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Abstract—Multi-voxel pattern analysis has become an impor-
tant tool for neuroimaging data analysis by allowing to predict a
behavioral variable from the imaging patterns. However, standard
models do not take into account the differences that can exist
between subjects, so that they perform poorly in the inter-
subject prediction task. We here introduce a model called Multiple
Subject Learning (MSL) that is designed to effectively combine
the information provided by fMRI data from several subjects; in
a first stage, a weighting of single-subject kernels is learnt using
multiple kernel learning to produce a classifier; then, a data
shuffling procedure allows to build ensembles of such classifiers,
which are then combined by a majority vote. We show that MSL
outperforms other models in the inter-subject prediction task and
we discuss the empirical behavior of this new model.

I. INTRODUCTION

Background. In recent years, the use of machine learning
approaches in neuroimaging has gained in popularity. The
most prominent application of machine learning is the so-
called multi-voxel pattern analysis (MVPA), that consists in
predicting a behavioral variable from functional MRI data. The
appeal of these multivariate methods relies on their increased
sensitivity compared to standard univariate models. However,
their generalization power on data recorded in new subjects
suffers from the large variability that exists within a population.

Contribution. We specifically focus on the so-called inter-
subject prediction problem and we propose a method that is
precisely aimed at giving reliable predictions for data of any
subject for which no data was accessed to during the learning
process. Our method builds upon a hierarchical probabilistic
setting, and it makes use of two well-known tools from the
machine learning artillery to deal with heterogeneous and
variance-inducing data : multiple kernel learning (MKL [3],
[5], [8]), and data sampling/shuffling [2], [12].

Related work. The standard MVPA paradigm to address
the inter-subject prediction task consists in pooling together
all samples from the subjects available at training time. A
single classifier is estimated in a supervised manner on this
dataset to be later tested on data from new subjects. This
paradigm, which is used by default in the literature, largely
ignores the various sources of inter-subject variability, namely
the differences in anatomy and functional organization across
subjects, and the fact that all samples are not drawn from the
same probability distribution. Therefore there is a crucial need
for more elaborate models specifically tuned for the inter-
subject prediction task, like those recently proposed in [6],
[7], [11] and the new model we introduce in this paper.

II. METHODS

A. Setting and Addressed Problems

Training dataset. We consider the following setting. At train-
ing time, we have access to data from S subjects, indexed
by s ∈ S

.
= {1 . . . S}. For each subject s, we are provided

with a training labeled training dataset Ds
.
= {(xs

n, y
s
n)}

N
n=1,

where each pair (xs
n, y

s
n) is made of an observation vector xs

n,
assumed to be an element of X

.
= R

F , and a label/category
ysn assumed to be an element of C

.
= {1, . . . , C}. The whole

training set is denoted as

D
.
= ∪S

s=1 Ds.

We additionally assume that each subject has participated in
exactly the same fMRI protocol, so that ∀n ∈ {1 . . . N}, y1n =
y2n = . . . = ySn and, in what follows, yn will be used to denote
the category associated with the n-th sample. We will use y

as a compact notation for the vector y
.
= [y1 · · · yN ] ∈ CN .

Probabilistic setting. A hierarchical —hierarchical, because
distributions on distributions are considered— probabilistic
setting that may be associated with the generation of D is
as follows. There is an unkown and fixed distribution Ls

defined on the space of distributions on X × C. A realization
Lo
|s : X × C → R of a random variable distributed according

to Ls is the unknown and fixed distribution associated with
subject s which governs training set Ds. More precisely, if
Lo
|s;y : X → R is the conditional law defined by

Lo
|s;y(·)

.
= Lo

|s(·, y),

then, Ds is a random sample distributed according to

Ds ∼
N
⊗

n=1
Lo
|s;yn

. (1)

The probabilistic setting we have just described allows us to
say that training sample D (given y) is so that:

D ∼
S
⊗
s=1

[

Ls
N
⊗

n=1
Lo
|s;yn

]

,

and the core random pair (s, (Xs, Y s)) that defines our learn-
ing problem is therefore distributed according to1

L
.
= Ls ⊗ Lo

|s. (2)

Addressed problems. The main problem that we address is
then to learn from D a predictor f : X → C with risk

R(f)
.
= P(s,(Xs,Y s))∼L(f(X

s) 6= Y s)

1Note that the work in [1], theoretically shows how learning from data
sampled according to a distribution conditioned on y provides results regarding
learning from the corresponding unconditional distribution.



as small as possible. It is essential to understand that the
inter-subject nature of the problem stems from s being an
independent random variable (of law Ls): being able to make
reliable predictions for subjects not seen during training is
ultimately the goal conveyed by the minimization of R(f).
This general problem may be tackled by considering two sub-
problems: i) that of identifying, among the training subjects,
those that provide the most representative behaviors so as to
more heavily rely on them in the learning of f and, ii) that
of reducing the variance of the learned predictor that may
be due to the scarceness of data and the natural inter-subject
variability of the data [4]. In II-C, we propose a learning model
to address both subproblems (and thus, the general problem)
which echoes the hierarchical decomposition of L as in (2).

