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Bootstrap and permutation tests of

independence for point processes.

Mélisande Albert∗, Yann Bouret†, Magalie Fromont‡

and Patricia Reynaud-Bouret§

Abstract: Motivated by a neuroscience question about synchrony detection
in spike train analysis, we deal with the independence testing problem for point
processes. We introduce non-parametric test statistics, which are rescaled general
U -statistics, whose corresponding critical values are constructed from bootstrap and
randomization/permutation approaches, making as few assumptions as possible on
the underlying distribution of the point processes. We derive general consistency
results for the bootstrap and for the permutation w.r.t. to Wasserstein’s metric,
which induce weak convergence as well as convergence of second order moments.
The obtained bootstrap or permutation independence tests are thus proved to be
asymptotically of the prescribed size, and to be consistent against any reasonable
alternative. A simulation study is performed to illustrate the derived theoretical
results, and to compare the performance of our new tests with existing ones in the
neuroscientific literature.

Mathematics Subject Classification: Primary: 62M07, 62F40, 62E20, 60G55,
60F05; secondary: 62P10

Keywords: Independence test, U -statistics, point processes, bootstrap, randomi-
sation, permutation, neuroscience, spike train analysis.

1 Introduction

Inspired by neuroscience problems, the present work is devoted to independence
tests for point processes. The question of testing whether two random variables
are independent is of course largely encountered in the statistical literature, as it is
one of the central goals of data analysis. From the historical Pearson’s chi-square
test of independence (see [43, 44]) to the modern test of [24] using kernel methods
in the spirit of statistical learning, many non-parametric independence tests have
been developed for real valued random variables or even random vectors. Among
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them, of particular interest are the tests based on the randomization/permutation
principle introduced by Fisher [19], and covered thereafter in the series of papers by
Pitman [49, 50], Scheffe [60], Hoeffding [33] for instance, or bootstrap approaches
derived from Efron’s [17] "naive" one. Note that permutation and bootstrap-based
tests have a long history of applications, of which independence tests are just a very
small part (see for instance [18, 46, 55, 56] for some reviews, or [1, 36, 39, 38, 22] for
more recent works). Focusing on independence tests, two families of permutation
or bootstrap-based tests may be distinguished at least: the whole family of rank
tests including the tests of Hotelling and Pabst [35], Kendall [37], Wolfowitz [65] or
Hoeffding [31] on the one hand, the family of Kolmogorov-Smirnov type tests, like
Blum, Kiefer, and Rosenblatt’s [8], Romano’s [56] or Van der Vaart and Wellner’s
[63] ones on the other hand. In order to describe the properties of these tests,
let us recall and fix a few definitions, which are furthermore used throughout this
article. Tests are said to be non-parametric if they are free from the underlying
distribution of the observed variables. For any prescribed α in (0, 1), tests are said
to be exactly of level α if their first kind error rate is less than α whatever the
number of observations. This is a non-asymptotic property. Tests are also said to
be asymptotically of size α if their first kind error rate tends to α when the number
of observations tends to infinity. Finally, they are said to be consistent against
some alternative if, under this alternative, their second kind error rate tends to 0
or equivalently their power tends to 1, when the number of observations tends to
infinity. In this respect, the above mentioned tests of independence are all non-
parametric and asymptotically of the prescribed size. Moreover, the tests based on
permutation are exactly of the desired level. Some of these tests are proved to be
consistent against many alternatives, such as Hoeffding’s [31] one and the family of
Kolmogorov-Smirnov type tests.

Detecting dependence is also a fundamental old point in the neuroscientific
literature (see e.g. [23]). The neuroscience problem we were initially interested in
consists in detecting interactions between occurrences of action potentials on two
different neurons simultaneously recorded on n independent trials, as described in
[26]. Each recorded set of time occurrences of action potentials for each neuron is
usually referred to as a spike train, the spikes being the time occurrences themselves.
It is commonly accepted that these spikes are one of the main components of the
brain activity (see [61]). So, when observing two spike trains coming from two
different neurons, one of the main elementary problem is to assess whether these
two spike trains are independent or not. Unfortunately, even if the real recordings
of spike trains are discretized in time, due to the record resolution, and thus belong
to finite dimensional spaces, the dimension of these spaces is so huge (from ten
thousand up to one million) that it is neither realistic nor reasonable to model
them by finite dimensional variables, and to apply usual independence tests. Several
methods, such as the classical Unitary Events method (see [26] and the references
therein), consist in binning the spike trains at first in order to deal with vectorial
data with reduced dimension. However, it has been shown that these dimension
reduction methods involve an information loss of more than 60% in some cases,
making this kind of preprocessing quite proscribed despite its simplicity of use. It
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is therefore more realistic and reasonable to model recordings of spike trains by
finite point processes, and to use independence tests specifically dedicated to such
point processes. Asymptotic tests of independence between point processes have
already been introduced in [62], but in the particular case of homogeneous Poisson
processes. Such a parametric framework is necessarily restrictive and even possibly
inappropriate here, as the very existence of any precise underlying distribution
for the point processes modelling spike train data is subject to broad debate (see
[51, 52]). We thus focus on non-parametric tests of independence for point processes.
In this spirit, particular bootstrap methods under the name of trial-shuffling have
been proposed in [48, 47] for binned data with relatively small dimension, without
proper mathematical justification. Besides the loss of information the binning data
pre-processing involves, it appears that the test statistics chosen in these papers do
not lead to tests of asymptotic prescribed size as shown by our simulation study.

We here propose to construct new non-parametric tests of independence be-
tween two point processes, from the observation of n independent copies of these
point processes, with as few assumptions as possible on their underlying distribu-
tions. Our test statistics are based on U -statistics. The corresponding critical values
are obtained from bootstrap or permutation approaches. It has been acknowledged
that when both approaches are available, permutation should be preferred, since
the corresponding tests are exactly of the desired level [18, p. 218]. Nevertheless,
we investigate permutation and bootstrap together, as bootstrap methods - through
trial-shuffling - are the usual references in neuroscience. Moreover, for specific U -
statistics, the corresponding tests share the same properties: both are proved to
be asymptotically of the prescribed size and consistent against any reasonable al-
ternatives, despite the fact that different tools are used to obtain these results.
Indeed in particular, the distance between the bootstrapped distribution and the
initial distribution under independence is here directly studied for the bootstrap
approach, unlike the permutation approach. Finally both procedures have good
performance in practice when the sample size is moderate to small, as is often the
case in neuroscience due to biological or economical reasons.

As U -statistics are now usual tools for non-parametric statistical inference,
many works deal with the application of bootstrap or permutation type methods
to U -statistics. From the original work of Arvesen [5] about the Jackknife of U -
statistics, to the recent one of Leucht and Neumann [40], several papers [6, 12, 2, 15]
have been devoted to the general problem of bootstrapping a U -statistic. The use of
bootstrap or permutation of U -statistics is specially considered in testing problems
(see [34, 13] for instance), in particular in dependence detection problems with the
Kolmogorov-Smirnov type tests cited above (see [56, 63]).

