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Introduction

Principal (resp. Minor) Component Analysis PCA (resp. MCA) is a major problem in many practical applications including direction of arrival estimation [START_REF] Jiao | DOA estimation of multiple convolutively mixed sources based on principle component analysis[END_REF], system identification [START_REF] Solo | High dimensional point process system identification: PCA and dynamic index models[END_REF][START_REF] Tu | Subspace tracking of fast time-varying channels in precoded MIMO-OFDM systems[END_REF][START_REF]Power techniques for blind channel estimation in wireless communication systems[END_REF], spectral analysis [START_REF] Serita | Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes[END_REF], multiuser detection in communications [START_REF] Zhou | Robust multiuser detection using Kalman filter and windowed projection approximation subspace tracking algorithm[END_REF][START_REF] Sun | Orthonormal subspace tracking algorithm for space-time multiuser detection in multipath CDMA channels[END_REF] and spacetime adaptive filtering for radar systems [START_REF] Dib | PAST and OPAST algorithms for STAP in monostatic airborne radar[END_REF].

Unlike Principal (resp. Minor) Subspace Analysis PSA (resp. MSA), where only a basis of the principal (resp. minor) subspace is considered, PCA (resp. MCA) technique consists rather of estimating the eigenvectors of the data covariance matrix. While the conventional matrix algebraic approaches such as Singular Value Decomposition (SVD) provide a good solution for small system dimensions, they quickly become inappropriate (too expensive) for real time applications when the dimensions increase.

In the literature, PCA and MCA methods can be grouped in many categories [START_REF] Delmas | Subspace tracking for signal processing[END_REF][START_REF] Bartelmaos | Adaptive subspace tracking and mobile localization in wireless networks[END_REF]:

• According to their processing methodology: sequential or parallel versions: -In the sequential version [START_REF] Ali | A new subspace tracking algorithm using approximation of Gram-Schmidt procedure[END_REF][START_REF] Yang | Projection approximation subspace tracking[END_REF][START_REF] Sanger | Optimal unsupervised learning in a single-layer linear feedforward neural network[END_REF], the desired eigenvectors are extracted sequentially. This processing approach may • According to their numerical complexities: low complexity O (np), moderate complexity O (np 2 ) or O (n 2 ) and high complexity O (n 2 p) or more, where n is the size of the observation vector and p < n is the number of eigenvectors to estimate.

-Most low complexity algorithms [START_REF] Yang | Projection approximation subspace tracking[END_REF][START_REF] Ali | A new subspace tracking algorithm using approximation of Gram-Schmidt procedure[END_REF][START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF][START_REF] Peng | A modified Oja Xu MCA learning algorithm and its convergence analysis[END_REF][START_REF] Ye | A class of self-stabilizing MCA learning algorithms[END_REF][START_REF] Rong | Stable and orthonormal OJA algorithm with low complexity[END_REF] are based on gradient techniques. Unfortunately, many of these algorithms suffer from low convergence rate or numerical instability.

-Moderate complexity O (np 2 ) or O (n 2 ) is due to the orthonormalization step of the estimate eigenvectors [START_REF] Comon | Tracking a few extreme singular values and vectors in signal processing[END_REF][START_REF] Sakai | A new adaptive algorithm for minor component analysis[END_REF] or to some n × n matrix-vector products used in the PCA or MCA updating [START_REF] Badeau | YAST algorithm for minor subspace tracking[END_REF][START_REF] Zhou | Stable subspace tracking algorithm based on signed URV decomposition[END_REF]. Moderate complexity algorithms update only the desired eigen-structure and present a good trade-off between numerical complexity and performance (i.e. fast convergence rate, orthonormality of the weight matrix, good stability, . . .).

-Unlike moderate complexity algorithms, those of high complexity, i.e. O (n 2 p) or more, correspond to methods that update the complete eigen-structure with or without explicit computation of the covariance matrix [START_REF] Moonen | Updating singular value decompositions: A parallel implementations[END_REF].

In this paper, we propose algorithms for PCA and MCA problems with low complexity and improved convergence performance. 1 These algorithms are based on the Orthogonal Projection Approximation and Subspace Tracking (OPAST) algorithm [START_REF] Abed-Meraim | Fast orthonormal PAST algorithm[END_REF], originally introduced for Principal Subspace Analysis (PSA). In [START_REF] Bartelmaos | Fast principal component extraction using Givens rotations[END_REF], authors propose to use jointly OPAST algorithm and a diagonalization technique using Givens rotations to achieve the PCA. The resulting algorithm shows good performance but suffers from ill convergence when the system's dimensions increase or the number of principal components is large. To improve its performance in the large dimensional context, we propose herein different algorithm's versions using different selection procedures of the Givens rotation indices. A comparative study shows that the best algorithm's version (in terms of convergence rate and estimation accuracy) is the one associated to the hybrid selection method shown in Section 3.2.1.

On the other hand, we propose two algorithms for MCA referred to as α-GOPAST1 Finally, because of the importance of data whitening in certain practical applications, e.g. enhanced direction of arrival by pre-whitening [START_REF] Piechocki | Improving the direction-of-arrival resolution via double code filtering in WCDMA[END_REF] and blind source separation [START_REF] Comon | Handbook of Blind Source Separation[END_REF], we have proposed an adaptive data whitening algorithm based on our PCA method. This algorithm shows excellent convergence rate and better 'whitening quality' as compared to the existing methods.

