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Abstract

This paper considers the Cramér-Rao lower Bound (CRB) for the source localization problem in the near field.

More specifically, we use the exact expression of the delay parameter for the CRB derivation and show how this

‘exact CRB’ can be significantly different from the one givenin the literature based on an approximate time delay

expression (usually considered in the Fresnel region). In addition, we consider the exact expression of the received

power profile (i.e., variable gain case) which, to the best ofour knowledge, has been ignored in the literature.

Finally, we exploit the CRB expression to introduce the new concept of Near Field Localization Region (NFLR) for

a target localization performance associated to the application at hand. We illustrate the usefulness of the proposed

CRB derivation as well as the NFLR concept through numericalsimulations in different scenarios.
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I. I NTRODUCTION

Sources localization problem has been extensively studied in the literature but most of the research works are

dedicated to the far field case, e.g., [1], [2].

In this paper, we focus on the situation where the sources arein a near field (NF) region which occurs when the

source ranges to the array are not ‘sufficiently large’ compared with the aperture of the array system [3], [4]. Indeed,

this particular case has several practical applications including speaker localization and robot navigation [5], [6],

underwater source localization [7], near field antenna measurements [8], [9] and certain biomedical applications,

e.g., [10]. Recently, some works considered both far filed andnear filed localization [11], [12] where the authors

propose different methods to achieve a better localizationperformance when the source moves from far field to

near field and vice versa.

More specifically, this paper is dedicated to the derivation of the Craḿer-Rao Bound (CRB) expressions for

different signal models and their use for the better understanding of this particular localization problem. CRB

derivation for the near field case has already been consideredin the literature [3], [13], [14], [15]. In [3], [13], the

exact expression of the time delay has been used to derive theunconditional CRB in matrix form, i.e., expressed

and computed numerically as the inverse of the Fisher Information Matrix (FIM). In [14], the conditional CRB

based on an approximate model (i.e., approximate time delayexpression as shown in Section II-A) is provided.

Recently, El Korso et al. derived analytical expressions of the conditional and unconditional CRB for near field

localization based on an approximate model [15]. In the latter work, both conditional and unconditional CRB of

the angle parameter are found independent from the range value and are equal to those of far field region.

In our work, we propose first, to use the exact time delay expression as well as the exact power profile (i.e.,

Variable Gain (VG) model) corresponding to the spherical form of the wavefront for the derivation of closed form

formulas of the conditional and unconditional VG-CRBs. Indeed, in the near field case, the received power is

variable from sensor to sensor which should be taken into account in the data model. By considering such variable

gain model, we investigate the impact of the gain variation onto the localization performance limit.

Secondly, we consider a simple case where the sensor to sensorpower variation is neglected1 (i.e., Equal Gain

1To the best of our knowledge, this assumption is considered in all previous works.
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(EG) model). The obtained EG-CRB expressions using the exact time delay values are then compared to those given

in [15]. The development (i.e., Taylor expansion) of the exact EG-CRB allows us to highlight many interesting

features including:

• A more accurate approximate EG-CRB for the exact model as compared to the EG-CRB based on an

approximate model. In particular, we show that at low range values, the approximate EG-CRB in [15] can be

up to 30 times larger than our exact EG-CRB.

• A detailed analysis of the source range parameter effect on its angle estimation performance2.

Finally, we propose to exploit the exact CRB expression to specify the ‘near field localization region’ based on

a desired localization performance. In that case, the ‘nearfield localization region’ is shown to depend not only on

the source range parameter and array aperture but also on thesources SNR and observation sample size.

The paper is organized as follows: Section II introduces the data model and formulates the main paper objectives.

In Section III, the conditional and unconditional VG-CRB derivations are provided in the variable gain case. Section

IV presents the simple case where all sensors have the same gain (i.e., EG case). The EG-CRB is then compared

to the VG-CRB with an analysis of the impact of the gain profile onto the localization performance. In addition,

we show in section IV-B that considering the exact time delayexpression leads to a more accurate CRB expression

as compared to the CRB based on an approximate time delay. Section V introduces the concept of near field

localization region and illustrates its usefulness through specific examples. Section VI is dedicated to simulation

experiments while Section VII is for the concluding remarks.

II. PROBLEM FORMULATION

A. Data model

In this paper, we consider a uniform linear array withN sensors receiving a signal, emitted from one source

located in the NF region, and corrupted by circular white Gaussian noisevn of covariance matrixσ2IN . Thenth

array output,n = 0, · · · , N − 1, is expressed as

xn(t) = γn(θ, r)s(t)e
jτn(θ,r) + vn(t) = s(t)(γn(θ, r)e

jτn(θ,r)) + vn(t) t = 1, · · · , T, (1)

2Part of the work related to the EG-CRB has been published in [16] presented at conference ISSPA 2012.
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Fig. 1. Near field source model

whereT is the sample size andγn(θ, r) represents the power profile of thenth sensor given by [17]

γn(θ, r) =
1

ln
=

1

r

√

1− 2nd
r

sin θ +
(

nd
r

)2
, (2)

ln being the distance between the source signal and thenth sensor ands(t) is the emitted signal. The exact

expression of the time delay3 τn is given by

τn =
2πr

λ

(
√

1 +
n2d2

r2
−

2nd sin θ

r
− 1

)

, (3)

whered is the inter-element spacing,λ is the propagation wavelength and (r, θ) are the polar coordinates of the

source as shown in Fig. 1.

In the sequel, the source signal will be treated either as deterministic (conditional model) or stochastic (uncon-

ditional model). Indeed, in the array processing, both models can be found:

1) Conditional model in which the source signal is assumed deterministic but its parameters are unknown.