But all those works exclusively focus on U -statistics of i.i.d. real valued ran-
dom variables or vectors. Up to our knowledge, there is no previous work on the
bootstrap or permutation of general U -statistics for i.i.d. pairs of point processes,
as considered in the present paper. The main difficulty thus lies in the nature of the
mathematical objects we handle here, that is point processes and their associated
point measures which are random measures. The proofs of our results, although
inspired by Romano’s [54, 56] work and Hoeffding’s [33] precursor results on the
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permutation, are therefore more technical and complex on many aspects detailed
in the sequel. In addition, we aim at obtaining the asymptotic distribution of the
bootstrapped or permuted test statistics under independence, but also under depen-
dence (see Theorem 3.1 and Theorem 4.1). As concerns the permutation approach,
such a result is, as far as we know, new even for more classical settings than point
processes. It thus partially solves a problem stated as open question in [63].

This paper is organized as follows.
We first present in Section 2 the testing problem, and introduce the main nota-

tions. Starting from existing works in neuroscience, we introduce our test statistics,
based on general kernel-based U -statistics.

Section 3 is devoted to our bootstrap approach. Are given new general results
about the consistency of the bootstrap for the considered U -statistics, expressed
in terms of Wasserstein’s metric as in [6]. The convergence is studied under inde-
pendence as well as under dependence. The corresponding bootstrap independence
tests are therefore shown to be asymptotically of the desired size, and consistent
against any reasonable alternative. The impact of using Monte Carlo methods to
approximate the bootstrap quantiles is also investigated in this section.

Section 4 is devoted to the permutation approach which leads, by nature, to
non-parametric independence tests exactly of the desired level, and this, even when
a Monte Carlo method is used to approximate the permutation quantiles. Are then
given new general results about the consistency of the permutation approach when
the kernel of the U -statistic has a specific form. These results are still expressed
in terms of Wasserstein’s metric. As a consequence the corresponding permutation
independence tests are proved to satisfy the same asymptotic properties as the
bootstrap ones under the null hypothesis as well as under the same alternatives.

As a comparison of the performance of our tests with existing ones in neuro-
science, especially when the sample sizes are moderate or even small, a simulation
study is presented in Section 5.

A conclusion is given in the last section.
Finally notice that all proofs and some additional technical results can be found

in a supplementary material.

2 From neuroscience interpretations to general test

statistics

2.1 The testing problem

Throughout this article we consider finite point processes defined on a probability
space (Ω,A,P) and observed on [0, 1], i.e. random point processes on [0, 1] whose
total number of points is almost surely finite (see [2] for instance). Typically, in
a neuroscience framework, such finite point processes may represent spike trains
recorded on a given finite interval of time, and rescaled so that their values may
be assumed to belong to [0, 1]. The set X of all their possible values consists of
the countable subsets of [0, 1]. It is equipped with a metric dX that we introduce
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in (3.3). This metric, issued from the Skorohod topology, makes X separable and
allows to define accordingly borelian sets on X and by extension on X 2 through
the product metric.

The point measure dNx associated with an element x of X is defined for all
measurable real-valued function f by

∫

[0,1]
f(u)dNx(u) =

∑

u∈x f(u). In particular,

the total number of points of x, denoted by #x, is equal to
∫

[0,1] dNx(u). Moreover,

for a point process X defined on (Ω,A,P) and observed on [0, 1],
∫
f(u)dNX(u)

becomes a real random variable, defined on the same probability space (Ω,A,P).
A pair X = (X1, X2) of finite point processes defined on (Ω,A,P) and observed

on [0, 1], has joint distribution P , with marginals P 1 and P 2 if P (B) = P(X ∈ B),
P 1(B1) = P(X1 ∈ B1), and P 2(B2) = P(X2 ∈ B2), for every borelian set B of X 2,
and all borelian sets B1, B2 of X .

Given the observation of an i.i.d. sample Xn = (X1, . . . , Xn) from the same
distribution P as X , with Xi = (X1

i , X
2
i ) for every i = 1 . . . n, we aim at testing

(H0) X1 and X2 are independent against (H1) X1 and X2 are not independent,
which can also be written as

(H0) P = P 1 ⊗ P 2 against (H1) P 6= P 1 ⊗ P 2.

2.2 Independence test based on coincidences in neuroscience

Considering that the i.i.d. sample Xn = (X1, . . . , Xn) models pairs of rescaled
spike trains issued from two distinct and simultaneously recorded neurons during n
trials, the main dependence feature that needs to be detected between both neurons
corresponds to synchronization in time, referred to as coincidences [26]. More
precisely, neuroscientists expect to detect if such coincidences occur significantly,
that is more than what may be due to chance. They speak in this case of a detected
synchrony.

In [62], the notion of coincidence count between two point processes X1 and
X2 with delay δ (δ > 0) is defined by

ϕcoinc
δ (X1, X2)=

∫

[0,1]2
1|u−v|≤δdNX1(u)dNX2(v) =

∑

u∈X1,v∈X2

1|u−v|≤δ. (2.1)

Notice that other coincidence count functions have been used in the neuro-
science literature such as the binned coincidence count function (i.e. based on
binned data) introduced in [25] or its shifted version [27] (see also [62] for explicit
formulae). The interaction function introduced in [59] provides a further example
of possible function used to detect dependence in neuroscience, which is of the form

ϕw(X1, X2) =

∫

[0,1]2
w(u, v)dNX1(u)dNX2(v). (2.2)

Under the assumption that both X1 and X2 are homogeneous Poisson processes, the
independence test of [62] rejects (H0) when a test statistic based on

∑n
i=1 ϕ

coinc
δ

(
X1

i , X
2
i

)
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is larger than a given critical value. This critical value is deduced from the asymp-
totic Gaussian distribution of the test statistic under (H0). The test is proved
to be asymptotically of the desired size, but only under the homogeneous Poisson
processes assumption. However, it is now well-known that this assumption, as well
as many other model assumptions, fails to be satisfied in practice for spike trains
[51, 52].

2.3 General U-statistics as independence test statistics

In the parametric homogeneous Poisson framework of [62], the expectation of
ϕcoinc
δ

(
X1

i , X
2
i

)
has a simple expression as a function of δ and the intensities λ1

and λ2 of X1 and X2. Since λ1 and λ2 can be easily estimated, an estimator of this
expectation can thus be obtained using the plug-in principle, and subtracted from
ϕcoinc
δ

(
X1

i , X
2
i

)
to lead to a test statistic with a centered asymptotic distribution

under (H0).
In the present non-parametric framework where we want to make as few assump-

tions as possible on the point processes X1 and X2, such a centering plug-in tool
is not available. We propose to use instead a self-centering trick, which amounts,
combined with a rescaling step, to considering the statistic

1

n(n− 1)

∑

i6=i′∈{1,...,n}

(
ϕcoinc
δ

(
X1

i , X
2
i

)
− ϕcoinc

δ

(
X1

i , X
2
i′
))

. (2.3)

It is clear that the function ϕcoinc
δ used in [62] suits the dependence feature the

neuroscientists expect to detect in a spike train analysis. However, it is not nec-
essarily the best choice for other kinds of dependence features to be detected in a
general point processes analysis. Note furthermore that the statistic (2.3) can be
written as a U -statistic of the i.i.d. sample Xn = (X1, . . . , Xn) with a symmetric
kernel, as defined by Hoeffding [30].

