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This article introduces new low cost algorithms for the adaptive estimation and tracking of principal
and minor components. The proposed algorithms are based on the well-known OPAST method which
is adapted and extended in order to achieve the desired MCA or PCA (Minor or Principal Component
Analysis). For the PCA case, we propose efficient solutions using Givens rotations to estimate the principal
components out of the weight matrix given by OPAST method. These solutions are then extended to the
MCA case by using a transformed data covariance matrix in such a way the desired minor components
are obtained from the PCA of the new (transformed) matrix. Finally, as a byproduct of our PCA algorithm,
we propose a fast adaptive algorithm for data whitening that is shown to overcome the recently proposed
RLS-based whitening method.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Principal (resp. Minor) Component Analysis PCA (resp. MCA) is
a major problem in many practical applications including direction
of arrival estimation [1], system identification [2–4], spectral anal-
ysis [5], multiuser detection in communications [6,7] and space–
time adaptive filtering for radar systems [8].

Unlike Principal (resp. Minor) Subspace Analysis PSA (resp.
MSA), where only a basis of the principal (resp. minor) subspace
is considered, PCA (resp. MCA) technique consists rather of esti-
mating the eigenvectors of the data covariance matrix. While the
conventional matrix algebraic approaches such as Singular Value
Decomposition (SVD) provide a good solution for small system di-
mensions, they quickly become inappropriate (too expensive) for
real time applications when the dimensions increase.

In the literature, PCA and MCA methods can be grouped in
many categories [9,10]:

• According to their processing methodology: sequential or par-
allel versions:
– In the sequential version [11–13], the desired eigenvectors

are extracted sequentially. This processing approach may
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lead to an important processing delay and error propagation
effect.

– Parallel structures [14–17] extract jointly all desired compo-
nents. This avoids the previously aforementioned problems
but may lead to more expensive implementations and to nu-
merical instability.

• According to their numerical complexities: low complexity
O (np), moderate complexity O (np2) or O (n2) and high com-
plexity O (n2 p) or more, where n is the size of the observation
vector and p < n is the number of eigenvectors to estimate.

– Most low complexity algorithms [12,11,18–21] are based
on gradient techniques. Unfortunately, many of these algo-
rithms suffer from low convergence rate or numerical insta-
bility.

– Moderate complexity O (np2) or O (n2) is due to the or-
thonormalization step of the estimate eigenvectors [22,23]
or to some n × n matrix-vector products used in the PCA
or MCA updating [24,25]. Moderate complexity algorithms
update only the desired eigen-structure and present a good
trade-off between numerical complexity and performance
(i.e. fast convergence rate, orthonormality of the weight ma-
trix, good stability, . . .).

– Unlike moderate complexity algorithms, those of high com-
plexity, i.e. O (n2 p) or more, correspond to methods that
update the complete eigen-structure with or without ex-
plicit computation of the covariance matrix [14].
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In this paper, we propose algorithms for PCA and MCA prob-
lems with low complexity and improved convergence perfor-
mance.1 These algorithms are based on the Orthogonal Projec-
tion Approximation and Subspace Tracking (OPAST) algorithm [27],
originally introduced for Principal Subspace Analysis (PSA). In [28],
authors propose to use jointly OPAST algorithm and a diagonal-
ization technique using Givens rotations to achieve the PCA. The
resulting algorithm shows good performance but suffers from ill
convergence when the system’s dimensions increase or the num-
ber of principal components is large. To improve its performance
in the large dimensional context, we propose herein different algo-
rithm’s versions using different selection procedures of the Givens
rotation indices. A comparative study shows that the best algorith-
m’s version (in terms of convergence rate and estimation accuracy)
is the one associated to the hybrid selection method shown in Sec-
tion 3.2.1.

On the other hand, we propose two algorithms for MCA re-
ferred to as α-GOPAST12 and α-GOPAST2 respectively. These al-
gorithms use the transformed covariance matrix C′

xx = αI − Cxx

where α is a properly chosen scalar factor and Cxx is the covari-
ance matrix of the observed data. This transformation allows us
to compute the minor eigenvectors of Cxx as the principal eigen-
vectors of C′

xx . We propose 2 algorithm’s versions depending on
the way the transformed covariance matrix and the desired weight
matrix are updated. For both algorithms, fast implementations are
proposed and analyzed through numerical simulation.

Finally, because of the importance of data whitening in cer-
tain practical applications, e.g. enhanced direction of arrival by
pre-whitening [29] and blind source separation [30], we have pro-
posed an adaptive data whitening algorithm based on our PCA
method. This algorithm shows excellent convergence rate and bet-
ter ‘whitening quality’ as compared to the existing methods.

This paper is organized as follows: Objectives, data model and
optimization criterion are given in Section 2. Section 3 presents
the Generalized OPAST (denoted GOPAST) and our contributions to
improve its convergence performance. The whitening algorithm is
presented in Section 4 while in Section 5, we propose different
algorithms to solve MSA and MCA problems. Section 6 shows the
numerical results and finally the main conclusions are summarized
in Section 7.

