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Exact Conditional and Unconditional Cr&mRao

Bounds for Near Field Localization

Youcef Begriché, Messaoud Thamériand Karim Abed-Merairh

Abstract

This paper considers the CramRao lower Bound (CRB) for the source localization prablie the near field.
More specifically, we use the exact expression of the delaginpeter for the CRB derivation and show how this
‘exact CRB’ can be significantly different from the one givienthe literature based on an approximate time delay
expression (usually considered in the Fresnel region)dtitian, we consider the exact expression of the received
power profile (i.e., variable gain case) which, to the besbwf knowledge, has been ignored in the literature.
Finally, we exploit the CRB expression to introduce the nemnaept of Near Field Localization Region (NFLR) for
a target localization performance associated to the agifgit at hand. We illustrate the usefulness of the proposed

CRB derivation as well as the NFLR concept through numesgallations in different scenarios.
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. INTRODUCTION

Sources localization problem has been extensively studigtid literature but most of the research works are
dedicated to the far field case, e.d., [1], [2].

In this paper, we focus on the situation where the sourcegaeear field (NF) region which occurs when the
source ranges to the array are not ‘sufficiently large’ comgavith the aperture of the array system [3], [4]. Indeed,
this particular case has several practical applicatiookidting speaker localization and robot navigatidh [5],, [6]
underwater source localization! [7], near field antenna nreasents [[8], [[9] and certain biomedical applications,
e.g., [10]. Recently, some works considered both far filed et filed localization [11],.[12] where the authors
propose different methods to achieve a better localizgperiormance when the source moves from far field to
near field and vice versa.

More specifically, this paper is dedicated to the derivatibrihe Crangr-Rao Bound (CRB) expressions for
different signal models and their use for the better undadihg of this particular localization problem. CRB
derivation for the near field case has already been considertbé literature[[3], [[13],[14],[[15]. In[IB],[[13], the
exact expression of the time delay has been used to deriventtenditional CRB in matrix form, i.e., expressed
and computed numerically as the inverse of the Fisher InfdomaMatrix (FIM). In [14], the conditional CRB
based on an approximate model (i.e., approximate time delpyession as shown in Section 11-A) is provided.

Recently, El Korso et al. derived analytical expressionshef¢onditional and unconditional CRB for near field
localization based on an approximate model [15]. In theetattork, both conditional and unconditional CRB of
the angle parameter are found independent from the range eald are equal to those of far field region.

In our work, we propose first, to use the exact time delay espresas well as the exact power profile (i.e.,
Variable Gain (VG) model) corresponding to the sphericaif@f the wavefront for the derivation of closed form
formulas of the conditional and unconditional VG-CRBs. dad, in the near field case, the received power is
variable from sensor to sensor which should be taken intowaddn the data model. By considering such variable
gain model, we investigate the impact of the gain variatiotodhe localization performance limit.

Secondly, we consider a simple case where the sensor to ggmser variation is neglectuc(i.e., Equal Gain

To the best of our knowledge, this assumption is considered in all previouks.



(EG) model). The obtained EG-CRB expressions using the exaetdielay values are then compared to those given
in [15]. The development (i.e., Taylor expansion) of the &&G-CRB allows us to highlight many interesting
features including:

« A more accurate approximate EG-CRB for the exact model as amdpto the EG-CRB based on an
approximate model. In particular, we show that at low ranglees, the approximate EG-CRB in [15] can be
up to 30 times larger than our exact EG-CRB.

« A detailed analysis of the source range parameter effectsoanigle estimation performarHce

Finally, we propose to exploit the exact CRB expression txifpéhe ‘near field localization region’ based on
a desired localization performance. In that case, the ‘fielaf localization region’ is shown to depend not only on
the source range parameter and array aperture but also @ouhees SNR and observation sample size.

The paper is organized as follows: Secfidn Il introduces ttie dedel and formulates the main paper objectives.
In Sectior{Il, the conditional and unconditional VG-CRB igations are provided in the variable gain case. Section
[Vlpresents the simple case where all sensors have the samé.ga EG case). The EG-CRB is then compared
to the VG-CRB with an analysis of the impact of the gain profiteoothe localization performance. In addition,
we show in sectiof TV-B that considering the exact time delagression leads to a more accurate CRB expression
as compared to the CRB based on an approximate time delayorSBatintroduces the concept of near field
localization region and illustrates its usefulness thtosgecific examples. Sectién]VI is dedicated to simulation

experiments while Sectidn VIl is for the concluding remarks.