Let us therefore consider the general independence test statistics which are
U -statistics of the form

Un,h(Xn) =
1

n(n− 1)

∑

i6=i′∈{1,...,n}
h (Xi, Xi′) , (2.4)

where h : (X 2)2 → R is a symmetric kernel such that:

(ACent)
For all n ≥ 2, Un,h(Xn) is zero mean under (H0),
i.e. for X1 and X2, i.i.d. with distribution P 1 ⊗ P 2 on X 2,
E [h (X1, X2)] = 0.

In the sequel, we call Coincidence case the case where h = hϕcoinc
δ

, with

hϕcoinc
δ

(x, y) =
1

2

(
ϕcoinc
δ

(
x1, x2

)
+ ϕcoinc

δ

(
y1, y2

)

− ϕcoinc
δ

(
x1, y2

)
− ϕcoinc

δ

(
y1, x2

) )
, (2.5)

so that Un,h
ϕcoinc
δ

(Xn) is equal to the statistic (2.3).
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A more general choice, which of course includes the above Coincidence case,
is obtained by replacing ϕcoinc

δ by any generic integrable function ϕ. This is the
Linear case. For any integrable function ϕ, the kernel h is then taken equal to hϕ,
with

hϕ(x, y) =
1

2

(
ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

))
. (2.6)

This example is of utmost importance in the present work since it provides a first
proved case of consistency for the permutation approach under the null hypothesis
as well as under the alternative (see Theorem 4.1). In this case, note that (ACent)
is straightforwardly satisfied, i.e. Un,hϕ

(Xn) is zero mean under (H0). Note fur-
thermore that Un,hϕ

(Xn) is here an unbiased estimator of
∫ ∫

ϕ
(
x1, x2

) (
dP (x1, x2)− dP 1(x1)dP 2(x2)

)
,

without any assumption on the underlying point processes. This is therefore a rea-
sonable independence test statistic. If X1 and X2 were finite dimensional variables
with continuous distributions w.r.t. the Lebesgue measure, this test statistic would
be closely related to generalized Kolmogorov-Smirnov tests of independence. For in-
stance, the test statistics of Blum, Kiefer, and Rosenblatt [8], Romano [56], Van der

Vaart and Wellner in [63] are equivalent to
√
n supv1∈V1,v2∈V2

∣
∣
∣Un,hϕ

(v1,v2)
(Xn)

∣
∣
∣ ,

where, respectively:

• V1 = V2 = R and ϕ(v1,v2)(x
1, x2) = 1]−∞,v1](x

1)1]−∞,v2](x
2),

• V1 and V2 are countable V.-C. classes of subsets of Rd,
and ϕ(v1,v2)(x

1, x2) = 1v1(x1)1v2(x2),

• V1 and V2 are well-chosen classes of real-valued functions,
and ϕ(v1,v2)(x

1, x2) = v1(x1)v2(x2).

Thus, up to our knowledge, the existing test statistics are based on functions ϕ of
product type. However, as seen in Section 2.2, when dealing with point processes,
natural functions ϕ are not of this type, as for instance ϕcoinc

δ .

2.4 Non-degeneracy of the U-statistics under (H0)

Following the works of Romano [56] or Van der Vaart and Wellner [63], the tests
we propose here are based on bootstrap and permutation approaches for the above
general U -statistics. Most of the assumptions on h depend on the chosen method
(permutation or bootstrap) and are postponed to the corresponding section. How-
ever another assumption is common, besides (ACent):

(Anon−deg)
For all n ≥ 2, Un,h(Xn) is non-degenerate under (H0),
i.e. for all X1 and X2, i.i.d. with distribution P 1 ⊗ P 2 on X 2,
Var (E [h(X1, X2)|X1]) 6= 0.

This assumption is needed in all results with weak convergence to a Gaussian
limit, as its variance has to be strictly positive (see e.g. Proposition 3.5 or Theo-
rem 4.1). Since under (H0), Un,h(Xn) is assumed to have zero mean, it is degenerate
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under (H0) if and only if for X with distribution P 1 ⊗ P 2 and for P 1 ⊗ P 2-almost
every x in X 2, E [h(x,X)] = 0.

In the Linear case, this condition implies a very particular link between ϕ and
the distribution of the bivariate point process X , which is unknown. The following
result gives some basic condition to fulfill (Anon−deg) when ϕ is the coincidence
count function.

Proposition 2.1. If the empty set is charged by the marginals, i.e. if P 1({∅}) > 0
and P 2({∅}) > 0 and if ϕcoinc

δ (X1, X2) (see (2.1)) is not almost surely null under
(H0), then when h is given by (2.5), (Anon−deg) is satisfied.

The proof can be found in the supplementary material together with a more
informal discussion on the Linear case with ϕ = ϕw as given by (2.2).

As far as experimental neuronal data are concerned, assuming that the processes
may be empty is an obvious assumption as there often exist trials (usually short)
where, just by chance, no spikes have been detected. Moreover, practitioners usually
choose δ large enough such that coincidences are observed in practice and therefore
ϕcoinc
δ (X1, X2) is not almost surely null. Hence in practice, the non-degeneracy

assumption is always satisfied in the Coincidence case.

Throughout this article, (Xi)i denotes a sequence of i.i.d. pairs of point pro-
cesses, with Xi = (X1

i , X
2
i ) of distribution P on X 2, whose marginals are P 1 and

P 2 on X . For n ≥ 2, let Xn = (X1, . . . , Xn) and Un,h(Xn) as in (2.4), with a
fixed measurable symmetric kernel h satisfying (ACent). To shorten mathematical
expression, Un(Xn) refers from now on to Un,h(Xn).

3 Bootstrap tests of independence

Since the distribution of the test statistic Un(Xn) is not free from the unknown
underlying marginal distributions P 1 and P 2 under the null hypothesis, we turn
to a classical bootstrap approach, which aims at mimicking the distribution of the
test statistic under (H0), for large, but also moderate or small sample sizes.

In order to describe this bootstrap approach, and to state our results with-
out any confusion, we give below additional notations, and then discuss the main
assumptions needed in these results.

3.1 Additional notations

Bootstrap formalism Under (H0), each Xi = (X1
i , X

2
i ) is P 1 ⊗ P 2- dis-

tributed. Hence, our bootstrap approach consists in resampling the first and second
coordinates of the elements of Xn according to the corresponding marginal empir-
ical distributions P j

n given by

for j = 1, 2, P j
n =

1

n

n∑

i=1

δXj
i
. (3.1)

8



The bootstrap sample X∗
n =

(
X∗

n,1, . . . , X
∗
n,n

)
, with X∗

n,i = (X∗1
n,i, X

∗2
n,i), is then

defined as an n i.i.d. sample from the distribution P 1
n ⊗ P 2

n , and the bootstrap
version of Un(Xn) is given by Un(X

∗
n).