B. Simple Strategies for Inter-Subject Prediction with SVC

We here briefly recall naive strategies to deal with learning
from data coming from various subjects. In order to lighten the
exposition, we now consider that C is reduced to the set C =
{−1,+1} of two labels. A real-valued function f : X → R is
readily associated with the thresholded decision function x 7→
sign(f(x)), which predicts the label of x according to the sign,
−1 or +1, of f(x); with a slight abuse, any function f will
also denote its associated thresholded predictor. The specific
class F ⊆ R

X of functions that we will consider throughout,
is that of kernel-based functions: we consider that we have at
hand some positive definite kernel (see [10]) k : X ×X → R,
and that F is defined as

F
.
=

{

f : f(·) =

m
∑

i=1

αik(xi, ·), (x1, . . . , xm) ∈ Xm

}

.

The core predictor that we will use are Support Vector Clas-
sifiers (SVC). If trained on Ds, an SVC fs writes as:

fs(x) =

N
∑

n=1

αs
nk(x

s
n, x), (3)

where the kernel used are centered on the training data xs
n.

However, this is intuitive that if a classifier is aimed at the
inter-subject prediction task it should take advantage of all
available data of D. This can be achieved by combining single
subject classifiers (fs)

s=S
s=1 through a vote, to give classifier

fvote(x) =

S
∑

s=1

βsf
s(x) =

S
∑

s=1

βs

N
∑

n=1

αs
nk(x

s
n, x), (4)

where the (βs)
s=S
s=1 is a sequence of (nonnegative) voting

weights. Among the various ways to learn those weights, we
will simply use the most trivial with: β1 = . . . = βS = 1/S.

Another strategy that uses all the data from D consists in
pooling all the training samples together, i.e assuming that they
are independent realizations of the same fixed random variable.
This way, an SVC is learned on the whole training set D,
with no regards to the hierarchical probabilistic decomposition
discussed previously, and in particular, no distinction between
data from different subjects. The SVC classifier fpool obtained
with such an approach takes the form

fpool(x) =

N
∑

n=1

S
∑

s=1

αs
nk(x

s
n, x). (5)

Note that if the form of fpool encompasses that of fvote

(see (4)), which is recovered for αs
n = βnα

s, the loss of the
hierarchical structure suggested by the probabilistic model is
here lost, as both indices s and n play the same role.

C. Multiple Subject Learning

We now describe the approaches that we promote: Multiple
Subject Learning (MSL) which, as indicated by its name, is
built upon the idea of Multiple Kernel Learning [5].

MSL. When using data from all available subjects to train a
classifier, it is implicitely hoped that the subjects are a repre-
sentative sample of the distribution Ls of subjects. However,
it seems intuitive that some subjects in D might contribute
in a stronger manner to a good generalization, i.e. a small
risk. Weighting the contribution of each subject in the learning
process is therefore a natural way to account for this belief,
as already mentioned previously, when the voting scheme was
discussed (see fvote). Here, we take advantage of the fact that
the prediction functions under consideration are kernel-based
classifiers to have the weighting intervene at the kernel level,
and we propose to look for a classifier fmsl of the form

fmsl(x) =

N
∑

n=1

αn

S
∑

s=1

βsk(x
s
n, x), (6)

where the sequence (βs)1≤s≤S of nonnegative coefficients,
which weighs the contributions of data from the different
subjects, has to be learned from the training examples D
together with the sequence (αn)1≤n≤N . Introducing the fol-
lowing notation will help us make a clearer connection with
MKL: i) xn

.
= [x1

n · · ·x
S
n ] ∈ XS denotes the vector made

of the concatenation of the xs
n’s, ii) likewise, for x ∈ X ,

x ∈ XS is the vector x
.
= [x · · ·x] of S concatenations of

x, iii) Πs : XS → X is the orthogonal projector such that
Πsx extracts the s-th block (of size F —recall that X = R

