1,i)

− 1

2

∥∥mjt+1

∥∥2

Sjt+1

+
1

2

∥∥∥X̂(jt+1,i)

∥∥∥2

(C−1
(jt+1,i)

+Sjt+1
)

and similarly
X̂(jt+1,i) = (C−1

(jt+1,i)
+ Sjt+1

)−1(C−1
(jt+1,i)

µ(jt+1,i) + Sjt+1
mjt+1

)

Hence we can derive the quantity of interest, the pdf of Xt+1 given all the observations up to time t + 1 by
integrating out jt+1

f(xt+1|z0:t+1) =
∑

jt+1∈J
f(xt+1, jt+1|z0:t+1)

The obtained PDF is a GM again. We use the algorithm described in [Sendorek et al., 2013] which aims to find
a position estimation such as the associated protection levels are the tightest. Although the obtained position is not
striclty speaking always the one which leads to the tightest protection levels, the associated protection levels yield
by this algorithm are the true ones (i.e. the probability that the true position lies outside the confidence interval is
exactly αV

req), assuming that the variable in question really follows the GM given in equation 2. In the next sections
we denominate by LOB the algorithm described in [Sendorek et al., 2013].

5 Reduction of the number of components
At this stage, after having found an estimate of the position based on a “good” approximation of the PDF (for
instance using the LOB algorithm), we perform the necessary reduction of the number of components thanks to a
modification of the algorithm [Runnalls, 2007] to bound the computational load for next step. The resulting PDF
is thus an approximation of the exact PDF, and of the quality of this approximation depends the exactness of the
approximation of the protection levels. The algorithm used to reduce the number of components uses a metric based
on the KL distance to measure the loss of information induced by the potential replacement of a pair components by
the component which matches their first and second order moments and whose weight is the weight of the pair. If two
components are described by their weight, their mean and their covariances (wi, µi, Ci)i=1,2, the component resulting
from the merge of both writes (w, µ,C) where the weight is w = w1 +w2, the mean is µ = w1

w1+w2
.µ1 + w2

w1+w2
.µ2 and

the covariance is C =
∑
i∈{1,2}

wi
w1+w2

(Ci + (µi− µ).(µi− µ)T ). The algorithm iteratively searches for the pair which
leads to the smallest loss and replaces it as long as the number of components is too high. The search is done among
the set

{(
(

w(jt,i)∑
i′ w(jt,i

′)
, µ(jt,i), C(jt,i)), (

w(jt,k)∑
k′ w(jt,k

′)
, µ(jt,k), C(jt,k))

)
, jt ∈ J , i 6= k, (i, k) ∈ {1, ..., Ngauss(jt)}2

}
, which is

the list of pairs of gaussian components describing eachGM which approximates p(xt|jt, z0:t) for all the possible values
of jt. The measure of the loss of information is denoted B and is an upper bound of the KL distance between the
mixture of two components and the merged components. Its definition is

B [(w1, µ1, C1), (w2, µ2, C2)] =
1

2
[(w1 + w2) log det(C)− w1 log det(C1)− w2 log det(C2)] . (3)

The interesting property of this criterion is that the components which are merged have in general close means
and similar covariances. It seems thus legitimate to use it to decide which components will be merged, since the
global shape of the resulting pdf is in general conserved. In our case, since p(xt|jt, z0:t) is a GM for each value of
jt, instead of constraining the number of gaussians for each jt, we constrain the global number of components and
let the algorithm choose the number of gaussians needed to represent the GM for each value of jt. The algorithm
rather runs on p(xt|jt, z0:t) than on p(xt, jt|z0:t) because the probability to switch between discrete hidden states is
likely high in our context of abrupt variations, so at each moment, an observation may abruptly increase the posterior
probability of being in a discrete state and the probability density of the corresponding continous state has to be a
good approximation as soon as the switch occurs.