Convergence formalism The bootstrap distribution of interest is the condi-
tional distribution of

√
nUn(X

∗
n) given Xn, to be compared with the initial dis-

tribution of
√
nUn(Xn) under (H0). In order to state properly our convergence

results, we therefore introduce the following formalism.

• For any functional Z : (X 2)n → R, L (Z,Q) denotes the distribution of
Z(Yn), where Yn is an i.i.d. sample from the distribution Q on X 2. In partic-
ular, the distribution of

√
nUn(Xn) under (H0) is denoted by L

(√
nUn, P

1⊗P 2
)
.

• If the distribution Q = Q(W ) depends on a random variable W , L (Z,Q|W )
is the conditional distribution of Z(Yn), Yn being an i.i.d. sample from the
distribution Q = Q(W ) on X 2, given W .

In particular, the conditional distribution of
√
nUn(X

∗
n) given Xn is denoted

by L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
.

• " Q-a.s. in (Xi)i" at the end of a statement means that the statement only
depends on the sequence (Xi)i, where the Xi’s are i.i.d with distribution Q,
and that there exists an event C only depending on (Xi)i such that P (C) = 1,
on which the statement is true. Here Q is usually equal to P .

• "Qn =⇒
n→+∞

Q" means that the sequence of distributions (Qn)n converges

towards Q in the weak sense, that is for any real valued, continuous and
bounded function g,

∫
g(z)dQn(z) →n→+∞

∫
g(z)dQ(z).

• Finally, as we often work conditionally on Xn, we denote by E∗[·] the condi-
tional expectation given the sample Xn.

As explained above, the bootstrap distribution of interest is the conditional
distribution L

(√
nUn, P

1
n ⊗ P 2

n

∣
∣Xn

)
, which will be proved to be asymptotically

close to L
(√

nUn, P
1 ⊗ P 2

)
. Following the historical paper by Bickel et Freedman

[6], the closeness between these two distributions, which are both distributions on
R, is here measured via the classical L2-Wasserstein’s metric.

The L2-Wasserstein’s metric d2 (also called Mallows’ metric) is defined by

d22(Q,Q′) = inf
{
E
[
(Z − Z ′)2

]
, (Z,Z ′) with marginals Q and Q′}, (3.2)

for all the distributions Q, Q′ with finite second order moments. Recall that conver-
gence w.r.t. d2 is equivalent to both weak convergence and convergence of second
order moments.
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3.2 Main assumptions

The random variables we deal with are not real-valued variables but point processes,
so the assumptions needed in our results may be difficult to interpret in this setting.
We therefore devote this whole section to their description and discussion.

In addition to Assumption (ACent), we need its following empirical version:

(A∗
Cent)

For x1 = (x1
1, x

2
1), . . . , xn = (x1

n, x
2
n) in X 2,

∑n
i1,i2,i′1,i

′
2=1 h

((
x1
i1
, x2

i2

)
,
(

x1
i′1
, x2

i′2

))

= 0.

Notice that this assumption, as well as (ACent), is fulfilled in the Linear case where
h is of the form hϕ given by (2.6), but (A∗

Cent) does not imply that h is of the form
hϕ (see the supplementary material for a counterexample).

Moment assumptions Due to the L2-Wasserstein metric used here to study
the consistency of the bootstrap approach, moment assumptions are required. In
particular, the variance of Un(Xn) should exist, i.e.

(AMmt)
For X1 and X2, i.i.d. with distribution P on X 2,
E
[
h2 (X1, X2)

]
< +∞,

and more generally we need:

(A∗
Mmt)

For X1, X2, X3, X4 i.i.d. with distribution P on X 2,
and for i1, i2, i

′
1, i

′
2 in {1, 2, 3, 4},

E
[

h2
((

X1
i1
, X2

i2

)
,
(
X1

i′1
, X2

i′2

))]

< +∞.

Notice that when (A∗
Mmt) is satisfied, this implies that

• (AMmt) is satisfied (taking i1 = i2, i
′
1 = i′2, and i′1 6= i1),

• for X ∼ P , E
[
h2 (X,X)

]
< +∞ (taking i1 = i2 = i′1 = i′2),

• for X1, X2 i.i.d with distribution P 1 ⊗ P 2, E
[
h2 (X1, X2)

]
< +∞ (taking

i1, i2, i
′
1, i

′
2 all different).

A sufficient condition for (A∗
Mmt) and (AMmt) to be satisfied is that there exist

positive constants α1, α2, C such that for every x = (x1, x2), y = (y1, y2) in X 2,
|h(x, y)| ≤ C

(
(#x1)α1 + (#y1)α1

) (
(#x2)α2 + (#y2)α2

)
, with

E[(#X1)4α1 ] < +∞ and E[(#X2)4α2 ] < +∞.
In the Linear case where h is of the form hϕ given by (2.6), a possible sufficient

condition is that there exist some positive constants α1, α2, and C such that for
every x1, x2 in X , |ϕ(x1, x2)| ≤ C(#x1)α1(#x2)α2 , with E[(#X1)4α1 ] < +∞ and
E[(#X2)4α2 ] < +∞. In particular, in the Coincidence case, the coincidence count
function ϕcoinc

δ satisfies: for every x1, x2 in X , |ϕcoinc
δ (x1, x2)| ≤ (#x1)(#x2). So,

(A∗
Mmt) and (AMmt) are satisfied as soon as E[(#X1)4] < +∞ and E[(#X2)4] <

+∞.
Such moment bounds for the total number of points of the processes are in fact

satisfied by many kinds of point processes: discretized point processes at resolu-
tion 0 < r < 1 (see [62] for a definition), which have at most 1/r points, Poisson

10



processes, whose total number of points obeys a Poisson distribution having ex-
ponential moments of any order, and point processes with bounded conditional
intensities, which can be constructed by thinning homogeneous Poisson processes
(see [42]). Similar moment bounds can also be obtained (see [28]) for linear station-
ary Hawkes processes with positive interaction functions that are classical models
in spike train analysis (see e.g. [45, 62]). This finally may be extended to point
processes whose conditional intensities are upper bounded by intensities of linear
stationary Hawkes processes with positive interaction functions, by thinning argu-
ments. This includes more general Hawkes processes (see [10]) and in particular
Hawkes processes used to model inhibition in spike train analysis (see [28, 62, 53]
or [52]).

Continuity of the kernel The set X can be embedded in the space D of
càdlàg functions on [0, 1] through the identification

N : x ∈ X 7→
(

Nx : t 7→
∫ 1

0

1u≤tdNx(u)

)

∈ D.