F )
of coordinates from x, so that Πsxn = xs

n and Πsx = x, and
iv) ks : XS ×XS → R is the positive definite kernel such that
ks(x, x′)

.
= k(Πsx,Πsx′). Classifier fmsl of (6) can now be

rewritten as:

fmsl(x) =

N
∑

n=1

αn

S
∑

s=1

βsk
s(xn, x)

.
= fmsl(x) (7)

(where fβ ∈ R
XS

), or,

fmsl(x) =

N
∑

n=1

αnK
β(xn, x),

if Kβ : XS × XS → R is the positive kernel defined by

Kβ .
=

∑S

s=1 βsk
s (Kβ is positive definite because it is a

nonnegative combination of positive kernels).

Given model (7), the problem we face is therefore to both
learn the coefficients (αn)1≤n≤N of a kernel classifier and the
weights (βs)1≤s≤S of a relevant combination of kernels: this
is exactly the problem of Multiple Kernel Learning (see [5]).
Here, each kernel ks to be combined is specifically associated
to subject s, hence the name of Multiple Subject Learning.

Ensembles of MSL. We observe from (7) and, in fact, from
the definition of xn, that we have grouped together the data



x1
n, . . . , x

S
n . However, standard fMRI protocols are designed

to measure repetitions of responses that are stationary in time,
such that, from a probabilistic point of view xs

n and xs
n′ are

identically distributed provided that yn = yn′ (see how Ds

is distributed according to (1)). The association of x1
n, . . . , x

S
n

into xn we assumed so far is therefore arbitrary and several
other matchings are just as valid as long as they group together
vectors x1

n1
, . . . , xS

nN
such that yn1

= . . . = ynN
. We may

take advantage of that remark to build ensembles of MSL
classifiers that get rid of this arbitrary grouping and make it
possible to lower the variance of the predictor learned. The
strategy to do so is based on the use of permutations, which
allow various groupings of the data that, in turn, give various
MSL predictors. Given such ensemble of M MSL classifiers
(fmslm )m=M

m=1 , we may compute their combined prediction by

fmsl
∗

(x) =

M
∑

m=1

fmslm (x), (8)

Here, the learning of fmslm is the result of i) a random and
uniform draw of S permutations2 σm

1 , . . . σm
S over {1, . . . , N}

such that for any n, yσm

1
(n) = . . . = yσm

S
(n) = yn and ii)

the solving of MSL problem (7) with, for n = 1, . . . , N,
the vector xn ∈ X S defined as xn = [x1

σm

1
(n) · · ·x

S
σm

S
(n)],

which is where some shuffling of the training data occurs. As
announced earlier, the strategy to learn fmsl

∗

better echoes the
probabilistic decomposition discussed above.

III. EXPERIMENTS

A. Dataset

To evaluate our MSL framework, we analyzed data from
an fMRI experiment during which nine subjects listened
to auditory stimuli centered around five frequencies while
performing tapping with a finger of the left hand, matched
to the audio frequency, thus defining five classes of trials.
The acquisitions comprised a high resolution T1, as well as
EPIs (TR = 2.4s, voxel size = 2x2x3mm) recorded during
five functional sessions; each session included six trials per
condition presented in a pseudo-randomized order.

The functional data was analyzed in SPM8, with motion
and slice timing corrections, followed by a GLM comprising
one regressor per trial. The corresponding beta maps served
as estimates of the response size for each trial. Freesurfer was
then used to perform cortical reconstruction and registration to
a spherical atlas. Each beta map was projected onto this atlas,
thus providing a vertex to vertex mapping across subjects.
Three cortical regions of interest were defined on the atlas
to respectively cover the right and left auditory cortices and
the right somato-sensory cortex.

The goal of the inter-subject prediction task was to guess
the class of the stimulus from the response pattern (chance
level = 0.2). We examined the different strategies that were
defined in Section II i) the SVC classifiers learned on single-
subject data (defined in eq. (3) and hereafter called s-SVC);
ii) the classifier obtained by a majority vote on the set of
s-SVCs (eq. (4), hereafter vote-SVC); iii) the SVC learned
by pooling data from all subjects (eq. (5), hereafter pool-
SVC); iv) the multiple subject learning classifiers (eq. (6) and

2A permutation over {1, . . . , N} is a bijection from {1, . . . , N} to itself.

eq. (7), hereafter MSL and MSL*). The algorithms were run
with the linear kernel and evaluated with a leave-one-subject-
out cross-validation. For the first three strategies to perform at
their best, a univariate feature selection was performed before
learning the classifier; the percentage of selected features and
the regularization constant C were chosen in a nested cross-
validation scheme. MSL and MSL* were estimated with C =
1. on the full feature set, using the l2 norm implementation of
MKL available in the Shogun toolbox.