This paper is organized as follows: Objectives, data model and optimization criterion are given in Section 2. Section 3 presents the Generalized OPAST (denoted GOPAST) and our contributions to improve its convergence performance. The whitening algorithm is presented in Section 4 while in Section 5, we propose different algorithms to solve MSA and MCA problems. Section 6 shows the numerical results and finally the main conclusions are summarized in Section 7.

Problem formulation

Data model and objectives

Let x(t) ∈ C n×1 be the observed data vector of covariance matrix C xx . We aim to estimate and track the p < n principal (resp. minor) eigenvectors of C xx . For that, we assume that the sorted eigenvalues of C xx satisfy the conditions:

(H1) for the PCA, λ 1 λ 2 • • • λ p > λ p+1 • • • λ n (H2) for the MCA, λ 1 λ 2 • • • λ n-p > λ n-p+1 • • • λ n
In the adaptive scheme, matrix C xx is evaluated at time instant t as 3

C xx (t) = βC xx (t -1) + (1 -β)x(t)x H (t) (1)
1 Part of this work related to PCA has been published in the conference paper [START_REF] Thameri | Fast principal component analysis and data whitening algorithms[END_REF]. 2 G stands for Generalized while α refers to the scalar coefficient used in the transformed covariance matrix

C xx = αI -C xx .
3 This is the standard updating form of the covariance matrix using an exponential window (see [12, Eq. ( 15

)]), i.e., C xx (t) = (1 -β) t i=1 β t-i x(i)x(i) H .
Table 1 OPAST algorithm.

Initialization:

W(0) = Ip 0 , Z(0) = I p Adaptation: For t 1 y = W H (t -1)x(t) q = 1 β Z(t -1)y γ = 1 1+y H q τ = 1 q 2 1 √ 1+ q 2 γ 2 ( x(t) 2 -y 2 )
-

1 e = W(t -1)(τ q -γ (1 + τ q 2 )y) + (1 + τ q 2 )γ x(t) Z(t) = 1 β Z(t -1) -γ qq H W(t) = W(t -1) + eq H
where 0 < β < 1 is a chosen forgetting factor. Its eigenvalues/eigenvectors are then evaluated by applying fast adaptive optimization techniques to the cost function described below.

Optimization criterion

Consider the scalar function

J (W) = E x(t) -WW H x(t) 2 = trace C xx -2W H C xx W + W H C xx WW H W (2) 
where W ∈ C n×p is a given unitary matrix, i.e., W H W = I.

It is shown in [START_REF] Yang | Projection approximation subspace tracking[END_REF] that the optimization of J under unitary constraint leads to the following results.

• W is a stationary point of J (W) if and only if W = V p Q, where V p is an n × p matrix containing any p distinct eigenvectors of C xx , and Q is any p × p unitary matrix. • All stationary points of J (W) are saddle points, except when V p contains the p-dominant eigenvectors (resp. V p contains the p minor eigenvectors) of C xx , in which case J (W) attains its minimum (resp. attains its maximum).

PCA algorithms

GOPAST algorithm consists of using the OPAST algorithm to compute the principal subspace weight matrix. Then a diagonalization technique using Givens rotations extracts the principal components from the weight matrix computed by OPAST. The former algorithm is described in the next subsection while the Givens rotation-based diagonalization technique is detailed in Section 3.2.

OPAST

Minimizing (2) iteratively leads to the following abstract form [START_REF] Yang | Projection approximation subspace tracking[END_REF] of the PAST method

W(t) = C xx (t)W(t -1) W H (t -1)C xx (t)W(t -1) -1 (3) 
OPAST algorithm consists of (3) followed by a fast orthonormalization of the weight matrix W(t) [START_REF] Abed-Meraim | Fast orthonormal PAST algorithm[END_REF][START_REF] Abed-Meraim | On a class of orthonormal algorithms for principal and minor subspace tracking[END_REF]. The fast implementation of (3) is based on the projection approximation 

C xx (t)W(t) ≈ C xx (t)W(t -
Z(t) = (W H (t -1)C xx (t)W(t -1)) -1 , can be computed in O (np)
flops (see [START_REF] Yang | Projection approximation subspace tracking[END_REF] for more details). OPAST algorithm is summarized in Table 1, showing clearly that its numerical complexity is 3np + p 2 + n + O (p) flops per iteration (which is classified in the linear complexity category).

Givens rotation-based diagonalization technique

Once the weight matrix of principal subspace W(t) is computed by OPAST algorithm, we extract the principal components using Givens rotations at each iteration. Indeed, as mentioned above, W(t) can be written as W(t) ≈ V p (t)Q(t), where V p (t) is the matrix of the p-dominant eigenvectors of C xx (t) and Q(t) is a given unitary matrix. Therefore, if the matrix Q(t) is known, the desired eigenvectors matrix V p (t) can be obtained as V p (t) = W(t)Q H (t). Now, to determine the unknown matrix Q(t), we observe that, It is known [START_REF] Golub | Matrix Computations[END_REF] that any p × p unitary matrix can be decomposed into a product of elementary Givens rotations

if W = V p Q, then matrix Z = (W H C xx W) -1 = Q H -1 p Q,
Q = #sweeps 1 l<m p lm ( 4 
)
where #sweeps stands for the number of sweeps, each sweep represents the processing of all p(p -1)/2 pairs of indices (l, m). The elementary Givens rotations lm are defined as unitary matrices where all diagonal elements are 1 except for the two elements equal to c = cos(θ ) in rows (and columns) l and m. Likewise, all off-diagonal elements of lm are 0 except for the two elements s = sin(θ ) exp( jβ) and -s at positions (l, m) and (m, l), respectively, where s denotes the conjugate of s.

