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Asymptotic stability of the black soliton for the Gross-Pitaevskii equation

We introduce a new framework for the analysis of the stability of solitons for the onedimensional Gross-Pitaevskii equation. In particular, we establish the asymptotic stability of the black soliton with zero speed.

Introduction

We pursue our analysis of the one-dimensional Gross-Pitaevskii equation

i∂ t Ψ + ∂ xx Ψ + Ψ 1 -|Ψ| 2 = 0, (GP) 
for a function Ψ : R × R → C, supplemented with the boundary condition at infinity

|Ψ(x, t)| → 1, as |x| → +∞. (1) 
The Gross-Pitaevskii equation was introduced in [START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF][START_REF] Gross | Hydrodynamics of a superfluid condensate[END_REF] as a model for the Bose-Einstein condensation. In nonlinear optics, it appears as an envelope equation in optical fibers [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]. In dimension one, it gives account of the propagation of dark pulses in slab waveguides. The boundary condition in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF] corresponds to the non-zero background.

On a mathematical level, the Gross-Pitaevskii equation is a defocusing nonlinear Schrödinger equation. Its Hamiltonian is the Ginzburg-Landau energy defined by

E(Ψ) := 1 2 R |∂ x Ψ| 2 + 1 4 R (1 -|Ψ| 2 ) 2 .
In the sequel, we only consider the solutions Ψ to (GP) with finite Ginzburg-Landau energy, i.e. in the energy space

E(R) := Ψ : R → C, s.t. Ψ ′ ∈ L 2 (R) and 1 -|Ψ| 2 ∈ L 2 (R) .
Under this assumption, the boundary condition in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF] is fulfilled due to the Sobolev embedding theorem.

The constant functions with unitary modulus are the simplest examples of finite energy solutions. A linearisation around these constants provides the dispersion relation

ω 2 = k 4 + 2k 2 .
(

) 2 
For high wave numbers, this relation is similar to the dispersion relation of the linear Schrödinger equation. In contrast, for low wave numbers, it matches with the dispersion relation of the linear wave equation with speed c s = √ 2. The characteristic speed c s is called the sound speed. As a consequence of (2), the absolute value of the group velocity is always strictly larger than c s . Roughly speaking, dispersion has at least speed c s .

The Gross-Pitaevskii equation also owns travelling-wave solutions. The solitons with speed c are special solutions of the form Ψ(x, t) := U c (xct).

Their profile U c are solutions to the ordinary differential equation

-icU ′ c + U ′′ c + U c 1 -|U c | 2 = 0. (3) 
The solutions to [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF] with finite energy are explicitly known. For |c| ≥ √ 2, there are no nonconstant solutions. In other words, there is no common speed for solitons and dispersion. In contrast, for |c| < √ 2, the non-constant solutions are uniquely given by the formula

U c (x) := 2 -c 2 2 1 2 tanh (2 -c 2 ) 1 2 2 x + i c √ 2 , (4) 
up to the invariances of the problem, i.e. multiplication by a constant of modulus one and translation. Solitons U c with speed c = 0 do not vanish on R. They are called dark solitons, with reference to nonlinear optics where |Ψ| 2 refers to the intensity of light. Instead, U 0 is called the black soliton.

In dimension one, the Gross-Pitaevskii equation is integrable by means of the inverse scattering method [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF]. At least formally, this method provides a description of the long-time dynamics, which is governed by solitons and dispersion. More precisely, the solutions are expected to behave as a chain of solitons plus a dispersive part (see e.g. [START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing non-linear Schrödinger equation with finite-density initial data. I. solitonless sector[END_REF][START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua[END_REF]). A first step in order to derive rigorously this long-time description is to establish the stability of single solitons and chains of solitons.

This issue was mostly solved in a series of recent papers. The orbital stability of dark solitons was derived in [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF] (see also [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF]), whereas the case of the black soliton was solved in [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF][START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF]. More recently, the asymptotic stability of dark solitons was proved in [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF]. Concerning chains of solitons, their orbital stability was established in [START_REF] Béthuel | Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation[END_REF], when the solitons in the chain have non-zero speed, are well-separated at initial time, and are ordered according to their speed.

Most of these results rely deeply on an alternative formulation of the Gross-Pitaevskii equation. Provided a solution Ψ does not vanish, it may be lifted as Ψ := ̺ exp iϕ, where ̺ := |Ψ|. The functions η := 1 -̺ 2 and v := -∂ x ϕ are solutions, at least formally, to the hydrodynamical system     

∂ t η = ∂ x 2ηv -2v , ∂ t v = ∂ x v 2 -η + ∂ x ∂ x η 2(1 -η) - (∂ x η) 2 4(1 -η) 2 .
In this hydrodynamical framework, the Ginzburg-Landau energy is equal to

E(η, v) = 1 8 R (∂ x η) 2 1 -η + 1 2 R (1 -η)v 2 + 1 4 R η 2 .
It is natural to define the energy space for the hydrodynamical Gross-Pitaevskii equation as the open subset of H 1 (R) × L 2 (R) given by

N V(R) := (η, v) ∈ H 1 (R) × L 2 (R), s.t. max R η < 1 .
The corresponding functional framework is substantially simpler than the one corresponding to the energy space E(R). Moreover, it is straightforward to define another conserved quantity, the momentum P given by

P (η, v) = 1 2 R ηv, (5) 
which plays a crucial role in the analysis of the stability of the solitons.

On the other hand, a major drawback of the hydrodynamical formulation lies in the fact that it only describes non-vanishing solutions. In particular, the black soliton U 0 is excluded from the analysis.

The main goal of this paper is to revisit the stability of solitons getting rid of the hydrodynamical formulation. In particular, this makes possible the proof of the asymptotic stability of the black soliton.

Statement of the main results

Our first concern lies in introducing a suitable functional setting to handle with the stability of solitons. In this direction, a natural metric structure is provided by the distance

d(Ψ 1 , Ψ 2 ) := Ψ 1 -Ψ 2 L ∞ + Ψ ′ 1 -Ψ ′ 2 L 2 + η 1 -η 2 L 2 ,
where we have set η j := 1 -|Ψ j | 2 for j ∈ {1, 2}. For this distance, the Ginzburg-Landau energy is continuous on E(R). Moreover, Zhidkov [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] proved the existence of a unique global solution Ψ ∈ C 0 (R, E(R)) to (GP) for any initial datum Ψ 0 ∈ E(R) (see also [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF]).

However, the distance d does not seem well-adapted for our purpose. In the hydrodynamical formulation, orbital stability is quantified by an H 1 -control on the perturbation of the variable η and an L 2 -control on the perturbation of v in the functional framework provided by the space N V(R). In this space, the maps (η n , v n ) corresponding to the functions Ψ n given by Ψ n (x) = exp(i (1 + x 2 ) 1/8 /n) converge to the zero pair (0, 0), as n → +∞. This does not remain for the distance d. The first term in the definition of d prevents the maps Ψ n from tending to a constant map of modulus one when n → +∞. Roughly speaking, the distance d provides too much control on the slow oscillations at infinity.

In view of the hydrodynamical situation, we do not expect such a control concerning the stability of solitons. This is why we introduce an alternative metric structure on E(R). Given a number c ∈ (-√ 2, √ 2), we first consider the weighted Sobolev space

H c (R) := f ∈ C 0 (R, C), s.t. f ′ ∈ L 2 (R) and (1 -|U c | 2 ) 1/2 f ∈ L 2 (R) ,
which we endow with the Hilbert structure corresponding to the norm

f Hc := R |f ′ | 2 + (1 -|U c | 2 )|f | 2 1 2
.

Due to the exponential decay of the functions 1-|U c | 2 on one hand, and the 1/2-Hölder continuity of the maps in E(R) on the other hand, all the norms • Hc are equivalent. As a consequence, the space H c (R) does not depend on c. For simplicity, we set H(R) := H c (R).

Moreover, the energy space E(R) appears as the subset of H(R) given by

E(R) = Ψ ∈ H(R), s.t. η := 1 -|Ψ| 2 ∈ L 2 (R) .
In particular, we can endow it with the metric structure corresponding to the distances

d c (Ψ 1 , Ψ 2 ) := Ψ 1 -Ψ 2 2 Hc + η 1 -η 2 2 L 2 1 2 .
Notice that the corresponding topology is weaker than the one provided by the distance d. As a consequence, the Ginzburg-Landau energy remains continuous on E(R), and the Cauchy problem remains globally well-posed. More precisely, the unique global solution Ψ to (GP) corresponding to an initial datum Ψ 0 ∈ E(R) remains continuous from R to E(R) endowed with the metric structure induced by the distances d c .

Our motivation for introducing the distances d c originates in the Taylor formula for the energy E around a soliton U c . Given a function ε ∈ E(R), we check that

E(U c + ε) =E(U c ) + R U ′ c , ε ′ C -(1 -|U c | 2 ) U c , ε C + 1 2 R ε ′ 2 -(1 -|U c | 2 )|ε| 2 + 1 2 η 2 ε , (6) 
where we have set

η ε := |U c + ε| 2 -|U c | = 2 U c , ε C + |ε| 2 .
An important step in order to establish the orbital stability of solitons is to provide some coercivity for the quantity

Q c (ε) = 1 2 R ε ′ 2 -(1 -|U c | 2 )|ε| 2 + 1 2 η 2 ε ,
in the right-hand side of (6) (see Proposition 1 for a more precise statement). This can only be done for a metric structure which respects the special form of Q c . In this respect, the natural structure is given by the distances d c .

We now come to our main results. The first one gives some further details concerning the orbital stability of the black soliton.

Theorem 1. Given a map Ψ 0 ∈ E(R), we consider the unique solution Ψ to (GP) with initial datum Ψ 0 . There exist two positive numbers α * and A * such that, if

α 0 := d 0 (Ψ 0 , U 0 ) < α * , (7) 
then there exist two functions a ∈ C 1 (R, R) and θ ∈ C 1 (R, R) such that

a ′ (t) + θ ′ (t) < A * α 0 , (8) 
and d 0 e -iθ(t) Ψ(• + a(t), t), U 0 < A * α 0 ,

for any t ∈ R.

As mentioned previously in this introduction, the orbital stability of the black soliton U 0 was first proved, on one hand, in [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF] by applying the variational method introduced in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], on the other hand, in [START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF] by making use of the integrability by the inverse scattering transform of the one-dimensional Gross-Pitaevskii equation.

The proof of Theorem 1 relies on a third approach, which was introduced in [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] and then generalized in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry II[END_REF]. The main ingredient in the proof is to establish the coercivity of the quantity Q c (ε), when the function ε satisfies suitable orthogonality conditions (see Proposition 1 below). These orthogonality conditions are guaranteed by the introduction of modulation parameters (see Proposition 2 below). This third approach presents the advantage to provide a better control on the perturbation with respect to the soliton. Such a control is very useful in order to tackle the asymptotic stability of the black soliton.

An important difficulty in applying rigorously this third strategy lies in the property that the functional Q c (ε) does not depend quadratically on the variable ε. As a consequence, it does not seem possible to derive its coercivity from standard spectral theory. We refer to Subsection 1.2 for more details concerning this issue, and more generally, regarding the main elements in the proof of Theorem 1.

Our second result concerns the asymptotic stability of the black soliton.

Theorem 2. Given a map Ψ 0 ∈ E(R), we consider the unique solution Ψ to (GP) with initial datum Ψ 0 . There exists a positive number β * ≤ α * such that, if

d 0 (Ψ 0 , U 0 ) < β * , then there exist a number c * ∈ (- √ 2, √ 2), and two functions a ∈ C 1 (R, R) and θ ∈ C 1 (R, R) such that a ′ (t) → c * , and θ ′ (t) → 0, (10) 
as t → +∞, and for which we have

e -iθ(t) Ψ(• + a(t), t) ⇀ U c * in H(R), and 1 -Ψ(• + a(t), t) 2 ⇀ 1 -U c * 2 in L 2 (R), ( 11 
)
as t → +∞. In particular, we have

e -iθ(t) Ψ(• + a(t), t) → U c * in L ∞ loc (R), (12) 
as t → +∞.

Remark.

A natural question about the position a and the phase θ concerns the existence of possible limits for the quantities a(t)c * t and θ(t), when t → +∞. We believe that the answer to this question is negative, unless additional assumptions are made on the initial perturbation. As a matter of fact, this property has been proved to be false in the context of the Korteweg-de Vries equation (see [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF]Theorem 2]).

Concerning the limit speed c * , it is controlled by the initial distance d 0 (Ψ 0 , U 0 ) between the initial datum Ψ 0 and the black soliton U 0 . This property is a direct consequence of orbital stability (see [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] and (36) below). In particular, the limit speed c * converges to 0 as the initial perturbation tends to 0.

In contrast with orbital stability, which expresses the fact that the solution remains close to the family of black solitons corresponding to the geometric invariances of the Gross-Pitaevskii equation, asymptotic stability provides the convergence of the solution towards a special orbit in this family.

A crucial issue when dealing with this further notion of stability lies in the nature of the convergence. As a matter of fact, it is not possible to prove a strong convergence in the energy space. Indeed, orbital stability, since it holds both forward and backward in time, would then guarantee that the solution is exactly a black soliton. As a consequence, one has to weaken the notion of convergence in order to establish asymptotic stability.

In this direction, a natural choice is to show a weak convergence in the energy space. This is exactly the main statement of Theorem 2. As a consequence of the Sobolev embedding theorem, the convergence is also locally uniform in the reference frame of the limit soliton. Due to the possible presence of additional small solitons, this local uniform convergence cannot be improved into a global uniform convergence. On the other hand, it is possible that the solution converges in H 1 loc (R) towards a soliton. Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] proved such a convergence in the context of the Korteweg-de Vries equation. To our knowledge, this question still remains open for the Gross-Pitaevskii equation.

Asymptotic stability originates in the property that the perturbation of the soliton disperses at infinity in the reference frame of the limit soliton. As a consequence, a natural strategy in order to prove it is to establish dispersive estimates for the linearized equation around the soliton, and then to implement a fixed point argument in suitable function spaces. In the context of nonlinear Schrödinger equations with potential, this first strategy was implemented by Soffer and Weinstein in [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF][START_REF] Soffer | Multichannel nonlinear scattering for nonintegrable equations[END_REF][START_REF] Soffer | Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data[END_REF] for proving the asymptotic stability of ground states (see also [START_REF] Gang | Relaxation of solitons in nonlinear Schrödinger equations with potential[END_REF]). It was then extended to various equations including the generalized Korteweg-de Vries equations [START_REF] Pego | Asymptotic stability of solitary waves[END_REF][START_REF] Mizumachi | Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations[END_REF], and the nonlinear Schrödinger equations without potential (see e.g. [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF][START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Cuccagna | Stabilization of solutions to nonlinear Schrödinger equations[END_REF]). We refer to [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF] for a detailed survey about those and related works. This first strategy describes the limit behaviour of the solution as the superposition of a soliton and a dispersive perturbation. In general, the long-time dynamics is more complicated. In particular, it is well-known that multi-soliton solutions play a major role in the long-time dynamics (see e.g [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF][START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF][START_REF] Béthuel | Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation[END_REF]). This limitation originates in a priori spectral assumptions, or the use of weighted spaces for the initial perturbation, in order to perform this first strategy rigorously.

In a series of papers, Martel and Merle [START_REF] Martel | A Liouville theorem for the critical generalized Korteweg-de Vries equation[END_REF][START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF] Martel | Linear problems related to asymptotic stability of solitons of the generalized KdV equations[END_REF][START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF][START_REF] Martel | Refined asymptotics around solitons for the gKdV equations with a general nonlinearity[END_REF][START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] proposed an alternative strategy in order to establish the asymptotic stability of solitons for the generalized Korteweg-de Vries equations. They rely on monotonicity formulae to establish the compactness of a limit profile, and then classify the compact solutions to the Korteweg-de Vries equations in the neighbourhood of solitons. This second strategy presents the advantages not to require additional a priori assumptions, and to apply to multi-soliton solutions (see e.g. [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]). It was extended to various equations including the Benjamin-Bona-Mahony equation [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF] and the Benjamin-Ono equation [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF].

In [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF], we relied on this second strategy in order to prove the asymptotic stability of the dark solitons for the Gross-Pitaevskii equation. As mentioned previously, this was performed in the hydrodynamical setting, so that we were not able to handle with the black soliton. Here, we by-pass this limitation by working directly in the Schrödinger setting, to the expense of a functional setting which involve completely nonlinear quantities.

Another motivation for working in the Schrödinger setting comes from the focusing nonlinear Schrödinger equations. In general, they also own solitons which are supposed to play a major role in their long-time dynamics. However, in this case, the description of the long-time dynamics is certainly more intricate, due to the existence of breathers which prevent asymptotic stability in the energy space.

In another direction, notice that the Gross-Pitaevskii equation also owns travelling waves in higher dimension (see e.g. [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation I[END_REF][START_REF] Béthuel | Vortex rings for the Gross-Pitaevskii equation[END_REF][START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation II[END_REF][START_REF] Maris | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]). Likewise, they are supposed to play an important role in the long-time dynamics. Their orbital stability was investigated in [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]. To our knowledge, their asymptotic stability still remains an open problem.

Finally, let us emphasize that our proof of asymptotic stability does not rely on the integrability by means of the inverse scattering transform of the one-dimensional Gross-Pitaevskii equation. As a consequence, our result presumably extends to nonlinearities for which the equation does not remain integrable (see e.g. [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one[END_REF] for examples of possible nonlinearities).

In the remaining part of this introduction, we present the main ingredients leading to the proof of Theorems 1 and 2.