2. Problem formulation

2.1. Data model and objectives

Let x(t) ∈ C
n×1 be the observed data vector of covariance ma-

trix Cxx . We aim to estimate and track the p < n principal (resp.
minor) eigenvectors of Cxx . For that, we assume that the sorted
eigenvalues of Cxx satisfy the conditions:

(H1) for the PCA, λ1 � λ2 � · · · � λp > λp+1 � · · · � λn

(H2) for the MCA, λ1 � λ2 � · · · � λn−p > λn−p+1 � · · · � λn

In the adaptive scheme, matrix Cxx is evaluated at time instant t
as3

Cxx(t) = βCxx(t − 1) + (1 − β)x(t)xH (t) (1)

1 Part of this work related to PCA has been published in the conference pa-
per [26].

2 G stands for Generalized while α refers to the scalar coefficient used in the
transformed covariance matrix C′

xx = αI − Cxx .
3 This is the standard updating form of the covariance matrix using an exponen-

tial window (see [12, Eq. (15)]), i.e., Cxx(t) = (1 − β)
∑t

i=1 βt−i x(i)x(i)H .
Table 1
OPAST algorithm.

Initialization: W(0) = [ Ip

0

]
, Z(0) = Ip

Adaptation: For t � 1
y = WH (t − 1)x(t)
q = 1

β
Z(t − 1)y

γ = 1
1+yH q

τ = 1
‖q‖2

( 1√
1+‖q‖2γ 2(‖x(t)‖2−‖y‖2)

− 1
)

e = W(t − 1)(τq − γ (1 + τ‖q‖2)y) + (1 + τ‖q‖2)γ x(t)

Z(t) = 1
β

Z(t − 1) − γ qqH

W(t) = W(t − 1) + eqH

where 0 < β < 1 is a chosen forgetting factor. Its eigenval-
ues/eigenvectors are then evaluated by applying fast adaptive op-
timization techniques to the cost function described below.

2.2. Optimization criterion

Consider the scalar function

J (W) = E
(∥∥x(t) − WWH x(t)

∥∥2)
= trace

(
Cxx − 2WH CxxW + WH CxxWWH W

)
(2)

where W ∈C
n×p is a given unitary matrix, i.e., WH W = I.

It is shown in [12] that the optimization of J under unitary
constraint leads to the following results.

• W is a stationary point of J (W) if and only if W = VpQ, where
Vp is an n × p matrix containing any p distinct eigenvectors
of Cxx , and Q is any p × p unitary matrix.

• All stationary points of J (W) are saddle points, except when
Vp contains the p-dominant eigenvectors (resp. Vp contains
the p minor eigenvectors) of Cxx , in which case J (W) attains
its minimum (resp. attains its maximum).

3. PCA algorithms

GOPAST algorithm consists of using the OPAST algorithm to
compute the principal subspace weight matrix. Then a diagonaliza-
tion technique using Givens rotations extracts the principal com-
ponents from the weight matrix computed by OPAST. The former
algorithm is described in the next subsection while the Givens
rotation-based diagonalization technique is detailed in Section 3.2.

3.1. OPAST

Minimizing (2) iteratively leads to the following abstract form
[12] of the PAST method

W(t) = Cxx(t)W(t − 1)
(
WH (t − 1)Cxx(t)W(t − 1)

)−1
(3)

OPAST algorithm consists of (3) followed by a fast orthonor-
malization of the weight matrix W(t) [27,31]. The fast im-
plementation of (3) is based on the projection approximation
Cxx(t)W(t) ≈ Cxx(t)W(t − 1) which is clearly valid if the weight
matrix W(t) is slowly time varying. With this approximation,
the matrix product Cxx(t)W(t − 1), as well as the matrix inverse
Z(t) = (WH (t − 1)Cxx(t)W(t − 1))−1, can be computed in O (np)

flops (see [12] for more details). OPAST algorithm is summa-
rized in Table 1, showing clearly that its numerical complexity is
3np + p2 + n + O (p) flops per iteration (which is classified in the
linear complexity category).
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3.2. Givens rotation-based diagonalization technique

Once the weight matrix of principal subspace W(t) is computed
by OPAST algorithm, we extract the principal components using
Givens rotations at each iteration. Indeed, as mentioned above,
W(t) can be written as W(t) ≈ Vp(t)Q(t), where Vp(t) is the ma-
trix of the p-dominant eigenvectors of Cxx(t) and Q(t) is a given
unitary matrix. Therefore, if the matrix Q(t) is known, the desired
eigenvectors matrix Vp(t) can be obtained as Vp(t) = W(t)QH (t).
Now, to determine the unknown matrix Q(t), we observe that,
if W = VpQ, then matrix Z = (WH CxxW)−1 = QH�−1

p Q, where
�p is the p × p diagonal matrix of principal eigenvalues of Cxx .
Hence, at time instant t , we have Z(t) ≈ QH (t)�−1

p (t)Q(t) showing
that Q(t) can be computed as the unitary matrix that diagonal-
izes Z(t).

It is known [32] that any p × p unitary matrix can be decom-
posed into a product of elementary Givens rotations

Q =
∏

#sweeps

∏
1�l<m�p

�lm (4)

where #sweeps stands for the number of sweeps, each sweep rep-
resents the processing of all p(p − 1)/2 pairs of indices (l,m). The
elementary Givens rotations �lm are defined as unitary matrices
where all diagonal elements are 1 except for the two elements
equal to c = cos(θ) in rows (and columns) l and m. Likewise, all
off-diagonal elements of �lm are 0 except for the two elements
s = sin(θ)exp( jβ) and −s̄ at positions (l,m) and (m, l), respec-
tively, where s̄ denotes the conjugate of s.