2) Unconditional model in which we assume that the source signal is random. In our case, we will assumes(t)

to be a complex circular Gaussian process with zero mean and unknown varianceσ2s . Note that all existing

works on the near field CRB consider such a Gaussian assumption. Indeed, in the Gaussian case, the CRB

derivation is tractable and ‘interpretable’ closed form expressions can be obtained. In addition, as shown in

[18] and [19], the Gaussian case is the least favorable one and hence it represents the most conservative

choice. In other words, any optimization based on the CRB under the Gaussian assumption can be considered

to be min-max optimal in the sense of minimizing the largest CRB.

3The first sensor,n = 0, is considered for the time reference.
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Remark: Note that, the more general case of multipath channel is not considered here for the ‘tractability’ of the

CRB derivation and its ‘readability’. Indeed, in most existing papers, e.g. [12], one associates to each source one

direction of arrival (i.e., one channel path). The source localization in multipath case can be treated as a multiple

correlated sources case as in [20].

B. Objectives

In the literature, only approximate models of the received NF signals are considered. Indeed, two simplifications

of the model in (1) are used in practice:

(a) The sensor to sensor power variation is neglected and the power profile is approximated byγn(θ, r) = 1
r
.

This model is referred to as the equal gain model sinceγn(θ, r) is constant with respect to the sensor index

n.

(b) Also, most existing works on near field source localization consider the following approximation of the time

delay expression to derive simple localization algorithmsas well as CRB expressions, e.g., [21] [15]

τn = −2π
dn

λ
sin(θ) + π

d2n2

λ

1

r
cos2(θ) + o

(

d

r

)

. (4)

The latter is considered as a good approximation of (3) in the Fresnel region given by [17]

0.62

(

d3(N − 1)3

λ

)
1

2

< r < 2
d2(N − 1)2

λ
. (5)

Our first objective is to derive CRB expressions without theseapproximations, i.e.,

1) The distance from the source to thenth sensorln is a function of the sensor position (i.e., sensor index)

according to

ln =
√

r2 − 2ndr sin(θ) + n2d2 = r

√

1− 2
nd

r
sin(θ) +

(

nd

r

)2

. (6)

Hence, the received power profile is variable from sensor to sensor. In the far field case, this variation is

negligible but not necessarily in the near field context. To the best of our knowledge, this point has not

been taken into consideration in the existing literature. We would like to investigate the impact of such gain

variation into the localization performance limit.
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2) Based on the exact expression of the time delayτn in equation (3), we aim to derive the exact conditional and

unconditional EG-CRB and show that the exact EG-CRB can be significantly different from the approximate

EG-CRB given in [15].

Our second objective is to exploit the previous CRB derivation to better define the NF region according to a

target localization performance, i.e.,

3) The near field region has been so far assimilated to the Fresnelregion which depends on the antenna size

and the signal wavelength only. However, the localization performance depends on other system parameters

(SNR, sample size, angle position,· · · ) for which reason we introduce the concept of Near Field Localization

Region (NFLR) where the localization error is upper bounded bya desired threshold value depending on the

considered application. Based on the NFLR concept, we illustrate how the ’controllable’ system parameters

can be tuned to achieve a minimum target performance.

III. C ONDITIONAL AND UNCONDITIONAL CRB DERIVATION WITH VARIABLE GAIN

In this case, we consider the model given by (1). As we can see,in this model both the time delay and the

power profile carry information on the desired source location (θ, r). Our objective here, is to investigate the roles

of both profiles in the performance limit given by the CRB.

A. Conditional VG-CRB

In this Section, we consider the source signal as deterministic according to the model

s(t) = α(t)ej(2πf0t+ψ(t)),

wheref0 is the known carrier frequency whileα(t) andψ(t) are the unknown amplitude and phase parameters of

the source signal. Under the data model assumption of SectionII-A, we derive next the exact deterministic (i.e.,

conditional) VG-CRB for the location parameter estimation.

1) Conditional VG-CRB derivation:The log-likelihood function of the observations is given by

Lc(ξ
c) = −NT lnπ −NT lnσ2 −

1

σ2
‖x− µ‖2 , (7)
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where

x = [xT (1) · · · , · · · ,xT (T )]T , (8)

x(t) = [x0(t), · · · , xN−1(t)]
T , (9)

µ = [s(1)aT (θ, r), · · · , s(T )aT (θ, r)]T , (10)

a(θ, r) = [γ0(θ, r), γ1e
jτ1(θ,r), · · · , γ

N−1
(θ, r)ejτN−1(θ,r)]T , (11)

ξc = [θ, r,ΨT ,αT , σ2]T , (12)

Ψ = [ψ(1), · · · , ψ(T )]T , (13)

α = [α(1), · · · , α(T )]T , (14)

‖.‖ refers to the Frobenius norm and[.]T is the transpose operator.

The CRB is equal to the inverse of the Fisher Information Matrix(FIM) defined by4

[FIM(ξc)]i,j = E

(

∂Lc(ξ
c)

∂ξi

∂Lc(ξ
c)

∂ξj

)

. (15)

The latter is given in our particular case by

[FIM(ξc)]i,j =
NT

σ4
∂σ2

∂ξi

∂σ2

∂ξj
+

2

σ2
ℜ{

∂µH

∂ξi

∂µ

∂ξj
}, (16)

whereℜ{.} refers to the real part of a complex valued entity. The FIM is given by the block diagonal matrix as

FIM =









Q 0(2T+2)×1

01×(2T+2)
NT
σ4









, (17)

where

Q =

























fθθ fθr fθψ fθα

frθ frr frψ frα

fψθ fψr Fψψ Fψα

fαθ fαr Fαψ Fαα

























, (18)

4All expected values are taken with respect to the distribution of the observation vectorx.
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fθθ = 2TDSNR(‖γ̇θ‖
2 + (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ θ)), (19)

frr = 2TDSNR(‖γ̇r‖
2 + (γ ⊙ γ)T (τ̇ r ⊙ τ̇ r)), (20)

frθ = fθr = 2TDSNR((γ̇
T
θ γ̇r) + (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ r)), (21)