Main elements in the proof of Theorem 1

Orbital stability results from a variational characterization for U 0 . The function U 0 is the unique minimizer of the variational problem

E(U 0 ) = min E(Ψ), Ψ ∈ E(R) s.t. [P ](Ψ) = π 2 mod π , (13) 
up to the geometric invariances of the equations, i.e. translations and multiplication by constants of modulus one. In this expression, the functional [P ] refers to a renormalized version of the momentum P . In [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF], the quantity P (Ψ) is defined in the hydrodynamical framework, where the function Ψ does not vanish. Extending the definition to functions which possibly vanish is not so immediate. In [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF], we introduced the following renormalized version of the momentum

[P ](Ψ) := lim R 1 ,R 2 →+∞ 1 2 R 2 -R 1 iΨ, Ψ ′ C - 1 2 ϕ(R 2 ) -ϕ(-R 1 ) mod π.
In this definition, ϕ stands for a phase function at infinity for Ψ. Indeed, when Ψ lies in E(R), the Sobolev embedding theorem implies that |Ψ(x)| → 1 as |x| → +∞. As a consequence, the phase of Ψ is well-defined modulo 2π on intervals of the form (-∞, -R 1 ) and (R 2 , +∞) for R 1 and R 2 large enough. In particular, the renormalized momentum [P ](Ψ) is only defined modulo π due to the ambiguity on the phase function ϕ.

We will provide more details on the momentum in Propositions 4 and 5. We first go on with the orbital stability of U 0 .

As a consequence of the variational characterization in [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF], the soliton U 0 is a critical point of the functional E. Due to the minimizing nature of U 0 , this quantity actually provides a control on a large class of small perturbations of U 0 . More precisely, we can establish Proposition 1. Let ε ∈ H(R), with U 0 + ε ∈ E(R), and set η ε := 2 U 0 , ε C + |ε| 2 . There exists a universal positive number Λ 0 such that

E(U 0 + ε) -E(U 0 ) ≥ Λ 0 ε 2 H 0 + η ε 2 L 2 - 1 Λ 0 ε 3 H 0 , (14) 
as soon as

R ε, U ′ 0 C = R ε, iU ′ 0 C = R ε, iU 0 C 1 -|U 0 | 2 = 0. (15) 
The orbital stability of U 0 is a consequence of the coercivity inequality in [START_REF] Cuccagna | Stabilization of solutions to nonlinear Schrödinger equations[END_REF]. As a matter of fact, consider a solution Ψ to (GP) and decompose it as Ψ(•, t) = U 0 + ε(•, t) for any t ∈ R. Due to the conservation of the energy, the quantity E(U 0 + ε(•, t)) -E(U 0 ) remains small at any time if the initial datum Ψ 0 is close to the soliton U 0 . In view of ( 14), the quantity

ε 2 H 0 + η ε 2 L 2
remains small for all time, which gives the orbital stability of U 0 .

In order to apply this argument, we first have to guarantee the orthogonality conditions in [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF]. As usual in such a situation, we introduce modulation parameters. Given a function Ψ ∈ H(R), which lies in a neighbourhood of the orbit of U 0 of the form

U 0 (α) = Ψ ∈ H(R), s.t. inf (a,θ)∈R 2 e -iθ Ψ(• + a) -U 0 H 0 < α ,
for some positive number α, we decompose it as

e -iθ Ψ(• + a) = U c + ε = R c + iI c + ε,
and we make the choice of the modulation parameters (c, a, θ) ∈ (-

√ 2, √ 2) × R 2 such that the remainder ε satisfies the orthogonality conditions R ε, U ′ c C = R ε, iU ′ c C = R ε, iR c C 1 -|U c | 2 = 0. (16) 
Proposition 2. There exist two positive numbers α 0 and A 0 , and three continuously differentiable functions c ∈ C 1 (U 0 (α 0 ), (-

√ 2, √ 2 
)), θ ∈ C 1 (U 0 (α 0 ), R/2πZ) and a ∈ C 1 (U 0 (α 0 ), R) such that for any Ψ ∈ U 0 (α 0 ), the function

ε := e -iθ(Ψ) Ψ(• + a(Ψ)) -U c(Ψ) , (17) 
satisfies the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF]. Moreover, if

Ψ -e iθ U 0 (• -a) H 0 ≤ α ≤ α 0 ,
for some (a, θ) ∈ R 2 , then,

ε H 0 + c(Ψ) + a(Ψ) -a + e iθ(Ψ) -e iθ ≤ A 0 α. ( 18 
)
Concerning Proposition 2, we observe that the orthogonality conditions in ( 16) are generalizations of the ones in [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF] through the introduction of a modulation parameter related to the speed c. For that reason, we have to extend the coercivity estimates in [START_REF] Cuccagna | Stabilization of solutions to nonlinear Schrödinger equations[END_REF] to this new framework. In this direction, we show

Corollary 1. Let c ∈ (- √ 2, √ 2). For ε ∈ H(R), with U c +ε ∈ E(R), we set η ε := 2 U c , ε C +|ε| 2 . Given any number σ ∈ (0, √ 2 
), there exists a positive number Λ σ , depending only on σ, such that

E(U c + ε) -E(U 0 ) ≥ Λ σ ε 2 H 0 + η ε 2 L 2 - 1 Λ σ c 2 + ε 3 H 0 , (19) 
as soon as |c| ≤ σ, and ε satisfies the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF].

Another remark regarding Proposition 2 lies in the property that the modulation parameters for a solution Ψ(•, t) necessarily depend on time. In particular, we need to control their evolution along the flow of the Gross-Pitaevskii equation. In this direction, we rely on a standard continuation argument.

We first invoke the continuity of the (GP) flow in E(R). We choose a positive number α to be fixed later. When the initial datum Ψ 0 satisfies the condition α 0 := d 0 (Ψ 0 , U 0 ) < α, we can find a positive time T such that Ψ(•, t) lies in the set

V 0 (α) := Ψ ∈ E(R), s.t. inf (a,θ)∈R 2 d 0 e -iθ Ψ(• + a), U 0 < α , (20) 
for any t ∈ (-T, T ). Our final goal is to establish that we can fix α small enough such that the solution Ψ(•, t) remains in V 0 (α) for any t ∈ R.

We first assume that α < α 0 , where α 0 is defined in Proposition 2. In this case, we can define modulation parameters for Ψ(•, t) by setting (c(t), a(t), θ(t)) = (c(Ψ(•, t)), a(Ψ(•, t)), θ(Ψ(•, t))) for any t ∈ (-T, T ). In this definition, the function θ is a priori valued in R/2πZ. However, the map t → θ(Ψ(•, t)) is continuous from (-T, T ) to R/2πZ. As a consequence, we can define the function θ as a continuous real valued function, up to the choice of a constant in 2πZ. We fix this choice such that θ(0) lies in [0, 2π). In the sequel, the function θ only appears through the function e iθ , or the derivative θ ′ , so that this special choice does not affect our proofs.

We next check the continuous differentiability of the modulation parameters with respect to time (see Proposition 3 below). In particular, we are allowed to write the equation satisfied by the perturbation ε(•, t) := e -iθ(t) Ψ(• + a(t)) -U c(t) , which is given by

∂ t ε = -c ′ (t)∂ c U c(t) -iθ ′ (t) U c(t) + ε + a ′ (t) -c(t) ∂ x U c(t) + ∂ x ε + i ∂ xx ε -ic(t)∂ x ε + η c(t) ε -η ε U c(t) + ε , (21) 
with

η ε (•, t) := 2 U c(t) , ε(•, t) C + |ε(•, t)| 2 .
Differentiating the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF], we derive from [START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF] the following control on the modulation parameters. This control eventually provides the estimates on the time derivatives of a and θ in Theorem 1.

Proposition 3. There exist two positive numbers α 1 < α 0 and A 1 such that, if the solution Ψ(•, t) lies in V 0 (α 1 ) for any t ∈ (-T, T ), then, the functions c, a and θ are of class C 1 on (-T, T ), and their derivatives satisfy

|c ′ (t)| + |a ′ (t) -c(t)| 2 + |θ ′ (t)| 2 ≤ A 1 ε(•, t) 2 H 0 , (22) 
for any t ∈ (-T, T ).

We next assume that α < α 1 so that the estimates in Proposition 3 are available on (-T, T ), and we come back to inequality [START_REF] Gang | Relaxation of solitons in nonlinear Schrödinger equations with potential[END_REF]. We assume that A 0 α < 1, where A 0 is defined in Proposition 2, so that |c(t)| < 1 for any t ∈ (-T, T ). When α satisfies the further condition 2A 0 α < Λ 2 1 , we are allowed to use the conservation of the energy and [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF] to rephrase [START_REF] Gang | Relaxation of solitons in nonlinear Schrödinger equations with potential[END_REF] as

ε(•, t) 2 H 0 + η ε (•, t) 2 L 2 ≤ 2 Λ 2 1 Λ 1 E(Ψ 0 ) -E(U 0 ) + c(t) 2 , (23) 
for any t ∈ (-T, T ). On the other hand, we can use the property that U 0 is a critical point of E in order to infer from (6) the existence of a positive number K 0 such that

E(Ψ 0 ) -E(U 0 ) ≤ K 0 α 0 2 . ( 24 
)
As a consequence, it only remains to estimate the remainder quantity c(t) 2 so as to complete the proof of Theorem 1. In order to bound this term, we rely on the conservation of the momentum, and a Taylor expansion of this quantity in the neighbourhood of the solitons U c .

In order to compute this expansion, we introduce an alternative definition of the momentum. Given an arbitrary function Ψ in V 0 (α), we can rely on the modulation decomposition provided by Proposition 2 to define the function

Ψ mod (x) := e -iθ Ψ(x + a),
with θ := θ(Ψ) and a := a(Ψ). Combining estimates [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF] and definition [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF] with the Sobolev embedding theorem, we can also assume that the number α is sufficiently small so that we have

Ψ mod (x) ≥ 1 2 , (25) 
for any x ∈ R \ [-1, 1]. As a consequence, we can define a continuous phase function ϕ mod from the two simply connected components of the set R \

[-1, 1] into R such that Ψ mod (x) = Ψ mod (x) exp iϕ mod (x) for any x ∈ R \ [-1, 1]
. Decreasing α further if necessary, we may additionally impose (and this makes the choice unique) that

ϕ mod (x) -π < π 2 for x ∈ [-2, -1], and ϕ mod (x) < π 2 for x ∈ [1, 2]. (26) 
We now fix a cut-off function χ ∈ C ∞ (R, [0, 1]) such that χ = 1 on [-1, 1] and χ = 0 outside (-2, 2), and we define the momentum as

P(Ψ) := 1 2 R iΨ mod , ∂ x Ψ mod C -∂ x (1 -χ)ϕ mod . (27) 
Similarly to [P ], the quantity P is invariant by translation and multiplication by a complex number of modulus one. Contrary to [P ], it is well-defined as an element of R rather than R/πZ. On the other hand, it is only defined for functions in a tubular neighbourhood of the family of black solitons. As a matter of fact, we have Proposition 4. There exists a positive number α 2 < α 1 such that the map P is well-defined from V 0 (α 2 ) to R, and it satisfies

P(Ψ) = [P ](Ψ) mod π, (28) 
for any Ψ ∈ V 0 (α 2 ).

Coming back to decomposition [START_REF] Dunford | Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space[END_REF], we can expand the quantity P(Ψ) with respect to ε = Ψ mod -U c(Ψ) for ε small enough. More precisely, we show Proposition 5. Let Ψ ∈ V 0 (α 2 ). Set ε := Ψ mod -U c , with c := c(Ψ), and

η ε := 2 U c , ε C + |ε| 2 .
There exists a positive number A 2 such that the momentum P(Ψ) may be written as

P(Ψ) = P(U c ) - R iU ′ c , ε C + R c (ε), with R c (ε) ≤ A 2 ε 2 H 0 + η ε 2 L 2 . ( 29 
)
We are now in position to conclude the proof of Theorem 1.

End of the proof of Theorem 1. Recall that so far we have obtained [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry II[END_REF] and [START_REF] Gross | Hydrodynamics of a superfluid condensate[END_REF], so that it only remains to control the quantity c(t). Assume that α < α 2 . In this case, we are allowed to apply Proposition 5 in order to write

P(Ψ(•, t)) = P(U c(t) ) - R iU ′ c(t) , ε(•, t) C + R c(t) (ε(•, t)),
for any t ∈ (-T, T ). In view of the second orthogonality condition in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF], and estimate (29), we conclude that

P(Ψ(•, t)) -P(U c(t) ) ≤ A 2 ε(•, t) 2 H 0 + η ε (•, t) 2 L 2 .
We now combine this estimate with the conservation of the renormalized momentum (see [3, Proposition 1.16]), and with identity [START_REF] Maris | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]. Since the left hand side of this identity is continuous in time and well-defined as an element of R, we obtain P(Ψ(•, t)) = P(Ψ 0 ), for any t ∈ (-T, T ). This leads to the inequality

P(U c(t) ) -P(U c(0) ) ≤ A 2 ε(•, t) 2 H 0 + η ε (•, t) 2 L 2 + ε(•, 0) 2 H 0 + η ε (•, 0) 2 L 2 .
In view of (18), we have

|c(0)| ≤ A 0 α 0 , (30) 
so that it follows from ( 23) and ( 24) that

ε(•, 0) 2 H 0 + η ε (•, 0) 2 L 2 ≤ 2 Λ 2 1 Λ 1 K 0 + A 2 0 α 0 2 . ( 31 
)
On the other hand, we can use the explicit formula for the soliton U c in (4) to compute

P(U c ) = π 2 -arctan c √ 2 -c 2 - c 2 2 -c 2 .
Since |c(t)| < 1, we are led to

|P(U c(t) ) -P(U c(0) )| ≥ |c(t) -c(0)|.
In view of ( 30) and ( 31), this provides

|c(t)| ≤ A 2 ε(•, t) 2 H 0 + η ε (•, t) 2 L 2 + A 0 α 0 + 2A 2 Λ 2 1 Λ 1 K 0 + A 2 0 α 0 2 .
Inserting this inequality, and estimate ( 24) into ( 23), we deduce the existence of a positive number A such that

d 0 e -iθ(t) Ψ(• + a(t)), U c(t) = ε(•, t) 2 H 0 + η ε (•, t) 2 L 2 1 2 ≤ Aα 0 , (32) 
for any t ∈ (-T, T ). In particular, we have

|c(t)| ≤ Aα 0 , (33) 
for a further positive number A. It now remains to check that

d 0 U 0 , U c(t) ≤ A|c(t)| ≤ Aα 0 ,
to obtain the final estimate

d 0 e -iθ(t) Ψ(• + a(t)), U 0 + |c(t)| ≤ Aα 0 , (34) 
for any t ∈ (-T, T ).

All this is available for a given choice of the number α that we now fix. We next set α * := α/A, where A is the number in [START_REF] Martel | Refined asymptotics around solitons for the gKdV equations with a general nonlinearity[END_REF]. When α 0 < α * , we deduce from (34) that the solution Ψ remains in V 0 (α) for any time t ∈ (-T, T ). Applying a standard continuation argument, we conclude that it remains in this set for any time. In particular, estimate [START_REF] Martel | Refined asymptotics around solitons for the gKdV equations with a general nonlinearity[END_REF] is available for any t ∈ R. This is exactly statement (9) in Theorem 1. Statement ( 8) is then a consequence of ( 22), [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] and [START_REF] Martel | Refined asymptotics around solitons for the gKdV equations with a general nonlinearity[END_REF]. This concludes the proof of Theorem 1.

Main elements in the proof of Theorem 2 1.3.1 Construction of a limit profile

Let Ψ 0 be as in the statement of Theorem 2. Since β * ≤ α * in the assumptions of Theorem 2, we may apply Theorem 1 to the unique globally defined solution Ψ to (GP) with initial datum Ψ 0 . As in the proof of Theorem 1, we decompose the solution Ψ as

Ψ(x, t) = e iθ(t) U c(t) (x -a(t)) + ε(x -a(t), t) ,
according to Proposition 2, and we therefore have estimates [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] and [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] for any t ∈ R.

We fix an arbitrary sequence of times (t n ) n∈N tending to +∞. In view of ( 32) and ( 33), we may assume, going to a subsequence if necessary, that there exist

ε * 0 ∈ H(R) and c * 0 ∈ (- √ 2, √ 2) such that ε(•, t n ) = e -iθ(tn) Ψ(• + a(t n ), t n ) -U c(tn) ⇀ ε * 0 in H(R), (35) 
and that

c(t n ) → c * 0 , (36) 
as n → +∞. In this situation, since the function 1 -|Ψ(•, t)| 2 is uniformly bounded in L 2 (R) by energy conservation, we can also deduce from the Rellich theorem that

1 -e -iθ(tn) Ψ(• + a(t n ), t n ) 2 ⇀ 1 -|U c * 0 + ε * 0 | 2 in L 2 (R). (37) 
Our main goal is to obtain the conclusion that necessarily ε * 0 ≡ 0, by establishing smoothness and rigidity properties for the solution Ψ * to (GP) with initial datum given by U c * 0 + ε * 0 . We first deduce from the weak lower semi-continuity of the norm that the function

Ψ * 0 := U c * 0 + ε * 0 satisfies Ψ * 0 -U 0 H 0 ≤ A * β * + U 0 -U c * 0 H 0 .
On the other hand, we infer from (33) that we have |c * 0 | ≤ A * α 0 ≤ A * β * . Therefore, we can impose a supplementary smallness assumption on β * so that necessarily

d 0 (Ψ * 0 , U 0 ) ≤ α * .
Applying Theorem 1 then yields a unique global solution

Ψ * ∈ C 0 (R, (E(R), d)) to (GP) with initial datum Ψ * 0 , and maps c * ∈ C 1 (R, (- √ 2, √ 2)) and (a * , θ * ) ∈ C 1 (R, R) 2 such that the function ε * defined by ε * (•, t) := e -iθ * (t) Ψ * (• + a * (t), t) -U c * (t) , (38) 
satisfies the orthogonality conditions

R ε * (•, t), U ′ c * (t) C = R ε * (•, t), iU ′ c * (t) C = R ε * (t, •), iR c * (t) C 1 -|U c * (t) | 2 = 0. (39) 
Notice that, in view of Proposition 2 and estimate [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF], the modulated speed c * and the perturbation ε * satisfy the estimate

c * (t) + ε * (•, t) H 0 + η ε * (•, t) L 2 ≤ A 0 β * , (40) 
for any t ∈ R. Similarly, we deduce from Proposition 3 that

(c * ) ′ (t) + (a * ) ′ (t) -c * (t) 2 + (θ * ) ′ (t)| 2 ≤ A 1 ε * (•, t) 2 H 0 , (41) 
for any t ∈ R.