The considered algorithm consists of multiplying iteratively Z at
the left and the right sides by an elementary Givens rotation and
its transconjugate (Z′ = �lmZ�H

lm) in such a way the transformed
matrix is getting ‘closer’ to diagonal structure at each iteration.
Similarly, the weight matrix W is iteratively multiplied at the right
by the transconjugate of the Givens rotation: W′ = W�H

lm .
Now, to achieve the previously mentioned diagonalization, one

needs to specify how the rotation indices are chosen at each itera-
tion as well as how the angle parameters (θ,β) of Givens rotation
are optimized. Below, we start by proposing different selection
strategies for the rotation indices before giving details on the opti-
mal computation of the rotation parameters.

3.2.1. Rotation indices selection
We introduce here four methods for the rotation indices selec-

tion. These methods are latter compared and discussed via numer-
ical experiments. These selection methods are performed according
to the different criteria shown below:

Maximum error deviation criterion: Givens rotation indices l
and m are selected as4

(l,m) = arg max
i �= j

∣∣Zi j(t)
∣∣ (5)

where Zi j(t) is the (i, j)th entry of Z(t). As we can see, l and m
are the indices of the off-diagonal element of Z(t) which devi-
ates the most from zero (i.e. from the desired diagonal structure
of matrix Z(t)). Hence, this selection is referred to as “max-
imum error deviation criterion”. This selection procedure has
been originally proposed in [28]. The resulting algorithm’s ver-
sion is referred to as Maximum Error Deviation GOPAST (MED-
GOPAST).

4 For simplicity, we still use the notation Z(t) to represent the transformed matrix
using Givens rotation, i.e. after updating, we set Z′ = Z as shown in Table 2.
Table 2
Givens rotations-based diagonalization algorithm.

Choose (l,m) according to the proposed rotation indices selection procedures
g = [Zll(t) − Zmm(t),2	(Zlm(t)),2
(Zlm(t))]T

v = g/‖g‖ sign(g1)

c =
√

v1+1
2 and s = v2+j v3

2c

Z′(t) = Z(t)

Z′
:,l(t) = cZ:,l(t) + sZ:,m(t)

Z′:,m(t) = cZ:,m(t) − sZ:,l(t)
Z′

l,:(t) = cZl,:(t) + sZm,:(t)
Z′

m,:(t) = cZm,:(t) − sZl,:(t)
Z(t) = Z′(t)
W′(t) = W(t)

W′
:,l(t) = cW:,l(t) + sW:,m(t)

W′:,m(t) = cW:,m(t) − sW:,l(t)
W(t) = W′(t)

Improved maximum error deviation criterion: For a Givens ro-
tation �lm , it is shown in Section 3.2.2 that the maximum rela-

tive diagonalization criterion increment is given by 2|Zlm|2
|Zll |2+|Zmm|2 .

We propose to use this criterion for the selection of the ro-
tation indices according to

(l,m) = arg max
i �= j

|Zi j(t)|2
|Zii(t)|2 + |Z j j(t)|2 (6)

This criterion can be seen as an improved5 version of the
selection cost function in (5) and consequently we denote
it IMED criterion and the corresponding algorithm’s version
IMED-GOPAST.

Automatic selection criterion: This criterion consists of choos-
ing Givens rotation indices (l,m) according to an automatic
selection (i.e. automatic incrementation) throughout the itera-
tions in such a way all search directions (i.e. all indices values)
are visited periodically. Hence, if (l,m) are the rotation indices
at time instant t −1, then at the current time instant, we’ll have

(
l′,m′) =

{
(l,m + 1) if m < p
(l + 1, l + 2) if m = p and l < p − 1
(1,2) if m = p and l = p − 1

(7)

This selection leads to a good estimation accuracy in the sim-
ulation results that can be explained by the fact that it allows
us to better avoid the local minima. This algorithm’s version is
referred to as Automatic Selection GOPAST (AS-GOPAST).

Hybrid criterion: It consists of combining the first and the last
selection criteria, i.e. we propose to use 2 rotations per time
instant: In the first rotation, the Givens rotation indices are
chosen according to the maximum error deviation criterion (5).
Then, if (l,m) are the Givens rotation indices of the second ro-
tation at time instant t − 1, the indices of the second rotation
at the current iteration are computed according to (7). Note
that if the new indices are the same as those of the first ro-
tation at time t , we have to increment them again according
to (7). The algorithm’s version using this selection procedure,
referred to as Hybrid GOPAST (H-GOPAST), is shown to present
a good trade-off between the convergence rate of MED-GOPAST
and the estimation accuracy of AS-GOPAST.

5 Indeed, this criterion is directly related to diagonalization criterion increment
and hence it improves, as show in Section 6, the algorithm’s convergence perfor-
mance.



JID:YDSPR AID:1319 /FLA [m5Gv1.5; v 1.83; Prn:8/10/2012; 9:33] P.4 (1-11)

4 M. Thameri et al. / Digital Signal Processing ••• (••••) •••–•••
Remark. In this work, we have chosen to use one single (or
two for the hybrid method) Givens rotation per time instant.
Obviously, one can choose to use several Givens rotations per
time instant. However, increasing the number of Givens rotations
will increase the numerical cost but it does not increase signif-
icantly H-GOPAST’s performance as shown by our simulation re-
sults.