γ =
[

γ
0
(θ, r), ..., γ

N−1
(θ, r)

]T
, (22)

γ̇θ =

[

∂γ
0

∂θ
, ...,

∂γ
N−1

∂θ

]T

, (23)

γ̇r =

[

∂γ
0

∂r
, ...,

∂γ
N−1

∂r

]T

, (24)

τ =
[

τ
0
(θ, r), ..., τ

N−1
(θ, r)

]T
, (25)

τ̇ θ =

[

∂τ
0

∂θ
, ...,

∂τ
N−1

∂θ

]T

, (26)

τ̇ r =

[

∂τ
0

∂r
, ...,

∂τ
N−1

∂r

]T

, (27)

and where⊙ represents the Hadamard product andDSNR =
‖α‖2

Tσ2 . Moreover, the vectors of sizeT × 1, fψθ, fψr, fαθ

and fαr are given by

fψθ = fTθψ =
2

σ2
(γ ⊙ γ)T τ̇ θ(α⊙α), (28)

fψr = fTrψ =
2

σ2
(γ ⊙ γ)T τ̇ r(α⊙α), (29)

fαθ = fTθα =
2

σ2
(γT γ̇θ)α, (30)

fαr = fTrα =
2

σ2
(γT γ̇r)α. (31)

Finally, matricesFψψ, Fαα, Fψα of sizeT × T , are given by

Fψψ =
2

σ2
‖γ‖2 diag(α⊙α), Fαα =

2

σ2
‖γ‖2 IT and Fαψ = Fψα = 0T×T . (32)

diag(α⊙α) refers to the diagonal matrix formed from vectorα⊙α.

Equation (17) translates the fact that the FIM of the desired localization parameters is decoupled from the noise

varianceσ2 but not from the source magnitude and phase parameters. Hence, the CRB matrix of the range and

angle parameters is equal to the2× 2 top left sub-matrix of the inverse matrixQ−1. By using the Schur’s matrix

inversion lemma, one can obtain:

Lemma 1:The non-matrix expressions of the conditional CRB in the variable gain case for a source in the near

field, for N ≥ 3 andθ 6= ±π
2 , are given by
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VG-CRBc(θ) =
(

1
2TDSNR

)

Evg(r)
Evg(θ)Evg(r)−Evg(θ,r)2

, (33)

VG-CRBc(r) =
(

1
2TDSNR

)

Evg(θ)
Evg(θ)Evg(r)−Evg(θ,r)2

, (34)

VG-CRBc(θ, r) =
(

1
2TDSNR

)

Evg(θ,r)
Evg(θ)Evg(r)−Evg(θ,r)2

, (35)

where

Evg(θ) = ‖γ̇θ‖
2 + (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ θ)−

1

‖γ‖2
[

((γ ⊙ γ)T τ̇ θ)
2 + (γT γ̇θ)

2
]

, (36)

Evg(r) = ‖γ̇r‖
2 + (γ ⊙ γ)T (τ̇ r ⊙ τ̇ r)−

1

‖γ‖2
[

((γ ⊙ γ)T τ̇ r)
2 + (γT γ̇r)

2
]

, (37)

Evg(θ, r) = γ̇Tθ γ̇r + (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ r)−
1

‖γ‖2
[

(γ ⊙ γ)T τ̇ θ(γ ⊙ γ)T τ̇ r + (γT γ̇r)(γ
T γ̇θ)

]

. (38)

Proof: See appendix A

B. Unconditional VG-CRB

For unconditional CRB, the signal is assumed Gaussian complex circular with zero mean and varianceσ2s . In

this case, the vector of the unknown parameters becomesξu = [θ, r, σ2s , σ
2]T , and then the log-likelihood function

of the observed data is given by

Lu(ξ
u) = −NT lnπ − lndet(Σ)− T tr(Σ−1R̂), (39)

whereΣ = σ2sa(θ, r)a(θ, r)
H + σ2IN (theoretical covariance matrix),̂R = 1

T

∑T
t=1 x(t)x

H(t) (sample estimate

covariance matrix), tr(.) (respectively det(.)) refers to the matrix trace (respectively matrix determinant) and(.)H

is the transpose conjugate operator.

Under the assumption of the Gaussian stochastic signals, the (i, j), 1 ≤ i, j ≤ 4 entries of the FIM are given by

[FIM(ξu)]i,j = T tr

(

Σ−1∂Σ

∂ξi
Σ−1 ∂Σ

∂ξj

)

. (40)

Since the CRB is equal to the inverse of the Fisher information matrix and using the results of [22] for the two

desired localization parameters, we have the following lemma:

Lemma 2:The non-matrix expressions of the exact unconditional CRB inthe variable case for a source in the

near field, forN ≥ 3 andθ 6= ±π
2 , are given by
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VG-CRBu(θ) =
[

(1+SNR‖γ‖2)DSNR

(SNR)2‖γ‖2

]

VG-CRBc(θ), (41)

VG-CRBu(r) =
[

(1+SNR‖γ‖2)DSNR

(SNR)2‖γ‖2

]

VG-CRBc(r), (42)

VG-CRBu(θ, r) =
[

(1+SNR‖γ‖2)DSNR

(SNR)2‖γ‖2

]

VG-CRBc(θ, r), (43)

where SNR= σ2

s

σ2 .

Proof: See appendix B

IV. CONDITIONAL AND UNCONDITIONAL CRB DERIVATION WITH EQUAL GAIN

Here, we consider the particular case of equal gain usually considered in the literature. Our objective is twofold:

(i) the derived EG-CRB expressions are compared with the EG-CRB ofthe approximate model given by El Korso

in [15] in order to highlight the impact of the time delay approximation on the CRB,(ii) then comparisons between

equal gain and variable gain cases are made, by deriving the Taylor expansion of the proposed expressions of the

CRB, in order to exhibit the impact of the variation of the power profile on the estimation performance.