6 Mecanization
Our filter monitors the errors of estimation around a linearization point as in [Titterton and Weston, 2004]. The
continous state vector contains the attitude errors expressed in the local NED coordinates, respectively denoted by
(δφN , δφE , δφD), for the north, east, and down axis. The vector Xt also contains the velocity errors (δVN , δVE , δVZ),
and the errors on the position (δL, δG, δh), which are respectively the error on the longitude, the error on the
latitude and the error on the height. The variation of these values are expressed in fuction of the gyroscopic drifts
(δωN , δωE , δωD), of the earth’s angular momentum ΩT , of the earth’s radius RT , of the gravitational constant g, of
the errors on the accelerometric biases (δbacc,N , δbacc,E , δbacc,Z) and of the velocities (VN , VE , VD) supposed to be
constant in our simulations.
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6.1 Continuous equations
The discrete mecanization equations are derived from

∂δφN
∂t

= δωN −
δVE
RT

+ ΩT sin(L)δL+
VN
RT

δφZ −
(
VE
RT

. tan(L) + ΩT sin(L)

)
δφE

∂δφE
∂t

= δωE +
δVN
RT

+

(
VE
RT

+ ΩT cos(L)

)
δφZ +

(
VE
RT

tan(L) + ΩT sin(L)

)
δφN

∂δφZ
∂t

= δωD +
δVE
RT

tan(L) +

[
VE
RT

(1 + tan2(L)) + ΩT cos(L)

]
δL− VN

RT
δφN −

(
VE
RT

+ ΩT cos(L)

)
δφE

∂δVN
∂t

= δbacc,N − g.δφE

∂δVE
∂t

= δbacc,E + g.δφN

∂VZ
∂t

= δbacc,Z + [2ΩT sin(L)VE ] δL

∂δL

∂t
=
δVN
RT

∂δG

∂t
=

δVE
RT cos(L)

+
VE sin(L)

RT cos2(L)
δL

∂δh

δt
= −δVZ

Ideally, the accelerometer bias and the gyrometer drift would be constant if there was no propagation noise, thus
we add those two lines

∂δbacc,N
δt

=
∂δbacc,E

δt
=
∂δbacc,Z

δt
= 0

∂δφN
δt

=
∂δφE
δt

=
∂δφZ
δt

= 0

6.2 Discrete equations
From these equations is derived the propagation matrix Ft. The discretization is made for a timestep ∆t = 1s. The
previous equations give a relation of the form ∂X̃(t)

∂t = A.X̃(t) where A is a linear function and X̃ is a vector only
containing the states described in previous section, hence the discretization scheme we use is X̃t+1 = I + ∆t.A.X̃t.
The full continous state vector Xt contains the states in X̃t but also contains the previous states of the GNSS signals,
multiplied by e−

∆t
τ to modelize their τ = 30× 60s time correlation. The propagation matrix Ft is in our case a block

matrix, where the upper part relates to the propagation of the vector X̃ and the lower part relates to the propagation
of the GNSS pseudo ranges

Ft =

[
I + ∆t.A 0

0 e−
∆t
τ I

]
The time-decorrelated part of the measurement noise CV is a diagonal matrix and the corresponding variances

are, with obvious notations

• σ2
δφN

= σ2
δφE

= σ2
δφZ

= 1.4× 10−4rad2

• σ2
δVN

= σ2
δVE

= σ2
δVZ

= 2× 101(m/s)2

• σ2
δL = 4× 10−10rad2

• σ2
δG = 6× 10−10rad2

• σ2
δh = 1.5× 104m2

• σ2
δwN

= σ2
δwE

= σ2
δwD

= 10−10rad2
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• σ2
δbacc,N

= σ2
δbacc,E

= σ2
δbacc,D

= 10−5rad2

where the last two lines model the evolution of the accelerometers biases and of the gyrometers drifts.
The covariance matrix also contains the variances of the time-correlated pseudo range noise σ2

pseudo-range = (1 −
e−

2∆t
τ ) × 152m2, which is the same for each pseudo range. This value ensures that the standard deviation of the

stationary law of each the pseudo-range is 15m.
Finally, the time decorrelated part of the noise, CV , is taken equal to 52Im2.