In this situation, we can establish the following weak convergence of the perturbation ε towards the limit perturbation ε * , as well as of the convergence of the modulation parameters c, a and θ towards the limit parameters c * , a * and θ * . More precisely, we show Proposition 6. Let t ∈ R be fixed. Then, we have

e -iθ(tn) Ψ(• + a(t n ), t n + t) ⇀ Ψ * (•, t) in H(R), 1 -e -iθ(tn) Ψ(• + a(t n ), t n + t) 2 ⇀ 1 -Ψ * (•, t) 2 in L 2 (R), (42) 
and

a(t n + t) -a(t n ) → a * (t), θ(t n + t) -θ(t n ) → θ * (t) and c(t n + t) → c * (t), (43) 
as n → +∞. In particular, we obtain

ε(•, t n + t) ⇀ ε * (•, t) in H(R), 2 U c(tn+t) , ε(•, t n + t) C + |ε(•, t n + t)| 2 ⇀ 2 U c * (t) , ε * (•, t) C + |ε * (•, t)| 2 in L 2 (R), (44) 
as n → +∞.

Using this limit characterization of the profile Ψ * , we are able to show its localized and smooth nature.

Localization and smoothness of the limit profile

In this subsection, we consider an arbitrary solution Ψ as in the statement of Theorem 1, which can therefore be uniquely modulated by functions which we denote here again by a, θ and c. By ( 7) and ( 9), we have the closeness estimate

d 0 (Ψ mod (•, t), U 0 < (A * + 1)α 0 , (45) 
for any t ∈ R. Here, we have set, as before, Ψ mod (x, t) := e -iθ(t) Ψ(x + a(t), t). In the sequel, we assume further that the number α 0 (which appears in the statement of Theorem 1) is sufficiently small so that we can write

Ψ mod (x, t) = |Ψ mod (x, t)| exp iϕ mod (x, t), for any x ∈ R \ [-1, 1
] and any t ∈ R, with phase functions ϕ mod (•, t) which satisfy [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF] for any t ∈ R. As in Proposition 4, we choose and fix a cut

-off function χ ∈ C ∞ (R, [0, 1]) such that χ = 1 on [-1, 1
] and χ = 0 outside (-2, 2). For arbitrary R ∈ R and t ∈ R, we then define the quantity

I R (t) ≡ I Ψ R (t) := 1 2 R iΨ mod , ∂ x Ψ mod C -∂ x (1 -χ)ϕ mod (x, t) Φ(x -R) dx, where Φ(x) := 1 2 1 + tanh x 2 .
Concerning the quantity I R , we can show the almost monotonicity formula given by Proposition 7. There exist a universal constant K and a number 0 < α m ≤ α * such that, if α 0 ≤ α m , then we have

d dt I R+σt (t) ≥ 1 24 R (∂ x Ψ) 2 + (1 -|Ψ| 2 ) 2 (x + a(t), t)Φ ′ (x -R -σt) dx -Ke -|R+σt| , ( 46 
)
for any R ∈ R, any t ∈ R, and any σ ∈ [-1/12, 1/12]. As a consequence, we also have

I R (t 1 ) ≥ I R (t 0 ) -Ke -|R| , (47) 
for any real numbers t 0 ≤ t 1 .

In the sequel, we denote I * R (t) := I Ψ * R (t) the corresponding quantity for the specific choice of Ψ * as the solution to the Gross-Pitaevskii equation. Notice in particular that lim

R→-∞ I * R (t) = P(Ψ * ).
We deduce from Proposition 7 the following bounds on I * R .

Proposition 8. Given any positive number δ, there exists a positive number R δ , depending only on δ, such that we have

I * R (t) ≤ δ, ∀R ≥ R δ , I * R (t) -P(Ψ * ) ≤ δ, ∀R ≤ -R δ , for any t ∈ R.
Proposition 8 guarantees that the momentum density of the solution Ψ * remains localized for any time. Combining this information with the monotonicity formula in [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF], we derive the following weak localization of the energy density.

Corollary 2. There exists a positive number M 0 such that

t+1 t R |∂ x Ψ * | 2 + (1 -|Ψ * | 2 ) 2 (x + a * (s), s)e |x| dx ds ≤ M 0 , (48) 
for any t ∈ R.

In order to conclude that Ψ * is a smooth and localized solution to (GP), we now improve the weak localization of the energy density in (48) by using standard smoothing properties of the linear Schrödinger equation. More precisely, we invoke

Proposition 9 ([5]). Let λ ∈ R, and consider a solution u ∈ C 0 (R, L 2 (R)) to the linear Schrödinger equation i∂ t u + ∂ xx u = F, with F ∈ L 2 (R, L 2 (R)).
Then, there exists a positive constant K λ , depending only on λ, such that

λ 2 T -T R |∂ x u(x, t)| 2 e λx dx dt ≤ K λ T +1 -T -1 R |u(x, t)| 2 + |F (x, t)| 2 e λx dx dt, (49) 
for any positive number T .

The smoothing properties in Proposition 9 were analysed in a more general context in [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF]. We refer to [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF] for a detailed proof of this proposition.

Arguing as in [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF], we next derive from [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] and Proposition 9 the smoothness and exponential decay of the derivatives of the solution Ψ * . Proposition 10. The solution Ψ * is of class C ∞ on R × R. Moreover, given any integer k ≥ 1, there exists a positive number M k such that we have

k j=1 |∂ j x Ψ * (x + a * (t), t)| 2 + (1 -|Ψ * (x + a * (t), t)| 2 ) 2 ≤ M k e -|x| , (50) 
for any (x, t) ∈ R 2 .
In terms of the perturbation ε * , this may be rephrased as

Corollary 3. Set η ε * (•, t) := 2 U c * (t) , ε * (•, t) C + |ε * (•, t)| 2 .
Given any integer k ≥ 1, there exists a positive number M k such that we have

k j=1 |∂ j x ε * (x, t)| 2 + η ε * (x, t) 2 ≤ M k e -|x| , (51) 
for any (x, t) ∈ R 2 .

In conclusion, the function Ψ * is a very special solution to the dispersive Gross-Pitaevskii equation. We now prove that the only solutions with similar localization and smoothness properties, which moreover remain perturbations of the black soliton U 0 along the Gross-Pitaevskii flow, are exact solitons. This rigidity property is sufficient to complete the proof of Theorem 2. As a matter of fact, it guarantees that the limit profile Ψ * is exactly a soliton, which provides the convergences in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF].

Rigidity of the limit profile

In order to establish this rigidity property, we follow the strategy developed in [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF] for the nonvanishing solitons U c (see also [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] for similar arguments in the context of the Korteweg-de Vries equations). We rely on the combination of two monotonicity formulae. In [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF], they were written in the hydrodynamical framework. We rephrase them in the framework corresponding to the original variable Ψ * . This makes possible to handle with possibly vanishing solutions to (GP).

More precisely, we come back to the equation satisfied by the limit perturbation ε * , which we write as

∂ t ε * = θ * ′ (t) -iU c * (t) -iε * ) + a * ′ (t) -c * (t) ∂ x U c * (t) + ∂ x ε * -c * ′ (t) ∂ c U c * (t) -iL c * (t) (ε * ) -iη ε * ε * , (52) 
with

η ε * (•, t) := 2 U c * (t) , ε * (•, t) C + |ε * (•, t)| 2 .
In this equation, the functional L c (ε) is defined as

L c (ε) := L + c (ε) + iL - c (ε) := -∂ xx ε 1 -c∂ x ε 2 -1 -|U c | 2 ε 1 + R c η ε + i -∂ xx ε 2 + c∂ x ε 1 -1 -|U c | 2 ε 2 + c √ 2 η ε . ( 53 
)
This quantity is the first order term in the expansion of (GP) for small ε and η ε . In contrast with the classical situation where this quantity is the linearized part of (GP), the functional L c (ε) is not linear with respect to ε due to the nonlinear dependence of η ε with respect to ε. It is only linear with respect to both ε and η ε . This complicates deeply the analysis of this first order term since we cannot, as usual, rely on spectral theory. However, it is possible to by-pass this problem by using monotonicity formulae, which present the advantage to apply to nonlinear situations.

In order to derive these monotonicity formulae properly, we now set

T c (ε) := √ 2R c ∂ x ε 2 -c∂ x ε 1 -(1 -|U c | 2 )ε 2 - c √ 2 η ε , (54) 
and we introduce the quantity

M φc c (ε) := R φ c T c (ε)L + c (ε),
where φ c is a smooth real-valued function, possibly depending smoothly on c. We claim that the derivative with respect to time of the functions

M * (t) := M φ c * (t) c * (t) (ε * (•, t))
, is essentially positive for suitable choices of the functions φ c .

In order to confirm this further claim, we first compute this derivative. We introduce the quantity

G φc c (ε) := 1 √ 2 R √ 2(1 -|U c | 2 )φ c + ∂ x (R c φ c ) L + c (ε) 2 + ∂ x (R c φ c ) L - c (ε) 2 - √ 2(1 -|U c | 2 )φ c L - c (ε) T c (ε) + ∂ x (R c φ c ) T c (ε) 2 , (55) 
and we set G * (t) := G

φ c * (t) c * (t) (ε * (•, t))
. This quantity turns out to be the main contribution to the derivative of M * . We also introduce a first order remainder given by

R * := R ∂ xx φ c * T c * (ε * )L - c * (t) (ε * ) + ∂ x φ c * ∂ x T c * (ε * )L - c * (ε * ) + c * ∂ x φ c * T c * (ε * )L + c * (ε * ) . ( 56 
)
With these notations at hand, we show Proposition 11. Assume that the maps φ c ∈ C ∞ (R, R) depend smoothly on c ∈ (-1, 1), and that there exists a positive number K φ for which

φ c (x) + ∂ c φ c (x) ≤ K φ 1 + |x| , and ∂ x φ c (x) + ∂ xx φ c (x) ≤ K φ , (57) 
for any c ∈ (-1, 1) and x ∈ R. The function M * is then of class C 1 on R, and there exists a positive number κ 0 , depending only on K φ and the numbers M k in Corollary 3, such that we have

d dt M * (t) -G * (t) + R * (t) ≤κ 0 β * 1 4 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * , ( 58 
)
for any t ∈ R.

We now make the choice of the functions φ c so that the quantity G * (t) controls the perturbation ε * . In order to clarify the presentation, we introduce two families of functions φ c . The first one provides a localized control, while the second one gives a control at spatial infinity.

More precisely, we first set φ c ≡ 1, and we denote by M * 1 , G * 1 and R * 1 the quantities appearing in Proposition 11 for this first choice. The assumptions of Proposition 11 are then satisfied. By definition, the functional R * 1 is identically equal to 0. Moreover, we have

G * 1 (t) = 1 2 R 1 -|U c * (t) | 2 3 L + c * (t) (ε * (•, t)) 2 + L - c * (t) (ε * (•, t)) -T c * (t) (ε * (•, t)) 2 .
We observe that this expression is positive and localized due to the exponential decay of the function 1 -|U c * (t) | 2 . For β * small enough, it provides the following bound on the function ε * .

Proposition 12. There exist two numbers σ 1 ∈ (0, √ 2) and κ 1 ∈ (0, +∞) such that, when β * ≤ σ 1 , we have

G * 1 (t) ≥ κ 1 R (1 -|U c * (t)| 2 ) |∂ xx ε * (•, t)| 2 + |∂ x ε * (•, t)| 2 + |ε * (•, t)| 2 , ( 59 
)
for any t ∈ R.
It is next necessary to recover a control at spatial infinity. In this direction, we consider a second family of functions φ c given by

φ c (x) := x R c (x) ,
for any x ∈ R. We denote by M * 2 , G * 2 and R * 2 the quantities appearing in Proposition 11 for this second choice. The functions φ c satisfy the assumptions in (57).

Lemma 1. The functions φ c are of class C ∞ on R, depend smoothly on c ∈ (-1, 1) and satisfy assumption (57).

Moreover, the quantities G * 2 and R * 2 provide the following bound on ε * .

Proposition 13. There exist two numbers σ 2 ∈ (0, σ 1 ) and κ 2 ∈ (0, +∞) such that, when β * ≤ σ 2 , we have

G * 2 (t) -R * 2 (t) ≥κ 2 R |∂ xx ε * (•, t)| 2 + |∂ x ε * (•, t)| 2 + η ε * (•, t) 2 - 1 κ 2 R (1 -|U c * (t) | 2 ) |∂ xx ε * (•, t)| 2 + |∂ x ε * (•, t)| 2 + |ε * (•, t)| 2 , (60) 
for any t ∈ R.

When β * ≤ σ 2 , the combination of Propositions 11, 12 and 13 provides the inequality

d dt 2M * 1 (t) + κ 1 κ 2 M * 2 (t) ≥ κ 1 κ 2 2 R |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * + κ 1 R (1 -|U c * | 2 )|ε * | 2 -κ 0 (2 + κ 1 κ 2 ) β * 1 4 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * .
In particular, we can decrease again, if necessary, the value of β * in order to obtain

d dt 2M * 1 (t) + κ 1 κ 2 M * 2 (t) ≥ κ R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * . ( 61 
) with κ = min{κ 1 κ 2 2 , κ 1 }/2 > 0.
In view of the exponential bounds in (51), the quantity

2M * 1 + κ 1 κ 2 M * 2 is uniformly bounded on R. As a consequence, we have R R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * (x, t) dx dt < +∞.
Hence, we can find two sequences

(t ± n ) n∈N , with t ± n → ±∞, such that R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * (x, t ± n ) dx → 0,
as n → +∞. Relying again on the exponential bounds in (51), this proves that

2M * 1 t ± n + κ 1 κ 2 M * 2 t ± n → 0, so that, by (61), R R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * (x, t) dx dt = 0.
In other words, the function ε * is identically equal to 0. In view of (41), we infer that

c * (t) = c * (0),
for any t ∈ R. Combining [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] with Proposition 6, we conclude that Corollary 4. We have

Ψ * 0 = U c * 0 .
In other words, a solution to (GP), which is smooth and localized according to Proposition 10, and which is moreover a perturbation of the black soliton at initial time, is exactly a soliton. With this rigidity result at hand, we are in position to conclude the proof of Theorem 2.

Proof of Theorem 2 completed

From now on, we have established that, given any sequence of times (t n ) n∈N tending to +∞, there exists a subsequence (t n k ) k∈N and a number c * 0 such that

e -iθ(tn k ) Ψ(• + a(t n k ), t n k ) ⇀ U c * 0 in H(R), 1 -Ψ(• + a(t n k ), t n k ) 2 ⇀ 1 -U c * 0 2 in L 2 (R), (62) 
as k → +∞. By a compactness argument, the proof of ( 11) reduces to show that the speed c * 0 does not depend on the sequence (t n ) n∈N . We argue by contradiction assuming that we are able to find two sequences (s n ) n∈N and (t n ) n∈N , and two different speeds c * 1 and c * 2 , for which we have the convergences in (62). Without loss of generality, we can assume that c * 1 < c * 2 , and that

t n ≤ s n ≤ t n+1 , (63) 
for any n ∈ N.

In order to provide a contradiction, we rely on the monotonicity formula in Proposition 7. We set δ := P(U c * 1 ) -P(U c * 2 ) > 0, and we apply (47) for a positive number R such that

Ke -|R| ≤ δ 8 ,
where K refers to the universal constant in Proposition 7, and

1 2 R Φ(x + R) -Φ(x -R) iU c * j , ∂ x U c * j C -∂ x (1 -χ)ϕ c * j dx -P(U c * j ) ≤ δ 8 , (64) 
for j = 1 and j = 2. Here, ϕ c * j refers to the unique phase function for U c * j on R \ [-1, 1], which satisfies [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]. In this situation, we first deduce from Proposition 7 and (63) that

I ±R (s n ) ≥ I ±R (t n ) - δ 8 , and 
I ±R (t n+1 ) ≥ I ±R (s n ) - δ 8 , (65) 
for any n ∈ N. Combining (62) with (64), we also have

I -R (s n ) -I R (s n ) -P(U c * 1 ) ≤ δ 4 , and 
I -R (t n ) -I R (t n ) -P(U c * 2 ) ≤ δ 4 ,
for n large enough. In view of (65), we are led to

I R (s n ) ≥ I R (t n ) + 3δ 8 ,
so that, by (65) again,

I R (t n+1 ) ≥ I R (t n ) + δ 4 .
As a consequence, the sequence (I R (t n )) n∈N is unbounded, which provides the desired contradiction.