A. Conditional and unconditional EG-CRB derivation

For the equal gain case, we do not consider the variation of the power profile which is equivalent to assuming

that all sensors have equal gain (i.e.,γn(θ, r) ≈
1
r

∀n). In that case, since the transmit source power is unknown,

the factor 1
r

is incorporated into the source amplitude that are redefined according to

α̃ =
1

r
α in the deterministic case (44)

or

σ̃s =
1

r
σs in the stochastic case (45)

1) Conditional EG-CRB:Here, the received signal at thenth sensor is given by

xn(t) = s(t)eτn + vn(t), (46)

with s(t) = α̃(t)e(ψ(t)+f0t). The corresponding CRB expressions can be deduced from the one in lemma 1 by

replacingα by α̃ and settingγ = 1N and γ̇θ = γ̇r = 0 where all entries of the vector1N of size (N × 1) are

equal to1. We obtain then the following results:
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Lemma 3:The non-matrix expressions of the conditional CRB in the equal gain case for a source in the near

field, for N ≥ 3 andθ 6= ±π
2 , are given by

EG-CRBc(θ) =
(

1
2TD̃SNR

)

Eeg(r)
Eeg(θ)Eeg(r)−Eeg(θ,r)2

, (47)

EG-CRBc(r) =
(

1
2TD̃SNR

)

Eeg(θ)
Eeg(θ)Eeg(r)−Eeg(θ,r)2

, (48)

EG-CRBc(θ, r) =
(

1
2TD̃SNR

)

Eeg(θ,r)
Eeg(θ)Eeg(r)−Eeg(θ,r)2

, (49)

where EG-CRBc(θ, r) is the non diagonal entry of the considered2 × 2 CRB matrix (it represents the coupling

between the2 parameters),̃DSNR =
‖α̃‖2

Tσ2 and

Eeg(θ) = ‖τ̇ θ‖
2 −

1

N
(1TN τ̇ θ)

2, (50)

Eeg(r) = ‖τ̇ r‖
2 −

1

N
(1TN τ̇ r)

2, (51)

Eeg(θ, r) = τ̇Hθ τ̇ r −
1

N
(1TN τ̇ θ)(1

T
N τ̇ r). (52)

2) Taylor Expansion (TE) of conditional EG-CRB:This section aims to highlight the effects of some system

parameters on the localization performance and to better compare, in section IV-B, our exact CRB with the CRB

given in [15]. For that, we propose to use a Taylor expansion of the expressions of lemma 3. For simplicity, we omit

the details of the cumbersome (but straightforward) derivations and present only the final results in the following

lemma:

Lemma 4:The Taylor expansions of the exact CRB expressions of lemma 3 lead to

EG-CRBc(θ) ≈
3λ2

2TD̃SNRd2π2 cos2(θ)p3(N)
×

[

p2(N)−6(N−1)(6N2−15N+11) sin(θ)
d

r

+

{

1

70
(2N − 1)(384N3 − 1353N2 + 1379N − 368)

+
1

14
(186N4 − 1590N3 + 5351N2 − 6795N + 2890) sin2(θ)

}

d2

r2

]

, (53)

EG-CRBc(r) ≈
6r2λ2

TD̃SNRd4π2 cos4(θ)p3(N)
×
[

15r2 − 60(N − 1) sin(θ)dr

+
1

14

{

sin2(θ)(1061N2 − 2625N + 2911) + 225N2 − 315N − 135
}

d2
]

, (54)

wherep2(N) = (8N − 11)(2N − 1) andp3(N) = N(N2 − 1)(N2 − 4).

These expressions are useful to compare our CRB to the one in [15] but also, they allow us to better reveal how

the different system parameters affect the localization performance. For example, one can see in particular that:
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• The CRB decreases linearly with respect to the observation time as well as the deterministic SNR, i.e.,D̃SNR

• The CRB goes to infinity whenθ → ±π
2 and the best localization results are obtained in the central direction,

i.e., for θ = 0.

• Asymptotically (for large antenna sizes), the first term of the TE in (53) decreases inN3, i.e., if we double

the number of sensors, the CRB will be decreased approximately by a factor of8.

3) Unconditional EG-CRB:The EG-CRB in that case can be obtained from the VG-CRB by setting γ = 1N

and σ̃2s =
σ2

s

r2
:

Lemma 5:The non-matrix expressions of the unconditional CRB in the equal gain case for a source in the near

field, for N ≥ 3 andθ 6= ±π
2 are given by

EG-CRBu(θ) =
[

(1+( ˜SNR) N)D̃SNR

( ˜SNR)2 N

]

EG-CRBc(θ), (55)

EG-CRBu(r) =
[

(1+( ˜SNR) N)D̃SNR

( ˜SNR)2 N

]

EG-CRBc(r), (56)

EG-CRBu(θ, r) =
[

(1+( ˜SNR) N)D̃SNR

( ˜SNR)2 N

]

EG-CRBc(θ, r), (57)

where ˜SNR = σ̃2

s

σ2 and D̃SNR × EG-CRBc represents the normalized EG-CRBc (see lemma 3) depending on the

localization parameters, the array geometry, and the sample size only.

This result translates the fact that the unconditional CRB varies in a similar way as the conditional CRB with

respect to variablesθ, r andT . However, concerning the SNR parameter and the number of sensors, it is interesting

to observe that:

• At low SNRs (i.e., if ˜SNR×N << 1), the CRB decreases quadratically (instead of linearly in the conditional

case) with respect to the SNR and inN4 (instead ofN3) in terms of the number of sensors.

