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On the dynamical Teichmüller space

Matthieu Astorg

June 5, 2014

ABSTRACT

We prove that the Teichmüller space of a rational map immerses into the moduli space of rational

maps of the same degree, answering a question of McMullen and Sullivan. This is achieved through a

new description of the tangent and cotangent space of the dynamical Teichmüller space.

1 Notations

The following notations will be used throughout the article :

• S is a Riemann surface

• P1 is the Riemann sphere

• Ω is a hyperbolic open subset of P1

• f : P1 → P1 is a rational map

• If S is hyperbolic, ρS is the hyperbolic metric on S

2 Introduction

Let us denote by Ratd the space of rational fraction of degree d, and by ratd its quotient
under the action by conjugacy of the group of Möbius transformations. For f ∈ Ratd,
we will denote by O(f) the orbit of f under the action of the group of Möbius transfor-
mations.

In order to study the geometry of the quasiconformal conjugacy class of f in Ratd
and ratd, McMullen and Sullivan introduced in [MS98] the dynamical Teichmüller space
of a rational map f , as a dynamical analogue of the Teichmüller theory of surfaces (see
[GL00] and [Hub06] for an introduction to Teichmüller theory). McMullen and Sullivan
constructed a natural complex structure on the Teichmüller space of a rational map f
of degree d, making it into a complex manifold of dimension at most 2d− 2. They also
exhibited a holomorphic map of orbifolds Ψ : Teich(f) → ratd whose image is exactly
the quasiconformal conjugacy class of f : thus one should think of the Teichmüller space
of f as a complex manifold parametrizing the conjugacy class of f . In this context, a
natural question arises concerning the parametrization Ψ : is it an immersion ? This
question was asked by McMullen and Sullivan in their introductory paper. As it turns
out, the answer is yes. Adam Epstein has an unpublished proof of this result; in [Mak10],
Makienko also gives a proof in the same spirit. We present here a different approach,
using more elementary tools : in particular, we won’t need the explicit description of the
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Teichmüller space of f given in [EM88], and we will give a new method for constructing
the complex structure on Teich(f) which does not rely on preexisting Teichmüller theory.

Denote by bel(f) the space of L∞ Beltrami differentials invariant under f , and by
Bel(f) its unit ball. We shall use the term "Beltrami forms" for elements of Bel(f),
and "Beltrami differentials" for elements of bel(f), which we will think of as the tangent
space to Bel(f). Given a quasiconformal homeomorphism φ, we will denote by K(φ) its
dilatation.

Definition 2.1. • Denote by QC(f) the group of quasiconformal homeomorphisms
commuting with f .

• Denote by QC0(f) the normal subgroup of the elements φ ∈ QC(f) such that there
exists K > 1 and an isotopy φt ∈ QC(f) with φ0 = Id, φ1 = φ and for all t ∈ [0, 1],
K(φt) ≤ K.

• The modular group of f is Mod(f) = QC(f)/QC0(f).

• The Teichmüller space of a rational function f (which we will denote by Teich(f))
is Bel(f) quotiented by the right action of QC0(f) by precomposition.

Let Z ⊂ P1 be a set of cardinal 3. There is a holomorphic map ΨZ : Bel(f) → Ratd
defined by Ψ(µ) = φZµ ◦ f ◦ (φZµ )

−1, where φZµ is the unique solution of the Beltrami

equation ∂φZµ = µ ◦ ∂φZµ fixing Z. It descends to a holomorphic map of orbifolds Ψ :

Bel(f) → ratd independant from the choice of Z, and to maps ΨZ
T : Teich(f) → Ratd

and ΨT : Teich(f) → ratd.
The unit ball Bel(f) being an open subset of the Banach space L∞, it has a natural

complex Banach manifold structure, and there exists at most one complex structure on
Teich(f) making π : Bel(f) → Teich(f) into a split submersion. Using the results of
[EM88] on the equivalence between several notions of isotopies (isotopies relative to the
ideal boundary, relative to the topological boundary, uniformly quasiconformal isotopies)
McMullen and Sullivan constructed such a complex structure on Teich(f) and showed
that Teich(f) is isomorphic to the cartesian product of a polydisk and of Teichmüller
spaces of some finite type Riemann surfaces associated to the dynamics of f .

Once Teich(f) is endowed with its complex structure, one can verify that ΨZ
T and

ΨT are holomorphic maps between complex manifolds and orbifolds respectively, and
McMullen and Sullivan asked whether those maps are immersions. Since ratd is not a
manifold, we have to define what we mean by the statement that ΨT is an immersion.

Definition 2.2. We will say that ΨT is an immersion if the lift ΨZ
T is an immersion

whose image is transverse to O(f). If this is true for one choice of normalization set Z,
then it holds for all Z.

It turns out that ΨT is indeed an immersion, and Adam Epstein has an unpublished
proof of this result. The idea of his proof is a dual approach using quadratic differentials.
The key ingredients are the deformation spaces introduced in [Eps09] and a result of Bers
concerning the density of rational quadratic differentials (cf [GL00], theorem 9 p.63).

The main result of this article is to give another proof of this result :

Main Theorem. The map ΨT : Teich(f) → ratd is an immersion.

Our proof uses a new and more elementary construction of the complex structure on
Teich(f) (we will notably not use the results of [EM88]).
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A key tool for this construction is the following analytical result on quasiconformal
vector fields (see definition 3.3), which is interesting in its own right.

Theorem A. Let Ω be a hyperbolic open subset of P1 and ξ be a quasiconformal vector
field on Ω. The following properties are equivalent :

i) We have ρΩ(ξ) ∈ L∞(Ω).

ii) We have ‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(Ω).

iii) There exists a quasiconformal extension ξ̂ of ξ on all of P1 with ξ̂ = 0 on ∂Ω.

iv) The extension ξ̂ defined by ξ̂(z) = ξ(z) if z ∈ Ω and 0 else is quasiconformal on P1,

and ∂ξ̂(z) = 0 for almost every z /∈ Ω.

In particular, we get a new characterization of infinitesimally trivial Teichmüller dif-
ferentials on hyperbolic Riemann surfaces (see definition 3.13) :

Corollary 1. A Beltrami differential µ on a hyperbolic Riemann surface S is infinites-
imally trival if and only if it is of the form µ = ∂ξ, with ‖ρS(ξ)‖L∞(S) ≤ 4‖∂ξ‖L∞(S),
where ρS is the hyperbolic metric on S.

We will also get a simplified proof of Bers’ theorem on the density of rational quadratic
differentials, which notably doesn’t use Ahlfors’ Mollifier :

Corollary 2 (Bers’ density theorem). Let K be a compact of P1 containing at least 3
points, and let Z be a countable dense subset of K. The space of meromorphic quadratic
differentials with simple poles in Z is dense (for the L1 norm) in the space of integrable
quadratic differentials which are holomorphic outside of K.

The proof of the Main theorem will also yield the following description of the tan-
gent and cotangent spaces to the Teichmüller space of f (here, Λf is the closure of the
grand orbit of the critical points, Q(Λf) is the space of integrable quadratic differentials
holomorphic outside Λf , and ∇f = Id− f∗) :

Corollary 3. We have the following identification :

T0Teich(f) = bel(f)/{∂ξ, ξ = f∗ξ}

T ∗
0Teich(f) = Q(Λf)/∇fQ(Λf ).

In section 3, we will be concerned only with non-dynamical, analytic results on qua-
siconformal vector fields. The main result of this section is theorem A. In section 4, we
will apply theorem A to obtain the key fact that DΨZ has constant rank. Lastly, we will
prove the Main Theorem in section 5.

3 Quasiconformal vector fields

3.1 Generalities

In this section, we introduce notations and recall important results on several math-
ematical objects involved in quasiconformal Teichmüller theory : Beltrami forms and
differentials, quadratic differentials, and quasiconformal vector fields.