[I. PROBLEM FORMULATION
A. Data model

In this paper, we consider a uniform linear array withsensors receiving a signal, emitted from one source
located in the NF region, and corrupted by circular white €san noisev,, of covariance matrix2Iy. The nt"

array outputy, =0,--- , N — 1, is expressed as

z(t) = 7 (0,7) ()™ O 0, (1) = s(8) (v (0, 7)™ O)) £ w(t) t=1,--- T, 1)

%part of the work related to the EG-CRB has been published in [16] preben conference ISSPA 2012.
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Fig. 1. Near field source model

whereT is the sample size ang,(6,r) represents the power profile of thé" sensor given by [17]

a(87) = & = ! , @)

In r\/l—msinH—i—(%d)Q

r

I, being the distance between the source signal andnthesensor ands(¢) is the emitted signal. The exact

expression of the time degyrn is given by

Tn:2ﬂ \/1+n2d2_2ndsin0_1 7 3)
A 7r2 r

whered is the inter-element spacing, is the propagation wavelength and ) are the polar coordinates of the

source as shown in Figl] 1.
In the sequel, the source signal will be treated either asrahiistic (conditional model) or stochastic (uncon-
ditional model). Indeed, in the array processing, both nwdan be found:
1) Conditional model in which the source signal is assumedrdenistic but its parameters are unknown.
2) Unconditional model in which we assume that the sourceasig random. In our case, we will assusie)
to be a complex circular Gaussian process with zero mean akibwn variancer2. Note that all existing
works on the near field CRB consider such a Gaussian assumpiiteed, in the Gaussian case, the CRB
derivation is tractable and ‘interpretable’ closed fornpmssions can be obtained. In addition, as shown in
[18] and [19], the Gaussian case is the least favorable odehance it represents the most conservative
choice. In other words, any optimization based on the CREeutite Gaussian assumption can be considered

to be min-max optimal in the sense of minimizing the largeRiBC

3The first sensorp = 0, is considered for the time reference.



Remark: Note that, the more general case of multipath channel isomdidered here for the ‘tractability’ of the
CRB derivation and its ‘readability’. Indeed, in most ekigt papers, e.g[ [12], one associates to each source one
direction of arrival (i.e., one channel path). The sourcaliaation in multipath case can be treated as a multiple

correlated sources case aslin![20].

B. Objectives

In the literature, only approximate models of the receivéddignals are considered. Indeed, two simplifications

of the model in[(lL) are used in practice:

(a) The sensor to sensor power variation is neglected andawerpprofile is approximated by, (0,7) = %

This model is referred to as the equal gain model sing@, ) is constant with respect to the sensor index
mn.

(b) Also, most existing works on near field source localizatonsider the following approximation of the time
delay expression to derive simple localization algorithesswell as CRB expressions, e.q@.,|[21]I[15]

2,,2 1
Tnh = —27rd7n sin(0) + FdTn; cos?(0) + o (f) : 4)

The latter is considered as a good approximatior bf (3) in tlesriel region given by [17]

0.62 (W) < 2W. (5)

Our first objective is to derive CRB expressions without thagproximations, i.e.,

1) The distance from the source to th& sensorl, is a function of the sensor position (i.e., sensor index)

according to

d d\?
lp = \/12 — 2ndrsin(0) + n2d? = r\/l _ o sin(6) + (n ) . (6)
r

,
Hence, the received power profile is variable from sensor ts@e In the far field case, this variation is
negligible but not necessarily in the near field context. Te liest of our knowledge, this point has not
been taken into consideration in the existing literature. Would like to investigate the impact of such gain

variation into the localization performance limit.



2) Based on the exact expression of the time dejain equation[(B), we aim to derive the exact conditional and
unconditional EG-CRB and show that the exact EG-CRB can béfisigmtly different from the approximate
EG-CRB given in[[15].

Our second objective is to exploit the previous CRB derdratio better define the NF region according to a

target localization performance, i.e.,

3) The near field region has been so far assimilated to the Fresgien which depends on the antenna size
and the signal wavelength only. However, the localizatienfgrmance depends on other system parameters
(SNR, sample size, angle position; ) for which reason we introduce the concept of Near Field Laa#lbn
Region (NFLR) where the localization error is upper bounded lesired threshold value depending on the
considered application. Based on the NFLR concept, we idtestnow the 'controllable’ system parameters

can be tuned to achieve a minimum target performance.

IIl. CONDITIONAL AND UNCONDITIONAL CRB DERIVATION WITH VARIABLE GAIN

In this case, we consider the model given by (1). As we can isethis model both the time delay and the
power profile carry information on the desired source loeatth ). Our objective here, is to investigate the roles

of both profiles in the performance limit given by the CRB.

A. Conditional VG-CRB

In this Section, we consider the source signal as deternardstording to the model

S(t) — a(t)ej(zﬂfotJrT/J(t))

)

where f is the known carrier frequency while(t) and(¢) are the unknown amplitude and phase parameters of
the source signal. Under the data model assumption of Sdifil@hwe derive next the exact deterministic (i.e.,
conditional) VG-CRB for the location parameter estimation

1) Conditional VG-CRB derivationThe log-likelihood function of the observations is given by

1
Lc(éc):_NTIDW_NTIHUQ—EHa:—NH?, @



where
x = [x'(1)-- - XD, (8)
x(t) = [zo(t), ana ()], 9)
po= [s(W)a’(@,r), - s(T)a’ (0,r)", (10)
a(0,r) = [o(0,r), e O oy (0,m)el O, (11)
e = 0,rnel o’ 27, (12)
T o= [P, (D)), (13)
a = [a(1), - a(D)], (14)

||| refers to the Frobenius norm and! is the transpose operator.