• However, for large SNRs (i.e., if ˜SNR×N >> 1), the unconditional CRB behaves similarly to the conditional

CRB with respect to parameters̃SNR andN (i.e., it decreases linearly with˜SNR and inN3 with respect to

the number of sensors).
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B. Comparison with the ‘EG-CRB of the approximate model’

Let us first recall the CRB expressions5 given in [15] and based on the approximate model in (4) referred to as

EG-CRBa where the subscript ‘a’ stands for ‘approximate’:

Lemma 6:The non-matrix expressions of the approximate conditional CRB [15] for a source in the near field,

for N ≥ 3 andθ 6= ±π
2 , are given by

EG-CRBa(θ) =
3λ2

2TD̃SNRd2π2 cos2(θ)p3(N)
p2(N), (58)

EG-CRBa(r) =
6r2λ2

TD̃SNRd4π2 cos4(θ)p3(N)

(

15r2 + 30dr(N − 1) sin(θ) + d2p2(N) sin2(θ)
)

. (59)

Comparing lemma 4 to lemma 6, one can make the following observations:

• First, we note that the first and main term of equation (53) (respectively of equation (54)) is equal to the first

term of equation (58) (respectively of equation (59)).

• We note also, that the Taylor expansion (of the time delay) followed by CRB derivation leads to different

results as compared to CRB derivation followed by Taylor expansion (of the CRB). The latter expansion being

more accurate than the former as illustrated by our simulation results.

• The approximate CRB of the angle estimate shown in lemma 6 is independent of the range parameter (it is the

same as the far field CRB) while the expression of EG-CRBc(θ) in lemma 4 reveals how it is affected by the

range parameter. In particular, at the first order, one can seethat the CRB decreases (respectively increases)

as a function ofd
r

for θ ∈ [0, π2 [ (respectively forθ ∈]− π
2 , 0]).

C. Comparison between VG and EG cases

By considering the extra-information given by the receivedpower profile, one is able to achieve in general better

localization performance as will be shown later in Section VI. To better compare the CRB expressions in the

5We provide here the CRB for the conditional model only since it is equal to the CRB of the unconditional model up to a scalar constant

(see lemma 2).



14

constant and variable gain cases, we provide here the dominant term of their Taylor expansion

EG-CRBc(θ) ≈
3λ2p2(N)

2π2TD̃SNRd2 cos2(θ)p3(N)
, (60)

VG-CRBc(θ) ≈
3λ2r2p2(N)

(

1 + λ2f1(θ)
)

2π2TDSNRd2 cos2(θ)p3(N) (1 + λ2f2(θ))
, (61)

EG-CRBc(r) ≈
90λ2r4

π2TD̃SNRd4 cos4(θ)p3(N)
, (62)

VG-CRBc(r) ≈
90λ2r6

π2TDSNRd4 cos4(θ)p3(N) (1 + λ2f2(θ))
, (63)

wheref1(θ) =
15 sin2(θ)

π2d2 cos4(θ)p2(N) andf2(θ) =
15 sin2(θ)

π2d2 cos4(θ)(N2−4) . Note that the dominant term of EG-CRBc is larger

than the dominant term of EV-CRBc for both range and angle parameters.

From these expressions, one can see that the two CRBs are quitesimilar6 for sources located in the central

direction (i.e., for smallθ values) while at lateral directions (i.e.,|θ| close to π
2 ) the variable gain CRB is much

lower than the equal gain one. This translates the fact that when the source location information contained in the

time delay profile becomes weak, it is somehow partially compensated by the location information contained in

the received power profile especially for the estimation of the range value. This observation is illustrated by the

simulation experiments (cf. Fig. 4, Fig. 5 and Fig. 6) given in Section VI.

V. NEAR FIELD LOCALIZATION REGION (NFLR)

The radiating near field or Fresnel region is the region between the near and far fields [17] corresponding to the

space region defined by equation (5). The latter depends on the source-antenna range, the signal wavelength, and

the antenna aperture.

Note that the lower bound of Fresnel region is related to the fact that in the immediate vicinity of the antenna,

the fields are predominately reactive fields meaning that the E and H fields are orthogonal [17]. Therefore the

space region given byr ≤ 0.62
(

d3(N−1)3

λ

) 1

2

should be kept out of the localization region. However, the upper

bound of the Fresnel region as given in equation (5) does not take into consideration the localization performance

limit. For this reason, we suggest to define the near field localization region (NFLR) based on a target estimation

performance relative to the application at hand. More precisely, if Stdmax > 0 is the maximum standard deviation

6Note that, due to the source amplitude normalization introduced in section IV-A, one hasD̃SNR =
DSNR
r2

.
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of the localization error that is tolerated by the considered application7, i.e.,

√

E
(

‖p̂− p‖2
)

≤ Stdmax, (64)

wherep = (x, y)T (respectivelŷp) refers to the position vector (respectively its estimate), then the NFL region can

be defined as the one for which the minimum standard deviation (given by the square root of the CRB) satisfies

condition (64).