In all of the article, S will denote a Riemann surface.
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Definition 3.1. A quadratic differential on S is a section of the vector bundle T ∗S⊗T ∗S
(symmetric tensor product).

Definition 3.2. If µ is a section of Hom(TS, TS), i.e. a section of the vector bundle
of anti-C-linear endomorphisms of tangent planes, and z ∈ S, then let |µ|(z) denote the
norm of the endomorphism µ(z) of TzS : |µ| is a well defined function on S. If µ is
such a section verifying |µ| ∈ L∞(S), µ is called a Beltrami differential. If additionally
‖µ‖L∞(S) < 1, we say that µ is a Beltrami form.

Definition 3.3. Let ξ be a vector field on S. We say that ξ is quasiconformal if ∂ξ (in
the sense of distribution theory) is a Beltrami differential.

More generally, it will be useful to define :

Definition 3.4. For (p, q) ∈ Z×{0, 1}, we define Sq
p as the space of sections of T ∗S⊗p⊗

T ∗S
⊗q

if p ≥ 0, and the space of sections of TS⊗p ⊗ T ∗S
⊗q

if p < 0 (all tensor products
are symmetric).

Since E ⊗ E∗ is canonically isomorphic to Hom(E,E) for all complex vector space
E, Beltrami differentials are exactly the µ ∈ S1

−1 such that |µ| ∈ L∞(S). Similarly,
quadratic differentials are the elements of S0

2 , vector fields are the elements of S0
−1,

generalized Beltrami differentials (introduced by Bers in [Ber67]) are the elements of
S1
−k, k ∈ N, and the differentials of order p are the elements of S0

p , p ∈ N.
In local coordinates, elements of Sq

p are written u = u(z)dzpdzq, and under a change

of coordinates φ(w) = z, we have u = u ◦ φ(w)φ′(w)pφ′(w)
q
dwpdwq.

Definition 3.5. Let ui = vi ⊗ wi ∈ Sqi
pi

, with vi ∈ (T ∗S)⊗pi and wi ∈ (T ∗S)⊗qi ,
1 ≤ i ≤ 2. Assume that p1 ≤ p2, 0 ≤ p1 + p2 ≤ 1, and 0 ≤ q1 + q2 ≤ 1. We then define :

u1 · u2 = u1(u2, ·) ∧ (v1 ⊗ v2)

Thus u1 · u2 is an alternate (p1 + p2, q1 + q2) differential form on S. By convention,
we will set u2 · u1 = u1 · u2.

Note that in local coordinates, if ui = ui(z)dz
pidzqi with 1 ≤ i ≤ 2 and p1+p2 ∈ {0, 1}

and q1 + q2 ∈ {0, 1}, then

u1 · u2 = u1(z)u2(z)dz
p1+p2dzq1+q2 .

The next definition is a particular case of the usual definition of ∂u, where u is a
section of a holomorphic vector bundle.

Definition 3.6. Let u ∈ S0
p be of class C1. We can write locally u = φv, where v is a

holomorphic local section of (T ∗S)⊗p and φ : S → C is C1. We define ∂u ∈ S1
p by :

∂u = ∂φ⊗ v

This definition is independant of the choice of φ and v.

Note that in local coordinates, if u = u(z)dzp, then ∂u(z) = ∂u
∂z (z)dz

pdz. Also, it is

not hard to see that ∂(u · v) = u · ∂v + ∂u · v.
There are three particular cases of the above definitions which are especially impor-

tant and deserve to be explicitly worked out :
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a) The case of q ·µ, where q is a quadratic differential and µ is a Beltrami differential
:

Then q · µ is a (1,1) alternate form given by :

(q · µ)z : TzS × TzS → C

(u, v) 7→
1

2
(qz(u, µz(v)) − qz(v, µz(u)))

In local coordinates, q · µ = q(z)µ(z)dz ∧ dz.

b) The case of q · ξ, where q is a quadratic differential and ξ is a vector field :
Then q · ξ is a (1, 0)-differential form, given by :

(q · ξ)z : TzS → C

u 7→ qz(u, ξ(z))

In local coordinates, q · ξ = q(z)ξ(z)dz.

c) The case of ∂q · ξ, where q is a quadratic differential and ξ is a vector field :
We can write locally q = φq′, where φ is a function and q′ is a holomorphic quadratic

differential. Then ∂q = ∂φ ⊗ q′ ∈ S1
2 , and ∂q · ξ is a (1, 1) alternate differential form,

given by :

(∂q · ξ)z : TzS × TzS → C

(u, v) 7→
1

2
(∂φz(u)q

′
z(v, ξ(z))− ∂φz(v)q

′
z(u, ξ(z)))

In local coordinates, ∂q · µ = ∂q
∂z (z)ξ(z)dz ∧ dz.

Proposition 1 (Stokes’ theorem for quasiconformal vector fields). Let U be an open
subset of P1 with piecewise C1 boundary, let q be a C1 quadratic differential continuous
on U and ξ a quasiconformal vector field on P1. Then

∫

U

q · ∂ξ +

∫

U

ξ · ∂q =

∫

∂U

q · ξ

Proof. In the case where ξ is a C1 vector field, this is exactly the classical Stokes’ theorem.
We deduce the general case where ∂ξ only exists in the sense of distribution with a density
argument : let ξ be a quasiconformal vector field and ξn a sequence of vector fields which
are C1 in the neighborhood of U and converging uniformly to ξ on U (such a sequence
exists because ξ is continuous). Then ξn converges to ξ as a distribution on U , so ∂ξn
converges to ∂ξ in the sense of distributions (by continuity of the ∂ operator for the
topology of distributions). Since we know that ∂ξ is in fact a L∞ Beltrami differential,
we deduce from this that for all test quadratic differential φ (i.e. smooth and with
compact support in U), we have :

lim
n→∞

∫

U

φ · ∂ξn =

∫

U

φ · ∂ξ

Since test quadratic differentials are dense for the L1 norm , this still holds for all
quadratic differential φ integrable on U , and in particular for q.
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Therefore limn→∞

∫

U q · ∂ξn =
∫

U q · ∂ξ and since ξn converges uniformly on U , we
also have

lim
n→∞

−

∫

U

ξn · ∂q +

∫

∂U

q · ξn = −

∫

U

ξ · ∂q +

∫

∂U

q · ξ.

Definition 3.7. For a rational map f : P1 → P1, we will note ∆f = Id − f∗ and
∇f = Id − f∗, where f∗ et f∗ are respectively the pullback by f on vector fields (and
Beltrami differentials), and f∗ is the pushforward by f on quadratic differentials, following
the notations of [Eps09].

Definition 3.8. Let z0 ∈ S and ξ(z0) ∈ Tz0S. If q is a meromorphic quadratic differential
with a simple pole at z0, we define the residue of q · ξ at z0 as the residue of q · ξ̃ at z0,
where ξ̃ is a vector field holomorphic in the neighborhood of z0 with ξ(z0) = ξ̃(z0). This
definition does not depend upon the choice of ξ̃.

Proposition 2. Let q be a meromorphic quadratic differential on an open domain Ω
with smooth boundary, relatively compact in a Riemann surface S, with simple poles
that are included in a finite set P . Let ξ be a quasiconformal vector field on Ω extending
continuously to Ω. Then :

∫

Ω

q · ∂ξ = 2iπ
∑

z∈P

Res(q · ξ, z)−

∫

∂Ω

q · ξ

Proof. Let Ωǫ = Ω−∪z∈PD(z, ǫ) where D(z, ǫ) is the closed disk of center z and radius
ǫ (for an arbitrary metric). Then, by Stokes’ theorem,

∫

Ωǫ

q · ∂ξ = −

∫

∂Ωǫ

q · ξ = −

∫

∂Ω

q · ξ +
∑

z∈P

∫

∂D(z,ǫ)

q · ξ

Let ξǫ be a quasiconformal vector field coinciding with ξ on P and on Ωǫ and holo-
morphic in the neighborhood of P . Then :

∫

Ωǫ

q · ∂ξǫ = 2iπ
∑

z∈P

Res(q · ξ, z)−

∫

∂Ω

q · ξ

Since
∫

Ω q · ∂ξ −
∫

Ωǫ
q · ∂ξǫ = O(ǫ), the result follows by letting ǫ tend to zero.