The considered algorithm consists of multiplying iteratively Z at the left and the right sides by an elementary Givens rotation and its transconjugate (Z = lm Z H lm ) in such a way the transformed matrix is getting 'closer' to diagonal structure at each iteration. Similarly, the weight matrix W is iteratively multiplied at the right by the transconjugate of the Givens rotation: W = W H lm . Now, to achieve the previously mentioned diagonalization, one needs to specify how the rotation indices are chosen at each iteration as well as how the angle parameters (θ, β) of Givens rotation are optimized. Below, we start by proposing different selection strategies for the rotation indices before giving details on the optimal computation of the rotation parameters.

Rotation indices selection

We introduce here four methods for the rotation indices selection. These methods are latter compared and discussed via numerical experiments. These selection methods are performed according to the different criteria shown below:

Maximum error deviation criterion: Givens rotation indices l and m are selected as 4 (l, m) = arg max i = j Z ij (t) [START_REF] Serita | Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes[END_REF] where Z ij (t) is the (i, j)th entry of Z(t). As we can see, l and m are the indices of the off-diagonal element of Z(t) which deviates the most from zero (i.e. from the desired diagonal structure of matrix Z(t)). Hence, this selection is referred to as "maximum error deviation criterion". This selection procedure has been originally proposed in [START_REF] Bartelmaos | Fast principal component extraction using Givens rotations[END_REF]. The resulting algorithm's version is referred to as Maximum Error Deviation GOPAST (MED-GOPAST). 4 For simplicity, we still use the notation Z(t) to represent the transformed matrix using Givens rotation, i.e. after updating, we set Z = Z as shown in Table 2.

Table 2

Givens rotations-based diagonalization algorithm.

Choose (l, m) according to the proposed rotation indices selection procedures

g = [Z ll (t) -Z mm (t), 2 (Z lm (t)), 2 (Z lm (t))] T v = g/ g sign(g 1 ) c = v1+1 2 and s = v2+j v3 2c Z (t) = Z(t) Z :,l (t) = cZ :,l (t) + sZ :,m (t) Z :,m (t) = cZ :,m (t) -sZ :,l (t) Z l,: (t) = cZ l,: (t) + sZ m,: (t) Z m,: (t) = cZ m,: (t) -sZ l,: (t) Z(t) = Z (t) W (t) = W(t) W :,l (t) = cW :,l (t) + sW :,m (t) W :,m (t) = cW :,m (t) -sW :,l (t) W(t) = W (t)
Improved maximum error deviation criterion: For a Givens rotation lm , it is shown in Section 3.2.2 that the maximum relative diagonalization criterion increment is given by

2|Z lm | 2 |Z ll | 2 +|Z mm | 2 .
We propose to use this criterion for the selection of the rotation indices according to

(l, m) = arg max i = j |Z ij (t)| 2 |Z ii (t)| 2 + |Z jj (t)| 2 (6)
This criterion can be seen as an improved 5 version of the selection cost function in [START_REF] Serita | Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes[END_REF] and consequently we denote it IMED criterion and the corresponding algorithm's version IMED-GOPAST. 

Automatic selection criterion:

l , m = (l, m + 1) if m < p (l + 1, l + 2) if m = p and l < p -1 (1, 2) if m = p and l = p -1 (7) 
This selection leads to a good estimation accuracy in the simulation results that can be explained by the fact that it allows us to better avoid the local minima. This algorithm's version is referred to as Automatic Selection GOPAST (AS-GOPAST).

Hybrid criterion: It consists of combining the first and the last selection criteria, i.e. we propose to use 2 rotations per time instant: In the first rotation, the Givens rotation indices are chosen according to the maximum error deviation criterion [START_REF] Serita | Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes[END_REF].

Then, if (l, m) are the Givens rotation indices of the second rotation at time instant t -1, the indices of the second rotation at the current iteration are computed according to [START_REF] Sun | Orthonormal subspace tracking algorithm for space-time multiuser detection in multipath CDMA channels[END_REF]. Note that if the new indices are the same as those of the first rotation at time t, we have to increment them again according to [START_REF] Sun | Orthonormal subspace tracking algorithm for space-time multiuser detection in multipath CDMA channels[END_REF]. The algorithm's version using this selection procedure, referred to as Hybrid GOPAST (H-GOPAST), is shown to present a good trade-off between the convergence rate of MED-GOPAST and the estimation accuracy of AS-GOPAST.

Remark. In this work, we have chosen to use one single (or two for the hybrid method) Givens rotation per time instant. Obviously, one can choose to use several Givens rotations per time instant. However, increasing the number of Givens rotations will increase the numerical cost but it does not increase significantly H-GOPAST's performance as shown by our simulation results.