SinceE
(

‖p̂− p‖2
)

= E((x̂−x)2)+E((ŷ−y)2), the previous condition on the minimum MSE can be expressed

as

√

CRB(x) + CRB(y) ≤ Stdmax. (65)

Now, the source coordinates can be rewritten according to

x = r sin(θ) = gx(θ, r),

y = r cos(θ) = gy(θ, r),

and hence, by using the delta method in [25], one can express

CRB(x) + CRB(y) = ∇gTx (θ, r)C∇gx(θ, r) +∇gTy (θ, r)C∇gy(θ, r), (66)

where

∇gx(θ, r) =

[

∂gx
∂θ

∂gx
∂r

]T

= [r cos(θ) sin(θ)]T , (67)

∇gy(θ, r) =

[

∂gy
∂θ

∂gy
∂r

]T

= [−r sin(θ) cos(θ)]T , (68)

C =









CRB(θ) CRB(θ, r)

CRB(θ, r) CRB(r)









. (69)

A straightforward derivation of (66) leads to

CRB(x) + CRB(y) = r2CRB(θ) + CRB(r), (70)

7For example, in mobile localization, it is required that in case of emergencythe location error is less than 125 m [23] with a given

confidence level. Also, for safety raisons, automatic vehicle navigation based on GPS or inertial measurement units, requires a maximal

location error known as the ‘safety location radius’ [24].
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and therefore the NFL region is defined as the one correspondingto

√

r2CRB(θ) + CRB(r) ≤ Stdmax. (71)

An alternative approach would be to use a maximum tolerance value on the relative location error, i.e., a given

threshold valueǫ such that
√

√

√

√

E
(

‖p̂− p‖2
)

‖p‖2
≤ ǫ, (72)

which corresponds to
√

CRB(θ) +
CRB(r)
r2

≤ ǫ. (73)

For example, in the conditional case, equation (73) becomes

1

2TDSNR

GN (θ, r) ≤ ǫ2, (74)

where

GN (θ, r) =
Evg(θ) + Evg(r)/r

2

Evg(θ)Evg(r)− Evg(θ, r)2
.

From a practical point of view, equation (74) can be used to tune the system parameters in order to achieve a

desired localization performance. Different scenarios can be considered, according to the parameter, we can (or

wish to) tune.

Scenario 1: One can define the minimum observation time to achieve a desired localization performance at a given

location and a given SNR value as

Tmin(θ, r) =
GN (θ, r)

2ǫ2DSNR

. (75)

Similarly, one can also define the minimum SNR value for a target localization quality as

DSNRmin
(θ, r) =

GN (θ, r)

2ǫ2T
. (76)

In Section VI, we provide simulation examples to illustrate the variation of these two parameters with respect

to the source location.
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Scenario 2: The previous parameters can be also defined for a desired localization regionRd (instead of a single

location point(θ, r)) as

Tmin(Rd) = max
(θ,r)∈Rd

Tmin(θ, r), (77)

DSNRmin
(Rd) = max

(θ,r)∈Rd

DSNRmin
(θ, r). (78)

For example, if we are interested into the surveillance of a space sector limited byrmin < r < rmax and

−θmax < θ < θmax, then

Tmin = 1
2ǫ2DSNR

maxRd
GN (θ, r) ≈

1

2ǫ2DSNR

GN (rmax, θmax), (79)

DSNRmin
= 1

2ǫ2T maxRd
GN (θ, r) ≈

1

2ǫ2T
GN (rmax, θmax), (80)

where the second equality holds from the observation that, away from the origin,GN is a decreasing function with

respect to the angular and range parameters8.

Scenario 3: One can also wish to optimize the number of sensors with respect to a desired localization regionRd

and for a target localization qualityǫ. In that case, the minimum number of sensors needed to achieve the target

quality can be calculated as

Nmin = argmin
N

{

N ∈ N
∗
∣

∣GN (θ, r) ≤ 2ǫ2TDSNR ∀(θ, r) ∈ Rd
}

. (81)

VI. SIMULATION RESULTS

In this section, three experimental sets are considered. Thefirst one is to compare the provided exact EG-CRB

expressions of lemma 3 with the CRB expressions given in [15]. In the second experiment, we investigate the effect

of considering the variable gain model instead of the constant gain model for near field source localization. Finally,

the third experiment is to illustrate the usefulness of the near field localization region as compared to the standard

Fresnel region.

In all our simulations, we consider a uniform linear antennawith N = 15 sensors and inter-element spacing

d = λ
2 (λ = 0.5m) receiving signals from one near field source located at(θ, r). The sample size isT = 90 (unless

8This is not an exact and proven statement but just an approximation thatexpresses the fact that the localization accuracy decreases when

the source moves away from the antenna or towards its lateral directions.
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stated otherwise) and the observed signal is corrupted by a white Gaussian circular noise of varianceσ2. In the

conditional case, the source signal is of unit amplitude (i.e., α̃(t) = 1 ∀t). The dotted vertical plots in all figures

represent the upper and lower range limits of the Fresnel region given by (5).

A. Experiment 1: Comparison with existing work in the EG case

In Fig. 2, we compare the three EG-CRB expressions for the source location parameter estimates versus the

range values in the interval[0 , 50m] and versus angle values9 in the interval[−87o , 87o]. The noise level is set

to σ2 = 0.001 (high SNR case). A similar comparison leading to similar results is given in Fig. 3 for a noise level

set toσ2 = 0.5 (low SNR case). The source angle isθ = 45o in the comparison versus range values andr = 20λ

in the comparison versus angle values.

From these figures, one can make the following observations:

1) There is a non negligible difference between the exact EG-CRB and the proposed one in [15] especially at

low range values: i.e., the given EG-CRB in [15] can be up to30 times larger than the exact CRB.

2) From Fig. 2.(c) and Fig. 3.(c), contrary to the given CRB in [15], the exact one varies with the range value

with a relative difference varying from approximately60% for small ranges to 0 whenr goes to infinity.

3) From Fig. 2.(b) - Fig. 3.(b), one can observe that the lowest CRB is obtained in the central directions. This

observation can be seen from the TE given in lemma 4 where the factor 1
cos(θ) is minimum for this directions

and goes to infinity10 when |θ| → π
2 .

4) We note that the provided Taylor expansion of the exact CRBis more accurate than the one obtained by

expanding the time delay expression before CRB derivation i.e., the one in [15].