3.2.2. Rotation parameters optimization
Once the Givens rotation indices are obtained by one of the

proposed selection procedures, we compute the rotation angles
of �lm that minimize the sum of the square modulus of the off-
diagonal entries of Z′ = �lmZ�H

lm

(θ,β) = arg min
θ,β

∑
a �=b

∣∣Z′
ab(t)

∣∣2

which can be shown to be equivalent to

(θ,β) = arg max
θ,β

(∣∣Z′
ll(t)

∣∣2 + ∣∣Z′
mm(t)

∣∣2)
(8)

Eq. (8) is referred to as diagonalization criterion. A direct compu-
tation of Z′

ll(t) and Z′
mm(t) leads to

Z′
ll(t) = c2Zll(t) + ∣∣s2

∣∣Zmm(t) + s̄cZlm(t) + scZml(t)

Z′
mm(t) = c2Zmm(t) + ∣∣s2

∣∣Zll(t) − s̄cZlm(t) − scZml(t)

Using the equalities c2 = (cos(2θ) + 1)/2, |s2| = (1 − cos(2θ))/2,
and cs = sin(2θ)e jβ/2, we obtain for (8)

(θ,β) = arg max
θ,β

[∣∣vT glm(t) + Zll(t) + Zmm(t)
∣∣2

+ ∣∣−vT glm(t) + Zll(t) + Zmm(t)
∣∣2]

(θ,β) = arg max
θ,β

∣∣vT glm(t)
∣∣2

(9)

where v is the unitary vector given by:

v =
[ cos(2θ)

sin(2θ) cos(β)

sin(2θ) sin(β)

]
and glm(t) =

[ Zll(t) − Zmm(t)
2	(Zlm(t))
2
(Zlm(t))

]
(10)

	(·) and 
(·) being the real and imaginary parts of a complex
entity. The optimal solution is given by v = glm(t)/‖glm(t)‖, and
the Givens rotation parameters c and s are calculated as

c =
√

v1 + 1

2
, s = v2 + jv3

2c

It is easy to check that this optimal solution corresponds to a

relative increment of criterion (8) equal to 2|Zlm|2
|Zll |2+|Zmm|2 .

Note that right multiplication by Givens rotation �H
lm leaves

all column vectors unchanged except for the lth and mth col-
umn vectors that are changed according to the equations of Ta-
ble 2. Similarly, left multiplication by Givens rotation �lm leaves
all rows unchanged except for the lth and mth ones as shown in
Table 2.

Remarks.

• Note that if v maximizes (9), then −v is also a maximum
argument point. In our implementation, we have chosen the
solution that has a positive-valued first entry. This is motivated
by the projection approximation condition which assumes that
W(t) ≈ W(t − 1). Hence, we select the ‘smallest’ rotation angle
that maximizes (9), i.e. among the two solutions, we choose
the Givens rotation that is the ‘closest’ to identity matrix. This
choice is important for the algorithm’s convergence and avoids
in particular the permutation of the columns of W(t) along the
iterations.

• Givens rotations provide an additional cost of (4n + 8p) flops
per rotation use to the OPAST’s complexity. The global com-
plexity remains equal to 3np + p2 + O (p + n).

4. Data whitening

We propose here to exploit the GOPAST to derive a fast adaptive
whitening algorithm. Several applications consider the following
instantaneous mixture model:

x(t) = As(t) + n(t) (11)

where x(t) = [x1(t) · · · xn(t)]T is the observation vector, A is an
n × p full column rank mixture matrix, s(t) = [s1(t) · · · sp(t)]T is
the vector of statistically independent sources and n(t) is the ob-
served noise of covariance matrix σ 2In .

We seek to transform the mixture matrix A into a unitary ma-
trix while projecting the observed vector x(t) onto the principal
subspace spanned by the column vectors of A. The used matrix in
this transformation is called the whitening matrix and denoted S.

If noise is negligible, it is shown in [33] that S can be obtained
from the eigendecomposition of Cxx according to

S = �
− 1

2
p VH

p (12)

where Vp is the n × p matrix of the principal eigenvectors of Cxx

and �p is the diagonal matrix of their associated principal eigen-
values.

In our adaptive scheme, an estimate of Vp at time t is given
by the weight matrix W(t) while an estimate of �−1

p is given by
diag(Z(t)), i.e. the diagonal matrix formed by the diagonal entries
of Z(t). Hence an estimate of whitening matrix S at time t can be
obtained as:

S(t) = [
diag

(
Z(t)

)] 1
2 WH (t) (13)

where [diag(Z(t))] 1
2 denotes the square root of the diagonal matrix

diag(Z(t)).
Now, if noise is non-negligible (i.e., σ 2 is large), it is shown

in [34] that the whitening matrix becomes:

S = [
�p − σ 2Ip

]− 1
2 VH

p (14)

In this case, the adaptive estimation of S requires the a priori es-
timation of the noise power σ 2. The latter can be achieved by
observing that:{

trace(Cxx) = trace(�p) + (n − p)σ 2

trace
([

diag(Z)
]−1) = trace(�p)

(15)

which leads to

σ 2 = trace(Cxx) − trace([diag(Z)]−1)

n − p
(16)

In the adaptive scheme, we estimate the numerator’s terms as

trace
(
Cxx(t)

) = β trace
(
Cxx(t − 1)

) + (1 − β)
∥∥x(t)

∥∥2
(17)

trace
([

diag
(
Z(t)

)]−1) =
p∑ 1

Zii(t)
(18)
i=1
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Finally, the estimate of the whitening matrix at time t is given by

S(t) = [[
diag

(
Z(t)

)]−1 − σ̂ 2(t)Ip
]− 1

2 WH (t) (19)

where σ̂ 2(t) refers to the estimate of the noise power given

by (16)–(18). Notation ( )− 1
2 refers to the inverse square root of

the diagonal matrix into consideration.