Notice that the quantity Nx is actually the counting process associated with x (see
[11] for instance): at time t, Nx(t) is the number of points of x less than t. Now
consider the uniform Skorohod topology on D (see [7]), associated with the metric
dD defined by

dD(f, g) = inf

{

ε > 0 ; ∃λ ∈ Λ,

{
supt∈[0,1] |λ(t) − t| ≤ ε,

supt∈[0,1] |f(λ(t)) − g(t)| ≤ ε

}

,

where Λ is the set of strictly increasing, continuous mappings of [0, 1] onto itself.
Notice that here, λ represents a uniformly small deformation of the time scale.
Thanks to the identification N above, X can then be endowed with the topology
induced by dX defined on X by

dX (x, x′) = dD(N(x), N(x′)) for every x, x′ in X . (3.3)

As an illustration, if x and x′ are in X , for ε in (0, 1), dX (x, x′) ≤ ε implies that
x and x′ have the same cardinality, and for k in {1, . . . ,#x}, the kth point of x is
at distance less than ε from the kth point of x′. Since (D, dD) is a separable metric
space, so are (X , dX ),

(
X 2, dX 2

)
, where dX 2 is the product metric defined from dX

(see [3, p 32]), and
(
X 2 ×X 2, d

)
, where d, the product metric defined from dX 2 , is

given by

d
(
(x, y), (x′, y′)

)
= sup

{

sup
j=1,2

{

dX (xj , x
′j)
}

, sup
j=1,2

{

dX (yj , y
′j)
}}

, (3.4)

for every x = (x1, x2), y = (y1, y2), x′ = (x
′1, x

′2), y′ = (y
′1, y

′2) in X 2.
The kernel h chosen to define the U -statistic Un(Xn) in (2.4) should satisfy:

(ACont)
There exists a subset C of X 2 ×X 2, such that
(i) h is continuous on C for the topology induced by d,
(ii) (P 1 ⊗ P 2)⊗2(C) = 1.

Here are some examples in the Linear case for which (ACont) holds.

11



Proposition 3.1. Let w : [0, 1]2 → R be a continuous integrable function. Then
the kernel hϕw defined on X 2 × X 2 by (2.2) and (2.6) is continuous w.r.t. the
topology induced by d, defined by (3.4).

The above result does not apply to hϕcoinc
δ

but the following one holds.

Proposition 3.2. The coincidence count kernel hϕcoinc
δ

defined on X 2 × X 2 by

(2.1) and (2.6) is continuous w.r.t. the topology induced by d, on

Cδ =
{ (

(x1, x2), (y1, y2)
)
∈ X 2 ×X 2 ;
({

x1
}
∪
{
y1
})

∩
({

x2 ± δ
}
∪
{
y2 ± δ

})
= ∅
}
. (3.5)

As suggested in [62], when dealing with discretized point processes at resolution
r, the right choice for δ is kr + r/2 for an integer k, so (P 1 ⊗ P 2)⊗2(Cδ) = 1, and
hϕcoinc

δ
satisfies (ACont). Furthermore, when dealing with independent point pro-

cesses with conditional intensities, those processes may be constructed by thinning
two independent Poisson processes X and X ′. Hence, in this case, the probability
(P 1⊗P 2)⊗2 of Cδ in (3.5) is larger than P (X ∩ (X ′ ± δ) = ∅) , whose value is 1. So
when dealing with point processes with conditional intensities, hϕcoinc

δ
also satisfies

(ACont).

3.3 Consistency of the bootstrap approach

The validity of the bootstrap approach for our independence tests is due to the
following consistency result.

Theorem 3.1. For every n ≥ 2, let P j
n for j = 1, 2 be the empirical marginal

distributions defined by (3.1). Then, under (ACent), (A∗
Cent), (A∗

Mmt) and (ACont),

d2
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√

nUn, P
1⊗P 2

))
−→

n→+∞
0, P -a.s. in (Xi)i.

The proof follows similar arguments to the ones of [6] for the bootstrap of the
mean, or to [15] and [40] for the bootstrap of U -statistics. The main novel point here
consists in using the identification (3.4) and the properties of the separable Skorohod
metric space (D, dD), where weak convergence of sample probability distributions is
available (see [7]). This theorem derives in fact from the following two propositions
which may be useful in various frameworks. The first one states a non-asymptotic
result, while the second one gives rather natural results of convergence.

Proposition 3.3. Under (ACent), (A∗
Cent), (A∗

Mmt), with the notation of Theorem
3.1, there exists an absolute constant C > 0 such that for n ≥ 2,

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√

nUn, P
1 ⊗ P 2

))

≤ C inf
{

E∗
[(
h
(
Y ∗
n,a, Y

∗
n,b

)
− h (Ya, Yb)

)2
]

, Y ∗
n,a ∼ P 1

n ⊗ P 2
n , Ya ∼ P 1 ⊗ P 2,

and (Y ∗
n,b, Yb) is an independent copy of (Y ∗

n,a, Ya)
}

.

12



Comment. In the above proposition, the infimum is taken over all the possible
distributions of (Y ∗

n,a, Ya) having the correct marginals, (Y ∗
n,b, Yb) being just an

independent copy of (Y ∗
n,a, Ya). In particular, Y ∗

n,a is not necessarily independent
of Ya.

Proposition 3.4. If E [|h(X1, X2)|] < +∞, then

Un(Xn) −→
n→+∞

E [h(X1, X2)]=

∫

h(x, x′)dP (x)dP (x′), P -a.s. in (Xi)i. (3.6)

Under (A∗
Mmt), one moreover obtains that P -a.s. in (Xi)i,

1

n4

n∑

i,j,k,l=1

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))
−→

n→+∞
E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
.

3.4 Convergence of cumulative distribution functions (c.d.f.)
and quantiles

As usual, N (m, v) stands for the Gaussian distribution with mean m and variance v,
Φm,v for its c.d.f. and Φ−1

m,v for its quantile function. From the results of Rubin and
Vitale [58] generalizing Hoeffding’s [30] Central Limit Theorem for non-degenerate
U -statistics when the Xi’s are random vectors, we deduce the following Central
Limit Theorem for Un(Xn).

Proposition 3.5. Assume that h satisfies (Anon−deg), (ACent) and (AMmt). Let
σ2
P 1⊗P 2 be defined by

σ2
P 1⊗P 2 = 4V ar (E [h (X1, X2) |X1]) , (3.7)

when X1 and X2 are P 1 ⊗ P 2-distributed. Then

d2
(
L
(√

nUn, P
1 ⊗ P 2

)
,N (0, σ2

P 1⊗P 2)
)

−→
n→+∞

0.

Comments.
(i) Notice that (Anon−deg) is equivalent to σ2

P 1⊗P 2 > 0. In the case where

(Anon−deg) does not hold, i.e. if σ2
P 1⊗P 2 = 0, the quantity

√
nUn(Xn) tends in

probability towards 0. In this case, Theorem 3.1 implies that the two distributions
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
and L

(√
nUn, P

1⊗P 2
)

are not only close, but that they
are actually both tending to the Dirac mass in 0. Indeed, degenerate U-statistics of
order 2 have a faster rate of convergence than

√
n (see [3] for instance for explicit

limit theorems). So in this degenerate case, one could not use
√
nUn(Xn) as a test

statistic anymore (without changing the normalization). But as mentioned above,
(Anon−deg) is usually satisfied in practice (see Section 2.4 for the Coincidence case).