B. Experiment 2: EG versus VG cases

To this end, we have to ensure first that the received power in the two cases (i.e., constant and variable gain

cases) is the same for the reference sensor (i.e., dividing the power of constant gain case per the square of the range

9Note that the curves with respect to the angle parameter (i.e., Fig. 2, Fig.3, Fig. 6, Fig. 9 and Fig. 10) are not symmetrical aroundθ = 0

because we have chosen the first sensor for the time reference as shown in Fig. 1.
10This is due to the fact that the angle parameter is not observed directly butonly through thesin function, which translates the fact that

’weak information’ is carried by the observed data on the source locationparameters in the lateral directions.
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Fig. 2. CRB comparison: Exact conditional CRB versus approximate CRB in [15] in low SNR case
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Fig. 3. CRB comparison: Exact conditional CRB versus approximate CRB in [15] in low SNR case

as explained in section IV-A). To better compare the CRB expressions, we consider two contexts whereθ = 0o

for the first one (central direction) andθ = 85o for the second one (lateral direction). One can observe fromFig.

4 and Fig. 5 that, for small|θ| values, the constant gain CRB is quite similar to the variable gain one while at

lateral direction (i.e.,|θ| close toπ2 ) the variable gain CRB is much lower than the equal gain one, due to the extra

information brought by the considered gain profile.

This can be seen again from Fig. 6 where we can observe the large CRB difference for high|θ| values. In

brief, one can say that when the ‘location information’ contained in the time delay is relatively weak (which is the
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Fig. 4. CRB comparison: Equal Gain versus Variable Gain cases for range estimation
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Fig. 5. CRB comparison: Equal Gain versus Variable Gain cases for angle estimation

case for sources located in the lateral directions) the information obtained by considering the power profile would

significantly help improving the source location estimation.

C. Experiment 3: Near Field Localization Region

The plots in Fig. 7 represent the upper limit of the NFL region fordifferent tolerance values. From this figure,

one can observe that the Fresnel region is not appropriate to characterize the localization performance. Indeed,

depending on the target quality, one can have space locations (i.e., sub-regions) in the Fresnel region that are out
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Fig. 6. CRB comparison of the Equal Gain and Variable Gain cases versus angle value

of the NFLR. Inversely, we have space locations not part of the Fresnel region that are attainable, i.e., they belong

to the NFLR.

Fig. 8 compares the NFL region in the variable gain and equal gain cases withDSNR = 30 dB. One can observe

that in the lateral directions the NFLR associated to the variable gain model is much larger than its counterpart

associated to the equal gain one. Also, in the short observation time context (i.e., Fig. 8.(a)) the NFLR is included

in the Fresnel region while for large observation time (i.e.,Fig. 8.(b)) the NFLR region is much more expanded

and contains most of the Fresnel region11.

In Fig. 9 - Fig. 10, we illustrate the variation of the two parametersTmin andDSNRmin
with respect to the source

location parameters and for a relative tolerance error equal to ǫ = 10%. From these figures, one can observe that

DSNRmin
andTmin increase significantly for sources that are located far from the antenna or in the lateral directions.

VII. C ONCLUSION

In this paper, three important results are proposed, discussed, and assessed through theoretical derivations and

simulation experiments:(i) Exact EG conditional and unconditional CRB derivation for near field source localization

and its development in non matrix form. The latter reveals interesting features and interpretations not shown by the

CRB given in the literature based on an approximate model (i.e., approximate time delay).(ii) CRB derivation for

11Except for the extreme lateral directions where the target quality can never be met since the CRB goes to infinity for|θ| → π

2
.
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Fig. 7. Near field localization regions for different values of the target quality: Stdmax
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Fig. 8. Comparison of NFL regions in equal and variable gain cases

the VG case which investigates the importance of the power profile information in ‘adverse’ localization contexts

and particularly for lateral lookup directions.(iii) Based on the previous CRB derivations, a new concept of

‘localization region’ is introduced to better define the space region where the localization quality can meet a target

value or otherwise to better tune the system parameters to achieve the target localization quality for a given location

region.
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APPENDIX A

PROOF OFLEMMA 1

A direct calculation of matrixQ in (17) using equation (16) leads to

Q =









Q1 QT
2

Q2 Q3









, (82)
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where

Q1 =









fθθ fθr

frθ frr









, Q2 =









v1 v′
1

v2 v′
2









, Q3 =









v3 diag(α⊙α) 0T×T

0T×T v3IT×T









.

The entries ofQ1 are given by (19), (20) and (21),v1 = 2
σ2 (γ ⊙ γ)T τ̇ θ(α ⊙ α), v2 = 2

σ2 (γT γ̇θ)α, v′
1 =

2
σ2 (γ ⊙ γ)T τ̇ r(α⊙α), v′

2 =
2
σ2 (γT γ̇r)α, andv3 = 2

σ2 ‖γ‖
2.

Because the CRB of the range and the angle parameters is equalto the2× 2 top left sub-matrix of the inverse

matrix Q−1, Schur lemma [26] can be used and the results will be asQ−1 =









Q−1
c x

x x









whereQc = Q1 −

QT
2 .Q

−1
3 .Q2 .

After a straightforward computation, one obtain

Qc =









fθθ −
1
v3
(vT1 (diag(α⊙α))−1v1 + vT2 v2) fθr −

1
v3
(vT1 (diag(α⊙α))−1v

′

1 + vT2 v
′

2)

frθ −
1
v3
(v

′T
1 (diag(α⊙α))−1v1 + v

′T
2 v2) frr −

1
v3
(v

′T
1 (diag(α⊙α))−1v

′

1 + v
′T
2 v

′

2)









, (83)

where(diag(α⊙α))−1 refers to the inverse of the diagonal matrix diag(α⊙α) formed from vectorα⊙α.