Rotation parameters optimization

Once the Givens rotation indices are obtained by one of the proposed selection procedures, we compute the rotation angles of lm that minimize the sum of the square modulus of the off-

diagonal entries of Z = lm Z H lm (θ, β) = arg min θ,β a =b Z ab (t) 2
which can be shown to be equivalent to

(θ, β) = arg max θ,β Z ll (t) 2 + Z mm (t) 2 (8) 
Eq. ( 8) is referred to as diagonalization criterion. A direct computation of Z ll (t) and Z mm (t) leads to

Z ll (t) = c 2 Z ll (t) + s 2 Z mm (t) + scZ lm (t) + scZ ml (t) Z mm (t) = c 2 Z mm (t) + s 2 Z ll (t) -scZ lm (t) -scZ ml (t)
Using the equalities

c 2 = (cos(2θ) + 1)/2, |s 2 | = (1 -cos(2θ ))/2,
and cs = sin(2θ)e jβ /2, we obtain for ( 8)

(θ, β) = arg max θ,β v T g lm (t) + Z ll (t) + Z mm (t) 2 + -v T g lm (t) + Z ll (t) + Z mm (t) 2 (θ, β) = arg max θ,β v T g lm (t) 2 ( 9 
)
where v is the unitary vector given by:

v = cos(2θ) sin(2θ) cos(β) sin(2θ) sin(β) and g lm (t) = Z ll (t) -Z mm (t) 2 (Z lm (t)) 2 (Z lm (t)) ( 10 
)
(•) and (•) being the real and imaginary parts of a complex entity. The optimal solution is given by v = g lm (t)/ g lm (t) , and the Givens rotation parameters c and s are calculated as

c = v 1 + 1 2 , s = v 2 + jv 3 2c
It is easy to check that this optimal solution corresponds to a relative increment of criterion (8) equal to

2|Z lm | 2 |Z ll | 2 +|Z mm | 2 .

Note that right multiplication by Givens rotation

H lm leaves all column vectors unchanged except for the lth and mth column vectors that are changed according to the equations of Table 2. Similarly, left multiplication by Givens rotation lm leaves all rows unchanged except for the lth and mth ones as shown in Table 2.

Remarks.

• Note that if v maximizes (9), then -v is also a maximum argument point. In our implementation, we have chosen the solution that has a positive-valued first entry. This is motivated by the projection approximation condition which assumes that W(t) ≈ W(t -1). Hence, we select the 'smallest' rotation angle that maximizes (9), i.e. among the two solutions, we choose the Givens rotation that is the 'closest' to identity matrix. This choice is important for the algorithm's convergence and avoids in particular the permutation of the columns of W(t) along the iterations.

• Givens rotations provide an additional cost of (4n + 8p) flops per rotation use to the OPAST's complexity. The global complexity remains equal to 3np + p 2 + O (p + n).

Data whitening

We propose here to exploit the GOPAST to derive a fast adaptive whitening algorithm. Several applications consider the following instantaneous mixture model:

x(t) = As(t) + n(t) [START_REF] Ali | A new subspace tracking algorithm using approximation of Gram-Schmidt procedure[END_REF] where

x(t) = [x 1 (t) • • • x n (t)] T is the observation vector, A is an n × p full column rank mixture matrix, s(t) = [s 1 (t) • • • s p (t)] T is
the vector of statistically independent sources and n(t) is the observed noise of covariance matrix σ 2 I n .

We seek to transform the mixture matrix A into a unitary matrix while projecting the observed vector x(t) onto the principal subspace spanned by the column vectors of A. The used matrix in this transformation is called the whitening matrix and denoted S.

If noise is negligible, it is shown in [START_REF] Zhu | Natural gradient-based recursive leastsquares algorithm for adaptive blind source separation[END_REF] that S can be obtained from the eigendecomposition of C xx according to [START_REF] Yang | Projection approximation subspace tracking[END_REF] where V p is the n × p matrix of the principal eigenvectors of C xx and p is the diagonal matrix of their associated principal eigenvalues.

S = -1 2 p V H p
In our adaptive scheme, an estimate of V p at time t is given by the weight matrix W(t) while an estimate of -1 p is given by diag(Z(t)), i.e. the diagonal matrix formed by the diagonal entries of Z(t). Hence an estimate of whitening matrix S at time t can be obtained as: [START_REF] Sanger | Optimal unsupervised learning in a single-layer linear feedforward neural network[END_REF] where [diag(Z(t))] 1 2 denotes the square root of the diagonal matrix diag(Z(t)). Now, if noise is non-negligible (i.e., σ 2 is large), it is shown in [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF] that the whitening matrix becomes: [START_REF] Moonen | Updating singular value decompositions: A parallel implementations[END_REF] In this case, the adaptive estimation of S requires the a priori estimation of the noise power σ 2 . The latter can be achieved by observing that:

S(t) = diag Z(t) 1 2 W H (t)
S = p -σ 2 I p -1 2 V H p
trace(C xx ) = trace( p ) + (n -p)σ 2 trace diag(Z) -1 = trace( p ) (15) which leads to σ 2 = trace(C xx ) -trace([diag(Z)] -1 ) n -p (16) 
In the adaptive scheme, we estimate the numerator's terms as trace

C xx (t) = β trace C xx (t -1) + (1 -β) x(t) 2 (17) 
trace diag Z(t)

-1 = p i=1 1 Z ii (t) (18)
Finally, the estimate of the whitening matrix at time t is given by

S(t) = diag Z(t) -1 -σ 2 (t)I p -1 2 W H (t) ( 19 
)
where σ 2 (t) refers to the estimate of the noise power given by ( 16)- [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF]. Notation ( ) -1 2 refers to the inverse square root of the diagonal matrix into consideration.

MSA and MCA algorithms

Minor components or subspace analysis (MCA or MSA) is known to be a more difficult problem than PCA or PSA. For this reason, we propose to transform the former problem into a PCA problem that can be solved using one of the proposed algorithms.

Different solutions are considered next and compared later by simulation experiments:

• Complete EVD method: All eigenvectors of C xx are estimated and tracked by a Jacobi-like algorithm.

• α-GOPAST methods: Two methods are considered here using H-GOPAST to extract the principal components of the transformed covariance matrix C xx = αI -C xx which correspond to the minor components of C xx . This transformation produces a slight modification in H-GOPAST equations as shown next.