5. MSA and MCA algorithms

Minor components or subspace analysis (MCA or MSA) is
known to be a more difficult problem than PCA or PSA. For
this reason, we propose to transform the former problem into a
PCA problem that can be solved using one of the proposed algo-
rithms.

Different solutions are considered next and compared later by
simulation experiments:

• Complete EVD method: All eigenvectors of Cxx are estimated
and tracked by a Jacobi-like algorithm.

• α-GOPAST methods: Two methods are considered here using
H-GOPAST to extract the principal components of the trans-
formed covariance matrix C′

xx = αI − Cxx which correspond to
the minor components of Cxx . This transformation produces a
slight modification in H-GOPAST equations as shown next.

5.1. Complete EVD method

It consists of diagonalizing the data covariance matrix Cxx using
Jacobi-like algorithm in an adaptive scheme. This method extracts
all eigenvectors and eigenvalues which costs O (n2) flops as deter-
mined below. The covariance matrix being Hermitian, its eigende-
composition can be written as

Cxx = V�VH (20)

where V is unitary and � is diagonal. V can be estimated as the
unitary matrix that diagonalizes Cxx using a product of Givens ro-
tations as explained in Section 3.2. In the adaptive scheme, the
update of the diagonalized matrix �(t) is computed as

�(t) = β�(t − 1) + (1 − β)y(t)yH (t) (21)

where y(t) = VH (t − 1)x(t).
Here, we propose to use only two Givens rotations at each time

instant t where the Givens rotation indices using Hybrid criterion
and the rotation angles are computed as shown in Sections 3.2.1
and 3.2.2, respectively. Note that using one pair of Givens rotations
is sufficient to have a good performance as shown in the simula-
tion results (cf. Fig. 4).

This method is of moderate computational cost and is consid-
ered only for the comparison with our proposed low complex-
ity methods. Its global cost is equal to 2n2 + 12n + O (1) flops
per time instant (if many iterations are considered per time in-
stant, the global cost increases by 12n flops per additional itera-
tion).

5.2. α-GOPAST methods

The principle of these methods consists of transforming the
data covariance matrix in such a way the desired minor eigenvec-
tors can be extracted as the principal eigenvectors of the trans-
formed matrix. Based on the eigendecomposition of Cxx given
in (20), one can write

C′
xx = αI − Cxx = V[αI − �]VH (22)
where α is a scalar chosen to be larger than the largest eigenvalue
of Cxx .

C′
xx and Cxx have the same eigenvectors basis except that, by

this transformation, the eigenvectors of C′
xx are associated to the

eigenvalues λ′
i = α −λi , i = 1, . . . ,n, where λi is the ith eigenvalue

of Cxx . One can easily observe that the minor eigenvectors of Cxx

are now associated to the largest eigenvalues of C′
xx and therefore

the MCA of Cxx becomes PCA of C′
xx . Here, we propose two versions

of this method:

(1) α-GOPAST1: It consists of generating a random vector satisfying
Cbb = E[b(t)bH (t)] = αI, then the transformed covariance matrix
C′

xx is evaluated in the adaptive scheme as

C′
xx(t) = βC′

xx(t − 1) + b(t)bH (t) − x(t)xH (t) (23)

Next, we use the same approach as H-GOPAST algorithm using the
updated covariance matrix in (23) instead of (1). By replacing (23)
in (3), we obtain:

W(t) = [
βC′

xx(t − 1)W(t − 1) + XJYH ]
× [

W(t − 1)H C′
xx(t − 1)W(t − 1) + YJYH ]−1

(24)

where X = [b(t) x(t)], Y = WH (t − 1)X and J = [ 1 0
0 −1

]
. Using pro-

jection approximation and Schur’s inversion lemma [35] leads to

W(t) = W(t − 1) − 1

β
W(t − 1)Y�QH + 1

β
XJQH

− 1

β2
XJQH Y�QH

= W(t − 1) + PQH (25)

where P = − 1
β

W(t − 1)Y� + 1
β

XJ − 1
β2 XJQH Y�, Q = Z(t − 1)Y, and

� = (J + 1
β

YH Z(t − 1)Y)−1 which is the inverse of a 2 × 2 matrix.

Z(t) refers to (WH (t −1)C′
xx(t)W(t −1))−1 and can be updated with

linear complexity as follows

Z(t) = 1

β
Z(t − 1) − 1

β2
Q�QH (26)

To get an orthonormal basis, we use the following fast or-
thonormalization technique:

W⊥(t) = W(t)
(
WH (t)W(t)

)− 1
2 (27)

Taking into account the orthonormality of W(t − 1), a straightfor-
ward calculation leads to:

W⊥(t) = W(t)
(
I + M(t)

)− 1
2 (28)

where M(t) = QPH PQH and (I + M(t))− 1
2 stands for the inverse

square root of I + M(t) which can be computed with a linear com-
plexity according to the following proposition.

Proposition 5.1. Assume that M = EDE with E orthonormal, D =
diag(α1, . . . ,αd) and D + I positive definite. Then:

(
I + M(t)

)− 1
2 = I + ED′E

where D′ = diag

(
1

1 + α1
− 1, . . . ,

1

1 + αd
− 1

)
(29)

In our case, M is of rank 2 (i.e., d = 2) and its columns space is
spanned by the 2 column vectors of Q. To decompose M into the
form given in the above proposition, let us write E = QV where V
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Table 3
α-GOPAST1.