The CRB is equal to the inverse of the Fisher Information MatFidvl) defined bu

OL:(§°) 8Lc(£c)>
FIM(£9)];, = E . 15
FM(E) = 2 (P O (15)
The latter is given in our particular case by
. NT 902 00% 2 _ op op
[FIM(&°))i; = o1 9¢, 0, +3 { o5 05, (16)

whereR{.} refers to the real part of a complex valued entity. The FIM isgiby the block diagonal matrix as

Q O2r12)x1
FIM = R (17)
0 NT
1x(2T+2) ol

where

foo  Jfor | Toy  foa

Q= ; (18)
fyo fyr | Fyy Fya

fa@ fozr Faw Faa

“All expected values are taken with respect to the distribution of the ohimrwaector .



foo = 2TDs(|[7gll” + (v @ )T (79 © 79)), (19)

frr = 2TDsw(|[%,|* + (v 09" (F © #1)), (20)
fro = Jor =2TDawa((Y5 %) + (v ©%)T (9 © F,)), (21)
v o= [0,r), v (0,7)]T (22)
Yy = [%’;ﬂ,...,a&-lr, (23)
g = [%f,...,agi-l]T, (24)
T o= [n0,7), e (6,)] (25)
to = [%7;7---782%_1r7 (26)
P [%Tagr (27)

Jod]” Moreover, the vectors of SiZE x 1, fyg, fy, fag

and whereo represents the Hadamard product dnglz = 7= -

andf,, are given by

fho = fh = 5(ror Fl@oa), 29)
for = fh, = %(‘y oY) (a6 a), (29)
fuo = T = 0 0, (30
fr = = ("% (31)

Finally, matricesF,, Fao, Fya Of sizeT x T', are given by
2 2 2 9
Fuv = =5 [P diaga © @), Faa = = [17I°Ir and Fay = Fyuo = Orsr. (32)

diaga ® «) refers to the diagonal matrix formed from vecier® a.

Equation [[(IV) translates the fact that the FIM of the desiredlipation parameters is decoupled from the noise
variances? but not from the source magnitude and phase parameterseHtree CRB matrix of the range and
angle parameters is equal to the 2 top left sub-matrix of the inverse matri@ . By using the Schur’s matrix
inversion lemma, one can obtain:

Lemma 1:The non-matrix expressions of the conditional CRB in thealad gain case for a source in the near

field, for N > 3 and@ # +3, are given by



Eug(r) (33)

C _ 1
VG-CRB (9) - (QTDSNR> Eog(0)Evg(r)—Ev, (0,7)2°

Fo(6
VG-CRB‘(r) = <2T55NR> Ew(9)E,Ug(4~)(—)Evg(9,r)2’ (34)

C E,,q 9,7‘
VG-CRB(0:1) = (srds) mmm sttt (39
where

. ; } 1 ) .
Euw(®) = l?+ (v @) (19 @ 74) — e [(vovT+0)* + (v 4p)?] (36)

) ) ; 1 } .
Ey() = AP+ onT(E o) - e [(vov) )+ ("4,)?], (37)
Euw(0,7) = 455, + (o) (o0 ) — PG (vov) Fe(yon r + (Y 4)(Y 49)] . (38)

Proof: See appendik]A

B. Unconditional VG-CRB

For unconditional CRB, the signal is assumed Gaussian @awpicular with zero mean and varianeg. In
this case, the vector of the unknown parameters becgrhes|[f, r, o2, 02]", and then the log-likelihood function

S

of the observed data is given by
L,(£") = —NTInm — Indet(X) — Ttr(E~'R), (39)

where® = o2a(6,7)a(0,r)" + o*Iy (theoretical covariance matrixg = + >°/_, z(t)z" (¢) (sample estimate
covariance matrix), tr) (respectively det)) refers to the matrix trace (respectively matrix determthand (.)?
is the transpose conjugate operator.

Under the assumption of the Gaussian stochastic sign&l$;.th), 1 <i,j < 4 entries of the FIM are given by

u\l. . __ 7182 71872
[FIM(£%)];; = Ttr (2 5. = a&-)‘ (40)

Since the CRB is equal to the inverse of the Fisher informatiatrimand using the results df [22] for the two
desired localization parameters, we have the followingntem
Lemma 2: The non-matrix expressions of the exact unconditional CRBievariable case for a source in the

near field, forN > 3 and @ # +3, are given by



10

[ (1+SN 2 ]
VG-CRB'(0) = | "Rt | VG-CRE(6),  (41)

" [ (1+SNR{? T
VG-CRB'(r) = | W GR e | VG-CREF(r),  (42)

VG-CRB! (0, r) = | 0 | vG-CRB(0, 1), (43)

where SNR= Z—j

Proof: See appendik]B

IV. CONDITIONAL AND UNCONDITIONAL CRB DERIVATION WITH EQUAL GAIN

Here, we consider the particular case of equal gain usuatgidered in the literature. Our objective is twofold:
(1) the derived EG-CRB expressions are compared with the EG-CRBeadpproximate model given by El Korso
in [15] in order to highlight the impact of the time delay appimation on the CRB(ii) then comparisons between
equal gain and variable gain cases are made, by derivingayerTexpansion of the proposed expressions of the

CRB, in order to exhibit the impact of the variation of the movprofile on the estimation performance.