Note that in the particular case Ω = ∆ and q = dz2

z , we get the usual Cauchy-Pompéiu
formula.

3.2 Splitting and hyperbolic metric

Definition 3.9. Let S be a hyperbolic Riemann surface and ξ a vector field on S. We
say that ξ is hyperbolically bounded on S if and only if ρS(ξ) ∈ L∞(S), where ρS is the
hyperbolic metric on S.

Theorem 3.10. Let ξ be a vector field hyperbolically bounded on an open hyperbolic
subset Ω of P1, quasiconformal on Ω and identically vanishing outside Ω. Then ξ is
globally quasiconformal, and ∂ξ = 0 for almost every z /∈ Ω. Moreover, ‖ρ(ξ)‖L∞(Ω) ≤

4‖∂ξ‖L∞(Ω).
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Proof. The key point is the following lemma :

Lemma 3.11. Let q be an integrable quadratic differential of class C∞ on Ω, and ξ a
hyperbolically bounded quasiconformal vector field on Ω. Assume that ξ · ∂q is integrable
on Ω. Then :

∫

Ω

∂ξ · q = −

∫

Ω

ξ · ∂q

Proof. Let z0 ∈ Ω be an arbitrary base point, and let δ(z) = dΩ(z, z0), where dΩ is the
hyperbolic distance on Ω. Let φ : R+ → R+ be a smooth function such that φ(x) = 1
for x ∈ [0, 1] and φ(x) = 0 for x ≥ 2. For all n ∈ N, let us define φn : Ω → R+ by

φn(z) = φ

(

δ(z)

n

)

.

Set µ = ∂ξ.
Let q be a quadratic differential as in the statement of the lemma. Since φnq is

compactly supported in Ω, we have :
∫

Ω

µ · (φnq) = −

∫

Ω

ξ · ∂(φnq) =

∫

Ω

ξ · (φn∂q) + ξ · (q · ∂φn)

Moreover,
∫

Ω ξ · (q · ∂φn) =
∫

Ω q · (ξ · ∂φn). Let us now evaluate the L∞ norm of the

Beltrami differential ∂φn · ξ. Since δ is a locally lipschitz function on Ω, it has locally
bounded distributional derivatives. We have :

∂φn =
1

n
φ′(δ/n)∂δ.

Let z ∈ Ω and u ∈ TzP
1. We have ∂φn · ξ(z) : u 7→ ∂φn(u)ξ(z), and the norm of this

endomorphism for any hermitian metric is |∂φn · ξ|(z). We can therefore work with the
hyperbolic metric ρΩ. Since δ is 1-lipschitz for the hyperbolic metric in Ω, the derivative
∂δ has hyperbolic norm less than one almost everywhere. We have :

∂φn · ξ(z;u) =
1

n
φ′

(

δ(z)

n

)

∂δ(z;u)× ξ(z)

ρΩ(∂φn · ξ(z;u)) ≤
supR+ |φ′|

n
‖ρΩ(ξ)‖L∞(Ω)ρΩ(u)

|∂φn · ξ(z)| ≤
supR+ |φ′|

n
‖ρΩ(ξ)‖L∞(Ω).

Therefore : ‖∂φn · ξ‖L∞ = O(1/n) and
∣

∣

∫

Ω q · (ξ · ∂φn)
∣

∣ ≤ ‖q‖L1‖∂φn · ξ‖L∞ = O(1/n).
We then have :

∫

Ω

∂ξ · (φnq) =

∫

P1

(∂ξ · q)φn = −

∫

Ω

φn(ξ · ∂q) +O(1/n)

so

∫

Ω

(∂ξ · q)φn = −

∫

Ω

φn(ξ · ∂q) +O(1/n)

Since we assumed that both ξ ·∂q and |q| are integrable, we can apply the dominated
convergence theorem to get :

∫

Ω

∂ξ · q = −

∫

Ω

ξ · ∂q.

7



Let now q be a C∞ quadratic differential on P1 : its restriction to Ω verifies the
conditions of the lemma, therefore we have :

∫

P1

µ · q = −

∫

P1

ξ · ∂q,

where µ = ∂ξ on Ω and 0 elsewhere. This means precisely that ∂ξ = µ in the sense of
distributions on P1, which proves the first assertion of the theorem.

Let us now prove the second assertion. Denote by ξ̃ = p∗ξ|Ω where p : ∆ → Ω is a

universal cover of Ω mapping 0 to an arbitrary point z0 ∈ Ω. Proposition 2 applied to ξ̃

and q = dz2

z on ∆ yields :

Res

(

dz2

z
· ξ̃(0), 0

)

= dz(ξ̃(0)) =
1

2iπ

∫

∆r

∂ξ̃(z) ·
dz2

z
+

1

2iπ

∫

Sr

ξ̃(z) ·
dz2

z

where ∆r and Sr are respectively the disk of radius r and the circle of radius r. Since
we assumed that ‖ρΩ(ξ)‖L∞(Ω) = ‖ρ∆(ξ̃)‖L∞(∆) is finite, the second term converges to
0 when r tends to 1. Therefore, by letting r converging to 1 :

dz(ξ̃(0)) =
1

2iπ

∫

∆

∂ξ̃(z) ·
dz2

z

and

ρ∆(ξ̃)(0) = 2|ξ̃(0)| ≤ 2
1

2π
‖
dz2

z
‖L1(∆)‖∂p

∗ξ‖L∞ .

Since ‖ dz2

z ‖L1(∆) = 4π et ∂p∗ξ = p∗∂ξ, we deduce

ρ∆(ξ̃)(0) = ρΩ(ξ)(z0) ≤ 4‖∂ξ‖L∞(Ω).

Since z0 is arbitrary, this concludes the proof of the second assertion.

This last theorem states that if we have a hyperbolically bounded quasiconformal
vector field on an open set Ω, we can glue it together with the zero vector field outside
Ω and still get a globally quasiconformal vector field. The next proposition gives a little
more than the converse. We will need the following lemma :

Lemma 3.12. Let Ω be a hyperbolic open subset of P1, and X a countable dense subset
of ∂Ω. Let (Xn) be an increasing sequence of finite subsets of X with ∪nXn = X and
cardXn ≥ 3 for all n ∈ N, and note Ωn = P1 −Xn. Then the hyperbolic metric ρΩn

of
Ωn converges pointwise on Ω to the hyperbolic metric ρΩ of Ω.

The proof is not difficult and makes use of Montel’s theorem and the Schwarz lemma
applied to the inclusions Ω →֒ Ωn.