(ii) The asymptotic normality result of Proposition 3.5 may lead to a rather
simple test, asymptotically of the prescribed size. Let

Sn =

√
nUn(Xn)

σ̂
, (3.8)
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with

σ̂2 =
4

n(n− 1)(n− 2)

∑

i,j,k∈{1,...,n},#{i,j,k}=3

h(Xi, Xj)h(Xi, Xk).

By Slutsky’s lemma and the law of large numbers for U -statistics of order 3, under
(H0), Sn converges in distribution to N (0, 1). The test rejecting (H0) when |Sn| ≥
Φ−1

0,1(1 − α/2) is therefore asymptotically of size α. It is also consistent against
any reasonable alternative P , satisfying (AMmt) and such that E [h(X,X ′)] 6= 0,
for X , X ′ i.i.d. with distribution P . Such a purely asymptotic test may of course
suffer from a lack of power when the sample size n is small or even moderate,
which is typically the case for the application in neuroscience described in Section
2 for biological reasons (from few tens up to few hundreds at best). Though the
bootstrap approach is mainly justified by asymptotic arguments, the simulation
study presented in Section 5 shows its efficiency in a non-asymptotic context, with
respect to this simpler test.

As Proposition 3.5 implies that the limit distribution of
√
nUn(Xn) has a con-

tinuous c.d.f., the convergence of the conditional c.d.f. or quantiles of the considered
bootstrap distributions holds. Note that these conditional bootstrap distributions
are discrete, so the corresponding quantile functions are to be understood as the
generalized inverses of the cumulative distribution functions.

Corollary 3.1. For n ≥ 2, with the notation of Theorem 3.1, let X∗
n be a bootstrap

sample, i.e. an i.i.d n-sample from the distribution P 1
n ⊗ P 2

n . Let X⊥⊥
n be another

i.i.d. n-sample from the distribution P 1 ⊗ P 2 on X 2. Under (Anon−deg) and the
assumptions of Theorem 3.1,

sup
z∈R

∣
∣P
(√

nUn (X
∗
n) ≤ z

∣
∣Xn

)
−P
(√

nUn(X
⊥⊥
n ) ≤ z

)∣
∣ −→
n→+∞

0, P -a.s. in (Xi)i.

If moreover, for η in (0, 1), q∗η,n(Xn) denotes the conditional η-quantile of
√
nUn(X

∗
n)

given Xn and q⊥⊥η,n denotes the η-quantile of
√
nUn(X

⊥⊥
n ),

|q∗η,n(Xn)− q⊥⊥η,n| −→
n→+∞

0, P -a.s. in (Xi)i. (3.9)

3.5 Asymptotic properties of the bootstrap tests

We are interested in the asymptotic behavior of sequences of tests all based on
test statistics of the form Un(Xn). The bootstrap approach, whose consistency is
studied above, allows to define bootstrap-based critical values for these tests. Since
the permutation approach studied in Section 4 is based on the same test statistics,
but with critical values obtained by permutation, we introduce here a condensed
and common formalism for the upper-, lower- and two-tailed tests considered in this
work, taking into account that the only change in our two considered approaches
concerns the critical values. This will help to state our results in the shortest
manner.
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Let α be fixed in (0, 1), and q be a sequence of upper and lower critical values:

q =
(
q+α,n(Xn), q

−
α,n(Xn)

)

n≥2
.

From this sequence of q, let us now define the family Γ(q) of three sequences of

tests ∆+ = (∆+
α,n)n≥2, ∆

− = (∆−
α,n)n≥2, and ∆+/− = (∆

+/−
α,n )n≥2, where







∆+
α,n(Xn) = 1√

nUn(Xn)>q+α,n(Xn)
(upper-tailed test),

∆−
α,n(Xn) = 1√

nUn(Xn)<q−α,n(Xn)
(lower-tailed test),

∆
+/−
α,n (Xn) = max

(

∆+
α/2,n(Xn),∆

−
α/2,n(Xn)

)

(two-tailed test),

(3.10)
the last test being implicitly defined by the corresponding choices in α/2.

Of course, q, Γ(q), as well as ∆+, ∆− and ∆+/−, depend on the choice of α,
but since α is fixed at the beginning, to keep the notation as simple as possible,
this dependence is, like the one in h, omitted in the notations.

Depending on the choice of q, the classical asymptotic properties that can be
expected to be satisfied by Γ(q) are (Psize) and (Pconsist.) defined by

(Psize)
Each sequence ∆ = (∆α,n)n≥2 in Γ(q) is asymptotically of size α,

i.e. if P = P 1 ⊗ P 2, P (∆α,n(Xn) = 1) →n→+∞α,

(Pconsist.)

Each sequence ∆ = (∆α,n)n≥2 in Γ(q) is consistent,

i.e. P (∆α,n(Xn) = 1) →n→+∞ 1, for every P such that

•
∫

h(x, x′)dP (x)dP (x′) > 0 if ∆ = ∆+,

•
∫

h(x, x′)dP (x)dP (x′) < 0 if ∆ = ∆−,

•
∫

h(x, x′)dP (x)dP (x′) 6= 0 if ∆ = ∆+/−.

Following Corollary 3.1, our bootstrap tests family is defined from (3.10) by
Γ(q∗), with

q∗ =
(
q∗1−α,n(Xn), q

∗
α,n(Xn)

)

n≥2
. (3.11)

Theorem 3.2. Let Γ(q∗) be the family of tests defined by (3.10) and (3.11). If
(ACent), (Anon−deg), (A∗

Cent), (A∗
Mmt) and (ACont) hold, then Γ(q∗) satisfies both

(Psize) and (Pconsist.).

Comments. In the Linear case where h is equal to hϕ defined by (2.6),

∫

h(x, x′)dP (x)dP (x′) =

∫

ϕ(x1, x2)
[
dP (x1, x2)− dP 1(x1)dP 2(x2)

]
.

This means that under the assumptions of Theorem 3.2, the two-tailed test of
Γ(q∗) is consistent against any alternative such that

∫
ϕ(x1, x2)dP (x1, x2) differs

from what is expected under (H0), i.e.
∫
ϕ(x1, x2)dP 1(x1)dP 2(x2).
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(i) In particular, in the Coincidence case where h is equal to hϕcoinc
δ

defined by

(2.5), the assumptions of Theorem 3.2 are fulfilled for instance if X1 and X2 are
discretized at resolution r, with δ = kr + r/2 for some integer k, or if X1 and X2

have bounded conditional intensities, with δ large enough so that ϕcoinc
δ (X1, X2) is

not a.s. null. Theorem 3.2 means in such cases that the corresponding two-tailed
test is asymptotically of power 1, for any alternative P such that

∫

1|v−u|≤δE [dNX1(u)dNX2(v)] 6=
∫

1|v−u|≤δE [dNX1(u)]E [dNX2(v)]].

Note that no δ ensuring this condition can be found if heuristically, the repartition
of the delays |v−u| between points of X1 and X2 is the same under (H0) and under
(H1). For neuroscientists, it means that the cross-correlogram (histogram of the
delays, that is classically represented as the first description of the data) does not
show different behaviors in the dependent and independent cases. This would only
occur if the dependence could not be measured in terms of delay between points.