7 Evaluation

7.1 Protocol
We compare the results yield by the LOB to the results yield by the bayesian least square estimator as defined in
[Pesonen, 2011] which we will denominate by `2 in this paper. Both estimators base their estimation on the PDF yield
by the modified version of the algorithm [Runnalls, 2007] described in section 5. For both estimators, we compare the
targeted integrity to the empirical integrity for the vertical axis as follows. A sequence of hidden states (Xt, Jt)t=0:T

is drawn according to the model described in section 3. From this sequence of hidden states is drawn a sequence of
observations Z0:T . Both filters are run with the same sequence of observations as input. At each time step, each of
both filters predicts a position on the vertical axis and its associated (1 − α) confidence interval (where we note for
short α = αV

req). To assess the quality of this confidence interval, we measure the number of times when the true
position is outside of the confidence interval and divide it by T . Without any reduction of the number of components,
this proportion would tend to exactly α. We also measure the gain in terms of the size of the protection levels between
both estimators.

Simulations are performed for various sets of parameters (ngauss, β, σ
2
B), where ngauss determines the average

number of gaussians tracked per hidden state. In our case Nsat = 4 hence the number of hidden states is Nsat + 1 = 5
under the assumption of at most one possible reflection for all the GNSS signals. The bound on the total number
of gaussians is thus 5ngauss. The parameter β determines the transition between the discrete hidden states in
the Markov Chain. The 5 × 5 transition matrix is q = (1 − β)I + β

Nsat
(I − I), where I is a matrix full of ones.

The parameter σ2
B determines the covariance matrix of the disturbance, such as BJt ∼ N (0, σ2

B) if Jt 6= ∅ and
BJt ∼ δ0 if Jt = ∅. The simulations are made for every α ∈ {10−1, 10−2, 10−3, 10−4} and for every possible element
(ngauss, β, σ

2
B) ∈ {2, 6}×{1, 1/3}×{302, 1202}. The sets of parameters used in the simulations are denoted by roman

numbers and the corresponding parameters are given in table 1

I II III IV V VI VII VIII
σ2
B 302 1202 302 1202 302 1202 302 1202

ngauss 6 6 2 2 6 6 2 2
β 1 1 1 1 1

3
1
3

1
3

1
3

Table 1: Correspondence between the roman numbers and the parameters

7.2 Results

α = 10−1 10−2 10−3 10−4

I 1.3α 1.9α 2.8α 5.0α
II 0.9α 0.9α 1.5α 1.2α
III 1.4α 1.9α 2.2α 5.0α
IV 2.0α 3.1α 3.4α 6.2α
V 1.2α 1.4α 1.2α 1.2α
VI 1.0α 1.0α 0.8α 1.2α
VII 1.2α 1.4α 1.2α 1.2α
VIII 1.0α 1.0α 0.8α 2.5α

Table 2: Complementary to one of the empirical integrity
for the LOB algorithm

α = 10−1 10−2 10−3 10−4

I 1.3α 2.1α 3.1α 6.2α
II 0.9α 1.0α 1.5α 1.2α
III 1.4α 2.0α 2.6α 3.8α
IV 2.0α 3.0α 3.5α 5.0α
V 1.2α 1.5α 1.5α 2.5α
VI 1.0α 1.0α 0.9α 2.5α
VII 1.2α 1.4α 1.6α 2.5α
VIII 1.0α 1.0α 0.9α 2.5α

Table 3: Complementary to one of the empirical integrity
for the `2 algorithm
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Figure 1: Empirical complementary cumulative function of the ratios of the vertical protection levels for α = 10−3