A. Conditional and unconditional EG-CRB derivation

For the equal gain case, we do not consider the variationeofptiwer profile which is equivalent to assuming
that all sensors have equal gain (ig,(0,r) ~ % vn). In that case, since the transmit source power is unknown,

the factor% is incorporated into the source amplitude that are redefigedrding to

1 . L
& = —« in the deterministic case (44)
T

or

1 . .

os = —os In the stochastic case (45)
T

1) Conditional EG-CRB:Here, the received signal at thé" sensor is given by

T (t) = s(t)e’™ + vn(t), (46)

with s(t) = a(t)e!@+fot) The corresponding CRB expressions can be deduced from taénolemmalll by
replacinga: by & and settingy = 1 and4, = %, = 0 where all entries of the vectdry of size (N x 1) are

equal tol. We obtain then the following results:
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Lemma 3:The non-matrix expressions of the conditional CRB in the ega&n case for a source in the near

field, for N > 3 and# # +%, are given by

EG-CRE ()

1 Eeg(T)
(m"vsm) By O Eey (- Egory (A7)

] | E.,(0)
EG-CRB(r) (2TﬁSNR> EO)E., () -E,0n  (48)

E.,(0,r
EG-CRB(0,1) = (37h,., ) mms b tuwre (49

where EG-CRB(#, r) is the non diagonal entry of the consider2ck 2 CRB matrix (it represents the coupling

[l *

between the parameters)ﬁSNR = = and

. 1 .

Eeg(0) = |7ol” = 5 (1570)*, (50)
. 1 :

Beg(r) = |If+l* = (870, (51)
H . 1 . :

Eeg(0,7) = 7470 — 5 (AnTo) (1N ). (52)

2) Taylor Expansion (TE) of conditional EG-CRBhis section aims to highlight the effects of some system
parameters on the localization performance and to bett@pace, in sectiof IV-B, our exact CRB with the CRB
given in [15]. For that, we propose to use a Taylor expansfdheexpressions of lemnid 3. For simplicity, we omit
the details of the cumbersome (but straightforward) ddédwa and present only the final results in the following
lemma:

Lemma 4:The Taylor expansions of the exact CRB expressions of lefinead to

32 d
EG-CRB(0) =~ _ X | pa(N)—6(N—=1)(6 N> —15N +11) sin(@) —
(0) T Dardin® cos? (0)p3(N) p2(IN)—6( ) ) (H)T
1
+ {70(2]\7 —1)(384N3 — 1353N?2 + 1379N — 368)
1 4 3 2 .2 dQ
+ﬂ(186N — 1590N3 + 5351N2 — 6795N + 2890) sin?(6) =ik (53)
67"2>\2 2 .
EG-CRB'(r) x [15r% — 60(N — 1) sin(8)dr

TDSNRd47T2 COS4(0)p3(N)
1
+77 {sin®(0)(1061N? — 2625N + 2911) 4 225N? — 315N — 135} dﬂ , (54)
whereps(N) = (8N — 11)(2N — 1) andp3(N) = N(N? — 1)(N? — 4).
These expressions are useful to compare our CRB to the oh&jifb(it also, they allow us to better reveal how

the different system parameters affect the localizatiofiopmance. For example, one can see in particular that:



12

o The CRB decreases linearly with respect to the observatina &s well as the deterministic SNR, i Elgur

« The CRB goes to infinity whefi — +7 and the best localization results are obtained in the deditiection,
i.e., ford = 0.

« Asymptotically (for large antenna sizes), the first term & ¥E in [53) decreases i3, i.e., if we double
the number of sensors, the CRB will be decreased approxyniayea factor of8.

3) Unconditional EG-CRB:The EG-CRB in that case can be obtained from the VG-CRB by geftia- 15

ands? = %
Lemma 5: The non-matrix expressions of the unconditional CRB in theaégain case for a source in the near

field, for NV > 3 and¢ # £7 are given by

EG-CRB!(¢) — [1HSNR_MbDsw] g6 cRE(9),  (55)

(SNR2 N
i _ [0+(SNR N)Dswr| Eea
EG-CRB'(r) = | " G{re v ) EG-CRB(r),  (56)
_ _ _(1+(SNR) N)DSNR- _
) ~ EG-CRB'(0,7) = | e v EG CRB(0,7), (57)
where SNR = %5 and Ds x EG-CRB’ represents the normalized EG-CRBsee lemmd]3) depending on the

localization parameters, the array geometry, and the sasipé only.