Complete EVD method

It consists of diagonalizing the data covariance matrix C xx using Jacobi-like algorithm in an adaptive scheme. This method extracts all eigenvectors and eigenvalues which costs O (n 2 ) flops as determined below. The covariance matrix being Hermitian, its eigendecomposition can be written as

C xx = V V H ( 20 
)
where V is unitary and is diagonal. V can be estimated as the unitary matrix that diagonalizes C xx using a product of Givens rotations as explained in Section 3.2. In the adaptive scheme, the update of the diagonalized matrix (t) is computed as [START_REF] Rong | Stable and orthonormal OJA algorithm with low complexity[END_REF] where y(t) = V H (t -1)x(t).

(t) = β (t -1) + (1 -β)y(t)y H (t)
Here, we propose to use only two Givens rotations at each time instant t where the Givens rotation indices using Hybrid criterion and the rotation angles are computed as shown in Sections 3.2.1 and 3.2.2, respectively. Note that using one pair of Givens rotations is sufficient to have a good performance as shown in the simulation results (cf. Fig. 4).

This method is of moderate computational cost and is considered only for the comparison with our proposed low complexity methods. Its global cost is equal to 2n 2 + 12n + O (1) flops per time instant (if many iterations are considered per time instant, the global cost increases by 12n flops per additional iteration).

α-GOPAST methods

The principle of these methods consists of transforming the data covariance matrix in such a way the desired minor eigenvectors can be extracted as the principal eigenvectors of the transformed matrix. Based on the eigendecomposition of C xx given in [START_REF] Ye | A class of self-stabilizing MCA learning algorithms[END_REF], one can write

C xx = αI -C xx = V[αI -]V H (22)
where α is a scalar chosen to be larger than the largest eigenvalue of C xx .

C xx and C xx have the same eigenvectors basis except that, by this transformation, the eigenvectors of C xx are associated to the eigenvalues λ i = αλ i , i = 1, . . . ,n, where λ i is the ith eigenvalue of C xx . One can easily observe that the minor eigenvectors of C xx are now associated to the largest eigenvalues of C xx and therefore the MCA of C xx becomes PCA of C xx . Here, we propose two versions of this method:

(1) α-GOPAST1: It consists of generating a random vector satisfying C bb = E[b(t)b H (t)] = αI, then the transformed covariance matrix C xx is evaluated in the adaptive scheme as

C xx (t) = βC xx (t -1) + b(t)b H (t) -x(t)x H (t) (23)
Next, we use the same approach as H-GOPAST algorithm using the updated covariance matrix in [START_REF] Sakai | A new adaptive algorithm for minor component analysis[END_REF] instead of [START_REF] Jiao | DOA estimation of multiple convolutively mixed sources based on principle component analysis[END_REF]. By replacing [START_REF] Sakai | A new adaptive algorithm for minor component analysis[END_REF] in [START_REF] Tu | Subspace tracking of fast time-varying channels in precoded MIMO-OFDM systems[END_REF], we obtain:

W(t) = βC xx (t -1)W(t -1) + XJY H × W(t -1) H C xx (t -1)W(t -1) + YJY H -1 (24)
where X = [b(t) x(t)], Y = W H (t -1)X and J = 1 0 0 -1 . Using projection approximation and Schur's inversion lemma [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF] leads to

W(t) = W(t -1) - 1 β W(t -1)Y Q H + 1 β XJQ H - 1 β 2 XJQ H Y Q H = W(t -1) + PQ H ( 25 
)
where

P = -1 β W(t -1)Y + 1 β XJ -1 β 2 XJQ H Y , Q = Z(t -1)Y, and = (J + 1 β Y H Z(t -1)Y) -1
which is the inverse of a 2 × 2 matrix. Z(t) refers to (W H (t -1)C xx (t)W(t -1)) -1 and can be updated with linear complexity as follows

Z(t) = 1 β Z(t -1) - 1 β 2 Q Q H ( 26 
)
To get an orthonormal basis, we use the following fast orthonormalization technique:

W ⊥ (t) = W(t) W H (t)W(t) -1 2 (27)
Taking into account the orthonormality of W(t -1), a straightforward calculation leads to: [START_REF] Bartelmaos | Fast principal component extraction using Givens rotations[END_REF] where M(t) = QP H PQ H and (I + M(t)) -1 2 stands for the inverse square root of I + M(t) which can be computed with a linear complexity according to the following proposition. 

W ⊥ (t) = W(t) I + M(t) -1 2
I + M(t) -1 2 = I + ED E where D = diag 1 1 + α 1 -1, . . . , 1 1 + α d -1 (29)
In our case, M is of rank 2 (i.e., d = 2) and its columns space is spanned by the 2 column vectors of Q. To decompose M into the form given in the above proposition, let us write E = QV where V Table 3 α-GOPAST1.

Initialization: W(0) = Ip 0 , Z(0) = I p and J = 1 0 0 -1 Adaptation: Generate random vector b(t) with C bb = αI X = [b(t) x(t)] Y = W H X Q = Z(t -1)Y; = (J + 1 β Y H Q); P = -1 β WY + 1 β XJ -1 β 2 XJQ H Y ; M = Q(P H P)Q H ; R = pinv(Q)MQ; [V D] = eig(R) E = QV Normalize the columns of E D = diag( 1 √ 1+D(1)-1 , 1 √ 1+D(2)-1 ) P = P + W(t -1)ED V + PQ H ED V W = W + P Q H Z(t) = 1 β Z(t -1) -1 β 2 Q Q H Givens rotations: Table 2.
is a 2 × 2 unknown matrix we need to estimate. For that, we can observe that

R = Q # MQ = VDV -1 (30)
where Q # denotes the pseudo-inverse of Q.