(ii) Furthermore, when ϕ is equal to ϕw defined by (2.2) with a continuous inte-
grable function w (see Proposition 3.1), Theorem 3.2 means that the corresponding
bilateral test is consistent against any alternative such that

βw =

∫

w(u, v) (E [dNX1(u)dNX2(v)]− E [dNX1(u)]E [dNX2(v)]) 6= 0.

For the function w chosen in [59] and under specific Poisson assumptions, βw is
linked to a coefficient in the Haar basis of the so-called interaction function, which
measures the dependence between both processes X1 and X2. Working non asymp-
totically, one of the main result of [59] states, after reformulation in the present
setting, that if βw is larger than an explicit lower bound, then the second kind
error rate of the upper-tailed test is less than a prescribed β in (0, 1). Theorem 3.2
thus generalizes the result of [59] to a set-up with much less reductive assumptions
on the underlying stochastic models, but in an asymptotic way.

3.6 Bootstrap tests with Monte Carlo approximation

The above family of bootstrap tests Γ(q∗) involves an exact computation of the
conditional quantiles q∗η,n (Xn). Though such a computation is possible, it is not
often reasonable in practice even when the sample size n is moderate (say n ≥
15), since computing Un(X

∗
n) itself may be complex from an algorithmic point of

view, for particular choices of h. Therefore, the conditional quantiles q∗η,n (Xn) are
approximated, as usual, by a Monte Carlo method.

More precisely, for a chosen number B ≥ 1 of iterations for the Monte Carlo
method, let

(
X∗1

n , . . . ,X∗B
n

)
be B independent bootstrap samples from Xn, that

is B i.i.d. random variables from the distribution (P 1
n ⊗ P 2

n)
⊗n. For each b in

{1, . . . , B}, define U∗b = Un

(
X∗b

n

)
. The order statistic associated with

(
U∗1, . . . , U∗B)

is denoted as usual by
(
U∗(1), . . . , U∗(B)

)
. Then, for any sequence (Bn)n≥2 of pos-

itive integers, the family of Monte Carlo bootstrap tests is defined from (3.10) by
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Γ(q∗MC), with

q∗MC =
(√

nU∗(⌈(1−α)Bn⌉),
√
nU∗(⌊αBn⌋+1)

)

n≥2
. (3.12)

Proposition 3.6. Let Γ(q∗MC) be the family of tests defined by (3.10) and (3.12).
If Bn →n→+∞ +∞, under the same assumptions as in Theorem 3.2, then Γ(q∗MC)
also satisfies both (Psize) and (Pconsist.).

4 Permutation tests of independence

4.1 Description of the permutation approach and review of
its main known non-asymptotic properties

Permutation formalism The permutation approach we propose here consists
in randomly permuting the second coordinates of the observed pairs of point pro-
cesses. More precisely, if πn is a permutation of {1, . . . , n}, one defines

Xπn
n = (Xπn

1 , . . . , Xπn
n ) with Xπn

i =
(

X1
i , X

2
πn(i)

)

, (4.1)

and if Πn is a random permutation taken uniformly at random in Sn independently
of Xn, the corresponding permuted sample is defined by XΠn

n . Let P ⋆
n be the

conditional distribution of XΠn
n given Xn.

For every n ≥ 2 and η in (0, 1), let q⋆η,n(Xn) denote the η-quantile of L (
√
nUn, P

⋆
n |Xn).

The corresponding sequence of upper and lower critical values is defined by

q⋆ =
(
q⋆1−α,n (Xn) , q

⋆
α,n (Xn)

)

n≥2
. (4.2)

As for the bootstrap approach, the computation of q⋆ is usually not feasible
for relatively small n and Monte-Carlo procedures come into play. Let B ≥ 1 be
a chosen number of iterations for the Monte Carlo method, and

(
Π1

n, . . . ,Π
B
n

)
be

a sample of i.i.d. random permutations uniformly distributed on Sn. For each b

in {1, . . . , B}, we introduce U⋆b = Un

(

X
Πb

n
n

)

, and we denote by U⋆B+1 the statis-

tic Un (Xn) computed on the original sample Xn. The order statistic associated
with

(
U⋆1, . . . , U⋆B+1

)
is denoted as usual by

(
U⋆(1), . . . , U⋆(B+1)

)
. For a sequence

(Bn)n≥2 of positive integers, the sequence of upper and lower Monte Carlo permu-
tation critical values is then defined by

q⋆MC =
(√

nU⋆(⌈(1−α)(Bn+1)⌉),
√
nU⋆(⌊α(Bn+1)⌋+1)

)

n≥2
. (4.3)

Known non-asymptotic properties The main advantage of the permuta-
tion approach lies in the resulting tests being exactly of the desired level, even
when the critical values are approximated by a Monte Carlo method. Such non-
asymptotic results are well known (see for instance [57, Lemma 1] and [46]) and have

17



no known counterpart for the bootstrap approach, despite very few non-asymptotic
results in more classical settings [4, 21, 20]. They are the main reason for usually
preferring permutation to bootstrap when both methods are available (see [18]). We
summarize and formalize these non-asymptotic properties in the next proposition.

Proposition 4.1. Let α in (0, 1) and let Γ(q⋆) be the family of permutation tests
defined by (3.10) combined with (4.2). Then for every n ≥ 2 and any test ∆α,n of
Γ(q⋆), ∆α,n is exactly of level α, i.e. if P = P 1 ⊗ P 2, P(∆α,n(Xn) = 1) ≤ α.

This also holds for the family of Monte Carlo permutation tests Γ(q⋆MC), defined
by (3.10) combined with (4.3), whatever the choice of the number of iterations
(Bn)n≥2.

4.2 Consistency of the permutation approach

In this section, we focus on the Linear case where h is of the form hϕ for some
integrable function ϕ, as defined in (2.6). Indeed, it is the most general case for
which we are able to prove a combinatorial Central Limit Theorem under any
alternative as well as under the null hypothesis (Theorem 4.1). Hence in this
section, Un refers to Un,hϕ

. Notice that the centering assumption (ACent) is then
always satisfied by Un(Xn). We here only need the following moment assumption:

(Aϕ,Mmt)
For (X1, X2) with distribution P or P 1 ⊗ P 2 on X 2,
E
[
ϕ4
(
X1, X2

)]
<∞.

Though we have no exact counterpart of Theorem 3.1 for our permutation
approach, the following result combined with Proposition 3.5 gives a similar result.

Theorem 4.1. For all n ≥ 2, let P ⋆
n be the conditional distribution of a permuted

sample given Xn. In the Linear case where the kernel h is of the form (2.6) for an
integrable function ϕ, under (Anon−deg) and (Aϕ,Mmt) and with the notations of
Section 3,

d2
(
L
(√

nUn, P
⋆
n

∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

))
P−→

n→+∞
0, (4.4)

where
P−→ stands for the usual convergence in P-probability.