This result translates the fact that the unconditional CRBesgan a similar way as the conditional CRB with
respect to variable&, » andT'. However, concerning the SNR parameter and the number obisgrilsis interesting
to observe that:

« Atlow SNRs (i.e., ifSNRx N << 1), the CRB decreases quadratically (instead of linearhh&donditional

case) with respect to the SNR and &\t (instead of N3) in terms of the number of sensors.

« However, for large SNRs (i.e., BNRx N >> 1), the unconditional CRB behaves similarly to the condiion

CRB with respect to paramete&NR andN (i.e., it decreases linearly witBNR and inN? with respect to

the number of sensors).
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B. Comparison with the ‘EG-CRB of the approximate model’

Let us first recall the CRB expressiHngiven in [I5] and based on the approximate mode[dn (4) reteto as
EG-CRB' where the subscriptz' stands for ‘approximate’:
Lemma 6: The non-matrix expressions of the approximate conditioRB{15] for a source in the near field,

for N > 3 andf # +Z, are given by

3\
EG-CRE'(f) = —— N), 58
(6) 2T Dgprd? 72 0082(9)p3(N)p2( ) (58)

242
EG-CRB'(r) = 6r7A (157% + 30dr (N — 1) sin(6) + d*pa(N) sin®(6)) . (59)

TDSNRd47T2 COS4 (9)p3 (N)

Comparing lemmal4 to lemma 6, one can make the following ehsens:

« First, we note that the first and main term of equatiofd (53) @eypely of equation[{34)) is equal to the first
term of equation[(38) (respectively of equatidnl(59)).

o We note also, that the Taylor expansion (of the time delalfpied by CRB derivation leads to different
results as compared to CRB derivation followed by Tayloraggion (of the CRB). The latter expansion being
more accurate than the former as illustrated by our sinaratesults.

« The approximate CRB of the angle estimate shown in lefdma &lepiendent of the range parameter (it is the
same as the far field CRB) while the expression of EG-QRBin lemmal4 reveals how it is affected by the
range parameter. In particular, at the first order, one carttegethe CRB decreases (respectively increases)

as a function of% for 0 € [0, 5[ (respectively ford €] — 7, 0]).

C. Comparison between VG and EG cases

By considering the extra-information given by the receipesver profile, one is able to achieve in general better

localization performance as will be shown later in Secfioh Y better compare the CRB expressions in the

SWe provide here the CRB for the conditional model only since it is equalédRB of the unconditional model up to a scalar constant

(see lemmal2).
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constant and variable gain cases, we provide here the dotrtian of their Taylor expansion

3AZpy(N)

EG-CRE()) ~ _ , (60)
272T Deyrd? cos?(6)ps(N)
VG-CRE'(0) 3N’ r?pa(N) (1+ X2 f1(6)) (61)
22T Denrd? cos?(0)ps(N) (1 4+ A2 f2(6))’
EG-CRE(r) ~ 90X%r (62)
WQTBSNRd4 COS4(0>p3(N) ’
. 90276
VECRE) > o Dt cost (0)ps () (1 + X2 o0)) ©
where f;(0) = #% and f>(0) = —p jfsii&Q)((%2_4). Note that the dominant term of EG-CRBs larger

than the dominant term of EV-CRBor both range and angle parameters.

From these expressions, one can see that the two CRBs aresquitaH for sources located in the central
direction (i.e., for smalb values) while at lateral directions (i.g6| close to7) the variable gain CRB is much
lower than the equal gain one. This translates the fact thahvthe source location information contained in the
time delay profile becomes wealk, it is somehow partially campted by the location information contained in
the received power profile especially for the estimation @& thnge value. This observation is illustrated by the

simulation experiments (cf. Figl 4, Figl 5 and Hig. 6) given intBedVIl

V. NEAR FIELD LOCALIZATION REGION (NFLR)

The radiating near field or Fresnel region is the region betwkemear and far fields [17] corresponding to the
space region defined by equatidn (5). The latter depends orotlreesantenna range, the signal wavelength, and
the antenna aperture.

Note that the lower bound of Fresnel region is related to tleetfaat in the immediate vicinity of the antenna,
the fields are predominately reactive fields meaning that thexdE H fields are orthogonal [17]. Therefore the
space region given by < 0.62 (‘W); should be kept out of the localization region. However, tippar
bound of the Fresnel region as given in equat[dn (5) does ketitdo consideration the localization performance
limit. For this reason, we suggest to define the near field Ipatdin region (NFLR) based on a target estimation

performance relative to the application at hand. More gedgj if Std,.... > 0 is the maximum standard deviation

®Note that, due to the source amplitude normalization introduced in sécfion Oé hasDsyr = szNR.



of the localization error that is tolerated by the considwpplicatioH, ie.,

E (|~ pl) < Stdas.

15

(64)

wherep = (z,y)" (respectivelyp) refers to the position vector (respectively its estimatedn the NFL region can

be defined as the one for which the minimum standard deviagimer{ by the square root of the CRB) satisfies

condition [64).