Initialization: W(0) = [ Ip

0

]
, Z(0) = Ip and J = [ 1 0

0 −1

]
Adaptation:

Generate random vector b(t) with Cbb = αI
X = [b(t) x(t)]
Y = WH X
Q = Z(t − 1)Y; � = (J + 1

β
YH Q);

P = − 1
β

WY� + 1
β

XJ − 1
β2 XJQH Y�;

M = Q(PH P)QH ;

R = pinv(Q)MQ;
[V D] = eig(R)

E = QV
Normalize the columns of E
D′ = diag( 1√

1+D(1)−1
, 1√

1+D(2)−1
)

P′ = P + W(t − 1)ED′V + PQH ED′V
W = W + P′QH

Z(t) = 1
β

Z(t − 1) − 1
β2 Q�QH

Givens rotations: Table 2.

is a 2 × 2 unknown matrix we need to estimate. For that, we can
observe that

R = Q#MQ = VDV−1 (30)

where Q# denotes the pseudo-inverse of Q.
In other words, V and D can be computed6 via the eigendecom-

position of the 2 × 2 matrix R. Finally, by applying (29) to (28), we
obtain

W⊥(t) = W(t − 1) + P′QH (31)

where P′ = P + W(t − 1)ED′V + PQH ED′V.
This algorithm’s version is summarized in Table 3.

(2) α-GOPAST2: It is based on power method followed by orthonor-
malization step, i.e.

W+(t) = C′
xx(t)W(t − 1)

W(t) = orth
(
W+(t)

)
(32)

where the transformed covariance matrix C′
xx(t) is evaluated in the

adaptive scheme using Eq. (1) as follows

C′
xx(t) = αI − Cxx(t)

= β
(
αI − Cxx(t − 1)

) + (1 − β)
(
αI − x(t)xH (t)

)
= βC′

xx(t − 1) + α(1 − β)I − (1 − β)x(t)xH (t) (33)

Replacing (33) in (32) and assuming a slow variation of the
weight matrix that allows us to approximate at the first order
Cxx(t − 1)W(t − 1) by Cxx(t − 1)W(t − 2) (this is known as pro-
jection approximation [12]) and to assume the quasi-orthogonality
of the updated weight matrix, yields

W+(t) = C′
xx(t)W(t − 1)

= γ

{
W(t − 1) − (1 − β)

γ
x(t)yH (t)

}
(34)

where γ = β +α(1−β) and y(t) = WH (t −1)x(t). One can observe
that our updated equation (34) is very similar to the proposed one
in DPM algorithm [36] except that the latter is based on the gra-
dient method in which the choice of the step of adaptation is not

6 The eigenvectors being computed up to a scalar constant, we need to normalize
the columns of E as shown in Table 3.
Table 4
α-GOPAST2.

Initialization: W(0) = [ Ip

0

]
, Z(0) = Ip

Adaptation:
y(t) = WH (t − 1)x(t)
α(t) = βα(t) + (1 − β)‖x(t)‖2

μ = − 1−β
β+α(t)(1−β)

z(t) = W(t − 1)y(t)

v(t) = z(t)
‖y(t)‖ + μ‖y(t)‖x(t)

q(t) = v(t)
‖v(t)‖ − z(t)

‖y(t)‖
W(t) = W(t − 1) + 1

‖y(t)‖ q(t)yH (t)

Cyy(t) = βCyy(t − 1) + (1 − β)y(t)yH (t)
Givens rotations: Table 2.

obvious. Our method is based on projection approximation and the
step of adaptation (− 1−β

γ ) comes in a natural way and it depends
on the forgetting factor β and the scalar α (which is computed
in the adaptive scheme as the estimate of trace(Cxx(t)) given by
α(t) = βα(t − 1) + (1 − β)‖x(t)‖2).

In the literature, one can find different ways to perform the or-
thonormalization step [18,37–39]. The most stable of them are pre-
sented in [38,18]. The technique used in the FDPM algorithm [38]
costs 6np flops per iteration while the proposed algorithm FSDPM
(Fast and Stable Data Projection Method) in [18] costs 3np flops
per iteration. Hence, we propose to use the same orthonormal-
ization technique as the one presented in [18] which is the less
expensive one that preserves the algorithm’s stability.

Regarding the extraction of the eigenvectors, we diagonalize the
p × p covariance matrix Cyy = E[yyH ] = WH CxxW using Givens
rotations. The latter covariance matrix is updated adaptively as
Cyy(t) = βCyy(t − 1) + (1 − β)y(t)yH (t).

This algorithm’s version is summarized in Table 4.

5.3. OCA algorithm for minor subspace

In the case where we are interested in the MSA only, introduce
here the Orthogonal Complement Algorithm (OCA) which com-
putes the desired minor subspace as the orthogonal complement
of the principal subspace computed by OPAST algorithm. The im-
plementation details of this algorithm are given in Appendix A and
the corresponding simulation results are discussed in Section 6.