Proposition 3. Let ξ be a quasiconformal vector field on P1 vanishing on the boundary
of a hyperbolic open subset Ω of P1. Then :

‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(Ω)

Proof. Denote by K the boundary of Ω. Let (Xn)n∈N be an increasing sequence of finite
subsets of ∂Ω whose union is dense in ∂Ω, with cardXn ≥ 3. Then by lemma 3.12, the
hyperbolic metric ρΩn

of Ωn = P1 −Xn converges pointwise to the hyperbolic metric ρΩ
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of Ω on Ω. By Theorem 3.10, it then suffices to show that for all n ∈ N, ‖ρΩn
(ξ)‖L∞(Ω)

is bounded.
Therefore it is enough to show the weaker property : for all n ∈ N, there exists a

constant Cn > 0 such that supΩ ρΩn
(ξ) ≤ Cn. Since ρΩn

(ξ) is a continuous function on
Ωn = P1 −Xn, it is enough to show that ρΩn

(ξ) is bounded in the neighborhood of all
z ∈ Xn (by a constant depending for now on n ∈ N). Let z0 ∈ Xn, and r > 0 such that
the punctured disk U of center z0 and radius r is included in Ωn. Then by the Schwarz
lemma, the hyperbolic metric of Ωn is smaller than that of U , so we have for all z ∈ U :

ρΩn
(ξ)(z) ≤ ρU (ξ)(z) ≤ C′

n|ξ(z)|
(

|z − z0| log |z − z0|
−1

)−1
.

The second inequality is a classical estimate of the hyperbolic metric of the punctured
disk in the neighborhood of z0 (see for example [GL00] or [Hub06]). The constant C′

n

still depends a priori on r and therefore on n. Furthermore, ξ has a continuity modulus
on −ǫ log ǫ by virtue of quasiconformality (cf [GL00], theorem 7 p. 56), so there exists a
constant C > 0 (depending only on ξ and on the choice of coordinates) such that in the
coordinates z :

|ξ(z)| = |ξ(z)− ξ(z0)| ≤ C|z − z0| log |z − z0|
−1.

We therefore have, for all z ∈ Dr(z0) :

ρΩn
(ξ)(z) ≤ Cn.

The Theorem 3.10 applied to ξ on Ωn then allows us to get a uniform bound with
respect to n :

‖ρΩn
(ξ)‖L∞(Ωn) ≤ 4‖∂ξ‖L∞(Ωn) ≤ 4‖∂ξ‖L∞(P1).

By passing to the limit, we get :

‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(P1),

and a second application of the same theorem finally yields :

‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(Ω).

By combining the results of Theorem 3.10 and proposition 3, we get :

Theorem A. Let Ω be a hyperbolic open subset of P1 and ξ be a quasiconformal vector
field on Ω. The following properties are equivalent :

i) We have ρΩ(ξ) ∈ L∞(Ω).

ii) We have ‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(Ω).

iii) There exists a quasiconformal extension ξ̂ of ξ on all of P1 with ξ̂ = 0 on ∂Ω.

iv) The extension ξ̂ defined by ξ̂(z) = ξ(z) if z ∈ Ω and 0 else is quasiconformal on P1,

and ∂ξ̂(z) = 0 for almost every z /∈ Ω.

Corollary 4. Let Ω be a hyperbolic open subset of P1 and ξ be a quasiconformal vector
field vanishing on P1 − Ω. Let Ω =

⊔

iΩi a countable partition of Ω into open sets Ωi.
Then

ξ =
∑

i

ξi

where ξi is a quasiconformal vector field coinciding with ξ on Ωi and vanishing outside
Ωi.
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Proof. By item iv) of theorem A, the vector fields ξi are quasiconformal.

Recall the following notion, which is of importance in Teichmüller theory :

Definition 3.13. A Beltrami differential µ on a Riemann surface S is infinitesimally
trivial if

∫

S q · µ = 0 for all quadratic differential q holomorphic on S.

The terminology comes from the fact that the tangent space to the base point
T0Teich(S) identifies canonically to the quotient of the space of Beltrami differentials
on S by the space of infinitesimally trivial Beltrami differentials (see [GL00] or [Hub06]).

The next result is a theorem due to Bers. Its proof classically involves a delicate
mollifier introduced by Ahlfors, the so-called Ahlfors Mollifier, see [GL00], theorem 9 p.
63. The mollifier φn of the proof of theorem 3.10 replaces the Ahlfors Mollifier and yields
a simplified proof.

Corollary 5 (Bers density theorem). Let K be a compact of P1 containing at least
3 points, and A a countable dense subset of K. The space of meromorphic quadratic
differentials with simple poles in A is dense (for the L1 topology) in the space of integrable
quadratic differentials on P1 which are holomorphic outside of K.

Proof. It is enough to show that any continuous linear form on the space of integrable
quadratic differentials holomorphic outside P1 vanishing against all meromorphic quadratic
differentials with only simple poles in A must be trivial. By the Hahn-Banach theorem,
any such linear form may be represented by a L∞ Beltrami differential on P1. Let µ be
such a Beltrami differential and ξ a quasiconformal vector field such that µ = ∂ξ, and
assume that

∫

P1

q · ∂ξ = 0

for all meromorphic integrable quadratic differential q with simple poles in A. Let Z ⊂ A
a set of cardinal 3 : by adding to ξ a holomorphic vector field, we lose no generality
by assuming that ξ vanishes on Z. Then by proposition 2 applied to Ω = P1 and
q a quadratic differential with simple poles precisely in Z and at z ∈ A\Z, one sees
that ξ must vanish at z. By continuity, ξ vanishes on all of K. So by theorem A, ξ
is hyperbolically bounded on Ω. Let q be an integrable quadratic differential that is
holomorphic on Ω. In particular, q is C∞ and integrable on Ω, and ∂q vanishes on Ω.
Lemma 3.11 yields :

∫

Ω

q · ∂ξ = −

∫

Ω

∂q · ξ = 0.

Moreover, by theorem A, we have ∂ξ = 0 almost everywhere on K, so :
∫

K

q · ∂ξ = 0,

which ends the proof.

Corollary 6. Let Ω be a hyperbolic open subset of P1, and µ be a Beltrami differential
on Ω. Then µ is infinitesimally trivial if and only if there exists a hyperbolically bounded
quasiconformal vector field ξ on Ω such that µ = ∂ξ.

Proof. We just proved that a Beltrami differential µ is infinitesimally trivial on Ω if and
only if there exists a quasiconformal vector field ξ on P1 such that µ = ∂ξ on Ω and ξ = 0
on P1 − Ω. By theorem A, this property is equivalent to being hyperbolically bounded
in Ω.
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4 Dynamical Teichmüller space

4.1 The differential of Ψ

If λ 7→ fλ is a holomorphic curve in Ratd passing through f0 = f , then ḟ = dfλ
dλ |λ=0

is a

section of the bundle f∗TP1, and Df−1 ◦ ḟ is a meromorphic vector field on P1, whose
poles are included in Crit(f) and of multiplicity at most that of the critical points of f .
Denoting by T (f) the complex vector space of such vector fields, we obtain a canonical
identification between TfRatd and T (f). In the rest of this artical, we will implicitly
identify TfRatd with T (f).

Denote as well by aut(P1) the space of holomorphic vector fields on P1 and by O(f)
the orbit of f by conjuacy via Möbius transformation. By [BE09], proposition 1, O(f)
is a complex submanifold of Ratd of dimension 3, and TfO(f) = ∆faut(P

1) ⊂ T (f).

Proposition 4. Let ξ be a quasiconformal vector field on P1 such that ∂ξ ∈ bel(f).
Then ∆fξ ∈ T (f). Moreover, if we assume that ξ vanishes on a set Z of cardinal 3, then
:

DΨZ(0) · ∂ξ = −∆fξ.

Proof. An easy calculation shows that for almost every z /∈ Crit(f), ∂f∗ξ = f∗∂ξ.
Therefore by Weyl’s lemma, ∆fξ = ξ − f∗ξ is holomorphic on P1 − Crit(f). Since ξ is
continuous, we have ∆fξ = O(1/f ′) in the neighborhood of Crit(f), so ∆f ξ has at every
critical point c of f a pole of at most the multiplicity of c cas a critical point of f ; so
∆fξ ∈ T (f).