SinceE (Hf) - p||2) = E((#—2)?)+E((§—y)?), the previous condition on the minimum MSE can be expressed

as

v/CRB(z) + CRB(y) < St
Now, the source coordinates can be rewritten according to
x = rsin(f) = g»(0,r),
y = rcos(f)=gy0,r),
and hence, by using the delta method[in/ [25], one can express
CRB(z) + CRB(y) = ng(&, r)CVg.(0,71) + Vgg(H, r)CVgy(0,r),

where

09r 09z

T
Vg (0,7) = [80 87‘} = [rcos(0) sin(ﬁ)]T,

T
Vgy(0,r) = [%gay 8895] = [—rsin(0) cos(@)]T,

. CRB(§) CRB(0,r)
CRB(0,r) CRB(r)

A straightforward derivation of(66) leads to

CRB(z) + CRB(y) = r’CRB(¢) + CRB(r),

(65)

(66)

(67)

(68)

(69)

(70)

"For example, in mobile localization, it is required that in case of emergémeyocation error is less than 125 m_[23] with a given

confidence level. Also, for safety raisons, automatic vehicle navigatimed on GPS or inertial measurement units, requires a maximal

location error known as the ‘safety location radius’l[24].
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and therefore the NFL region is defined as the one corresponaling

\/72CRB(f) + CRB(r") < Std,,qz. (71)

An alternative approach would be to use a maximum toleraatgevon the relative location error, i.e., a given

threshold value such that

E (b - pl?)

3 <e (72)
Ipll

which corresponds to

CRB(r)
2

\/ CRB(A) + <e (73)

,
For example, in the conditional case, equatiod (73) becomes

1

Gn(8,r) < €, (74)

where

Evg 9) + EUQ(T)/T2
Bog(0) Eug(r) — Evg(0.7)%°

Gny(b,r) =

From a practical point of view, equatioh {74) can be used t@ tthe system parameters in order to achieve a
desired localization performance. Different scenarios ba considered, according to the parameter, we can (or

wish to) tune.

Scenario 1: One can define the minimum observation time to achieve a delsicalization performance at a given

location and a given SNR value as

GN(Q, T)

Similarly, one can also define the minimum SNR value for a tamedlization quality as

GN(H, 7’) .

Dsyw,,;,, (0, 7) = 22T

(76)

In Section[V], we provide simulation examples to illustrate tvariation of these two parameters with respect

to the source location.
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Scenario 2: The previous parameters can be also defined for a desiredzlatwati regionR, (instead of a single

location point(,r)) as

Dsyg,,.,(Ra) = (9111)23% Dsyw,,.,, (0,7). (78)

For example, if we are interested into the surveillance ofpace sector limited by, < r < Tymee and

—Omaz < 0 < Opaz, then

1

Tmm = ﬁ%NR maxpr, GN(Q, T’) ~ 2627DSNRGN(Tmaam 9ma1’)7 (79)
1
DSNR'rn,'[,n - ﬁ maxp, GN(97 T) ~ 262TGN(Tmaxa ema:v); (80)

where the second equality holds from the observation thatydrom the origin,G y is a decreasing function with

respect to the angular and range paranﬁters

Scenario 3: One can also wish to optimize the number of sensors with ottpea desired localization regioR,
and for a target localization quality In that case, the minimum number of sensors needed to &cthevtarget

guality can be calculated as

Nimin = atg min {N e N*|Gn(0,7) < 26*T Dgys V(0,7) € Ry} (81)

VI. SIMULATION RESULTS

In this section, three experimental sets are consideredfifdteone is to compare the provided exact EG-CRB
expressions of lemnid 3 with the CRB expressions given in [b5he second experiment, we investigate the effect
of considering the variable gain model instead of the carigiain model for near field source localization. Finally,
the third experiment is to illustrate the usefulness of tharrfield localization region as compared to the standard
Fresnel region.

In all our simulations, we consider a uniform linear antemvith N = 15 sensors and inter-element spacing

d= % (A = 0.5m) receiving signals from one near field source locate@at). The sample size i = 90 (unless

8This is not an exact and proven statement but just an approximatioexpegsses the fact that the localization accuracy decreases when

the source moves away from the antenna or towards its lateral directions.
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stated otherwise) and the observed signal is corrupted byite Gaussian circular noise of variangé. In the
conditional case, the source signal is of unit amplitude,,(@(¢) = 1 V¢t). The dotted vertical plots in all figures

represent the upper and lower range limits of the Fresnebmegiven by [(b).

A. Experiment 1: Comparison with existing work in the EG case

In Fig. 2, we compare the three EG-CRB expressions for the sdomation parameter estimates versus the
range values in the interv@ld , 50m] and versus angle valdes the interval[—87° , 87°]. The noise level is set
to o2 = 0.001 (high SNR case). A similar comparison leading to similar ltssis given in Fig[B for a noise level
set tos? = 0.5 (low SNR case). The source angledis= 45° in the comparison versus range values ang 20\
in the comparison versus angle values.