In conclusion, the convergences in (62) are independent of the choice of the sequence (t n ) n∈N . Statement [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] follows with c * := c * 0 , and ( 12) is then a consequence of the Sobolev embedding theorem. Coming back to [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] and [START_REF] Mizumachi | Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations[END_REF], we observe that

c(t) → c * , ε(•, t) ⇀ 0 in H(R), and η ε (•, t) ⇀ 0 in L 2 (R), (66) 
as t → +∞, where η ε (•, t) := 2 U c(t) , ε(•, t) C + |ε(•, t)| 2 .
In order to complete the proof of Theorem 2, it remains to establish the convergences in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equations[END_REF]. We rely on the formulae for the time derivatives of the modulation parameters a, c and θ, which appear in the proof of Proposition 3 below. According to (2.23), the derivatives a ′ (t), c ′ (t) and θ ′ (t) are indeed given by

  a ′ (t) -c(t) c ′ (t) θ ′ (t)   = M(c(t), ε(•, t)) -1 F(c(t), ε(•, t)) , (67) 
where the matrix M(c, ε) is defined in (2.24), and the vector F(c, ε) is equal to

F(c, ε) =   i∂ x U c , η ε (U c + ε) L 2 -iU c , (∂ x η c )ε L 2 ∂ x U c , η ε ε + |ε| 2 U c L 2 -2 ∂ x U c , (∂ x η c )ε L 2 + R c , 2(|∂ x U c | 2 -η c R 2 c )ε + η c η ε (U c + ε) L 2 -c iR c , η c ε L 2   , with U c = R c + ic/ √ 2 and η c = 1 -|U c | 2 .
In order to take the limit t → +∞ in (67), we invoke the weak convergences in (66). Concerning the variable ε, they may be rephrased as

∂ x ε(•, t) ⇀ 0 in L 2 (R), and (1 -|U σ | 2 ) 1 2 ε(•, t) ⇀ 0 in H 1 (R), as t → +∞, for any σ ∈ (- √ 2, √ 2 
). As a consequence of the Rellich compactness theorem, we also have the local uniform convergence

ε(•, t) → 0 in L ∞ loc (R), as t → +∞.
Applying all these convergences to (2.24), we first obtain

M(c(t), ε(•, t)) →     1 3 2 -c 2 * 3 2 0 c * 2 -c 2 * 1 2 0 -2 -c 2 * 1 2 0 0 0 -1 3 2 -c 2 * 3 2     , (68) 
as t → +∞. Concerning the vector F(c, ε), we derive from the previous convergences that

(1 -|U σ | 2 ) 1 2 η ε (•, t)ε(•, t) ⇀ 0 in L 2 (R), and (1 -|U σ | 2 ) 1 2 |ε(•, t)| 2 ⇀ 0 in L 2 (R), as t → +∞, for any σ ∈ (- √ 2, √ 2 
). This is enough to conclude that

F(c(t), ε(•, t)) → 0,
as t → +∞. The convergences in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equations[END_REF], as well as the property that c ′ (t) → 0 as t → +∞, then follows from (66), (67) and (68). This ends the proof of Theorem 2.

Outline of the paper

The remaining part of this paper is devoted to the proofs of all the results, which we have used in the introduction in order to establish the orbital and asymptotic stability of the black soliton.

In Section 2, we gather the results concerning the derivation of orbital stability: the minimizing properties of the black soliton in Subsections 2.1 and 2.2, the construction of the modulation parameters in Subsection 2.3, and the analysis of their evolution in Subsection 2.4. Section 3 is devoted to the statements used in the proof of asymptotic stability. The construction of the limit profile is detailed in Subsection 3.1. The derivation of its smoothness and localization is performed in Subsection 3.2, while its rigidity properties are investigated in Subsection 3.3.

In a separate appendix, we finally give the proofs regarding the definition and properties of the momentum.

2 Orbital stability of the black soliton

Proof of Proposition 1

We split the proof into three steps. We first consider the quadratic form

Q 0 (f ) := 1 2 R (f ′ ) 2 -(1 -U 2 0 )f 2 . (2.1)
Here, f refers to a real-valued function in H(R). We denote by H(R) this Euclidean subspace of H(R), and we endow it with the scalar product •, • H 0 corresponding to the norm • H 0 . We claim that

Step 1. There exist a positive number Λ 0 such that

Q 0 (f ) ≥ Λ 0 R (f ′ ) 2 + (1 -U 2 0 )f 2 , (2.2 
)

for any function f ∈ H(R) such that R f U ′ 0 = R f U 0 (1 -U 2 0 ) = 0. (2.3)
Moreover, the quantity Q 0 (f ) remains non-negative if only the first orthogonality condition in (2.3) is satisfied.

In view of (2.1), the quadratic form Q 0 is well-defined and continuous on H(R). We claim that the corresponding self-adjoint operator Q 0 (on H(R)) may be written as

Q 0 = 1 2 I -T 0 , (2.4) 
where T 0 is a compact self-adjoint operator on H(R).

As a matter of fact, given a function f ∈ H(R), the linear mapping g → R (1 -U 2 0 )f g is continuous on H(R). As a consequence of the Riesz theorem, there exists a bounded, self-adjoint operator T 0 on H(R) such that

T 0 (f ), g H 0 = R (1 -U 2 0 )f g, (2.5) 
for any g ∈ H(R). In view of (2.1), the operator Q 0 writes according to identity (2.4).

We next check the compactness of T 0 . Given a uniformly bounded sequence of functions f n ∈ H(R), we can assume, up to a subsequence, that it weakly converges to a function f ∞ ∈ H(R), as n → +∞. Since the functions (1 -U 2 0 ) 1/2 f n are uniformly bounded in H 1 (R), we can also assume that

(1 -U 2 0 ) 1 2 f n → (1 -U 2 0 ) 1 2 f ∞ in C 0 loc (R). (2.6) Recall now that |f n (x)| ≤ |f n (0)| + |x| 1 2 f ′ n L 2 . Since 1 -U 2
0 has exponential decay at infinity, the functions (1 -U 2 0 ) 1/4 f n are also uniformly bounded in L 2 (R). Combining with (2.6), and again the exponential decay of 1 -U 2 0 , we obtain

R (1 -U 2 0 )(f n -f ∞ ) 2 → 0,
as n → +∞. It remains to observe that

T 0 (f ) H 0 ≤ R (1 -U 2 0 )f 2 ,
by (2.5) in order to deduce the compactness of T 0 on H(R).

Coming back to (2.4), we apply the spectral theorem to find a sequence of eigenvalues µ n for Q 0 , with µ n → 1/2 as n → +∞, as well as an Hilbert basis (e n ) n∈N of H(R) such that

Q 0 (e n ) = µ n e n ,
for any n ∈ N. Since Q 0 ≤ 1/2 I as a self-adjoint operator, the numbers µ n actually belong to (-∞, 1/2]. We can furthermore assume that the sequence (µ n ) n∈N is non-decreasing. We next compute the ordinary differential equation for an eigenfunction f with eigenvalue µ ∈ (-∞, 1/2), which writes as

-f ′′ -(1 -U 2 0 )f = 4µ 1 -2µ (1 -U 2 0 )f.
The constant function 1 solves this equation for µ = -1/2. The function U 0 solves this equation for µ = 0, and it owns exactly one zero. By Sturm-Liouville theory (see e.g. [START_REF] Dunford | Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space[END_REF]), the operator Q 0 has exactly one negative direction, and its kernel reduces to the function U 0 . In other words,

µ 0 = - 1 2 < µ 1 = 0 < µ 2 , Ker Q 0 + I 2 = R 1, and Ker Q 0 = R U 0 .
As a consequence, estimate (2.2) holds for Λ 0 = µ 2 under the two orthogonality conditions f,

1 H 0 = f, U 0 H 0 = 0. Since f, 1 H 0 = √ 2 R f U ′ 0 , and f, U 0 H 0 = R f U 0 (1 -U 2 0 ),
due to (3), this achieves the proof of (2.2). Finally, since U 0 spans the kernel of Q 0 , the quadratic form Q 0 remains non-negative if we omit the second orthogonality condition in (2.3).

We now recall that

E(U 0 + ε) -E(U 0 ) = Q 0 (ε 1 ) + Q 0 (ε 2 ) + 1 4 R η 2 ε , (2.7) 
due to [START_REF] Béthuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], where ε := ε 1 + iε 2 and η ε = 2U 0 ε 1 + |ε| 2 . As a consequence of Step 1, we obtain

Step 2. When ε ∈ E(R) satisfies the three orthogonality conditions in (15), we have

R η 2 ε ≤ 4 E(U 0 + ε) -E(U 0 ) , and Λ 0 ε 2 2 H(R) ≤ E(U 0 + ε) -E(U 0 ).
We indeed deduce from Step 1 the two inequalities

Q 0 (ε 1 ) ≥ 0, and Q 0 (ε 2 ) ≥ Λ 0 ε 2 2 H(R) ,
so that Step 2 follows from identity (2.7).

We are now in position to provide the

Step 3. End of the proof of Proposition 1.

The first element is to observe that

1 4 R (1 -U 2 0 )η 2 ε = 1 4 R (1 -U 2 0 )|ε| 4 + R (1 -U 2 0 )U 2 0 ε 2 1 + R (1 -U 2 0 )U 0 ε 1 |ε| 2 . (2.8)
Going back to (3), and applying the Sobolev embedding theorem to the map (1

-U 0 ) 1/2 ε, we compute R (1 -U 2 0 )U 0 ε 1 |ε| 2 = 1 √ 2 R (1 -U 2 0 ) ε ′ 1 (3ε 2 1 + ε 2 2 ) + 2ε ′ 2 ε 1 ε 2 ≤ K ε 3 H 0 ,
where K refers, here as in the sequel, to a universal constant. In particular, we deduce from (2.8) that

1 4 R (1 -U 2 0 )η 2 ε ≥ R (1 -U 2 0 )U 2 0 ε 2 1 -K ε 3 H 0 .
Under the three orthogonality conditions in [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF], we can now combine Steps 1 and 2 with identity (2.7) to obtain

E(U 0 + ε) -E(U 0 ) ≥ Q 0 (ε 1 ) + 1 4 R (1 -U 2 0 )η 2 ε ≥ Q 0 (ε 1 ) + R (1 -U 2 0 )U 2 0 ε 2 1 -K ε 3 H 0 .
At this stage, we apply the Cauchy-Schwarz inequality to obtain

ε 1 , U 0 2 H 0 ≤ 2 √ 2 R (1 -U 2 0 )U 2 0 ε 2 1 , so that E(U 0 + ε) -E(U 0 ) ≥ Q 0 (ε 1 ) + 1 2 √ 2 ε 1 , U 0 2 H 0 -K ε 3 H 0 .
Under the first orthogonality condition in [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF], it follows from Step 1 that

Q 0 (ε 1 ) ≥ Λ 0 ε 1 -ε 1 , e 1 H 0 e 1 2 H 0 ,
where we have set e 1 := U 0 / U 0 H 0 , so that

E(U 0 + ε) -E(U 0 ) ≥ Λ 0 ε 1 2 H 0 -K ε 3 H 0 ,
for a possible further choice of the number Λ 0 . In view of Step 2, this is enough to conclude the proof of Proposition 1.

Proof of Corollary 1

The proof relies on the expansion in [START_REF] Béthuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]. In view of (3), we can rewrite this identity as

E(U c + ε) = E(U c ) -c R iU ′ c , ε C + 1 2 R ε ′ 2 -(1 -|U c | 2 )|ε| 2 + 1 2 η 2 ε .
(2.9)

Notice here that the function η ε is defined with respect to U c , and not U 0 . In other terms, it is equal to

η ε = 2 U c , ε C + |ε| 2 .
The first order term in the right-hand side of (2.9) is equal to 0 due to the second orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF]. Concerning the first one, we derive from (4) the formula

E(U c ) = 1 3 (2 -c 2 ) 3 2 .
A first order expansion of this quantity yields

E(U c ) -E(U 0 ) ≥ -4 √ 2c 2 , when c ∈ (- √ 2, √ 2 
). For |c| ≤ σ, we also check that

η c (x) -η 0 (x) ≤ A σ c 2 1 + |x| 2 η σ (x), (2.10) 
where, here as in the sequel, A σ refers to a constant depending only on σ. As a consequence of the inequality

|ε(x)| ≤ |ε(0)| + |x| 1 2 ε ′ L 2 , we deduce that R |U c | 2 -|U 0 | 2 |ε| 2 ≤ A σ c 2 ε 2 H 0 .
Therefore, identity (2.9) reduces to

Q 0 (ε 1 ) + Q 0 (ε 2 ) + 1 4 R η 2 ε ≤ E(U c + ε) -E(U 0 ) + A σ c 2 1 + ε 2 H 0 . (2.11)
We next expand the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF]. Arguing as in (2.10), we deduce from (4) that 4), we derive from ( 16), and again (2.10), that

R c -U 0 L ∞ ≤ Ac 2 . Since U ′ c = η c / √ 2 by (
ε, ∂ x U 0 L 2 + ε, i∂ x U 0 L 2 + ε, iU 0 (1 -|U 0 | 2 ) L 2 ≤ A σ c 2 ε H 0 .
In particular, we can decompose ε 1 and ε 2 along the form

ε 1 = ǫ 1 + µ 1 U ′ 0 , and ε 2 = ǫ 2 + µ 2 U ′ 0 + ν 2 U 0 (1 -|U 0 | 2 )
, where ǫ = (ǫ 1 , ǫ 2 ) satisfies the orthogonality conditions in [START_REF] Cuccagna | On asymptotic stability of ground states of NLS[END_REF], and the coefficients µ 1 , µ 2 and ν 2 satisfy the estimate

|µ 1 | + |µ 2 | + |ν 2 | ≤ Kc 2 ε H 0 .
As a consequence of Step 1 in the proof of Proposition 1, we obtain

Q 0 (ε 1 ) ≥ -A σ c 2 ε 2 H 0 , and Q 0 (ε 2 ) ≥ Λ 0 -A σ c 2 ε 2 H 0 .
(2.12)

Inserting these inequalities into (2.11), we are led to

Λ 0 ε 2 2 H 0 + 1 4 R η 2 ε ≤ E(U c + ε) -E(U 0 ) + A σ c 2 1 + ε 2 H 0 . (2.13) 
Finally, we argue as in Step 3 of the proof of Proposition 1. Since ǫ 1 is orthogonal to U ′ 0 in L 2 (R), we have

Q 0 (ǫ 1 ) + R (1 -U 2 0 )U 2 0 ǫ 2 1 ≥ Λ 0 ǫ 1 2 H 0 , so that Q 0 (ε 1 ) + R (1 -U 2 0 )U 2 0 ε 2 1 ≥ Λ 0 ε 1 2 H 0 -A σ c 2 ε 2 H 0 . (2.14)
On the other hand, we check that

1 4 R (1 -U 2 0 )η 2 ε ≥ R (1 -U 2 0 ) U c , ε 2 C -K ε 3 H 0 ≥ R (1 -U 2 0 )U 2 0 ε 2 1 -A σ ε 2 H 0 |c| + ε H 0 .
Combining with (2.11), (2.12) and (2.14), we are led to

Λ 0 ε 1 2 H 0 ≤ E(U c + ε) -E(U 0 ) + A σ c 2 + |c| ε 2 H 0 + ε 3 H 0 .
In view of (2.13), this completes the proof of Corollary 1.

Proof of Proposition 2

The construction of the modulation parameters is standard. For sake of completeness, we recall the following details. We first establish Lemma 2.1. Let (c, a, θ) ∈ (-√ 2, √ 2) × R 2 , and set U c,a,θ := e iθ U c (•a). Given a positive number δ, there exists a positive number β such that, if

U c,b 1 ,ϑ 1 -U c,b 2 ,ϑ 2 Hc < β, then, b 2 -b 1 + e iϑ 2 -e iϑ 1 < δ.
Proof. The proof is by contradiction. Assume that the conclusions of Lemma 2.1 are false. Then, there exist a positive number δ and two sequences (b n ) n∈N and (ϑ n ) n∈N such that

e iϑn U c (• -a n ) -U c Hc → 0, (2.15) 
as n → +∞, with |a n | + |e iϑn -1| ≥ δ for any n ∈ N. Up to a subsequence, we can assume that e iϑn → e iϑ , as n → +∞. On the other hand, if the sequence (a n ) n∈N were unbounded, then a subsequence would tend to either +∞ or -∞. In any case, the left-hand side of (2.15) would tend to 2 U c Hc , which is not possible. Therefore, the sequence (a n ) n∈N is bounded, and we can extract a further subsequence, which converges to a. In view of (2.15), we have e iϑ U c (•a) = U c , so that a = 0 and e iϑ = 1. This gives the desired contradiction with the fact that |a| + |e iϑ -1| ≥ δ.

We are now in position to provide the Proof of Proposition 2. Set, as before, U σ := R σ + iI σ , and consider the map Ξ given by

Ξ(Ψ, σ, b, ϑ) = i∂ x U σ , ε L 2 , ∂ x U σ , ε L 2 , iR σ (1 -|U σ | 2 ), ε L 2 , (2.16) 
with ε := e -iϑ Ψ(• + b) -U σ . The map Ξ is well-defined and smooth from H(R) × (-√ 2, √ 2) × R 2 to R 3 . Moreover, we can apply the implicit function theorem in order to obtain

Step 1. Let (c, a, θ) ∈ (- √ 2, √ 2) × R 2 .
There exist two positive numbers ρ and Λ, depending continuously on c, for which there exists a map γ c,a,θ ∈ C 1 (B H 0 (U c,a,θ , ρ), (-

√ 2, √ 2) × R 2 ) such that, given any Ψ ∈ B H 0 (U c,a,θ , ρ), (σ, b, ϑ) = γ c,a,θ (Ψ) is the unique solution in B((c, a, θ), Λρ) of the equation Ξ(Ψ, σ, b, ϑ) = 0.
Moreover, the map γ c,a,θ is Lipschitz on B H 0 (U c,a,θ , ρ) with Lipschitz constant at most Λ.