Moreover, if µλ ∈ bel(f) is a holomorphic curve passing through 0, with µλ = λ∂ξ +
o(λ), then we have :

φZµλ
= Id + λξ + o(λ)

where φZµλ
is the unique quasiconformal homeomorphism associated to µλ fixing Z (see

[GL00] or [Hub06]). If we differentiate with respect to λ the equality

φZµλ
◦ f = fλ ◦ φZµλ

,

we get :
ξ ◦ f = ḟ +Df(ξ),

où ḟ = dfλ
dλ |λ=0

. This can be rewritten as :

η := Df−1(ḟ) = −∆fξ.

With an abuse of notations, we will note DΨ(0) : bel(f) → T (f)/TfO(f) the quotient
of the linear application DΨZ(0) : bel(f) → T (f). This application does not depend on
the choice of Z.

Definition 4.1. Let f be a rational map. We will note Λf the closure of the grand
critical orbit of f , and Ωf = P1 − Λf .

Proposition 5. Let ξ be a quasiconformal vector field on P1 such that ∂ξ ∈ bel(f).
The following properties are equivalent :

i) ∂ξ ∈ kerDΨ(0)

11



ii) ∆fξ ∈ ∆faut(P
1)

iii) There exists h ∈ aut(P1) such that ξ − h vanishes on Crit(f) with at least the
multiplicity of each critical point of f

iv) There exists h ∈ aut(P1) such that ξ − h vanishes on Λf

Proof. The first two items are equivalent by [BE09], proposition 1.
ii) ⇒ iii) : if ∆fξ = ∆fh, h ∈ aut(P1), then ξ − h is a continuous f -invariant vector

field. Hence ξ − h must vanish on Crit(f) with at least the multiplicity of the critical
points of f .

iii) ⇒ ii) If ξ − h vanishes on Crit(f) with at least the multiplicity of the critical
points of f , then f∗(ξ − h) is well-defined and continuous at Crit(f). By the above
proposition, ∆f (ξ − h) ∈ T (f), so ∆f (ξ − h) = 0.

iv) ⇒ ii) : If ξ − h vanishes on Λf , then since Λf is invariant ∆f (ξ − h) vanishes as
well on Λf . Therefore ∆f (ξ−h) is a meromorphic vector field (by the above proposition)
vanishing on Λf which is not discrete, so ∆f (ξ − h) = 0 by the isolated zeros principle.

ii) ⇒ iv) : If ∆f (ξ−h) = 0, then we saw that ξ−h must vanish on Crit(f) (item iii)).
Therefore (fk)∗(ξ−h)(c) = (ξ−h)(c) = 0 for all k ≥ 0. Moreover, if fp(z) = c ∈ Crit(f),
then (fp)∗(ξ − h)(z) = 0 = (ξ − h)(z). So (ξ − h) vanishes on the grand critical orbit of
f , hence on Λf by continuity.

Note that if we normalize ξ by imposing the condition that it vanishes on on a set Z
invariant by f of cardinal 3, then proposition 5 remains true by replacing h by 0 in items
ii), iii) and iv), and DΨ(0) by DΨZ(0) in item i).

We will also need to know the differential ΨZ in an arbitrary point of Bel(f). Recall
the following fact of Teichmüller theory (see [Hub06]) :

Definition 4.2. Let ψ be a quasiconformal homeomorphism of P1. For all Beltrami form
µ, note ψ∗µ the Beltrami form corresponding to φµ ◦ ψ, where φµ is a quasiconformal
homeomorphism associated to µ.

We will also note ψ∗ = (ψ−1)∗.

Proposition 6. For all quasiconformal homeomorphism ψ, the map ψ∗ is biholomorphic.

We shall need to consider here maps ΨZ
f : Bel(f) → Ratd and ΨZ

g : Bel(g) → Ratd
associated to different rational functions f and g. In the rest of the article, there will be
no ambiguity and and we will just use the notation ΨZ .

Proposition 7. Let µ ∈ Bel(f) and ψ the unique corresponding quasiconformal home-
omorphism fixing Z. Let g = ψ ◦ g ◦ ψ−1. Then

DΨZ
f (µ) = DΨZ

g (0) ◦Dψ∗(µ)

In particular, rgDΨZ
f (µ) = rgDΨZ

g (0).

Proof. Remark that for all φ0 and φλ associated to elements µλ and µ0 of bel(f) :

φλ ◦ f ◦ φ−1
λ = (φλ ◦ φ−1

0 ) ◦ φ0 ◦ f ◦ φ−1
0 ◦ (φλ ◦ φ−1

0 )−1

which may be rewritten as :
ΨZ

f (µλ) = ΨZ
g (φ∗µλ)

if we assume additionally that φλ and φ0 fix Z. Then we only need to take a curve µλ

in bel(f), and to differentiate at λ = 0.
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4.2 Constant rank theorem in Banach spaces

Recall the following version of the constant rank theorem in infinite dimension :

Theorem 4.3 (Constant rank theorem). Let Ψ : U → F be an analytic map, where U
is an open subset of a complex Banach space E and F is a complex finite-dimensional
vector space. Assume that rgDΨ = r is constant on U . Then for every x0 ∈ U , there
exists a germ of analytic diffeomorphism χ : (F, f(x0)) → (F, f(x0)) and a germ of
analytic diffeomorphism φ : ImDΨ(x0) ⊕ kerDΨ(x0) → E such that for all (u, v) ∈
ImDΨ(x0)⊕ kerDΨ(x0) in the neighborhood of φ−1(x0),

χ ◦Ψ ◦ φ(u, v) = u.

Corollary 7. Let Ψ : E → F verifying the requirements of the above theorem. Then for
all z0 ∈ Ψ(E), the level set M = Ψ−1(z0) is a Banach submanifold of E, of codimension
r and whose tangent space at x0 ∈ Ψ−1(z0) is Tx0

M = kerDΨ(x0).

Proof. With the notations of the constant rank theorem, we have Ψ(x) = z0 if and only if
χ ◦Ψ(u, v) = χ(z0) = u, where (u, v) = ψ−1(x), which is equivalent to ψ(χ(z0), v)) = x.
Since ψ is a (germ of) diffeomorphism, this gives a local chart at x0 for M , which is
therefore a Banach submanifold modeled on kerDΨ(x0).

4.3 Counting dimensions

The goal of this section is to show that the differential of ΨZ : Bel(f) → Ratd has
constant rank.

Definition 4.4. We say that a critical point is acyclic if it it not preperiodic. We say
that two acyclic critical points lie in the same foliated acyclic critical class if the closure
of their grand orbits are the same.

The key point to apply the constant rank theorem is the following count of dimension
:

Theorem 4.5. Let f be a rational function of degree d ≥ 2. Then

rgDΨ(0) = nf + nH + nJ − np

where nH is the number of Herman rings of f , nJ is the number of ergodic line fields of
f , nf is the number of foliated acyclic critical classes lying in the Fatou set, and np is
the number of parabolic cycles.

Definition 4.6. Let f : S → S be a holomorphic function. Denote by Mf (S) the
space of Beltrami forms that are invariant by f , and by Nf(S) the subspace of Mf(S) of
Beltrami differentials of the form ∂ξ, where ξ is a hyperbolically bounded quasiconformal
vector field on S.

Theorem 4.7. Let f be a rational map, and Ω a hyperbolic open subset of P1 completely
invariant under f . Let Ω =

⊔

iΩi be a partition of Ω into open subsets Ωi completely
invariant under f . Then

Mf(Ω)/Nf (Ω) ≃
⊕

i

M(Ωi)/N(Ωi)
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Proof. Clearly Mf(Ω) =
⊕

iM(Ωi).
Let ∂ξ ∈ Nf(Ω). By corollary 4, we have :

ξ =
∑

i

ξi

where ξi is a quasiconformal vector field coinciding with ξ on Ωi, and such that ξi = 0
outside of Ωi. This shows that Nf (Ω) =

⊕

iNf (Ωi).
Hence Mf (Ω)/Nf (Ω) =

⊕

iMf (Ωi)/Nf(Ωi).