In other words, V and D can be computed 6 via the eigendecomposition of the 2 × 2 matrix R. Finally, by applying ( 29) to [START_REF] Bartelmaos | Fast principal component extraction using Givens rotations[END_REF], we obtain

W ⊥ (t) = W(t -1) + P Q H (31) 
where

P = P + W(t -1)ED V + PQ H ED V.
This algorithm's version is summarized in Table 3.

(2) α-GOPAST2: It is based on power method followed by orthonormalization step, i.e.

W + (t) = C xx (t)W(t -1) W(t) = orth W + (t) (32) 
where the transformed covariance matrix C xx (t) is evaluated in the adaptive scheme using Eq. ( 1) as follows

C xx (t) = αI -C xx (t) = β αI -C xx (t -1) + (1 -β) αI -x(t)x H (t) = βC xx (t -1) + α(1 -β)I -(1 -β)x(t)x H (t) (33) 
Replacing [START_REF] Zhu | Natural gradient-based recursive leastsquares algorithm for adaptive blind source separation[END_REF] in [START_REF] Golub | Matrix Computations[END_REF] and assuming a slow variation of the weight matrix that allows us to approximate at the first order

C xx (t -1)W(t -1) by C xx (t -1)W(t - 2 
) (this is known as projection approximation [START_REF] Yang | Projection approximation subspace tracking[END_REF]) and to assume the quasi-orthogonality of the updated weight matrix, yields

W + (t) = C xx (t)W(t -1) = γ W(t -1) - (1 -β) γ x(t)y H (t) (34) 
where γ = β + α(1β) and y(t) = W H (t -1)x(t). One can observe that our updated equation ( 34) is very similar to the proposed one in DPM algorithm [START_REF] Yang | Adaptive eigensubspace algorithms for direction or frequency estimation and tracking[END_REF] except that the latter is based on the gradient method in which the choice of the step of adaptation is not 6 The eigenvectors being computed up to a scalar constant, we need to normalize the columns of E as shown in Table 3.

Table 4 α-GOPAST2.

Initialization: W(0) = Ip 0
, Z(0) = I p Adaptation:

y(t) = W H (t -1)x(t) α(t) = βα(t) + (1 -β) x(t) 2 μ = - 1-β β+α(t)(1-β) z(t) = W(t -1)y(t) v(t) = z(t) y(t) + μ y(t) x(t) q(t) = v(t) v(t) -z(t) y(t) W(t) = W(t -1) + 1 y(t) q(t)y H (t) C yy (t) = βC yy (t -1) + (1 -β)y(t)y H (t)
Givens rotations: Table 2. obvious. Our method is based on projection approximation and the step of adaptation (- 1-β γ ) comes in a natural way and it depends on the forgetting factor β and the scalar α (which is computed in the adaptive scheme as the estimate of trace(C xx (t)) given by

α(t) = βα(t -1) + (1 -β) x(t) 2 ).
In the literature, one can find different ways to perform the orthonormalization step [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF][START_REF] Attallah | The generalized Rayleigh's quotient adaptive noise subspace algorithm: A householder transformation-based implementation[END_REF][START_REF] Doukopoulos | Fast and stable subspace tracking[END_REF][START_REF] Attallah | Low-cost adaptive algorithm for noise subspace estimation[END_REF]. The most stable of them are presented in [START_REF] Doukopoulos | Fast and stable subspace tracking[END_REF][START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF]. The technique used in the FDPM algorithm [START_REF] Doukopoulos | Fast and stable subspace tracking[END_REF] costs 6np flops per iteration while the proposed algorithm FSDPM (Fast and Stable Data Projection Method) in [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF] costs 3np flops per iteration. Hence, we propose to use the same orthonormalization technique as the one presented in [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF] which is the less expensive one that preserves the algorithm's stability.

Regarding the extraction of the eigenvectors, we diagonalize the

p × p covariance matrix C yy = E[yy H ] = W H C xx W using Givens
rotations. The latter covariance matrix is updated adaptively as

C yy (t) = βC yy (t -1) + (1 -β)y(t)y H (t).
This algorithm's version is summarized in Table 4.

OCA algorithm for minor subspace

In the case where we are interested in the MSA only, introduce here the Orthogonal Complement Algorithm (OCA) which computes the desired minor subspace as the orthogonal complement of the principal subspace computed by OPAST algorithm. The implementation details of this algorithm are given in Appendix A and the corresponding simulation results are discussed in Section 6.

Numerical results and discussion

In the present section, we show the performance of the new versions of GOAPST algorithm which are compared in the context of PCA with SVD algorithm. The performance of MSA and MCA algorithms are compared, for the benchmark, with YAST [START_REF] Badeau | YAST algorithm for minor subspace tracking[END_REF] and MC-YAST [START_REF] Bartelmaos | Fast minor component extraction using Givens rotations[END_REF], respectively. They are also compared with an existing linear complexity algorithm FSDPM [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF] which has the advantage of proved stability as compared to other existing MCA methods, e.g. [START_REF] Bartelmaos | Fast adaptive algorithms for minor component analysis using Householder transformation[END_REF]. The used performance factors are given in the following:

• Subspace performance ζ(t) = 1 r r i=1 trace(W H i (t)(I -W ex W H ex )W i (t)) trace(W H i (t)(W ex W H ex )W i (t)) • Eigenvectors performance ρ(t) = 1 rp r i=1 W i (t) -W ex
where r = 150 is the number of Monte Carlo runs, W i (t) is the matrix of desired eigenvectors (resp. subspace) at experience i and iteration t, W ex is the exact matrix of eigenvectors (resp. subspace) computed from the exact data covariance matrix. Note that, since the unit-norm eigenvectors are estimated up to unknown phase factors, we normalized them in such a way their first entries are non-negative real-valued in order to compute the least squares error criterion ρ(t).