In view of (2.16), we have Ξ(U c,a,θ , c, a, θ) = 0. Moreover, we derive from (4) that

∂ σ Ξ(U c,a,θ , c, a, θ) = -i∂ x U c , ∂ c U c L 2 , 0, 0 = -(2 -c 2 ) 1 2 , 0, 0 , ∂ b Ξ(U c,a,θ , c, a, θ) = 0, ∂ x U c 2 L 2 , 0 = 1 3 0, (2 -c 2 ) 3 2 , 0 , ∂ ϑ Ξ(U c,a,θ , c, a, θ) = -0, ∂ x U c , iU c L 2 , R c (1 -|U c | 2 ), U c L 2 = 1 3 0, 3c(2 -c 2 ) 1 2 , -(2 -c 2 ) 3 2 .
Therefore, the differential D c := d σ,b,ϑ Ξ(U c,a,θ , c, a, θ) is a continuous isomorphism from R 3 to R 3 , with operator norm bounded from below by τ c := (2c 2 ) 3/2 /3. In particular, the differential

d Ψ Ξ(U c,a,θ ,c, a, θ)(φ) = i∂ x U c , e -iθ φ(• + a) L 2 , ∂ x U c , e -iθ φ(• + a) L 2 , iR c (1 -|U c | 2 ), e -iθ φ(• + a) L 2 ,
may be written as

d Ψ Ξ(U c,a,θ , c, a, θ) = D c T c,a,θ ,
where T c,a,θ is a continuous linear mapping from H(R) to R 3 , with operator norm depending continuously on τ c . Finally, given any number 0 < τ < √ 2, the operator norm of the second order differential d 2 Ξ(Ψ, σ, b, ϑ) is bounded by a constant A τ , depending only on τ , when

(Ψ, σ, b, ϑ) ∈ H(R) × (-σ(τ /2), σ(τ /2)) × R 2 , with σ(x) = (2 -x 2 ) 1/2 . It then remains to no- tice that Assumption (iv) of [4, Proposition A.1] is satisfied when U = (-σ(τ ), σ(τ )) × R 2 and V = (-σ(τ /2), σ(τ /2)) × R 2 ,
and to apply this proposition to the map Ξ in order to establish the statements in Step 1.

Step 2. End of the proof.

Let ρ 0 and Λ 0 be the constants in Step 1 corresponding to the case c = 0. Without loss of generality, we can assume that Λ 0 ρ 0 < 1. Consider the number β 0 provided by Lemma 2.1 for δ 0 = Λ 0 ρ 0 /16, and set α 0 := min{ρ 0 /2, β 0 /4}. When Ψ ∈ U 0 (α 0 ), there exist numbers b and ϑ such that Ψ ∈ B H 0 (U 0,b,ϑ , ρ 0 /2). By Step 1, we can define the numbers c(Ψ), a(Ψ) and θ(Ψ) by setting c(Ψ), a(Ψ), θ(Ψ) = γ 0,b,ϑ (Ψ).

We claim that the definition of c(Ψ) and a(Ψ) does not depend on the choice of b and ϑ.

Concerning the number θ(Ψ), it is also independent of b and ϑ modulo 2π. In particular, the map (c, a, θ) is well-defined from U 0 (α 0 ) with values in R 2 × R/2πZ.

Indeed, assume that Ψ ∈ B H 0 (U 0,b 1 ,ϑ 1 , ρ 0 /2) for other numbers b 1 and ϑ 1 . Then, we have

U 0,b 1 ,ϑ 1 -U 0,b,ϑ H 0 < 4α 0 ≤ β 0 , so that, by Lemma 2.1, b 1 -b + |e iϑ 1 -e iϑ | < Λ 0 ρ 0 16 . (2.17) 
Since λ 0 ρ 0 < 1, and |e it -1| ≥ 5π|t|/6 when t ∈ (-π, π), with |e it -1| < 1, there exists an integer

k ∈ Z such that |ϑ 1 -ϑ -2πk| < 5πΛ 0 ρ 0 96 < Λ 0 ρ 0 4 . ( 2 

.18)

On the other hand, the map γ 0,b,ϑ is Lipschitz on B(U 0,b,ϑ , 2α 0 ), with Lipschitz constant at most Λ 0 . Hence,

(c(Ψ), a(ψ), θ(Ψ)) -(0, b, ϑ) = γ 0,b,ϑ (Ψ) -γ 0,b,ϑ (U 0,b,ϑ ) ≤ Λ 0 ρ 0 2 .
Combining with (2.17) and (2.18), we obtain

(c(Ψ), a(Ψ), θ(Ψ) + 2kπ) -(0, b 1 , ϑ 1 ) < Λ 0 ρ 0 .
Since Ξ(Ψ, c(Ψ), a(Ψ), θ(Ψ) + 2kπ) = 0, we deduce from Step 1 that (c(Ψ), a(Ψ), θ(Ψ) + 2kπ) = γ 0,b 1 ,ϑ 1 (Ψ). In conclusion, c(Ψ), a(Ψ) and θ(Ψ) (modulo 2π) do not depend on the choice of b and ϑ such that Ψ ∈ B H 0 (U 0,b,ϑ , ρ 0 /2).

We next turn to the smoothness of c, a and θ. For Φ ∈ U 0 (α 0 ) such that Φ -Ψ H 0 < α 0 , and (b, ϑ) ∈ R 2 such that Ψ ∈ B H 0 (U 0,b,ϑ , ρ 0 /2), we have Φ -U 0,b,ϑ H 0 < ρ 0 . By Step 1, we obtain c(Ψ), a(Ψ), θ(Ψ) = γ 0,b,ϑ (Ψ), and c(Φ), a(Φ), θ(Φ) = γ 0,b,ϑ (Φ).

Since γ 0,b,ϑ is of class C 1 on B H 0 (U 0,b,ϑ , ρ 0 ), the maps c, a and θ are in turn of class C 1 on U 0 (α 0 ).

Concerning estimate [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF], recall that c(Ψ), a(Ψ), θ(Ψ) = γ 0,b,ϑ (Ψ)

when Ψ ∈ B H 0 (U 0,b,ϑ , α), with α ≤ α 0 . In view of the Lipschitz continuity on B H 0 (U 0,b,ϑ , ρ 0 ) of the map γ 0,b,ϑ , this provides

|c(Ψ)| + |a(Ψ) -b| + |θ(Ψ) -ϑ| ≤ Λ 0 Ψ -U 0,b,ϑ H 0 ≤ Λ 0 α. (2.19)
On the other hand, we derive from (4) the existence of a universal constant K such that

U c(Ψ),a(Ψ),θ(Ψ) -U 0,b,ϑ H 0 ≤ K |c(Ψ)| + |a(Ψ) -b| + |θ(Ψ) -ϑ| .
This leads to

ε H 0 = Ψ -U c(Ψ),a(Ψ),θ(Ψ) H 0 ≤ α 1 + KΛ 0 .
Estimate (18) follows combining with (2.19).

Finally, conditions ( 16) are direct consequences of the definitions of the maps γ 0,b,ϑ . This completes the proof of Proposition 2.

Proof of Proposition 3

As mentioned previously in the introduction, the proof relies on differentiating with respect to time the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF]. In order to justify the computations, we first assume that ∂ x Ψ 0 belongs to H 2 (R). In this situation, it was proved in [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] that the derivative ∂ x Ψ of the corresponding solution is in C 0 (R, H 2 (R)). As a consequence of (GP), the solution Ψ belongs to C 1 (R, H(R)).

When it moreover lies in the set U 0 (α 0 ) for any t ∈ (-T, T ), we can invoke Proposition 2 to define the modulation parameters (c(t), a(t), θ(t)) ∈ (-1, 1) × R 2 for any t ∈ (-T, T ). The corresponding functions c, a and θ are of class C 1 on (-T, T ) due to the chain rule theorem. Notice also that the remainder ε is in C 1 ((-T, T ), H(R)), so that we are allowed to write [START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF].

Recall here that the function θ is not valued in the torus R/2πZ, but instead, is a continuous real valued function. Moreover, the number θ(0) is fixed so that it belongs to [0, 2π) (see Subsection 1.2 for more details)

As a consequence, we can differentiate the first orthogonality condition in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF] to obtain

(a ′ -c) ∂ x U c 2 L 2 + ∂ x U c , ∂ x ε L 2 + c ′ ∂ c ∂ x U c , ε L 2 -∂ c U c , ∂ x U c L 2 + θ ′ i∂ x U c , U c + ε L 2 = i∂ x U c , ∂ xx ε -ic∂ x ε + η c ε -η ε (U c + ε) L 2 .
(2.20)

At this stage, we use (4) to compute

∂ x U c 2 L 2 = (2 -c 2 ) 3 2 3 , ∂ c U c , ∂ x U c L 2 = 0, and i∂ x U c , U c L 2 = c(2 -c 2 ) 1 2 .
We also derive from (3) that

i∂ x U c , ∂ xx ε -ic∂ x ε + η c ε L 2 = -iU c , (∂ x η c )ε L 2 .
Inserting these identities into (2.20), and combining with ( 16), we obtain

(2 -c 2 ) 3 2 3 + ∂ x U c , ∂ x ε L 2 (a ′ -c)+ ∂ c ∂ x U c , ε L 2 c ′ + c(2 -c 2 ) 1 2 θ ′ = i∂ x U c , η ε (U c + ε) L 2 -iU c , (∂ x η c )ε L 2 .
(2.21)

We next differentiate the second and third conditions in ( 16), and we derive from similar computations the identities

i∂ x U c , ∂ x ε L 2 (a ′ -c) + -(2 -c 2 ) 1 2 + i∂ c ∂ x U c , ε L 2 c ′ = ∂ x U c , η ε ε + |ε| 2 U c L 2 , (2.22) 
and

iη c R c , ∂ x ε L 2 (a ′ -c) + i∂ c R c , η c ε L 2 + iR c , (∂ x η c )ε L 2 c ′ - (2 -c 2 ) 3 2 3 + R c , η c ε L 2 θ ′ = -2 ∂ x U c , (∂ x η c )ε L 2 + 2 R c , (|∂ x U c | 2 -η c R 2 c )ε L 2 -c iR c , η c ε L 2 + R c , η c η ε (U c + ε) L 2 .
Combining with (2.21), this gives a system of the form

M(c, ε)   a ′ -c c ′ θ ′   = F(c, ε), (2.23) 
where the matrix M(c, ε) is equal to

M(c, ε) :=     (2-c 2 ) 3 2 3 + ∂ x U c , ∂ x ε L 2 ∂ c ∂ x U c , ε L 2 c(2 -c 2 ) 1 2 i∂ x U c , ∂ x ε L 2 -(2 -c 2 ) 1 2 + i∂ c ∂ x U c , ε L 2 0 iη c R c , ∂ x ε L 2 i∂ c R c , η c ε L 2 + iR c , (∂ x η c )ε L 2 -(2-c 2 ) 3 2 3 -R c , η c ε L 2     .
(2.24)

When Ψ(•, t) actually lies in U 0 (α 1 ), with α 1 < α 0 , for any t ∈ (-T, T ), we derive from (18) that

ε(•, t) H 0 + |c(t)| ≤ A 0 α 1 . (2.25)
In particular, we can fix α 1 such that the matrix M(c, ε) is invertible, and the operator norm of its inverse is bounded by some positive number A 1 , depending only on α 1 .

Similarly, we can check that the right-hand side of (2.23) satisfies

F(c, ε) R 3 ≤ A 1 ε H 0 ,
for a further choice of the constant A 1 . In view of (2.23), this provides

|a ′ (t) -c(t)| + |c ′ (t)| + |θ ′ (t)| ≤ A 2 1 ε(•, t) H 0 , (2.26) 
for any t ∈ (-T, T ).

In order to complete the proof of ( 22), we rewrite (2.22) as

c ′ = 1 (2 -c 2 ) 1 2 i∂ x U c , ∂ x ε L 2 (a ′ -c) + i∂ c ∂ x U c , ε L 2 c ′ -∂ x U c , η ε ε + |ε| 2 U c L 2 ,
Combining with (2.25) and (2.26), this yields the quadratic estimate in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] for a possible further choice of A 1 .

At this stage, we only have to prove that this estimate remains available for a general initial datum Ψ 0 ∈ E(R). This results from a density argument. Indeed, the (GP) flow is continuous with respect to the initial datum in E(R) (see e.g. [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF]). Moreover, we observe that the matrix M(c, ε), as well as the quantity F(c, ε), depend continuously on Ψ ∈ H(R). This follows in particular from the continuity of the modulation maps (c, a, θ). Since the matrix M(c, ε) is invertible with an operator norm of its inverse depending only on α 1 , we can use a density argument to extend (2.23) to a general solution. This establishes the continuous differentiability of the maps (c, a, θ), and the estimates in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] again result from (2.23). We refer to [START_REF] Béthuel | Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation[END_REF], where a similar density argument is performed, for more details.

3 Asymptotic stability of the black soliton 3.1 First properties of the limit profile

Proof of Proposition 6

In order to prove Proposition 6, we rely on the following result proved in [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF]Proposition A.3], which we only rephrase according to the terminology and topologies of the present paper.

Proposition 3.1 ([5]

). Consider a sequence (Ψ n,0 ) n∈N ∈ E(R) N , and a function

Ψ 0 ∈ E(R) such that Ψ n,0 ⇀ Ψ 0 in H(R), and 1 -|Ψ n,0 | 2 ⇀ 1 -|Ψ 0 | 2 in L 2 (R),
as n → +∞. Denote by Ψ n , respectively Ψ, the unique global solutions to (GP) with initial datum Ψ n,0 , respectively Ψ 0 . Given any fixed t ∈ R, we have

Ψ n (•, t) ⇀ Ψ(•, t) in H(R), and 1 -|Ψ n (•, t)| 2 ⇀ 1 -|Ψ(•, t)| 2 in L 2 (R),
when n → +∞.

We now prove Proposition 6. First, we have U c(tn) → U c * 0 in H(R), as n → +∞. We therefore derive from ( 35) that

e -iθ(tn) Ψ(• + a(t n ), t n ) ⇀ U c * 0 + ε * 0 in H(R),
as n → +∞. In view of (37), the weak convergences in [START_REF] Soffer | Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data[END_REF] are then direct consequences of Proposition 3.1.

Concerning [START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua[END_REF], it suffices to prove that the only possible accumulation points of the sequences (a(t n + t)a(t n )) n∈N , (θ(t n + t)θ(t n )) n∈N and (c(t n + t)) n∈N are given respectively by a * (t), θ * (t) and c * (t). The convergences in [START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua[END_REF] will then follow from ( 8) and ( 33) applying a compactness argument. Fix t ∈ R, and assume that, up to a possible subsequence, we have

a(t n + t) -a(t n ) → ã(t), θ(t n + t) -θ(t n ) → θ(t), and c(t n + t) → c(t), (3.1) 
as n → +∞. By the weak sequential continuity of translations, we deduce that

e -iθ(tn+t) Ψ(• + a(t n + t), t n + t) ⇀ e -i θ(t) Ψ * (• + ã(t), t) in H(R), 1 -Ψ(• + a(t n + t), t n + t) 2 ⇀ 1 -Ψ * (• + ã(t), t) 2 in L 2 (R), as n → +∞. Since U c(tn+t) → U c(t) in H(R), and 
1 -|U c(tn+t) | 2 → 1 -|U c(t) | 2 in L 2 (R) by (3.1),
we also obtain

ε(•, t n + t) ⇀ ε(•, t) := e -i θ(t) Ψ * (• + ã(t), t) -U c(t) in H(R), 2 U c(tn+t) , ε(•, t n + t) C + |ε(•, t n + t)| 2 ⇀ 2 U c(t) , ε(•, t) C + |ε(•, t)| 2 in L 2 (R), (3.2) 
as n → +∞. Recall that by construction ε n (•, t) := ε(•, t n + t) satisfies the orthogonality conditions

R ε n (•, t), U ′ c(tn +t) C = R ε n (•, t), iU ′ c(tn +t) C = R ε n (•, t), iR c(tn +t) C 1 -|U c(tn+t) | 2 = 0.
Passing to the limit n → +∞, we obtain

R ε(•, t), U ′ c(t) C = R ε(•, t), iU ′ c(t) C = R ε(•, t), iR c C 1 -|U c(t) | 2 = 0.
The uniqueness of the modulation parameters claimed in Proposition 2 then yields the equalities ã(t) = a * (t), e i θ(t) = e iθ * (t) , and c(t) = c * (t), so that ε * (•, t) = ε(•, t), and ( 44) then reduces to (3.2).

Finally, observe that the function θ is continuous on R due to ( 8) and (3.1). Since θ * is also continuous, with θ * (0) ∈ [0, 2π), and since θ(0) = 0 by (3.1), we conclude that θ = θ * . This completes the proof of Proposition 6.

Monotonicity and localization properties of the limit profile

Proof of Proposition 7

Without loss of generality, we may assume that

∂ x Ψ 0 ∈ H 2 (R), so that Ψ ∈ C 1 (R, (E(R), d))
(see e.g [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] for the smoothness of the (GP) flow). The general case follows by an approximation argument, and in that case, inequality [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] has to be understood in the distributional sense, while ( 47) is unaffected.