Lastly, we will need the classification of Fatou components, which is a corollary of
Sullivan’s no wandering domain theorem. Note that Zakeri (see [Zak02] ) has given a
direct and purely infinitesimal proof of Sullivan’s theorem, which does notably not rely
on the theory of dynamical Teichmüller spaces. His proof is based on quasiconformal
vector fields and is in the same spirit as the methods used here.

We will also need the following lemmas :

Definition 4.8. Let M(S) be the set of Beltrami differentials on the Riemann surface S
and N(S) be the subspace of Beltrami differentials on S that are of the form ∂ξ, where
ξ is a hyperbolically bounded quasiconformal vector field on S.

Lemma 4.9. Suppose Ω is the grand orbit of a component of Ωf such that Ω/f is a
hyperbolic Riemann surface. Then the projection π1 : Ω → Ω/f induces an identification
:

Mf(Ω)/Nf (Ω) ≃M(Ω/f)/N(Ω/f)

Proof. It is clear that Mf (Ω) ≃ M(Ω/f), and that any element of Nf (Ω) passes to the
quotient to an element of N(Ω/f). Let µ = ∂ξ ∈ N(Ω/f). Since the map π1 : Ω →
Ω/f is a covering between hyperbolic Riemann surfaces, it is a local isometry for the
hyperbolic metrics, and therefore ξ1 = π∗

1ξ is a hyperbolically bounded quasiconformal

vector field, which is invariant by f by construction. By theorem A, ξ̂1 extended by 0
outside Ω is still quasiconformal (and invariant). So µ = ∂ξ̂1 ∈ Nf (Ω). This proves that
Nf (Ω) ≃ N(Ω/f).

Lemma 4.10. Let Ω ⊂ Ωf be an open set completely invariant under f such that all
connected component of Ω is preperiodic to a component U of period p ∈ N∗. Then
the restriction to U induces an isomorphism Mf (Ω) → Mfp(U), mapping Nf(Ω) onto
Nfp(U). In particular,

Mf (Ω)/Nf (Ω) ≃Mfp(U)/Nfp(U)

Proof. Every Beltrami differential µ ∈ Mf (Ω) is invariant under f , hence under fp.
Conversely, if µ is a Beltrami differential on U invariant under fp, then µ extends to a
Beltrami differential µ̃ invariant on Ωi in the following way : if V is a component of Ωi,
then there exists k ∈ N (defined up to a multiple of p ) such that fk

|V : V → U . We then

set µ̃|V = (fk)∗µ, and this definition is valid if V belongs to the same cycle as U since
µ = (fp)∗µ.

This identification maps Nf (Ω) onto Nfp(U) since if µ = ∂ξ ∈ Nf (Ω), then ξ̂(z) =

ξ(z) if z ∈ U and 0 else is such that ∂ξ̂ = µ|U by theorem A, and therefore µ|U ∈
Nfp(U).
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Lemma 4.11. Let µ be a Beltrami differential invariant under a holomorphic function
g. In both of the following cases : g(z) = e2iπαz, α /∈ Q, and g(z) = zd, d ≥ 2, µ is then
invariant under all rotations, and we have in local coordinates :

µ(reit) = c(r)e2it
dz

dz

Proof. The proof is a modification of the usual proof of the ergodicity of rotations of
irrational angles.

Let us start with the case of a rotation of irrational angle g(z) = e2iπαz. Let µ be a
Beltrami differential invariant by g. We have, in local coordinates :

µ(z) = g∗µ(z) = e−4iπαµ(e2iπαz)

By expanding into Fourier series on the circles |z| = r, we obtain that µ must be of the
form

µ(reit) = c(r)e2it
dz

dz

where c is a L∞ function. In particular, µ is invariant by rotations, and one easily verifies
that all rotation-invariant Beltrami differential must be of this form.

If we now assume that g(z) = z2, d ≥ 2, and that µ is invariant by g, then µ is
invariant by all branches of g−n ◦ gn, hence by all rotations of angles 2kπ

dn , for all k ∈ N :

µ(z) = e−4ikπ/dn

µ(e2ikπ/d
n

z).

Similarly, by expanding into Fourier series on the circles centered on 0, we obtain :

µ(reit) = c(r)e2it
dz

dz
.

Lemma 4.12. Let Ω be a rotation invariant planar open set. Let M(Ω) be the space
of rotation-invariant Beltrami differentials on Ω, and N(Ω) the subspace of M(Ω) of
elements of the form ∂ξ, where ξ is a hyperbolically bounded quasiconformal vector field
on ∂Ω.

i) If Ω is the unit disk, dimM(Ω)/N(Ω) = 0.

ii) If Ω is a ring of finite modulus, then dimM(Ω)/N(Ω) = 1.

Proof. Consider a vector field ξ of the form

ξ(reit) = h(r)reit
d

dz

where h : R+ → R+ is a lipschitz function. One can easily verify that

∂ξ(reit) = rh′(r)e2it
dz

dz
.

Therefore if µ is a rotation-invariant Beltrami differential, hence of the form µ(reit) =

c(r)e2it dzdz , and if we denote by h the unique primitive of r 7→ c(r)/r vanishing at r = 1
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and ξ(reit) = rh(r)eit d
dz , we have ∂ξ = µ in the sense of distributions, and ξ is a

quasiconformal vector field on all of P1 vanishing on the unit disk.
Therefore M(∆) = N(∆). If now Ω denotes a straight ring Ω = {r0 < |z| < 1}, the

map

µ = c(r)e2it
dz

dz
7→ h(r0) =

∫ r0

1

c(u)

u
du

is a linear form on M(Ω) whose kernel is exactly N(Ω). This linear form is not trivial,

since if we take µ = re2it dzdz , then h(r0) = r0−1 6= 0. Therefore dimM(Ω)/N(Ω) = 1.

We can now prove theorem 4.5.

Proof of theorem 4.5. Denote by F the Fatou set of f , and J its Julia set. We will also
denote by FixJ the space of invariant line fields. Since kerDΨ(0) = Nf (Ωf ) = Nf (F)
by proposition 5, we have :

bel(f)/ kerDΨ(0) = (FixJ ⊕Mf (F))/Nf (F)

If c is a critical point of f , then the closure of its grand orbit is equal to the union of
the Julia set J and of a countable set of points and smooth circles (if the orbit of c is
captured by a superattracting cycle, or a cycle of Siegel disks or Herman rings). Therefore
Λf coincides with J up to a set of Lebesgues measure zero. Hence Mf(F) = Mf(Ωf ).
We deduce from this observation that :

Fix(f)/ kerDΨ(0) = FixJ ⊕Mf (Ωf )/Nf (Ωf )

Consider the equivalence relationship on the set of connected components of Ωf which
identifies two components if and only if they have the same grand orbit, and let Ωi be
the union of the elements of a class i of this equivalence relationship. The Ωi form a
partition of Ωf into completely invariant open subsets. By theorem 4.7, we have :

rgDΨ(0) = dimFixJ +
∑

i

dimMf (Ωi)/Nf (Ωi).