6. Numerical results and discussion

In the present section, we show the performance of the new
versions of GOAPST algorithm which are compared in the con-
text of PCA with SVD algorithm. The performance of MSA and
MCA algorithms are compared, for the benchmark, with YAST [24]
and MC-YAST [40], respectively. They are also compared with an
existing linear complexity algorithm FSDPM [18] which has the
advantage of proved stability as compared to other existing MCA
methods, e.g. [41]. The used performance factors are given in the
following:

• Subspace performance

ζ(t) = 1

r

r∑
i=1

trace(WH
i (t)(I − WexWH

ex)Wi(t))

trace(WH
i (t)(WexWH

ex)Wi(t))

• Eigenvectors performance

ρ(t) = 1

rp

r∑
i=1

∥∥Wi(t) − Wex
∥∥2



JID:YDSPR AID:1319 /FLA [m5Gv1.5; v 1.83; Prn:8/10/2012; 9:33] P.7 (1-11)

M. Thameri et al. / Digital Signal Processing ••• (••••) •••–••• 7
where r = 150 is the number of Monte Carlo runs, Wi(t) is the
matrix of desired eigenvectors (resp. subspace) at experience i and
iteration t , Wex is the exact matrix of eigenvectors (resp. subspace)
computed from the exact data covariance matrix. Note that, since
the unit-norm eigenvectors are estimated up to unknown phase
factors, we normalized them in such a way their first entries are
non-negative real-valued in order to compute the least squares er-
ror criterion ρ(t).

Regarding the whitening algorithm, we compare it with the
RLS-type algorithm in [42]. The whitening quality is evaluated by
using the following performance factor

η(t) = 1

r

r∑
i=1

∥∥Si(t)Cxx(t)SH
i (t) − Ir

∥∥2
(35)

where Si(t) is the whitening matrix at the ith run and tth iteration.
The data is generated in the following way:

• For the PCA, we generate data according to the model

x(t) = A(t)s(t) + n(t) (36)

where the n × p matrix A corresponds to the steering matrix
on a uniform linear array [43] (the source angles of arrival are
generated randomly) and s(t) (resp. n(t)) is a p × 1 unit norm
Gaussian random source signal (resp. an n × 1 white noise sig-
nal of covariance σ 2I).

• For MCA or MSA, the data is generated according to the
model7

x(t) = As(t) (37)

where A is the Hermitian n × n square root of the ‘exact’
covariance matrix R = WDWH where D is a positive diag-
onal matrix and W is an orthonormal matrix randomly se-
lected. The n × 1 source vector s(t) is Gaussian and white, i.e.,
E[s(t)sH (t)] = I.

6.1. GOPAST versions comparison

For small system dimensions (Fig. 1), one can observe that all
GOPAST’s versions have similar performance in terms of estimation
accuracy and convergence rate. This observation can be justified by
the fact that the desired signal dimension is small (i.e., p = 3) and
hence the selection of the rotation indices for the diagonalization
of the 3 × 3 matrix Z has little impact on the algorithm’s per-
formance. We observe also that the proposed algorithms have the
same performance as the SVD applied to the sample covariance
matrix (1).

For Figs. 2 and 3, we have chosen a larger subspace rank, i.e.,
p = 9 (resp. p = 40) where the difference in the algorithms per-
formance appears. In this case, Z becomes bigger and there is a
great difference between its off-diagonal elements. One can ob-
serve that IMED-GOPAST outperforms MED-GOPAST due to the
improved selection criterion of rotation indices. AS-GOPAST has a
good estimation accuracy but it suffers from low speed of conver-
gence. H-GOPAST presents a good trade-off between IMED-GOPAST
and AS-GOPAST, especially when the principal subspace rank is
large.

7 This model is chosen in such a way the minor eigenvalues are distinct two by
two (which is not the case for the model in (36) where all minor eigenvalues are
equal to σ 2).
Fig. 1. Principal eigenvectors estimation (n = 4, p = 3).

Fig. 2. Principal eigenvectors estimation (n = 16, p = 9).

Fig. 3. Principal eigenvectors estimation (n = 45, p = 40).
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Fig. 4. Multiple Givens rotations effect.

Fig. 5. Whitening performance (n = 16, p = 9).

Fig. 4 shows that performing multiple rotations per time instant
does not increase the steady state performance but it improves
slightly the convergence rate.

6.2. Data whitening comparison

The four adaptive whitening algorithms outperform the RLS-
type [42] whitening algorithm in terms of accuracy as shown in
Fig. 5. Again, we observe that the H-GOPAST version is the best.
Note that, for this simulation, we have considered a large SNR
value and hence Eq. (13) is used to compute the whitening ma-
trix S.

In many applications (e.g. source separation problem), one
needs to whiten the noise-free covariance matrix, i.e. matrix
Cxx − σ 2I. As we mentioned earlier, if the noise power is not neg-
ligible, we need to use Eq. (19) for the updating of the whitening
matrix and hence we have to replace in criterion (35) matrix Cxx

by its noise-free counterpart Cxx − σ 2I.
Fig. 6 illustrates the gain we obtain in this case when consid-

ering the corrected algorithm’s version (red curve) of Eq. (19) as
compared to the non-corrected one (blue curve) of Eq. (13).
Fig. 6. Proposed correction for whitening algorithm in low SNR (0 dB). (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 7. Minor subspace estimation (n = 4, p = 2). (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)

6.3. MSA and MCA comparison

For small system dimensions, the proposed algorithms show a
good performance to estimate the minor subspace (Fig. 7) and the
minor components (Fig. 8) of the observed data covariance ma-
trix. As a benchmark, the performance results of YAST (blue curve)
and Complete EVD (green curve) are also provided. We can ob-
serve that OCA has a good estimation accuracy but takes more
time to converge as compared to α-GOPAST1 and α-GOPAST2.
Also, α-GOPAST2 and FSDPM [18] have almost the same perfor-
mance.