From these figures, one can make the following observations:

1) There is a non negligible difference between the exact EG-@Rd the proposed one in_|15] especially at

low range values: i.e., the given EG-CRB [n[15] can be upgGdimes larger than the exact CRB.

2) From Fig[2.(c) and Fid.]3.(c), contrary to the given CRB[In][1Be exact one varies with the range value

with a relative difference varying from approximated9% for small ranges to 0 when goes to infinity.

3) From Fig[2.(b) - Figl13.(b), one can observe that the lowedB @Robtained in the central directions. This

observation can be seen from the TE given in leriina 4 where ﬁberf% is minimum for this directions
and goes to infini@ when|0| — 7.
4) We note that the provided Taylor expansion of the exact GRkBiore accurate than the one obtained by

expanding the time delay expression before CRB derivation the one in[[15].

B. Experiment 2: EG versus VG cases

To this end, we have to ensure first that the received powerernwio cases (i.e., constant and variable gain

cases) is the same for the reference sensor (i.e., dividegawer of constant gain case per the square of the range
°Note that the curves with respect to the angle parameter (i.e[JFig. Z3Arig.[6, Figl® and Fid_10) are not symmetrical arodnd 0

because we have chosen the first sensor for the time referencevas shFig.[1.
%This is due to the fact that the angle parameter is not observed directhnhuthrough thesin function, which translates the fact that

‘weak information’ is carried by the observed data on the source locatioameters in the lateral directions.
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Fig. 2. CRB comparison: Exact conditional CRB versus approximatB @R15] in low SNR case
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Fig. 3. CRB comparison: Exact conditional CRB versus approximatB @®R15] in low SNR case

as explained in sectidn IVlA). To better compare the CRB esgions, we consider two contexts whére- 0°
for the first one (central direction) artd= 85° for the second one (lateral direction). One can observe fram
4 and Fig[5b that, for smalp| values, the constant gain CRB is quite similar to the vaeiamin one while at
lateral direction (i.e.|d| close to7) the variable gain CRB is much lower than the equal gain oue,td the extra
information brought by the considered gain profile.

This can be seen again from Flg. 6 where we can observe the |&R@e diference for high|6| values. In

brief, one can say that when the ‘location information’ @néd in the time delay is relatively weak (which is the
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Fig. 5. CRB comparison: Equal Gain versus Variable Gain cases fje @stimation

case for sources located in the lateral directions) thermmédion obtained by considering the power profile would

significantly help improving the source location estimation

C. Experiment 3: Near Field Localization Region
The plots in Fig[l7 represent the upper limit of the NFL regionddferent tolerance values. From this figure,
one can observe that the Fresnel region is not appropriatbamcterize the localization performance. Indeed,

depending on the target quality, one can have space losafi@, sub-regions) in the Fresnel region that are out
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Fig. 6. CRB comparison of the Equal Gain and Variable Gain casessvargyle value

of the NFLR. Inversely, we have space locations not part of tlesrtel region that are attainable, i.e., they belong
to the NFLR.

Fig.[8 compares the NFL region in the variable gain and equal gases withDg, = 30 dB. One can observe
that in the lateral directions the NFLR associated to the blgigain model is much larger than its counterpart
associated to the equal gain one. Also, in the short obsenvaine context (i.e., Fid.]8.(a)) the NFLR is included
in the Fresnel region while for large observation time (ifeg. [8.(b)) the NFLR region is much more expanded
and contains most of the Fresnel region

In Fig.[3 - Fig.[T0, we illustrate the variation of the two paraensT,,;, and D, With respect to the source
location parameters and for a relative tolerance error lelgua= 10%. From these figures, one can observe that

Ds\r,,,, andT,,;, increase significantly for sources that are located far frioenantenna or in the lateral directions.

VIlI. CONCLUSION

In this paper, three important results are proposed, discljsand assessed through theoretical derivations and
simulation experimentgi) Exact EG conditional and unconditional CRB derivation formfesld source localization
and its development in non matrix form. The latter revealsragdting features and interpretations not shown by the

CRB given in the literature based on an approximate model @pproximate time delayjii) CRB derivation for

MExcept for the extreme lateral directions where the target quality caer evmet since the CRB goes to infinity f@f — 5
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the VG case which investigates the importance of the powgil@rinformation in ‘adverse’ localization contexts

and particularly for lateral lookup direction$iii;) Based on the previous CRB derivations, a new concept of

‘localization region’ is introduced to better define the spagegion where the localization quality can meet a target

value or otherwise to better tune the system parametersievacthe target localization quality for a given location

region.
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APPENDIXA

PROOF OFLEMMA ]
A direct calculation of matrixQ in (I7) using equatior (16) leads to

Q: Qf
Q= ; (82)

Q: Q3



24

where
Joo  Jfor Vi Vll vy diaga ® @)  Opxr
Ql - ’ Q2 = ) Q3 -
fro frr V2 VIQ Orxr v3lprsr
The entries ofQ; are given by [(I9),[{20) andR1y; = (v © ) Fola @ @), vo = Z(v ), v| =
ZyonNTr(a®a), vh=2(7"4,)a, andv; = 2 |v|*.