Each component Ωi is mapped by fn for n large enough into a periodic Fatou com-
ponent U . 1 Let us now compute dimMf(Ωi)/Nf (Ωi) depending on the nature of the
periodic Fatou component U it meets. There are five cases to condider. Denote by ni

the number of foliated acyclic critical classes meeting the grand orbit of U

a) The case of an attracting cycle
If U is a component of an attractive basin and Ωi meets U , then Ωi is the grand orbit

of U with the countable set of the critical orbits captured by this cycle (and the cycle
itslef) removed. So every component of Ωi is preperiodic to U −Λf . Thus f|Ωi

: Ωi → Ωi

acts discretely, and Xi = Ωi/f is a Riemann surface. In a linearizing coordinate for fk

on the immediate basin of attraction (where k ∈ N∗ is the period of the cycle and ρ is
its multiplier), note A = {|ρ| ≤ z < 1}. It is a fundamental domain for the action of f
on the cycle of Fatou components V containing U , and A−Λf is a fundamental domain
for the action of f on Ωi. Therefore Xi is the torus X = A/f with a finite number ni of

1However, in the case of a superattracting cycle, the components Ωi need not be themselves prepe-

riodic : if there is a critical orbit in a superattracting basin, one gets components Ωi which are annuli

delimited by equipotentials that accumulate on the superattracting cycle.
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points removed, where ni is the number of points of the post-critical set meeting A, i.e.
the number of foliated acyclic critical classes meeting V .

By lemma 4.9, dimMf(Ωi)/Nf (Ωi) = dimM(Xi)/N(Xi). Since Xi is a finitely punc-
tured torus, any hyperbolically bounded quasiconformal vector field on Xi extends to a
quasiconformal vector field on the torus vanishing on the marked points. Then the quo-
tient M(Xi)/N(Xi) is exactly the tangent space to the Teichmüller space of Xi, which
has dimension equal to the number ni of marked points (see for example [Hub06]).

b) The case of a parabolic cycle
If U is a parabolic cycle and Ωi meets U , then Ωi is the grand orbit of U minus the

grand orbit of the critical points captured by U . In particular, all component of Ωi is
iterated after after finitely many steps into U with at most a countable set of points
removed, and is preperiodic. Moreover, f|Ωi

: Ωi → Ωi acts discretely, so Xi = Ωi/f
is a Riemann surface isomorphic to X = U/fp minus the grand orbit of critical points
captured by U , where p is the period of the parabolic cycle associated to U .

Via a Fatou coordinate, the action of fp on U is conjugated to that of z 7→ z+1 on an
upper half-plane, so X is isomorphic to a cylinder and Xi is isomorphic to a cylinder with
ni points removed, those points corresponding to the ni grand critical orbits captured
by U . So X is isomorphic to the Riemann sphere with two points a1 and a2 removed,
and Xi is isomorphic to the Riemann sphere with ni + 2 points a1, . . . , ani+2 removed,
where the aj , j ≥ 2 correspond to the grand critical orbit meeting U .

By lemma 4.9, dimMf(Ωi)/Nf (Ωi) = dimM(Xi)/N(Xi). Since Xi is a finitely punc-
tured sphere, any hyperbolically bounded quasiconformal vector field on Xi extends to a
quasiconformal vector field on the torus vanishing on the marked points. Then the quo-
tient M(Xi)/N(Xi) is exactly the tangent space to the Teichmüller space of Xi, which
has dimension equal to the number ni+2− 3 = ni− 1, where ni is the number of critical
grand orbits meeting Ωi (see for example [Hub06]).

c) The case of a Siegel disk
If U is a Siegel disk, then the intersection of Λf and the cycle of Fatou components

containing U consists in a finite union of ni smooth circles, where ni is the number
of foliated acyclic critical classes captured by the cycle of Siegel disks (it may be that
ni = 0). Therefore all components of Ωi are preperiodic and are iterated in finitely many
steps to a periodic ring Ai included in U or a topological disk strictly included in U (if
ni 6= 0), or in all of the periodic Siegel disk if ni = 0. In both cases, denote by V the
periodic component of Ωi to which is iterated a given component of Ωi.

By lemma 4.10, the space Mf(Ωi) identifies to the space Mfp(V ) of Beltrami differ-
entials on V that are invariant by fp

|V , where p is the period of the cycle associated to U ,

and similarly Nf (Ωi) identifies to Nfp(V ). A linearizing coordinate φ for fp conjugates
fp : V → V to g(z) = e2iπαz on either the unit disk or an annulus A(R), where α is an ir-
rational rotation number. Therefore, by lemmas 4.11 and 4.12, dimMf (Ωi)/Nf (Ωi) = 1
if ni 6= 0 and 0 else. We then obtain

∑

j∈J dimMf (Ωj)/Nf (Ωj) = ni.

d) The case of a Herman ring
This case is very similar to the case of a Siegel disk : Ωi still consists in the

grand critical orbit of a periodic annulus. The only difference is that even if there
are no critical orbit lying in the Herman ring, the components of Ωi are still prepe-
riodic to a ring and not a disk, and therefore dimMf (Ωi)/Nf (Ωi) = 1. We deduce :
∑

j∈J dimMf(Ωj)/Nf(Ωj) = ni + 1 where ni is the number of foliated acyclic critical
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classes captured by U .

e) The case of a superattracting cycle
If U is a component of a superattracting cycle, then Λf ∩ U is a countable union of

equipotentials (which are smooth circles) and the superattracting cycle itself.
Assume first that there are no critical orbits captured by the superattracting cycle.

Then there is a unique Ωi intersecting U , and it is the whole grand orbit of U . By
lemma 4.10, Mf (Ωi)/Nf (Ωi) ≃ Mfp(U)/Nfp(U), where p is the period of U . Through
a Böttcher coordinate, fp

|U : U → U is conjugated to g(z) = zk, k ≥ 2. By lemma 4.11,

every Beltrami differential µ ∈ Mfp(U) is invariant by rotation. By lemma 4.12, we
deduce that if there are no critical orbits meeting U , then dimMfp(U)/Nfp(U) = 0.

Assume now that ni > 0, where ni is the number of foliated acyclic critical classes
meeting U . Let us denote by rj , j ≤ ni, the radii in Böttcher coordinates of the
circles corresponding to foliated acyclic critical classes in U . Note A(r, r′) the annu-
lus {r′ < |z| < r}. Let Ωj ⊂ Ωf meeting U . Then for every component V of Ωj ,
there exists a unique branch of f−k ◦ f l mapping V into the annulus A(rj−1, rj) (with
the convention r−1 = 1). By lemma 4.11, Mf (Ωj) identifies to M(A(rj−1,rj )), and
Nf (Ωj) to N(A(rj−1,rj )). We deduce from this that dimMf(Ωi)/Nf (Ωi) = 1. Therefore
∑

j∈J dimMf(Ωj)/Nf(Ωj) = ni.

Summing things up, each Fatou component U contributes ni to the dimension, where
ni is the number of foliated acyclic critical classes meeting U , except for Herman rings
which contribute ni + 1 and the parabolic basins which contribute ni − 1.

Moreover, ergodic line fields form a basis of the vector space FixJ of invariant line
fields, therefore dimFixJ = nJ . Thus we have :

rgDΨ(0) = nH + nJ + nf − np.

5 Proof of the main theorem

The first application of theorem 4.5 is that ΨZ has constant rank :

Corollary 8. Let f be a rational function, Z be an invariant set of cardinal 3 and
µ ∈ Bel(f). Then rgDΨZ(0) = rgDΨZ(µ).

Proof. It is clear that nf , np and nH are invariant under quasiconformal conjugacy. The
number nJ is invariant as well since a quasiconformal homeomorphism preserve sets of
Lebesgues measure zero (see [GL00]). Therefore if φ : P1 → P1 is a quasiconformal
conjugacy between f and another rational function g, then φ∗ maps invariant line fields
for f to invariant line fields for g. Lemma 7 concludes the proof.

Corollary 9. The group QC(f) is a Banach submanifold of Bel(f), of tangent space to
the identity equal to the space Nf (Ωf ) of Beltrami differentials of the form ∂ξ, where ξ
is a quasiconformal vector field invariant by f .