Many observations can be done from these figures:

• α-GOPAST1 has faster convergence rate as compared to α-
GOPAST2 and OCA but it suffers from poor estimation accuracy
(especially when p is large as shown in Figs. 9 and 10).

• For MSA, OCA has better estimation accuracy than the other
algorithms but suffers from low convergence rate.
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Fig. 8. Minor eigenvectors estimation (n = 4, p = 2). (For interpretation of the ref-
erences to color in this figure, the reader is referred to the web version of this
article.)

Fig. 9. Minor subspace estimation (n = 16, p = 9).

• For the MCA, α-GOPAST2 has similar performance as FSDPM
but with the advantage of an ‘automatic’ selection of the algo-
rithm’s step.8

In Figs. 9 and 10, the minor subspace rank is increased to p = 9
in which case the previous observations are confirmed and the
poor performance estimation of α-GOPAST1 is highlighted.

7. Conclusion

In this paper, we proposed new algorithms for the extraction
and tracking of principal and minor eigenvectors of a given data
covariance matrix. For the PCA, we have improved the performance
of GOAPST algorithm in terms of convergence rate and estima-
tion accuracy thanks to an appropriate selection procedure of the

8 Note, that for these numerical experiments, we have chosen (by trials) the best
step value for FSDPM. Indeed, a poor step value selection leads to poor convergence
performance or even to the algorithm’s divergence.
Fig. 10. Minor eigenvectors estimation (n = 16, p = 9).

Givens rotation indices. Then, we exploited the previous PCA al-
gorithms to derive a very efficient data whitening method that
outperforms the existing methods of similar complexity. Finally, we
have proposed new algorithms with linear complexity to solve the
MSA or MCA problems. The proposed method has some advantages
in terms of complexity, convergence rate and estimation accuracy.

Appendix A. OCA algorithm

A.1. Orthogonal Complement Algorithm (OCA) for MSA

Taking advantages of linear complexity and the efficiency of
OPAST algorithm to estimate and track the principal subspace, we
propose here an adaptive algorithm for minor subspace tracking
based on the fast computation of the orthogonal complement of
the principal subspace produced by OPAST.

Assume that W(t) ∈ C
n×m , where m = n − p, is the weight ma-

trix of principal subspace and U(t) ∈ C
n×p is the complementary

subspace orthogonal to W(t).
Breaking down W(t) as

W(t) =
[

W1(t)
W2(t)

]

where W1(t) ∈ C
p×m and W2(t) ∈ C

m×m and considering that the
m-rows of W2(t) are linearly independent, allows us to write the
rows of W1(t) in terms of those of W2(t) as follows

W1(t) = PH (t)W2(t) (38)

Hence, the transition matrix P(t) ∈C
m×p can be calculated as

PH (t) = W1(t)W−1
2 (t) (39)

One can see that

U(t) =
[

Ip

−P(t)

]
(40)

is orthogonal to W(t) (i.e., UH (t)W(t) = W1(t) − PH (t)W2(t) = 0)
and consequently its column vectors form a basis of the desired
minor subspace.

The OCA computes the current subspace weight matrix U(t) by
successively computing the following:

(1) an orthonormal basis W(t) using OPAST algorithm;
(2) the inverse of W2(t) adaptively;
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Table 5
Orthogonal complement algorithm.

Initialization: W(0) = orthonormal basis, Z(0) = Ip ,
PH (0) = W1(0)W−1

2 (0)

Adaptation: For t � 1
Execute OPAST (Table 1)
we = W−1

2 (t − 1)e2

wq = W−H
2 (t − 1)q

f = − 1
1+qH we

h = e1 + f PH (t − 1)e2 + f e1(wH
q e2)

wp = PH (t − 1)wq

P(t) = P(t − 1) + wqhH

U(t) = [ Ip

−P(t)

]

(3) a transition matrix P(t).

Fast updating of W−1
2 (t): From the last equation of Table 1,

W1(t) and W2(t) are formed as

W1(t) = W1(t − 1) + e1q (41)

W2(t) = W2(t − 1) + e2q (42)

where the vector e1 (resp. e2) contains the first p elements
(resp. last m elements) of vector e. W−1

2 (t) is updated adap-
tively by using Schur’s lemma [35] as

W−1
2 (t) = W−1

2 (t − 1) + f wewH
q (43)

where f = − 1
1+qH we

, we = W−1
2 (t − 1)e2 and wH

q =
qH W−1

2 (t − 1). This computation required 3m2 + m flops per
iteration.

Computation of the transition matrix P(t): Replacing (38)
and (43) in (39), we obtain

PH (t) = PH (t − 1) + hwH
q (44)

with h = e1 + f PH (t −1)e2 + f e1(wH
q e2). Updating P(t) required

an additional cost equal to 2mp + m flops per iteration.

The weight matrix of minor subspace U(t) is obtained by re-
placing (44) in (40)

U(t) =
[

Ip

−(P(t − 1) + wqhH )

]
= U(t − 1) + w̃qhH (45)

where w̃q = [01×p wT
q ]T .

In addition to the complexity of OPAST algorithm which is equal
to 3nm + m2 + O (m), the computation of this weight matrix pro-
vides an additional cost equals 2mp+3m2 + O (m). One can observe
that the required complexity to compute the weight matrix of the
minor subspace is still linear and equals 5nm + 2m2 + O (m).

This algorithm is useful when n � m or in the other way the
range of the minor subspace p is large. The proposed algorithm is
summarized in Table 5.
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