B. Results

For each region, 500 MSL classifiers were learnt, each
from a random set of within-subject shufflings. To generate
an MSL* classifier of size M , we randomly drew M MSL
classifiers from these 500. For each value of M , we generated
100 MSL* classifiers and averaged the results.

Fig. 1. Comparing classifiers. Accuracy rates on test subject s1, ..., s9, or
averaged by cross validation (right column). Chance level is 0.2.

1) Comparing learning strategies: Fig. 1 shows the accu-
racy rate of each classifier type, averaged on all folds of the
cross-validation as well as on each single fold.

First, we qualitatively analyse these results. We observe
that i) all classifiers perform very differently across folds of
the cross-validation; ii) within each fold (i.e each column in
Fig. 1), a large variation of the performances of the s-SVCs is
also present; and iii) in most cases, at least one of the s-SVCs



outperformed pool-SVC and vote-SVC. These qualitative ob-
servations respectively confirm our initial intuitions that i) the
inter-subject variability weights heavily on the results; ii) some
subjects will be more informative than others to generalize over
the population; and iii) the pooling strategy vastly used in the
litterature is clearly sub-optimal.

Secondly, we quantitatively assess the performances of the
different classifiers by performing t-tests with paired samples
corresponding to the performances of classifiers in each fold
of the cross-validation. There was no significant differences
between vote-SVC and pool-SVC classifiers (p > 0.2 for
all three regions). Our MSL* classifiers (with M = 50)
outperformed the other strategies in all cases (p < 0.05 for all
three regions), which supports the effectiveness of this model.

2) Influence of the size of MSL ensembles: We further
examined the influence of the size of the MSL* ensembles.
The results are summarized on Fig. 2, in which each color
corresponds to the analysis conducted in one of the three ROIs,
and the x axis of all subplots corresponds to varying size M
of the MSL* ensembles. Fig. 2.A presents the MSL* accuracy

Fig. 2. Influence of the ensemble size M (x axis) on A: the accuracy of
MSL*; and B: the proportion of MSL* classifiers that outperform pool-SVC
(solid lines) and vote-SVC (dashed lines). Each color refers to one ROI.

rates. One can clearly see the accuracy gain offered by the
construction of such ensembles and that their performances
reaches an asymptotic maximum when M is of the order of a
few dozens. The curves on Fig. 2.B represent the number of
MSL* classifiers (amongst the 100 generated for each M ) for
which the performance was significantly better (paired t-test,
p < 0.05) than vote-SVC (dashed lines) and pool-SVC (solid
lines). Those curves quickly reach 100% (except for the solid
blue line), which means that the gain of accuracy offered by
MSL* is robust to the choice of the ensemble itself.

IV. DISCUSSION AND CONCLUSION

We have presented several models that combine the infor-
mation from multiple subjects to learn a classifier aimed at
performing predictions on data from subjects not available at
training time. We have demonstrated that our multiple subject
learning framework makes it possible to i) combine infor-
mation from different subjects in a multiple kernel learning
fashion, and ii) build ensembles of classifiers by shuffling the
ordering of examples in each subjects. The resulting MSL*

classifiers vastly outperform other strategies in the inter-subject
prediction task in an fMRI experiment designed to study the
organization of the auditory and somato-sensory cortices.

Future work will focus on the interpretation of the results
provided by MSL. Beyond the use of the outcome of the
predictions, our MSL framework provides weights for each
subject. We plan on studying their consistency, both across
folds of the cross-validation and across the different MSL
classifiers used in a MSL* ensemble. Furthermore, similarly
to the use of MKL weights, the MSL weights could further
be used to detect which subjects contribute the most strongly
in such classification task, or even to perform subject selec-
tion/rejection: on can imagine setting up a recursive subject
elimination by removing the subject with the smallest weight
at each iteration to maximize the generalization performance.

We also plan on attempting to improve the construction
of the MSL* ensembles to further increase the performances
of our framework. Indeed, using a purely random selection
of classifiers is known to result in sub-optimal ensembles,
in the sense that one can build an equally efficient ensemble
of smaller size by appropriately choosing the classifiers. This
could be done by maximising the information diversity that is
provided by each classifiers of the ensemble [9].
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