We define the function χ a (x, t) := χ(xa(t)),

for any (x, t) ∈ R 2 , and we set ϕ(x, t) := ϕ mod (xa(t), t) + θ(t), so that ϕ(•, t) is a phase function for Ψ(•, t) on R \ [a(t) -1, a(t) + 1] for any t ∈ R. After a change of variables, we may rewrite

I R+σt (t) = 1 2 R iΨ, ∂ x Ψ C -∂ x (1 -χ a )(ϕ -θ) (x, t) Φ(x -a(t) -R -σt) dx.
Coming back to (GP), we first obtain the identity

∂ t iΨ, ∂ x Ψ C -∂ x (1 -χ a )(ϕ -θ) =∂ x (1 -χ a ) -(1 -η) 2(1 -η) ∂ xx η + χ a η -a ′ (t)∂ x χ a (ϕ -θ) -θ ′ (t)(1 -χ a ) - 1 2 η 2 + (1 -χ a ) -2(1 -η) 1 -η |∂ x Ψ| 2 ,
which has the form of a conservation law. It follows that

d dt I R+σt (t) = 1 2 R 1 2 η 2 + 2 - (1 -χ a ) 1 -η |∂ x Ψ| 2 + 1 -χ a (1 -η) 2 (∂ x η) 2 (x + a(t), t) Φ ′ (x -R -σt) dx - 1 2 a ′ (t) + σ R iΨ, ∂ x Ψ C -∂ x (1 -χ a )(ϕ -θ) (x + a(t), t) Φ ′ (x -R -σt) dx + 1 4 R η + (1 -χ a ) ln(1 -η) (x + a(t), t) Φ ′′′ (x -R -σt) dx + 1 2 R -χ a η + a ′ (t)∂ x χ a (ϕ -θ) + 1 2 ∂ xx χ a ln(1 -η) (x + a(t), t) Φ ′ (x -R -σt) dx + 1 2 θ ′ (t) R ∂ x χ a (x) Φ(x -R -σt) dx := I 1 + I 2 + I 3 + I 4 + I 5 .
(3.3)

In the previous formula, the first integral I 1 on the right-hand side is the favourable term, since it is non-singular, positive and comparable to the energy density, at least when η is sufficiently small, that is at spatial infinity. Note in particular that Φ ′ = (4 cosh 2 (•/2)) -1 is positive and exponentially decaying. The second and third integrals I 2 and I 3 have no definite sign a priori, but they will be controlled in absolute value by a fraction of the first one, at least at spatial infinity. The integral I 4 is a local one, since its integrand vanishes outside [-1, 1]. It will just be treated as an error term. Finally, the last integral I 5 is controlled by |θ ′ (t)| times an exponentially decreasing term independent of Ψ.

More precisely, we first fix a number L > 2 such that η ≤ 1/3 outside [-L, L]. In view of [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], such a number L exists, and it only depends on α 0 , provided the latter is sufficiently small. We divide the analysis of the integrals in (3.3) by considering separately the cases x / ∈ [-L, L] and x ∈ [-L, L].

We begin with the case x / ∈ [-L, L]. Using the fact that η ≤ 1/3, we first have

1 2 η 2 + 2 - 1 -χ a 1 -η |∂ x Ψ| 2 + 1 -χ a (1 -η) 2 (∂ x η) 2 ≥ 1 2 η 2 + |∂ x Ψ| 2 .
Since η ≤ 1/3 and L ≥ 2, we also have

iΨ, ∂ x Ψ C -∂ x (1 -χ a )ϕ = i Ψ |Ψ| 2 (|Ψ| 2 -1), ∂ x Ψ C ≤ √ 3 2 √ 2 η 2 + |∂ x Ψ| 2 , and η + (1 -χ a ) ln(1 -η) ≤ 2 3 η 2 .
Direct computations also yield the global inequality |Φ ′′′ | ≤ Φ ′ . Combining these inequalities, and denoting by (I out j ) 1≤j≤5 the restriction of the integrals I j to R \ [-L, L], we finally obtain the lower bound

I out 1 + I out 2 + I out 3 ≥ 1 12 - √ 3 4 √ 2 a ′ (t) + σ R\[-L,L] η 2 + |∂ x Ψ| 2 (x + a(t), t) Φ ′ (x -R -σt) dx.
In view of our restriction on σ, and the estimate |a ′ (t)| ≤ A * α 0 given by ( 8), we have

1 12 - √ 3 4 √ 2 |a ′ (t) + σ| ≥ 1 24 ,
provided once more that α 0 is sufficiently small. Finally, notice that I out Concerning the other four integrals, we uniformly bound the terms Φ ′ and Φ ′′′ by K exp(-|R + σt|), and the remaining integrands are then controlled (pointwise) by a constant plus the energy density. Here, we use in particular the pointwise estimate in (26) on |ϕ -θ|. Conclusion [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] then follows.

It remains to prove [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF]. For that purpose, we distinguish two cases, depending on the sign of R. If R ≥ 0, we integrate (46) from t = t 0 to t = (t 0 + t 1 )/2 with the choice σ = 1 12 and R = R -1 12 t 0 , and then from t = (t 0 + t 1 )/2 to t = t 1 with the choice σ = -1 12 and R = R + 1 12 t 1 . In total, we hence integrate on a broken line starting and ending at a distance R from the origin. If R ≤ 0, we argue similarly, choosing first σ = - 1 12 , and next σ = 1 12 . This yields [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF], and completes the proof of Proposition 7.

Proof of Proposition 8

The proof is almost identical to the corresponding one in [5, Proposition 3]. We reproduce it here for the sake of completeness with the minor adaptations. We argue by contradiction and assume that there exists a positive number δ 0 such that, for any positive number R δ 0 , there exist two numbers R ≥ R δ 0 and t ∈ R such that either

|I * R (t)| ≥ δ 0 , or |I * R (t) -P(Ψ * )| ≥ δ 0 . Since at time t = 0, we have lim R→+∞ I * R (0) = 0 and lim R→-∞ I * R (0) = P(Ψ * ), we first fix R δ 0 > 0 such that I * R (0) + I * -R (0) -P(Ψ * ) ≤ δ 0 4 , and 
Ke -R ≤ δ 0 32 , (3.4) 
for any R ≥ R δ 0 . Here, the notation K refers to the corresponding constant in Proposition 7.

We next fix R > 0 and t ∈ R obtained from the contradiction assumption for that choice of R δ 0 , so that either

|I * R (t)| ≥ δ 0 or |I * -R (t) -P(Ψ * )| ≥ δ 0 .
In the sequel, we assume that I * R (t) ≥ δ 0 holds, the three other cases would follow in a very similar manner. In particular, we infer from (3.4) that

I * R (t) ≥ δ 0 ≥ δ 0 4 + δ 0 16 ≥ I * R (0) + 2Ke -R ,
and therefore it follows from Proposition 7 applied to Ψ * that t > 0. Finally, we fix

R ′ ≥ R such that I * -R ′ (t) -P(Ψ * ) ≤ δ 0 4 . (3.5) 
Since R ′ ≥ R, we also deduce from (3.4) that

I * -R ′ (0) -P(Ψ * ) ≤ δ 0 4 , and 
Ke -R ′ ≤ δ 0 32 . (3.6) 
Combining the inequality |I * R (t)| ≥ δ 0 with (3.4), (3.5) and (3.6), we obtain

I * -R ′ (t) -I * R (t) -P(Ψ * ) ≥ 3δ 0 4 , and 
I * -R ′ (0) -I * R (0) -P(Ψ * ) ≤ δ 0 2 ,
and therefore

I * -R ′ (0) -I * R (0) -I * -R ′ (t) -I * R (t) ≥ δ 0 4 .
Since the integrands of the expressions between parenthesis are localized in space, we deduce from Proposition 6 that there exists an integer n 0 such that

I -R ′ (t n ) -I R (t n ) -I -R ′ (t n + t) -I R (t n + t) ≥ δ 0 8 ,
for any n ≥ n 0 . Rearranging the terms in the previous inequality yields

max I -R ′ (t n ) -I -R ′ (t n + t) , I R (t n ) -I R (t n + t) ≥ δ 0 16 . (3.7) 
On the other hand, since t ≥ 0, by the monotonicity formula in Proposition 7, (3.4) and (3.6), we have

I -R ′ (t n ) -I -R ′ (t n + t) ≤ δ 0 32 , and I R (t n ) -I R (t n + t) ≤ δ 0 32 .
Therefore, we deduce from (3.7) that, given any n ≥ n 0 , we have

either I -R ′ (t n + t) -I -R ′ (t n ) ≥ δ 0 16 , or I R (t n + t) -I R (t n ) ≥ δ 0 16 .
In particular, there exists an increasing sequence (n k ) k∈N such that t n k+1 ≥ t n k + t for any k ∈ N, and either

I R (t n k + t) -I R (t n k ) ≥ δ 0 16 , (3.8) 
for any k ∈ N, or

I -R ′ (t n k + t) -I -R ′ (t n k ) ≥ δ 0 16 ,
for any k ∈ N. In the sequel, we assume that (3.8) holds. Here also, the other case would follow in a very similar manner. Since t n k+1 ≥ t n k + t, we obtain by the monotonicity formula of Proposition 7, (3.4) and (3.8), that

I R (t n k+1 ) ≥ I R (t n k +t ) - δ 0 32 ≥ I R (t n k ) + δ 0 32 , (3.9) 
for any k ∈ N. On the other hand, an inspection of the number I R yields the estimate

I R (t n k ) ≤ K 1 + E(Ψ(•, t k )) ,
where the last term does not depend on k by conservation of the energy. This yields a contradiction with (3.9).

Proof of Corollary 2

The proof is an adaptation of the proof of [5, Proposition 4]. For sake of completeness, we provide the following details.

We fix a number s ∈ R. Given any arbitrary positive number R, we integrate [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] for the special choice σ = 1/12 so as to obtain

I * R (s) ≤ I * R+τ /12 (s + τ ) + 12Ke -R ,
for any τ ∈ [0, +∞). Invoking Proposition 8, we know that

I * R+τ /12 (s + τ ) → 0,
as τ → +∞, which is enough to conclude that

I * R (s) ≤ 12Ke -R .
In order to bound the quantity I * R (s) from below, we now integrate [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] for the special choice σ = -1/12. This gives I * R (s) ≥ I * R+τ /12 (sτ ) -12Ke -R , for any τ ∈ [0, +∞). Taking the limit τ → +∞, we deduce similarly that

I * R (s) ≥ -12Ke -R , which yields the estimate I * R (s) ≤ 12Ke -R .
Similarly, we obtain I * R (s) -P(Ψ * ) ≤ 12Ke -|R| , for any negative number R. Therefore, we can integrate (46) from t to t + 1 with the choice σ = 0 to get

t+1 t R ∂ x Ψ * 2 + 1 -|Ψ * | 2 2 (x + a * (s), s)Φ ′ (x -R) dx ds ≤ 25Ke -|R| , (3.10) 
for any R ∈ R.

We finally observe that lim

R→±∞ e |R| Φ ′ (x -R) = e ±x ,
for any x ∈ R. Applying the Fatou lemma to (3.10), and using the inequality

e |x| ≤ e -x + e x ,
we derive [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF]. This completes the proof of Corollary 2.

Proof of Proposition 10

The proof is almost the same as the proof of [5, Proposition 6]. Invoking the smoothing properties of the linear Schrödinger flow in Proposition 9, we first show inductively the existence of positive numbers A k such that we have

t+1 t R ∂ k x Ψ * (x + a * (t), s) 2 e |x| dx ds ≤ A k , (3.11) 
for any k ≥ 1 and t ∈ R. In order to initiate the induction, we rely on the inequality

t+1 t R ∂ x Ψ * (x + a * (t), t) 2 + 1 -|Ψ * (x + a * (t), t)| 2 2 e |x| dx ≤ A 1 ,
which is a consequence of [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF], and the property that the function s → |a * (t)-a * (s)| is uniformly bounded on [t, t + 1] due to [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF] and [START_REF] Soffer | Multichannel nonlinear scattering for nonintegrable equations[END_REF]. The proof by induction of (3.11) then follows as in [START_REF] Béthuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF].

We next apply the Sobolev embedding theorem with respect to the time variable in order to prove the existence of possibly further positive numbers

A k such that R k j=1 ∂ k x Ψ * (x + a * (t), t) 2 + 1 -|Ψ * (x + a * (t), t)| 2 2 e |x| dx ≤ A k ,
for any k ≥ 1 and t ∈ R. Estimate (50) then results from the Sobolev embedding theorem with respect to the space variable. Combining this estimate with the equation for ∂ t Ψ * , we deduce that Ψ * is of class C ∞ on R × R. This completes the proof of Proposition 10.

Proof of Corollary 3

In view of definition [START_REF] Pego | Asymptotic stability of solitary waves[END_REF] and Proposition 10, the function ε * belongs to C ∞ (R×R, R). Moreover, we have

η ε * (•, t) = 1-|U c * (t) | 2 -1-|Ψ * (•+a * (t), t)| 2 , and ∂ k x ε * (•, t) = e -iθ * (t) ∂ k x Ψ * (•+a * (t), t)-∂ k x U c * (t) .
Recall that the function 1-|U c | 2 and the derivatives ∂ k x U k decay at least as e - √ 2-c 2 |x| at infinity. Since c * is uniformly small in view of [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF], this decay property is enough to deduce (51) from (50). This concludes the proof of Corollary 3.

Rigidity properties of the limit profile

Proof of Proposition 11

Under the conclusions of Corollary 3 and the assumptions of Proposition 11, the map M * is of class C 1 on R. Moreover, we are allowed to derive from (52) the identity

d dt M * (t) = c * ′ (t) I 1 (t) + I 2 (t),
where we have set

I 1 := R ∂ c φ c * T c * (ε * ) L + c * (ε * ) + R φ c * T c * (ε * ) -∂ x ε * 2 + 2R c * ∂ c R c * ε * 1 + ∂ c R c * η ε * + R φ c * L + c * (ε * ) √ 2∂ c R c * ∂ x ε * 2 -∂ x ε * 1 + 2R c * ∂ c R c * ε * 2 - 1 √ 2 η ε * , (3.12) 
and

I 2 := R φ c * T c * (ε * ) -∂ xx ∂ t ε * 1 -c * ∂ x ∂ t ε * 2 -(1 -|U c * | 2 )ε * 1 + R c * ∂ t η ε * + L + c * (ε * ) √ 2R c * ∂ x ∂ t ε * 2 -c * ∂ x ∂ t ε * 1 -(1 -|U c * | 2 )∂ t ε * 2 - c * √ 2 ∂ t η ε * .
Concerning the integral I 2 , we deduce from (52) that the derivative with respect to time of η ε * is equal to

∂ t η ε * =2 (a * ) ′ -c * U c * + ε * , ∂ x U * c + ∂ x ε * C -2(c * ) ′ U c * , ∂ c U c * C -2 U c * , iL c * (ε * ) C -2 ε * , iL c * (ε * ) C -2η ε * U c * , iε * C .
Invoking again (52), as well as the identities

∂ x R c = (1 -|U c | 2 )/ √ 2 and ∂ xx R c = -R c (1 -|U c | 2
), we can decompose the integral I 2 as

I 2 = θ * ′ I θ 2 + (a * ) ′ -c * I a 2 + c * ′ I c 2 + I L 2 + I N 2 ,
where we denote

I θ 2 := R φ c * T c * (ε * ) -∂ xx ε * 2 + c * ∂ x ε * 1 -(1 -|U c * | 2 )ε * 2 + L + c * (ε * ) - √ 2R c * ∂ x ε * 1 -c * ∂ x ε * 2 + (1 -|U c * | 2 )ε * 1 , (3.13) 
I a 2 := R φ c * T c * (ε * ) -∂ xxx ε * 1 -c * ∂ xx ε * 2 -(1 -|U c * | 2 )∂ x ε * 1 + 2R c * U c * , ∂ x ε * C + 2R c * ε * , ∂ x U c * + ∂ x ε * C + L + c * (ε * ) √ 2R c * ∂ xx ε * 2 -c * ∂ xx ε * 1 -(1 -|U c * | 2 )∂ x ε * 2 - √ 2c * U c * , ∂ x ε * C - √ 2c * ε * , ∂ x U c * + ∂ x ε * C , (3.14) 
I c 2 := 1 √ 2 R φ c * (1 -|U c * | 2 )L + c * (ε * ), (3.15) 
I L 2 := R φ c * T c * (ε * ) -∂ xx L - c * (ε * ) + c * ∂ x L + c * (ε * ) -(1 -|U c * | 2 -2R 2 c * )L - c * (ε * ) - √ 2c * R c * L + c * (ε * ) + L + c * (ε * ) - √ 2R c * ∂ x L + c * (ε * ) -c * ∂ x L - c * (ε * ) + 1 + (c * ) 2 -|U c * | 2 L + c * (ε * ) - √ 2c * R c * L - c * (ε * ) , (3.16) 
and

I N 2 := R φ c * T c * (ε * ) -∂ xx (η ε * ε * 2 ) + c * ∂ x (η ε * ε * 1 ) -(1 -|U c * | 2 )η ε * ε * 2 -2R c * ε * , iL c * (ε * ) C -2R c * η ε * U c * , iε * C + L + c * (ε * ) - √ 2R c * ∂ x (η ε * ε * 1 ) -c * ∂ x (η ε * ε * 2 ) + (1 -|U c * | 2 )η ε * ε * 1 + √ 2c * ε * , iL c * (ε * ) C + √ 2c * η ε * U c * , iε * C . (3.17) 
We are now reduced to estimate all these integrals according to (58). We split the proof into six steps. We first consider the integral I 1 (t).

Step 1. There exists a positive number A 1 , depending only on the constants M 2 in Corollary 3 and K φ in Proposition 11, such that we have

I 1 (t) ≤ A 1 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 1 2
, for any t ∈ R.