Proof. The space of quasiconformal homeomorphisms commuting with f is exactly the
fiber Ψ−1(f). But by the above corollary, ΨZ has constant finite rank on Bel(f), therefore
by the constant rank theorem, (ΨZ)−1(f) is a Banach submanifold of finite codimension,
whose tangent space to the identity is kerDΨ(0) = Nf(Ωf ). Moreover, Nf (Ωf ) is also
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the space of Beltrami differentials of the form ∂ξ, where ξ is a quasiconformal vector field
invariant by f by proposition 5.

Note that in particular, QC(f) is locally connected at the identity, and therefore on
a neighborhood of the identity, any element of QC(f) belongs also to QC0(f).

Corollary 10. There exists a unique structure of complex manifold on Teich(f) making
the projection π : Bel(f) → Teich(f) holomorphic. For this complex structure, π is a
split submersion.

Proof. Let µ ∈ Bel(f). By the constant rank theorem 8, there exists germs of biholomor-
phisms φ : (ImDΨZ(µ) ⊕ kerDΨZ(µ), 0) → (Bel(f), µ) et χ : (Ratd, g) → (Ratd, g) such
that χ◦ΨZ ◦φ(u, v) = u for all (u, v) ∈ ImDΨZ(µ)⊕kerDΨZ(µ), where g = φµ ◦f ◦φ

−1
µ .

In particular, ΨZ ◦ φ(u1, v1) = ΨZ ◦ φ(u2, v2) if and only if u1 = u2 ; moreover, if we
note µi = φ(ui, vi), 1 ≤ i ≤ 2, then ΨZ(µ1) = ΨZ(µ2) if and only if φZ1 ◦ (φZ2 )

−1 ∈ QC(f)
where φZi is the quasiconformal homeomorphism corresponding to µi and fixing Z.

We claim that π(µ1) = π(µ2) if and only if u1 = u2. Indeed, if π(µ1) = π(µ2), then
φZ1 ◦ (φZ2 )

−1 ∈ QC0(f) and in particular φZ1 ◦ (φZ2 )
−1 ∈ QC(f), so u1 = u2. If now we

assume that u1 = u2, then ψ := φZ1 ◦ (φZ2 )
−1 ∈ QC(f), and we have to prove that in

fact ψ ∈ QC0(f). Let φZi (t) be the quasiconformal homeomorphisms corresponding to
µi(t) = φ(tui, tvi), 1 ≤ i ≤ 2 and t ∈ [0, 1], and ψt = φZ1 (t) ◦ (φZ2 )(t)

−1. Since for all
t ∈ [0, 1], µi(t) = φ−1(tu1, tvi), we have ψt ∈ QC(f), and ψ0 = Id. The maps t 7→ µi(t)
are analytic, so by the parametric Ahlfors-Bers theorem so are the maps t 7→ φZi (t).
Therefore, for all z ∈ P1, the map t 7→ ψt(z) = φZ1 (t) ◦ (φ

Z
2 )(t)

−1(z) is continuous and
ψt is an isotopy to the identity through elements of QC(f). Moreover, since the φZi (t)
have uniformly bounded dilatation, so does ψt.

2 So ψ = ψ1 ∈ QC0(f), which proves
the claim.

Therefore the map φ̃ : ImDΨZ(0) → Ratd defined by φ̃(u) = π ◦ φ(u, 0), where
π : Bel(f) → Teich(f) is the projection, is a germ of homeomorphism and makes the
following diagram commute :

ImDΨZ(0)⊕ kerDΨZ(0)
φ //

π1

��

Bel(f)

π

��
ImDΨZ(0)

φ̃ // Teich(f)

The map π1 : ImDΨZ(µ)⊕ kerDΨZ(µ) → ImDΨZ(µ) being the projection onto the
first factor.

We can now define local sections of π by transporting local holomorphic sections of
π1 through the φ coordinates.

Let us prove that these local sections of π can be glued together compatibly to define
a complex atlas on Teich(f). Let h1, h2 be two such local sections of π defined in a
neighborhood of [µ] ∈ Teich(f) : we must prove that h2 ◦h

−1
1 = h2 ◦π : Bel(f) → Bel(f)

is holomorphic. Let g1 and g2 be the corresponding right inverses of π1 : ImDΨZ(µ) ⊕
kerDΨZ(µ) → ImDΨZ(µ).

The following diagram commutes :

2Note however that the Beltrami coefficient of ψt needs not a priori depend continuously on t.
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Bel(f)
h2◦π //

π

%%❑
❑❑

❑❑
❑❑

❑❑
Bel(f)

π
yyss
ss
ss
ss
s

Teich(f)

h1

ee❑❑❑❑❑❑❑❑❑

h2

99sssssssss

and therefore this diagram commutes as well :

Bel(f)
h2◦π //

φ−1

��

π

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙ Bel(f)

π
uu❦❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

ImDΨZ(µ)⊕ kerDΨZ(µ)
π1

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙
Teich(f)

h1

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

h2

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

φ̃

��

ImDΨZ(µ)⊕ kerDΨZ(µ)

φ

OO

π1uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

ImDΨZ(µ)

g1

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

g2

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

A diagramm chase then shows that h2 ◦ π is holomorphic, which proves the existence
of a complex structure on Teich(f) meeting the requirements.

Unicity comes from the fact that for any complex structure making the projection
π : Bel(f) → Teich(f) into a holomorphic map, the local holomorphic sections of π still
define an atlas.

Lastly, the fact that π admits local holomorphic sections is precisely equivalent to π
being a split submersion.

We can finally prove the main theorem :

Main Theorem. The map ΨZ
T : Teich(f) → Ratd is an immersion, whose image is

transverse to O(f).

Proof. By corollary 8 it is enough to show that it is an immersion at 0. By definition,
we have ΨZ = ΨZ

T ◦ π, and therefore

DΨZ(0) = DΨZ
T ([0]) ◦Dπ(0)

Injectivity of DΨZ
T ([0]) is then equivalent to the property kerDΨZ(0) = kerDπ(0).

By proposition 5, kerDΨZ(0) = Nf (Ωf ), and by corollary 9, kerDπ(0) = Nf(Ωf ),
which concludes the proof.

Definition 5.1. If A ⊂ P1 is closed, we note Q(A) the Banach space of integrable
quadratic differentials on P1 and holomorphic on P1 − A, equipped with the L1 norm.

Corollary 11. We have the following identification :

T0Teich(f) = bel(f)/{∂ξ, ξ = f∗ξ}

T ∗
0Teich(f) = Q(Λf)/∇fQ(Λf ).

Proof. The first statement is a direct consequence of corollary 9.
Since Teich(f) is a finite-dimensional manifold, it is enough to prove that

(

Q(Λf)/∇fQ(Λf )
)∗
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identifies to T0Teich(f).
By the Hahn-Banach theorem, every linear form on Q(Λf ) may be represented by a

L∞ Beltrami differential. Moreover, if q ∈ ∇fQ(Λf), then
∫

P1 q · µ = 0 for all Beltrami
differential µ invariant under f , and

∫

P1 q · µ = 0 for all quadratic differential q ∈ Q(Λf )
and all infinitesimally trivial Beltrami differential on Λf , namely any Beltrami differential
of the form µ = ∂ξ, where ξ is a quasiconformal vector field on P1 vanishing on Λf (see

[GL00]). Therefore by theorem A, every continuous linear form on Q(Λf )/∇fQ(Λf) (for
the quotient norm corresponding to the L1 norm) may be represented by an element
of T0Teich(f), with the dual norm coinciding with the quotient L∞ norm (it is the
Teichmüller metric of Teich(Λf ), see [GL00], [Hub06]).

This representation is unique, since if µ is a L∞ Beltrami differential annihilating all
of Q(Λf), then µ ∈ Nf (Λf ) by theorem A.

Note that we obtain that Q(Λf )/∇fQ(Λf) has finite dimension which is less than
2d− 2.
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