Because the CRB of the range and the angle parameters istedih@2 x 2 top left sub-matrix of the inverse

-1
c X
matrix Q~!, Schur lemmal[26] can be used and the results will b€as = whereQ. = Q; —

Ql.Q;'Q: .

After a straightforward computation, one obtain

foo — 5; (v (diaga © ) "'vi + viva)  for — - (v] (diagla © a))"'v; + vivy)

Qc = ) (83)

fro — o (Vi (diaglae © @) "'vi + vy va)  frr — o (Vi (diagla © @) 71V + vy V)

.

where (diagla ® )~ refers to the inverse of the diagonal matrix diag> o) formed from vectora © a.

Now, by comparing this expression 6. to the expressions if_(B6), (37) arid](38), one can rewrite
QC - QTDSNR 5 (84)

leading finally to

) . _ Eyg(r) _ 1 Eyg(r)
VG-CRE(Y) = Gerq.) <2TDSNR> Fog(0) Eug(r) — Bvg(0,7)2" (85)
B0 [ 1 0)
VOB ~ i)~ (amm) EmE 0
. _E, (9,7")_ 1 Ey(0,7)
veeRe ) = g = () BamL ) - Ea 0
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APPENDIX B

PROOF OFLEMMA

For the unconditional case, the considered unknown pagamettor is¢" = (0, r,02,02)" which leads to the

S

F, Fo
following 4 x 4 Fisher Information matrix FIM= where the2 x 2 matricesF; are given by
FI F3
Joo  for Jooz  foo2 fo2o2  fo2o2
F, = ,  Fo= , Fs=
er fT"I' fraf fr(72 f0'20'§ f0202
L' G
By using Schur’s lemma for matrix inversion |26], one can obfaM ! = . whereL = F; —
GT' H
u x
Fngng = . F3 andL are2 x 2 matrices and their inverse can be computed easily as
Tr v
1 u - CRB(r) CRB(0,r)
! = = ) (88)
det
—r CRB(¢,r) CRB(0)
where
frr = ——(faos1 + faoec2) (89)
U = Jrr — 5 \Joo2C 52C2),
deg \J0o2€1 T+ J6o>C2
1
v o= fog — E(fragcl + fro2c2), (90)
1
r = fro— ﬁ(fra?CZS + fro2c4)a (91)
det = fo2crzf039 - fagozfaz% (92)
1 = fo202fcr§9 - fa§02f026'7 (93)
C2 = qucrffcﬂ@ - fa"’aﬁfo?@y (94)
3 = fafaffafr - fa?o"’fa"’ra (95)
C4 = faﬁoffazr - fJ2U§fU§r’ (96)

det = wv— 22 (97)
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Now, it remains only to compute the entries of the FIM by usingiaion [40) and taking into account that

the matrix> = o2a(0,r)a(0,r)" + o*Iy and its inverse is given a& ' = L (Iy — Za(6,7)a(0,r)") where
C - Sﬁq + H’Y||2 anda’(07r) = [7077161’7_17 e 77N—1€jTN_1]T'
A straightforward (but cumbersome) computation leads to

i = (= SNRIAIP) — (1+ SNRIAI) (v &) 70)° (98)

+C SNRIYI (96" + (v © )" (70 © 7)),

2T

frr =z (1= SNRIYP)(v"4,)* = (1+ SNR|*)((y © %) )? (99)

+C SNR|Y[* (|4, + (v o M) (7 © 7)),
2T

fro =z =SNRIVI) (¥ 40)(v"%,) = (1+ SNRIY[*) (v © 7)) (v ©7) " F7)
+C SNRIIYI* (454, + (v © 1) (70 © 7)), (100)
4
foroz = %v (101)
forrr = —em(NC? =~ Il (20 = In)) (102
4
fo2o2 = U4(TC”'SY!|\|R)27 (103)
o = LI s, (104)
fir = e ) (105)
fop = 2 s, (106)
frot = e ) (107)

By replacing these entries in equatiohs](§9)-(97), we abtai

2

_ SNRAI o, (108)
(1 + SNRJ|~]|%)
2

v = 2TSNR2”7”2 Fug(6), (109)
(1 + SNRJ|~][%)
2TSNR ||~||

— S H7H Evg(9>r)7 (110)

(1+SNR|~[?)
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leading finally to Lemma&]2 result

(1]

(2]

1+ SNR|ly|1” Euyy(r)
VG-CRB'(f) = : 111
(6) 2TSNR [|||? Eug(0) Evg(r) — Eug(0,7)? (D
1+ SNR|ly|1” Euy(0)
VG-CRB%(r) = , (112)
") = STSNR |y |2 Bog(0) Bug () — Fg 072
1+ SNR||~y|? Euyg(0,7)
VG-CRBY(r,0) = (113)
(r.0) 2TSNRE [|y||? Evg(0) Evg(r) — Eug(6,7)?
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