Tables 2 and 3 show that in our simulations, the empirical integrity achieved with this method is in general close to
the targeted integrity. The first obvious remark is that when ngauss = 6 the results are closer to the targeted integrity
than when ngauss = 2 : the algorithm reaches an integrity closer to the targeted one when the approximation of the
true PDF is better. Also, the empirical integrity is closer to the targeted integrity when the noise σ2

B is big. The
reason for this is partly due to the fact that a noise with a big variance is easily identified, hence the corresponding
discrete state’s probability is strongly reduced. Thus the PDF described by the GM is close to a single gaussian
PDF, and the GM reduction algorithm doesn’t make too much approximation by merging the gaussians with a low
probability (which are more likely to be merged according to the formula 3 of B). Less obvious is the fact that the
filter reaches an integrity close to the targeted integrity when the probability of switching between the discrete states
is lower. Part of the reason for this is that when the probability of switching between states is small, the current
state is more accurately identified thanks to previous measurements. Thus, for the filter there is less ambiguitiy
concerning the value of current hidden discrete state and thus concerning the sources to take into account to give
the best estimation of the continuous state vector. These results are partiularly interesting when the probabilities of
switching from a discrete state to another are low.

Figure 1 gives a comparison of the empirical ratios of the `2 and the LOB estimators. In general for all our
simulations, the LOB yields radiuses 10% smaller than the `2 in more than 10% of the cases. The improvement
obtained with the LOB are more significant when the noise is σ2

B = 302m2. This noise is big enough to have a non
negligible impact on the position estimation, but is too small for the LOB to estimate the underlying state with a
good confidence. Thus the PDF is a sum of non overlapping gaussians and the `2 estimator is affected by components
of the GM which have a small weight but which are outlying whereas the LOB estimator is more robust in this case
and provides a radius smaller by 20% in more than 10% of the cases.

8 Perspectives
The method used to reduce the number of gaussians described in section 5 doesn’t aim at preserving the global sim-
ilarity with the initial PDF. The similarity is iteratively maximized between the pair of components to be replaced
and their first and second order moment matching gaussian, but it is unclear if there is an advantage of using this
strategy regarding the goal of preserving a global similarity. Furthermore, another point which is not clear is the
the impact of the choice of a KL distance based similarity regarding the criterion of the protection levels. This
choice is rather motivated by the ease of use of the formula due to its links with Information Theory that established
some useful properties and interpretations of the involved quantities. In this context, Variational Bayes methods
[Bruneau et al., 2010, Attias, 2000, Pesonen and Piche, 2012] may provide some more robust solutions to preserve a
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global approximation.

Another perspective of improvement would be to reduce the GM basing on the measurements from future
timesteps. These measurements would help to decrease the weight of improbable failure states and thus enable
to make a better choice concerning the components to merge. In fact, we hope that measurements from the future
could “disambiguise” the current hidden state, in the sense that the distribution f(xt|jt, z0:t+N ) would be closer to
a single Gaussian pdf. Since the measurements from the future are not available, for a practical implementation,
the reduction of the GM would rather be done a few steps in the past on f(xt−N |jt−N , z0:t). Then, the density
f(xt|jt, z0:t) would have to be computed on the basis of f(xt−N |jt−N , z0:t).

9 Appendix

9.1 Projector relative to a norm
Let ‖.‖A be a norm. We define the projection matrix on Im(H) with respect to this norm by reducing the problem
to the ordinary norm ‖.‖ = ‖.‖I . The problem is thus to find x such as ‖Hx−m‖2A is minimal. We have

‖Hx−m‖2A =
∥∥∥A 1

2 (Hx−m)
∥∥∥2

=
∥∥∥A 1

2Hx−A 1
2m
∥∥∥2

This norm is minimized for x = (A
1
2 .H)†A

1
2m. The orthogonal projector on the image of H with respect to the

norm ‖.‖A thus writes H(A
1
2 .H)†A

1
2 .
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