Regarding the whitening algorithm, we compare it with the RLS-type algorithm in [START_REF] Zhu | Adaptive RLS Implementation of Non-Negative PCA Algorithm for Blind Source Separation[END_REF]. The whitening quality is evaluated by using the following performance factor

η(t) = 1 r r i=1 S i (t)C xx (t)S H i (t) -I r 2 ( 35 
)
where S i (t) is the whitening matrix at the ith run and tth iteration.

The data is generated in the following way:

• For the PCA, we generate data according to the model

x(t) = A(t)s(t) + n(t) (36) 
where the n × p matrix A corresponds to the steering matrix on a uniform linear array [START_REF] Bresler | On the number of signals resolvable by a uniform linear array[END_REF] (the source angles of arrival are generated randomly) and s(t) (resp. n(t)) is a p × 1 unit norm Gaussian random source signal (resp. an n × 1 white noise signal of covariance σ 2 I).

• For MCA or MSA, the data is generated according to the model 7

x(t) = As(t) [START_REF] Attallah | The generalized Rayleigh's quotient adaptive noise subspace algorithm: A householder transformation-based implementation[END_REF] where A is the Hermitian n × n square root of the 'exact' covariance matrix R = WDW H where D is a positive diagonal matrix and W is an orthonormal matrix randomly selected. The n × 1 source vector s(t) is Gaussian and white, i.e., E[s(t)s H (t)] = I.

GOPAST versions comparison

For small system dimensions (Fig. 1), one can observe that all GOPAST's versions have similar performance in terms of estimation accuracy and convergence rate. This observation can be justified by the fact that the desired signal dimension is small (i.e., p = 3) and hence the selection of the rotation indices for the diagonalization of the 3 × 3 matrix Z has little impact on the algorithm's performance. We observe also that the proposed algorithms have the same performance as the SVD applied to the sample covariance matrix [START_REF] Jiao | DOA estimation of multiple convolutively mixed sources based on principle component analysis[END_REF].

For Figs. 2 and3, we have chosen a larger subspace rank, i.e., p = 9 (resp. p = 40) where the difference in the algorithms performance appears. In this case, Z becomes bigger and there is a great difference between its off-diagonal elements. One can observe that IMED-GOPAST outperforms MED-GOPAST due to the improved selection criterion of rotation indices. AS-GOPAST has a good estimation accuracy but it suffers from low speed of convergence. H-GOPAST presents a good trade-off between IMED-GOPAST and AS-GOPAST, especially when the principal subspace rank is large. 7 This model is chosen in such a way the minor eigenvalues are distinct two by two (which is not the case for the model in [START_REF] Yang | Adaptive eigensubspace algorithms for direction or frequency estimation and tracking[END_REF] where all minor eigenvalues are equal to σ 2 ). Fig. 4 shows that performing multiple rotations per time instant does not increase the steady state performance but it improves slightly the convergence rate.

Data whitening comparison

The four adaptive whitening algorithms outperform the RLStype [START_REF] Zhu | Adaptive RLS Implementation of Non-Negative PCA Algorithm for Blind Source Separation[END_REF] whitening algorithm in terms of accuracy as shown in Fig. 5. Again, we observe that the H-GOPAST version is the best. Note that, for this simulation, we have considered a large SNR value and hence Eq. ( 13) is used to compute the whitening matrix S.

In many applications (e.g. source separation problem), one needs to whiten the noise-free covariance matrix, i.e. matrix C xx -σ 2 I. As we mentioned earlier, if the noise power is not negligible, we need to use Eq. ( 19) for the updating of the whitening matrix and hence we have to replace in criterion [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF] matrix C xx by its noise-free counterpart C xxσ 2 I. Fig. 6 illustrates the gain we obtain in this case when considering the corrected algorithm's version (red curve) of Eq. ( 19) as compared to the non-corrected one (blue curve) of Eq. ( 13). 

MSA and MCA comparison

For small system dimensions, the proposed algorithms show a good performance to estimate the minor subspace (Fig. 7) and the minor components (Fig. 8) of the observed data covariance matrix. As a benchmark, the performance results of YAST (blue curve) and Complete EVD (green curve) are also provided. We can observe that OCA has a good estimation accuracy but takes more time to converge as compared to α-GOPAST1 and α-GOPAST2. Also, α-GOPAST2 and FSDPM [START_REF] Wang | A novel orthonormalization matrix based fast and stable DPM algorithm for principal and minor subspace tracking[END_REF] have almost the same performance.

Many observations can be done from these figures:

• α-GOPAST1 has faster convergence rate as compared to α-GOPAST2 and OCA but it suffers from poor estimation accuracy (especially when p is large as shown in Figs. 9 and 10).