In view of definitions ( 53) and (54), and assumption (57), we can estimate (3.12) by

I 1 (t) ≤ A R 1 + |x| |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx,
where A denotes, here as in the sequel, a positive number depending on K φ . At this stage, we know that there exists a universal constant K such that

1 + |x| ≤ Ke |x| 8 , (3.18) 
for any x ∈ R, so that we can bound I 1 (t) by

I 1 (t) ≤A R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 1 2 × R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) e |x| 4 dx 1 2 
, It remains to invoke (51) to obtain the estimate in Step 1.

We now deal with the integral I θ 2 (t).

Step 2. There exists a positive number A 2 , depending only on the constants M 2 in Corollary 3 and K φ in Proposition 11, such that we have

I θ 2 (t) ≤ A 2 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 3 4
, for any t ∈ R.

Similarly, we derive (53), ( 54), ( 57) and (3.13) that

I θ 2 (t) ≤ A R 1 + |x| |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx,
Arguing as in the proof of Step 1 gives

I θ 2 (t) ≤A R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 3 4 × R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) e |x| 2 dx 1 4 
.

The inequality in Step 2 then follows again from (51).

We next prove a similar estimate for I a 2 (t).

Step 3. There exists a positive number A 3 , depending only on the constants M 2 in Corollary 3 and K φ in Proposition 11, such that we have

I a 2 (t) ≤ A 3 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 3 4 
, for any t ∈ R.

The difference with respect to the integral I θ 2 (t) lies in the presence of the third derivative

∂ xxx ε *
1 in the expression of I a 2 (t). In order to bound this term, we integrate it by parts. We can check that

∂ x T c * (ε * ) = c * L + c * (ε * ) - √ 2R c * L - c * (ε * ) - √ 2c * ε * , ∂ x ε * C , (3.19) 
so that we obtain

- R φ c * T c * (ε * )∂ xxx ε * 1 = R φ c * ∂ xx ε * 1 c * L + c * (ε * ) - √ 2R c * L - c * (ε * ) - √ 2c * ε * , ∂ x ε * C + R ∂ x φ c * T c * (ε * )∂ xx ε * 1 .
Inserting this identity into (3.14), and arguing as in the proof of Step 2, we are led to

I a 2 (t) ≤ A 1 + ε * L ∞ R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 3 4 
.

In particular, we have to bound uniformly the perturbation ε * . Invoking [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF] and applying the Sobolev embedding theorem to the function (1 -|U 0 | 2 ) 1/2 ε * provide the inequality 

(1 -|U 0 | 2 ) 1 2 ε * ≤ Aβ * . ( 3 
I c 2 (t) ≤ A 4 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx 1 2
, for any t ∈ R.

Concerning the integral I L 2 (t), a direct computation provides

Step 5. There exists a positive number A 5 , depending only the constants M 2 in Corollary 3, and K φ in Proposition 11, such that we have

I L 2 (t) -G * (t) + R * (t) ≤ A 5 β * R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx,
for any t ∈ R.

This further estimate essentially follows from integrating by parts the expression in (3.16). Invoking (3.19), we indeed obtain

I L 2 (t) = G * (t) -R * (t) + √ 2c * (t) R ∂ x φ c * (t) ε * , ∂ x ε * C L - c * (t) (ε * ) + φ c * (t) ε * , ∂ xx ε * C L - c * (t) (ε * ) + |∂ x ε * | 2 L - c * (t) (ε * ) + c * (t) ε * , ∂ x ε * C L + c * (t) (ε * ) - √ 2R c * (t) ε * , ∂ x ε * C T c * (t) (ε * ) (x, t) dx.
In view of definitions ( 53) and (54), assumptions (57), and estimate [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF], this provides

I L 2 (t) -G * (t) + R * (t) ≤ Aβ * R 1 + |x| |∂ x ε * (x, t)| + |ε * (x, t)| × × |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx. (3.22) 
In order to bound the right-hand side of this inequality, we face the difficulty that the perturbation ε * does not necessarily decay exponentially at infinity. As a matter of fact, we can combine (51) with (3.18) to obtain

R 1 + |x| ∂ x ε * (x, t) |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx ≤ A R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx, (3.23) 
for any t ∈ R, but we cannot apply directly this argument for the term containing the absolute value |ε * |. Instead, we deduce from (3.18) that

R 1 + |x| ε * (x, t) |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * (x, t) dx ≤ A R |ε * (x, t)|e -|x| 8 |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * (x, t) e |x| 4 dx,
so that, by (51),

R 1 + |x| ε * (x, t) |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * (x, t) dx ≤ A R |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 e -|•| 4 + η 2 ε * (x, t) dx. (3.24) 
At this stage, we can use the inequality

|ε * (x, t)| ≤ |ε * (0, t)| + |x| 1 2 ∂ x ε * (•, t) L 2 ,
and the Sobolev embedding theorem to check the existence of a positive number A such that

R |ε * (x, t)| 2 e -|x| 4 dx ≤ A R |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 (x, t) dx. (3.25) 
The number A does not depend on c * due to bound [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF]. Inserting into (3.24), we obtain

R 1 + |x| ε * (x, t) |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * (x, t) dx ≤ A R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * (x, t) dx. (3.26) 
Similarly, we deduce from (3.18) We finally turn to the integral I N 2 (t).

Step 6. There exists a positive number A 6 , depending only the constants M k in Corollary 3, and K φ in Proposition 11, such that we have

I N 2 (t) ≤ A 6 R |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx, 9 8 × 1 + R |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx, 1 8 
, for any t ∈ R.

In order to prove this inequality, we first check that

∂ x η ε * ≤ A |∂ x ε * | + (1 -|U c * | 2 )|ε * | , (3.27) 
while

∂ xx η ε * ≤ A |∂ xx ε * | + |∂ x ε * | + (1 -|U c * | 2 )|ε * | ,
where A refers to a positive number depending only on the constant M 1 in Corollary 3. For β * ≤ 1, this follows from the bound for c * in [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF], and estimates (51) and (3.21).

Invoking (57) and (3.18), we next estimate the right-hand side of (3.17) as

I N 2 (t) ≤ A R |∂ xx ε * | + |∂ x ε * | + |ε * | × × |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) e |x| 8 dx.
We then modify slightly the arguments in the proof of Step 5. We first invoke the exponential decay of ε * in (51), and the exponential decay of 1 -|U c * | 2 to write

I N 2 (t) ≤ A R |∂ xx ε * | 5 2 + |∂ x ε * | 5 2 + e -5|•| 16 |ε * | 5 2 + η 5 2 ε * (x, t) dx.
Observe that the positive number A does not depend on c * due to bound [START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF]. Applying the Sobolev embedding theorem, and invoking (3.27), we are led to

I N 2 (t) ≤ A R |∂ xxx ε * | 2 + |∂ xx ε * | 2 + |∂ x ε * | 2 + e -|•| 4 |ε * | 2 + η 2 ε * (x, t) dx 5 4 
.

(3.28)

At this stage, recall that

R (∂ p x f ) 2 = (-1) p R f (∂ 2p x f ) ≤ R f 2 1 2 R (∂ 2p x f ) 2 1 2 
, for any integer p and any function f ∈ H 2p (R). In view of (51), we can apply inductively these inequalities to the function ∂ x ε * in order to obtain

R |∂ xxx ε * (x, t)| 2 dx ≤ A R |∂ x ε * (x, t)| 2 dx 9 10
.

The proof of Step 6 then reduces to introduce this estimate into (3.28) and apply again (3.25).

In order to conclude the proof of Proposition 11, we now gather the estimates in the six previous steps. In view of ( 40) and [START_REF] Soffer | Multichannel nonlinear scattering for nonintegrable equations[END_REF], they provide the inequality

d dt M * (t) -G * (t) + R * (t) ≤ A β * + β * 1 2 + β * 1 4 R |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * (t) | 2 )|ε * | 2 + η 2 ε * (x, t) dx,
where the number A depends only on the constant K φ in Proposition 11, and the numbers M k in Corollary 3. When β * ≤ 1, this amounts to (58), which ends the proof of Proposition 11.

Proof of Proposition 12

For |c| < √ 2, we set

G 1 c (ε) = 1 2 R 1 -|U c | 2 3 ∂ xx ε 1 + c∂ x ε 2 + (1 -|U c | 2 + 2R 2 c )ε 1 - √ 2cR c ε 2 2 + ∂ xx ε 2 + √ 2R c ∂ x ε 2 -2c ∂ x ε 1 + cε 2 + √ 2R c ε 1 2 .
The quadratic form G 1 c is well-defined for any function ε ∈ H(R), with ∂ xx ε ∈ L 2 (R). Moreover, it appears as the main component of the quantity G * 1 . As a matter of fact, since

η ε * = 2 U c * , ε * C + |ε * | 2 , we have G * 1 -G 1 c * (ε * ) ≤ K R 1 -|U c * | 2 ε * 2 ∂ xx ε * + ∂ x ε * + ε * + ε * 2 ,
where K refers, here as in the sequel, to a universal constant. In view of (3.21), this provides

G * 1 -G 1 c * (ε * ) ≤ Kβ * R 1 -|U c * | 2 ∂ xx ε * 2 + ∂ x ε * 2 + ε * 2 , (3.29) 
when β * ≤ 1. As a consequence, decreasing if necessary the value of β * , the proof of (59) for the quantity G * 1 reduces to establish the same estimate for the quadratic form G 1 c * (ε * ). In order to do so, we rely on a perturbative argument. Indeed, under the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF], the coercivity of the functional G 1 c for c small enough results from the coercivity of G 1 0 . More precisely, let us introduce the change of variables

v = (v 1 , v 2 ) := (1 -|U c | 2 ) 1 2 ε 1 , (1 -|U c | 2 ) 1 2 ε 2 . (3.30) Using the identity R ′ c = (1 -|U c | 2 )/ √ 2, we compute (1 -|U c | 2 ) 1 2 ∂ x ε = ∂ x v + R c √ 2 v, and (1 -|U c | 2 ) 1 2 ∂ xx ε = ∂ xx v + √ 2R c ∂ x v + 1 2 1 -|U c | 2 + R 2 c v.
As a consequence, the quadratic form G 1 c (ε) writes in terms of the variables v 1 and v 2 as

G 1 c (ε) = 1 2 J c (v) := 1 2 R 3 -∂ xx v 1 - √ 2R c ∂ x v 1 -c∂ x v 2 - 3 2 (1 -|U c | 2 -R 2 c )v 1 + c √ 2 R c v 2 2 + -∂ xx v 2 + 2c∂ x v 1 -2 √ 2R c ∂ x v 2 + 3 √ 2cR c v 1 - 1 2 (1 -|U c | 2 + 3R 2 c -4c 2 )v 2 2 .
(3.31)

In view of (4), the quadratic form J c is an analytic perturbation of J 0 for c small enough. As a first step, we establish the coercivity of J 0 (v) under three orthogonality conditions for v, which correspond to the conditions for ε in (16) (when c = 0).

Step 1. There exists a positive number κ such that

J 0 (v) =3 R ∂ xx v 1 + √ 2U 0 ∂ x v 1 + 3 2 -3U 2 0 v 1 2 + R ∂ xx v 2 + 2 √ 2U 0 ∂ x v 2 + 1 2 + U 2 0 v 2 2 ≥κ R |∂ xx v| 2 + |∂ x v| 2 + |v| 2 , (3.32 
)

for any function v ∈ H 2 (R) such that R v 1 (U ′ 0 ) 3 2 = R v 2 (U ′ 0 ) 1 2 = R v 2 U 0 (U ′ 0 ) 1 2 = 0. (3.33)
Indeed, we may write the quadratic form J 0 as J 0 (v) := J

1 0 (v 1 ), v 1 L 2 + J 2 0 (v 2 ), v 2 L 2 , with J 1 0 (v 1 ) = ∂ xxxx v 1 -∂ x (9U 2 0 -4)∂ x v 1 + 27 2 U 2 0 - 9 4 -9U 4 0 v 1 , for any x ∈ R. This gives R c -U 0 L ∞ ≤ Ac 2 ,
when |c| < 1. In view of (3.38) and (3.39), we derive the existence of a number σ ∈ (0,

√ 2) such that J c (v) ≥ 7κ 8 R |∂ xx v| 2 + |∂ x v| 2 + |v| 2 , (3.41) 
when |c| ≤ σ, and when v satisfies the orthogonality conditions in (3.33).

In order to modify these orthogonality conditions, we argue as in the proof of Corollary 1. Given a function v which satisfies the orthogonality conditions in (3.37), we decompose it as

v 1 = w 1 + µ 1 (U ′ 0 ) 3 2 , and v 2 = w 2 + µ 2 (U ′ 0 ) 3 2 + ν 2 U 0 (1 -|U 0 | 2 ) 1 2 ,
where w satisfies (3.33). Coming back to the definition of J c in (3.31), we check the existence of a further positive number A such that

J c (v) ≥ 6 7 J c (w) -A µ 2 1 + µ 2 2 + ν 2 2 .
Similarly, we have

R |∂ xx w| 2 + |∂ x w| 2 + |w| 2 ≥ 5 6 R |∂ xx v| 2 + |∂ x v| 2 + |v| 2 -A µ 2 1 + µ 2 2 + ν 2 2 .
Hence, we can apply (3.41) to obtain

J c (v) ≥ 5κ 8 R |∂ xx v| 2 + |∂ x v| 2 + |v| 2 -A µ 2 1 + µ 2 2 + ν 2 2 . (3.42) 
At this stage, we recall that

µ 1 = v 1 , (U ′ 0 ) 3 2 L 2 U ′ 0 3 L 3 , µ 2 = v 2 , (U ′ 0 ) 3 2 L 2 U ′ 0 3 L 3 and ν 2 = v 2 , U 0 (1 -|U 0 | 2 ) 1 2 L 2 U 2 0 (1 -|U 0 | 2 ) L 1 .
Using (3.37), we observe that

v 1 , (U ′ 0 ) 3 2 L 2 = v 1 , (U ′ 0 ) 3 2 -(U ′ c ) 3 2 L 2 .
Given a positive number α, we argue as in (3.40) to derive the existence of a positive number A α , depending only on α, such that

(U ′ c (x)) α -(U 0 (x) ′ ) α ≤ A α c 2 (U ′ c (x)) α 2 ,
for any x ∈ R and any |c| ≤ 1. This yields the inequality

|µ 1 | ≤ Ac 2 v 1 L 2 ,
and similarly, we obtain

|µ 2 | + |ν 2 | ≤ Ac 2 v 2 L 2 .
Combining with (3.42), and decreasing, if necessary, the value of the number σ, we obtain (3.36).

We now rewrite this inequality, as well as the orthogonality conditions in (3.37), in terms of the function ε.

Step 3. There exists a further positive number κ such that, when |c| ≤ σ, we have

G 1 c (ε) ≥ κ R 1 -|U c | 2 |∂ xx ε| 2 + |∂ x ε| 2 + |ε| 2 , (3.43) 
for any function ε ∈ H(R), with ∂ xx ε ∈ L 2 (R), which satisfies the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF].

In view of (3.30) and (3.31), we can rewrite (3.38) as

G 1 c (ε) ≥ κ 2 R 1 -|U c | 2 ∂ xx ε - √ 2R c ∂ x ε - 1 2 (1 -R 2 c -|U c | 2 )ε 2 + ∂ x ε - R c √ 2 ε 2 + |ε| 2 ,
and this inequality holds when ε satisfies the three orthogonality conditions

R ε 1 (U ′ c ) 2 = R ε 2 U ′ c = R ε 2 R c (1 -|U c | 2 ) = 0. (3.44) 
We then recall that |R c | ≤ 1, |U c | ≤ 1 and |c| < √ 2, and we apply the inequality

a -b 2 H ≥ τ a 2 H - τ 1 -τ b 2 H ,
which holds for any number 0 < τ < 1, and any vectors a and b in an Hilbert space H, in order to obtain (3.43) for a further choice of the number κ.

Comparing the orthogonality conditions in [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF] with the ones in (3.44), we observe that it remains to extend (3.43) in the situation where the function ε 1 satisfies the alternative orthogonality condition ε

1 , U ′ c L 2 = 0. In this case, since U ′ c , (U ′ c ) 2 L 2 > 0, we can decompose ε as ε = νU ′ c + u, with ν ∈ R and u, (U ′ c ) 2 L 2 = 0.
The derivative U ′ c belongs to the kernel of the quadratic form G 1 c . Hence, we infer from (3.43) that

G 1 c (ε) = G 1 c (u) ≥ κ R 1 -|U c | 2 |∂ xx u| 2 + |∂ x u| 2 + |u| 2 . (3.45)
On the other hand, the number ν is equal to ν

= -u, U ′ c L 2 / U ′ c 2 L 2 .
Since |c| ≤ σ, there exists a positive number A such that

ν 2 ≤ A R (1 -|U c | 2 )|u| 2 .
In view of (3.45), we first conclude that

G 1 c (u) ≥ κ A ν 2 ,
and then, that (3.43) remains available under the orthogonality condition ε 1 , U ′ c L 2 = 0. We are now in position to provide the

Step 4. End of the proof of Proposition 12.

In view of (40), we can decrease the value of β * so that |c * (t)| ≤ σ for any t ∈ R. In this case, we can apply Step 3, since the function ε * (•, t) satisfies the orthogonality conditions in ( 16) by [START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF]. As a consequence of (3.29) and (3.43), we deduce that

G * 1 (t) ≥ κ -Kβ * R 1 -|U c * (t) | 2 ∂ xx ε * (•, t) 2 + ∂ x ε * (•, t) 2 + ε * (•, t) 2 ,
for any t ∈ R. It remains to decrease again, if necessary, the value of β * , to conclude the proof of Proposition 12.