Now, by comparing this expression ofQc to the expressions in (36), (37) and (38), one can rewrite

Qc = 2TDSNR









Evg(θ) −Evg(θ, r)

−Evg(r, θ) Evg(r)









, (84)

leading finally to

VG-CRBc(θ) =
Evg(r)

det(Qc)
=

(

1

2TDSNR

)

Evg(r)

Evg(θ)Evg(r)− Evg(θ, r)2
, (85)

VG-CRBc(r) =
Evg(θ)

det(Qc)
=

(

1

2TDSNR

)

Evg(θ)

Evg(θ)Evg(r)− Evg(θ, r)2
, (86)

VG-CRBc(θ, r) =
Evg(θ, r)

det(Qc)
=

(

1

2TDSNR

)

Evg(θ, r)

Evg(θ)Evg(r)− Evg(θ, r)2
. (87)



25

APPENDIX B

PROOF OFLEMMA 2

For the unconditional case, the considered unknown parameter vector isξu = (θ, r, σ2s , σ
2)T which leads to the

following 4× 4 Fisher Information matrix FIM=









F1 F2

FT2 F3









where the2× 2 matricesFi are given by

F1 =









fθθ fθr

frθ frr









, F2 =









fθσ2
s

fθσ2

frσ2
s

frσ2









, F3 =









fσ2
sσ

2
s

fσ2
sσ

2

fσ2σ2
s

fσ2σ2









.

By using Schur’s lemma for matrix inversion [26], one can obtain FIM−1 =









L−1 G

GT H









. whereL = F1 −

F2F
−1
3 FT2 =









u x

x v









. F3 andL are2× 2 matrices and their inverse can be computed easily as

L−1 =
1

det









u −x

−x v









=









CRB(r) CRB(θ, r)

CRB(θ, r) CRB(θ)









, (88)

where

u = frr −
1

det1
(fθσ2

s
c1 + fθσ2c2), (89)

v = fθθ −
1

det1
(frσ2

s
c1 + frσ2c2), (90)

x = frθ −
1

det1
(frσ2

s
c3 + frσ2c4), (91)

det1 = fσ2σ2fσ2
sθ

− fσ2
sσ

2fσ2θ, (92)

c1 = fσ2σ2fσ2
sθ

− fσ2
sσ

2fσ2θ, (93)

c2 = fσ2
sσ

2
s
fσ2θ − fσ2σ2

s
fσ2

sθ
, (94)

c3 = fσ2
sσ

2
s
fσ2

sr
− fσ2

sσ
2fσ2r, (95)

c4 = fσ2
sσ

2
s
fσ2r − fσ2σ2

s
fσ2

sr
, (96)

det = uv − x2. (97)
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Now, it remains only to compute the entries of the FIM by using equation (40) and taking into account that

the matrixΣ = σ2sa(θ, r)a(θ, r)
H + σ2IN and its inverse is given asΣ−1 = 1

σ2 (IN − 1
C
a(θ, r)a(θ, r)H) where

C = 1
SNR+ ‖γ‖2 anda(θ, r) = [γ0, γ1e

jτ1 , · · · , γN−1e
jτN−1 ]T .

A straightforward (but cumbersome) computation leads to

fθθ =
2T

C2
(1− SNR‖γ‖

2
)− (1 + SNR‖γ‖

2
)((γ ⊙ γ)T τ̇ θ)

2 (98)

+C SNR‖γ‖
2
(‖γ̇θ‖

2
+ (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ θ)),

frr =
2T

C2
(1− SNR‖γ‖

2
)(γT γ̇r)

2 − (1 + SNR‖γ‖
2
)((γ ⊙ γ)T τ̇ r)

2 (99)

+C SNR‖γ‖
2
(‖γ̇r‖

2
+ (γ ⊙ γ)T (τ̇ r ⊙ τ̇ r)),

frθ =
2T

C2
(1− SNR‖γ‖

2
)(γT γ̇θ)(γ

T γ̇r)− (1 + SNR‖γ‖
2
)((γ ⊙ γ)T τ̇ θ)((γ ⊙ γ)T τ̇ r)

+C SNR‖γ‖
2
(γ̇T

θ γ̇r + (γ ⊙ γ)T (τ̇ θ ⊙ τ̇ r)), (100)

fσ2
sσ

2
s

=
T ‖γ‖

4

σ4(C SNR)2
, (101)

fσ2σ2 =
T

σ4C2
(NC2 − ‖γ‖

2
(2C − ‖γ‖

2
)), (102)

fσ2
sσ

2 =
T ‖γ‖

4

σ4(C SNR)2
, (103)

fθσ2
s

=
2T ‖γ‖

2

σ2C2SNR
(γT γ̇θ), (104)

fθσ2 =
2T

σ2C2SNR
(γT γ̇θ), (105)

frσ2
s

=
2T ‖γ‖

2

σ2C2SNR
(γT γ̇r), (106)

frσ2 =
2T

σ2C2SNR
(γT γ̇r). (107)

By replacing these entries in equations (89)-(97), we obtain

u =
2TSNR2 ‖γ‖2

(1 + SNR‖γ‖2)
Evg(r), (108)

v =
2TSNR2 ‖γ‖2

(1 + SNR‖γ‖2)
Evg(θ), (109)

x =
2TSNR2 ‖γ‖2

(1 + SNR‖γ‖2)
Evg(θ, r), (110)
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leading finally to Lemma 2 result

VG-CRBu(θ) =
1 + SNR‖γ‖2

2TSNR2 ‖γ‖2
Evg(r)

Evg(θ)Evg(r)− Evg(θ, r)2
, (111)

VG-CRBu(r) =
1 + SNR‖γ‖2

2TSNR2 ‖γ‖2
Evg(θ)

Evg(θ)Evg(r)− Evg(θ, r)2
, (112)

VG-CRBu(r, θ) =
1 + SNR‖γ‖2

2TSNR2 ‖γ‖2
Evg(θ, r)

Evg(θ)Evg(r)− Evg(θ, r)2
. (113)
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