• For MSA, OCA has better estimation accuracy than the other algorithms but suffers from low convergence rate. • For the MCA, α-GOPAST2 has similar performance as FSDPM but with the advantage of an 'automatic' selection of the algorithm's step. 8 In Figs. 9 and 10, the minor subspace rank is increased to p = 9 in which case the previous observations are confirmed and the poor performance estimation of α-GOPAST1 is highlighted.

Conclusion

In this paper, we proposed new algorithms for the extraction and tracking of principal and minor eigenvectors of a given data covariance matrix. For the PCA, we have improved the performance of GOAPST algorithm in terms of convergence rate and estimation accuracy thanks to an appropriate selection procedure of the 8 Note, that for these numerical experiments, we have chosen (by trials) the best step value for FSDPM. Indeed, a poor step value selection leads to poor convergence performance or even to the algorithm's divergence. Givens rotation indices. Then, we exploited the previous PCA algorithms to derive a very efficient data whitening method that outperforms the existing methods of similar complexity. Finally, we have proposed new algorithms with linear complexity to solve the MSA or MCA problems. The proposed method has some advantages in terms of complexity, convergence rate and estimation accuracy.

Appendix A. OCA algorithm

A.1. Orthogonal Complement Algorithm (OCA) for MSA

Taking advantages of linear complexity and the efficiency of OPAST algorithm to estimate and track the principal subspace, we propose here an adaptive algorithm for minor subspace tracking based on the fast computation of the orthogonal complement of the principal subspace produced by OPAST.

Assume that W(t) ∈ C n×m , where m = np, is the weight matrix of principal subspace and U(t) ∈ C n×p is the complementary subspace orthogonal to W(t).

Breaking down W(t) as

W(t) = W 1 (t) W 2 (t)
where and consequently its column vectors form a basis of the desired minor subspace. The OCA computes the current subspace weight matrix U(t) by successively computing the following:

(1) an orthonormal basis W(t) using OPAST algorithm;

(2) the inverse of W 2 (t) adaptively;

  This criterion consists of choosing Givens rotation indices (l, m) according to an automatic selection (i.e. automatic incrementation) throughout the iterations in such a way all search directions (i.e. all indices values) are visited periodically. Hence, if (l, m) are the rotation indices at time instant t -1, then at the current time instant, we'll have
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 10 Fig. 10. Minor eigenvectors estimation (n = 16, p = 9).

  2 and α-GOPAST2 respectively. These algorithms use the transformed covariance matrix C xx = αI -C xx where α is a properly chosen scalar factor and C xx is the covari-

ance matrix of the observed data. This transformation allows us to compute the minor eigenvectors of C xx as the principal eigenvectors of C xx . We propose 2 algorithm's versions depending on the way the transformed covariance matrix and the desired weight matrix are updated. For both algorithms, fast implementations are proposed and analyzed through numerical simulation.

  where p is the p × p diagonal matrix of principal eigenvalues of C xx .

	Hence, at time instant t, we have Z(t) ≈ Q H (t) -1 p (t)Q(t) showing
	that Q(t) can be computed as the unitary matrix that diagonal-
	izes Z(t).

  W 1 (t) ∈ C p×m and W 2 (t) ∈ C m×m and considering that the m-rows of W 2 (t) are linearly independent, allows us to write the rows of W 1 (t) in terms of those of W 2 (t) as follows W 1 (t) = P H (t)W 2 (t)

			(38)
	Hence, the transition matrix P(t) ∈ C m×p can be calculated as	
	P H (t) = W 1 (t)W -1 2 (t)	(39)
	One can see that	
	U(t) =	I p -P(t)	(40)

is orthogonal to W(t) (i.e., U H (t)W(t) = W 1 (t) -P H (t)W 2 (t) = 0)

Indeed, this criterion is directly related to diagonalization criterion increment and hence it improves, as show in Section

6, the algorithm's convergence performance.
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Orthogonal complement algorithm.

Initialization: W(0) = orthonormal basis, Z(0) = I p , P H (0) = W 1 (0)W -1 2 (0)

Adaptation: For t 1 Execute OPAST (Table 1) -1 2 (t -1)e 2 w q = W -H 2 (t -1)q f = -1 1+q H we h = e 1 + f P H (t -1)e 2 + f e 1 (w H q e 2 ) w p = P H (t -1)w q P(t) = P(t -1) + w q h H U(t) = Ip -P(t)

(3) a transition matrix P(t).

Fast updating of W -1

(t):

From the last equation of 

where the vector e 1 (resp. e 2 ) contains the first p elements (resp. last m elements) of vector e. W -1 2 (t) is updated adaptively by using Schur's lemma [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF] as

where f = -1 1+q H w e

, w e = W -1 2 (t -1)e 2 and w H q = q H W -1 2 (t -1). This computation required 3m 2 + m flops per iteration.

Computation of the transition matrix P(t):

Replacing [START_REF] Doukopoulos | Fast and stable subspace tracking[END_REF] and [START_REF] Bresler | On the number of signals resolvable by a uniform linear array[END_REF] in [START_REF] Attallah | Low-cost adaptive algorithm for noise subspace estimation[END_REF], we obtain

with h = e 1 + f P H (t -1)e 2 + f e 1 (w H q e 2 ). Updating P(t) required an additional cost equal to 2mp + m flops per iteration.

The weight matrix of minor subspace U(t) is obtained by replacing (44) in ( 40)

where wq = [0 1×p w T q ] T .

In addition to the complexity of OPAST algorithm which is equal

, the computation of this weight matrix provides an additional cost equals 2mp +3m 2 + O (m). One can observe that the required complexity to compute the weight matrix of the minor subspace is still linear and equals 5nm
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