Proof of Lemma 1

In view of (4), the numbers φ c (x) depend analytically on x ∈ R and c ∈ (-√ 2, √ 2), so that the functions φ c are smooth on R, and depend smoothly on c ∈ (-√ 2, √ 2). When |c| < 1, we can find a positive number A such that

φ c (x) - 2 2 -c 2 |x| + ∂ x φ c (x) - 2 2 -c 2 R c (x) + ∂ xx φ c (x) ≤ A 1 + |x| 1 -|U c (x)| 2 , (3.46)
for any x ∈ R. Similarly, we have

∂ c φ c (x) = - x∂ c R c (x) R c (x) 2 = c 2 -c 2 x R c (x) + x 2 √ 2R c (x) 2 1 -|U c (x)| 2 , so that ∂ c φ c (x) ≤ A 1 + |x| .
Combining with (3.46), we obtain (57). This completes the proof of Lemma 1.

Proof of Proposition 13

For the choice φ c (x) = x/R c (x), it follows from (55) and (56) that 

G * 2 (t) -R * 2 (t) = R 1 √ 2 + (1 -|U c * | 2 )φ c * L + c * (ε * ) 2 + 1 √ 2 + √ 2(∂ x φ c * )R c * L - c * (ε * ) 2 + 1 √ 2 T c * (ε * ) 2 -c * (∂ x φ c * )L + c * (ε * ) L - c * (ε * ) + T c * (ε * ) -∂ xx φ c * + φ c * (1 -|U c * | 2 ) T c * (ε * )L - c * (ε * ) (x,
R L + c (ε * ) 2 ≥ R ∂ xx ε * 1 +c * ∂ x ε * 2 -R c * η ε * 2 -A R 1-|U c * | 2 |∂ xx ε * | 2 +|∂ x ε * | 2 +|ε * | 2 . (3.49)
Here, we have used the inequality

R 1 -|U c * | 2 η 2 ε * ≤ A R 1 -|U c * | 2 |ε * | 2 ,
which is a consequence of (3.21).

At this stage, we expand and integrate by parts the first integral in the right-hand side of (3.49) in order to get

R ∂ xx ε * 1 + c * ∂ x ε * 2 -R c * η ε * 2 = R (∂ xx ε * 1 ) 2 + (c * ) 2 (∂ x ε * 2 ) 2 + 2R c * (∂ x ε * 1 )(∂ x η * ε ) + R 2 c * η 2 ε * + 2c * (∂ x ε * 2 ) ∂ xx ε * 1 -R c * η ε * + 2(∂ x R c * )(∂ x ε * 1 )η ε * . We next recall that R 2 c = (2 -c 2 )/2 -(1 -|U c | 2 ) and ∂ x R c = (1 -|U c | 2 )/ √ 2. Moreover, we observe that R R c * (∂ x ε * 1 )(∂ x η * ε ) = R 2R 2 c * (∂ x ε * 1 ) 2 + √ 2c * R c * (∂ x ε * 1 )(∂ x ε * 2 ) + 2R c * (∂ x ε * 1 ) (∂ x R c * )ε * 1 + ε * , ∂ x ε * C .
Introducing these identities into (3.49), we are led to 

R L + c * (ε * ) 2 ≥ R (∂ xx ε * 1 ) 2 + 4(∂ x ε * 1 ) 2 + η 2 ε * -A R 1 -|U c * | 2 |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 -A |c * | + ε * L ∞ R |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * . ( 3 
G * 2 (t) -R * 2 (t) ≥ 1 4 R |∂ xx ε * | 2 + 2|∂ x ε * | 2 + η 2 ε * -A R 1 -|U c * | 2 |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 -A |c * | + ε * L ∞ R |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * . ( 3 

A Definition and properties of the momentum

This appendix is devoted to the proofs of Proposition 4, which links the quantities P and [P ], and of Proposition 5, which gives a first order expansion of P for a perturbation of the soliton U c .

A.1 Proof of Proposition 4

Let Ψ ∈ V 0 (α), with α < α 1 . In view of ( 18), there exists a positive number A such that d 0 (Ψ mod , U 0 ) ≤ Aα.

Set ε 0 := Ψ mod -U 0 and η 0 := |Ψ mod | 2 -U 2 0 . Invoking the Sobolev embedding theorem, we have

η 0 2 L ∞ ≤ 4 η 0 L 2 U ′ 0 , ε 0 C + U 0 , ε ′ 0 C + ε 0 , ε ′ 0 C L 2 .
Since |U 0 | ≤ 1, U ′ 0 = (1 -U 2 0 )/ √ 2 and |ε 0 | ≤ 3 + |η 0 |, we deduce that

η 0 2 L ∞ ≤ A 1 + η 0 L ∞ ε 0 H 0 η 0 L 2 ≤ A 1 + η 0 L ∞ α 2 . (A.1)
Since U 0 (1) ≥ 5 √ 2/12, this gives

|Ψ mod (x)| 2 ≥ |U 0 (x)| 2 -η 0 L ∞ ≥ 25 72 -Aα,
for any |x| ≥ 1. As a consequence, we can choose α small enough such that |Ψ mod | ≥ 1/2 outside (-1, 1). In particular, we are allowed to write Ψ mod := ̺ mod exp iϕ mod . Moreover, we can apply the Sobolev embedding theorem to obtain

(1 -U 2 0 ) 1/2 (Ψ mod -U 0 ) L ∞ ≤ A Ψ mod -U 0 H 0 ≤ Aα. (A.2)
Therefore, we can fix α 2 so that, when α ≤ α 2 , the choice of ϕ mod is uniquely given by [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]. In this case, invoking [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF], as well as the identity iΨ mod , Ψ ′ mod C = ̺ 2 mod ϕ ′ mod , (A.3) so that we finally get

R c (ε) = 1 2 R (1 -χ) iU c , ε C |U c | 2 ′ -ϕ ′ mod + ϕ ′ c + iε, ε ′ C + 1 2 R χ iε, ε ′ C + 1 2 R χ ′ ϕ mod -ϕ c - iU c , ε C |U c | 2 .
(A.7)

In order to complete the proof of Proposition 5, it remains to estimate the integrals in the right-hand side of (A.7) according to [START_REF] Martel | Linear problems related to asymptotic stability of solitons of the generalized KdV equations[END_REF].

Concerning the first integral, we can write

ϕ ′ mod -ϕ ′ c = i(U c + ε), U ′ c + ε ′ C |U c | 2 + η ε - iU c , U ′ c C |U c | 2 ,
outside the interval (-1, 1). Expanding this expression with respect to ε and η ε yields

-ϕ ′ mod + ϕ ′ c + iε, ε ′ C =2 U c , ε C iU c , U ′ c C |U c | 4 - iU c , ε ′ C |U c | 2 + iU ′ c , ε C |U c | 2 + Φ c,ε , (A.8)
where we denote

Φ c,ε := |ε| 2 iU c , U ′ c C |U c | 4 + η ε iU c , ε ′ C |U c | 2 |Ψ mod | 2 - η ε iU ′ c , ε C |U c | 2 |Ψ mod | 2 - η 2 ε iU c , U ′ c C |U c | 4 |Ψ mod | 2 - (1 -|U c | 2 ) iε, ε ′ C |U c | 2 + η ε iε, ε ′ C |U c | 2 |Ψ mod | 2 .
(A.9)

On the other hand, the identity 4 , outside (-1, 1). Inserting into (A.8), we obtain

|U c | 2 U ′ c = U c , U ′ c C U c + iU c , U ′ c C iU c provides iU c , ε C |U c | 2 ′ = iU c , ε ′ C |U c | 2 - iU ′ c , ε C |U c | 2 -2 U c , ε C iU c , U ′ c C |U c |
R (1 -χ) iU c , ε C |U c | 2 ′ -ϕ ′ mod + ϕ ′ c + iε, ε ′ C ≤ R 1 -χ Φ c,ε . (A.10)
In order to estimate Φ c,ε , we first recall that |Ψ mod | ≥ 1/2 outside (-1, 1). Concerning the function U c , we invoke [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF] and decrease, if necessary, the value of α 2 so that

|U c | ≥ 1/4, (A.11)
outside (-1, 1). Similarly, we can argue as in the proof of (A.1) in order to prove that η ε L ∞ ≤ 1 and ε L ∞ ≤ 4 for a possible further value of α 2 . Finally, we can invoke (A.6) and the Sobolev embedding theorem to establish the existence of a positive number A such that

(1 -|U c | 2 ) 1 2 ε L 2 ≤ A ε H 0 .
Coming back to (A.9) and (A.10), we conclude that

R (1 -χ) iU c , ε C |U c | 2 ′ -ϕ ′ mod + ϕ ′ c + iε, ε ′ C ≤ A ε 2 H 0 + η ε 2 L 2 , (A.12)
for a further positive number A.

Concerning the second integral, there exists a positive number A such that χ ≤ A(1 -U 2 0 ) 1/2 on R. As a consequence, we obtain

R |χ| iε, ε ′ C ≤ A ε 2 H 0 . (A.13)
At this stage, the proof reduces to bound the third integral in the right-hand side of (A.7). We come back to the definition of the phase function ϕ mod . Arguing as in (A.2), we have

ε L ∞ (-2,2) ≤ A ε H 0 ≤ Aα 2 .
(A. [START_REF] Cuccagna | Stabilization of solutions to nonlinear Schrödinger equations[END_REF] In view of (A.11), we deduce (possibly for a further choice of α 2 ) that the complex number Ψ mod (x) remains in the open disk with centre U c (x) and radius |U c (x)| for any x ∈ (-2, -1) ∪ (1, 2). As a consequence, the maps Ψ mod and U c restricted to (1, 2), respectively (-2, -1), lie in a common domain of holomorphy for the complex logarithmic function. In other words, we can write

ϕ mod -ϕ c = i log U c |U c | -i log U c + ε |U c + ε| ,
where log refers to an analytic determination of the logarithm. Expanding this expression with respect to ε, we are led to the estimate

ϕ mod -ϕ c - iU c , ε C |U c | 2 ≤ A|ε| 2 .
In view of (A.14), this gives

R χ ′ ϕ mod -ϕ c - iU c , ε C |U c | 2 ≤ A ε 2 H 0 . (A.15)
Estimate [START_REF] Martel | Linear problems related to asymptotic stability of solitons of the generalized KdV equations[END_REF] then results from (A.12), (A.13) and (A.15). This concludes the proof of Proposition 5.

4 = I out 5 = 0

 450 since the integrands identically vanish there. It remains to consider the case x ∈ [-L, L]. In view of (8) and the explicit form of Φ, we directly estimate I 5 by |I 5 | ≤ Ke -|R+σt| .

∂ xx ε * 2 2-R 1 - 2 R∂ x ε * 2 2-R 1 -

 21221 .50) Arguing similarly for the quantitiesL - c * (ε * ) 2 and T c * (ε * ) 2 , we obtain R L - c * (ε * ) 2 ≥ R A|c * | R |∂ xx ε * | 2 + |∂ x ε * | 2 + η 2 ε * -A |U c * | 2 |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 , (3.51) and R T c * (ε * ) 2 ≥ A|c * | R |∂ x ε * | 2 + η 2 ε * -A |U c * | 2 |∂ x ε * | 2 + |ε * | 2 . (3.52) Inserting (3.50), (3.51) and (3.52) into (3.48), we conclude that

  .53) For β * small enough, we can invoke[START_REF] Soffer | Multichannel nonlinear scattering theory for nonintegrable equations[END_REF] and(3.21) in order to bound the third integral in the right-hand side of (3.53) by one half of the first one. This provides (60), which completes the proof of Proposition 13.

  .20) On the other hand, we deduce from (51) the existence of a positive number R, depending only on M 1 , such that ε * (±x, t)ε * (±R, t) ≤ β * , for any x ≥ R and t ∈ R. Combining with (3.20), we deduce the existence of a positive number A, depending on M 1 through its dependence on R, such that There exists a positive number A 4 , depending only on the constant K φ in Proposition 11, such that we have

	ε *	L ∞ ≤ Aβ * .	(3.21)
	Decreasing possibly the value of β * , we can assume that β * ≤ 1, which completes the proof of Step 3.
	Applying the Cauchy-Schwarz inequality to (3.15), we similarly prove	
	Step 4.		

  Here, we have assumed, decreasing the value of β * if necessary, that |c * | ≤ 1. Combining with (3.23) and(3.26), and inserting into(3.22), we obtain the estimate in Step 5 (when β * ≤ 1, which we can assume without loss of generality).

		and (3.21) that				
	R	1 + |x| 1 -|U c * (x)| 2 ε * (x, t)	3 dx ≤ Aβ *	R	ε * (x, t)	2 e -|x| 4 dx,

  t) dx, for any t ∈ R. Applying the inequality |ab| ≤ (a 2 + b 2 )/2, we obtain||∂ x φ c * | -|∂ xx φ c * | -|φ c * |(1 -|U c * | 2 ) T c * (ε * ) 2 (x, t) dx.In order to estimate this quantity, we now decrease, if necessary, the value of β * so that we can deduce from (40) that |c * (t)| < 1 for any t ∈ R. In this case, we can apply(3.46) and decrease again the value of β * in order to obtain the inequality2|c * (t)| ∂ x φ c * (t) L ∞ ≤ √ 2 -1,for any t ∈ R. Invoking again (3.46), we can find a positive number A such that we have the three inequalities1 + 2(1 -|U c * (t) | 2 )φ c * (t) ≥On the other hand, we infer from (53) and (54) thatL + c * (ε * ) 2 + L - c * (ε * ) 2 + T c * (ε * ) 2 ≤ A |∂ xx ε * | 2 + |∂ x ε * | 2 + (1 -|U c * | 2 )|ε * | 2 + η 2 ε * ,so that, by (3.21),1 -|U c * (t) | 2 L + c * (ε * ) 2 + L - c * (ε * ) 2 + T c * (ε * ) 2 ≤ A 1 -|U c * (t) | 2 |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 .Gathering all these inequalities and applying them to (3.47), we are left with the estimate) 2 + L - c * (ε * ) 2 + T c * (ε * ) 2 (x, t) dx -|U c * | 2 |∂ xx ε * | 2 + |∂ x ε * | 2 + |ε * | 2 (x, t) dx.It now remains to bound the first integral in the right-hand side of (3.48) according to (60). We first address the integral of the quantity L + c * (ε * ) 2 . Coming back to (53), we check that

	G * 2 (t) -R * 2 (t) ≥ 2 + 2(1 -|U c + 1 2 R √ 1 2 R √ 2 + 2 √ 2(∂ + 1 2 R √ 2 -|c (3.47) 1 2 -2A(1 -|U c * (t) | 2 ), 1 + 2 √ 2∂ x φ c G * 2 (t) -R * 2 (t) ≥ 1 4 R L + c -A (3.48)

* | 2 )φ c * -2|c * ||∂ x φ c * | L + c * (ε * ) 2 (x, t) dx x φ c * )R c * -|c * ||∂ x φ c * | -|∂ xx φ c * | -|φ c * |(1 -|U c * | 2 ) L - c * (ε * ) 2 (x, t) dx * * (t) R c * (t) -|∂ xx φ c * (t) | -|φ c * (t) |(1 -|U c * (t) | 2 ) ≥ 1 2 -2A(1 -|U c * (t) | 2 ),

and

1 -|∂ xx φ c * (t) | -|φ c * (t) |(1 -|U c * (t) | 2 ) ≥ 1 2 -2A(1 -|U c * (t) | 2 ). * (ε * R 1
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and

The operators J 1 0 and J 2 0 are self-adjoint and non-negative on L 2 (R), with domain H 4 (R). In view of (3.32), their kernels are spanned by the function (U ′ 0 ) 3/2 , respectively (U ′ 0 ) 1/2 and U 0 (U ′ 0 ) 1/2 . The Weyl criterion shows that their essential spectrum is equal to the interval [9/4, +∞). As a consequence, there exists a positive number κ such that

when v satisfies the orthogonality conditions in (3.33).

Using the inequalities |U 0 | ≤ 1 and

we observe that

for any v ∈ H 2 (R). Given a parameter 0 < τ < 1, we deduce from (3.34) that

Choosing τ small enough, and invoking (3.35), we obtain (3.32) for a further choice of the positive number κ.

We now extend the conclusions of Step 1 to the quadratic form J c for c small enough.

Step 2. There exists a number σ ∈ (0, √ 2) such that, when |c| ≤ σ, we have

)

Assume first that v satisfies the orthogonality conditions in (3.33). We then infer from (3.32) that

In view of (3.31), we have

where, here as in the sequel, A is a positive number. On the other hand, given any positive numbers µ and λ with λ > µ, we compute

which holds outside (-1, 1), we have

outside (-2, 2). Therefore, since Ψ ∈ E(R), the quantity P(Ψ) is well-defined.

On the other hand, the renormalized momentum [P ] is by definition invariant under translation and multiplication by a constant of modulus one. Hence, we have

where

It remains to check that P S (Ψ mod ) → P(Ψ), (A.5)

as S → +∞.

For S ≥ 1, we set χ S = χ(•/S). The function χ Sχ is then compactly supported outside (-1, 1), so that

As a consequence of (A.3), we are led to

The convergence in (A.5) then follows from the integrability of the function (1 -̺ 2 mod )ϕ ′ mod at infinity, which is a consequence of (A.4).

A.2 Proof of Proposition 5

Recall that, when Ψ lies in V 0 (α 2 ), the map Ψ mod may be written as Ψ mod = |Ψ mod | exp iϕ mod , with |Ψ mod | ≥ 1/2, outside the interval (-1, 1). Coming back to decomposition [START_REF] Dunford | Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space[END_REF], and definition [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF], we can expand the quantity P(Ψ) with respect to ε := Ψ mod -U c (where c = c(Ψ)) as

Since χ has compact support, we may rewrite this as

Recall next that |ε(x)| ≤ |ε(0)| + |x|