Comments. As pointed out above, unlike the bootstrap approach, the condi-
tional permutation distribution of the test statistic is not here directly compared
with the initial distribution of the test statistic under the null hypothesis. It is
in fact compared with the Gaussian limit distribution of the test statistic under
the null hypothesis, when the non-degeneracy assumption (Anon−deg) holds. More-
over, the convergence occurs here in probability and not almost surely, but note
that no continuity assumption for the kernel hϕ is used anymore. The price to pay
is that the moment assumption is stronger than the one used for the bootstrap.
This assumption, due to our choice to use an existing Central Limit Theorem for
martingale difference arrays in the proof, is probably merely technical and maybe
dispensable. Indeed, the result of Theorem 4.1 is close to asymptotic results for
permutation known as combinatorial Central Limit Theorems [32, 46], where this
kind of higher moment assumption can be replaced by some Lindeberg conditions
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[41, 29]. However, all these existing results can only be applied directly in our
case either when (Xi)i is deterministic or under the null hypothesis. Up to our
knowledge, no combinatorial Central Limit Theorem has been proved for non de-
terministic non exchangeable variables, like here under any alternative.

The above result is therefore one of the newest results presented here and its
scope is well beyond the only generalization to the point processes setting. Indeed,
because it holds not only under (H0) but also under (H1), it goes further than any
existing one for independence test statistics such as the ones of Romano [56]. Note
also that the behavior under dependence of the permuted test statistic of Van der
Vaart and Wellner was also left as an open question in [63].

The proof is presented in the supplementary material.

From Theorem 4.1, we deduce the following corollary.

Corollary 4.1. Under the assumptions of Theorem 4.1 and with the notations of
Proposition 3.5, for η in (0, 1),

q⋆η,n (Xn)
P−→

n→+∞
Φ−1

0,σ2
P1⊗P2

(η).

4.3 Asymptotic properties of the permutation tests

As for the bootstrap tests, we obtain the following results.

Theorem 4.2. Let Γ(q⋆) be the family of permutation tests defined by (3.10) and
(4.2). In the Linear case, if (Anon−deg) and (Aϕ,Mmt) hold, then Γ(q⋆) satisfies
both (Psize) and (Pconsist.). Moreover, if Bn →n→+∞ +∞, the family of Monte
Carlo permutation tests Γ(q⋆MC), defined by (3.10) and (4.3), also satisfies both
(Psize) and (Pconsist.).

5 Simulation study

In this section, we study our testing procedures from a practical point of view, by
giving estimations of the size and the power for various underlying distributions that
are coherent with real neuronal data. This allows to verify the usability of these
new methods in practice, and to compare them to existing classical methods. A real
data sets study and a more operational and complete method for neuroscientists
derived from the present ones is the subject of an ongoing work. The programs have
been optimized, parallelized in C++ and interfaced with R. The code is available at
https://code.google.com/p/neuro-stat/.

5.1 Presentation of the study

All along the study, h is taken equal to hϕcoinc
δ

(see (2.5)), where ϕcoinc
δ is defined

in (2.1) and α = 0.05. We only present the results for upper-tailed tests, but an
analogous study has been performed for lower-tailed tests with similar results. Five
different testing procedures are compared.
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5.1.1 Testing procedures

(CLT) Test based on the Central Limit Theorem for U -statistics (see Proposition
3.5) which rejects (H0) when the test statistic Sn in (3.8) is larger than the
(1− α)-quantile of the standard normal distribution.

(B) Monte Carlo bootstrap upper-tailed test of Γ(q∗MC) ((3.10) and (3.12)).

(P) Monte Carlo permutation upper-tailed test of Γ(q⋆MC) ((3.10) and (4.3)).

(GA) Upper-tailed tests introduced in [62, Definition 3] under the notation∆+
GAUE(α),

based on a Gaussian approximation of the total number of coincidences.

(TS) Trial-shuffling test based on a Monte Carlo approximation of the p-value in-
troduced in [47, equation (3)], but adapted to the present notion of coinci-
dences. This test is the reference distribution-free method for neuroscientists.
To be more precise, let C(Xn) =

∑n
i=1 ϕ

coinc
δ

(
X1

i , X
2
i

)
be the total num-

ber of coincidences of Xn. The trial-shuffling method consists in uniformly
drawing with replacement n i.i.d. pairs of indices {(i∗(k), j∗(k))}1≤k≤n in

{(i, j), 1≤ i 6=j ≤n}, and considering the associated TS-sample XTS
n =

((

X1
i∗(k), X

2
j∗(k)

))

1≤k≤n
.

The Monte Carlo p-value is defined by αTS
B = 1

B

∑B
b=1 1C(XTS,b

n )≥C(Xn)
,

where
(
XTS,1

n , . . . ,XTS,B
n

)
are B independent TS-samples, and the test re-

jects (H0) if αTS
B ≤ α. This procedure is therefore close in spirit to our

bootstrap procedure except that it is applied on a non-centered quantity
under (H0), namely C(Xn).

The number B of steps in the Monte Carlo methods is taken equal to 10000.

5.1.2 Simulated data

Various types of point processes are simulated here to check the distribution-free
character of our approaches and to investigate their limits. Of course, each of
the considered point processes satisfies the moment assumptions on the number of
points so that the theorems in this article can be applied. From now on and to be
coherent with the neuroscience application which originally motivated this work,
the point processes are simulated on [0, 0.1]. Indeed the following experiments
have been done to match neurophysiological parameters [62, 25] and the classical
necessary window for detection is usually of duration 0.1 seconds.

Estimation of the size The three data sets simulated under (H0) consist of
i.i.d. samples of pairs of independent point processes. For simplicity, both processes
have the same distribution, though this is not required.

Exp. A Homogeneous Poisson processes on [0, 0.1] with intensity λ = 60.

Exp. B Inhomogeneous Poisson processes with intensity fλ : t ∈ [0, 0.1] 7→ λt and
λ = 60.
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Exp. C Hawkes Processes as detailed in [62] i.e. point processes with conditional

intensity λ(t) = max
(

0, µ−
∫ t

0
ν 1]0,r](t− s) dNX(s)

)

, for t in [0, 0.1], with

spontaneous intensity µ = 60, refractory period r = 0.001, and ν > µ such
that for all point T in X and t in ]T, T + r], λ(t) = 0. This choice of ν
prevents two points to occur at a distance less than the refractory period
r to reflect typical neuronal behavior. This model is also sometimes called
Poisson process with dead time.

Study of the power The three data sets simulated under (H1) are such that
the number of coincidences is larger than expected under (H0). The models (injec-
tion or Hawkes) are classical in neuroscience and already used in [62, 26].

Exp. D Homogeneous injection model. X1 = X1
ind∪Xcom and X2 = X2

ind∪Xcom,
with X1

ind and X2
ind being two independent homogeneous Poisson processes

with intensity λind = 54, Xcom being a common homogeneous Poisson process
with intensity λcom = 6.

Exp. E Inhomogeneous injection model. Similar to Exp. D, except that both
X1

ind and X2
ind are independent inhomogeneous Poisson processes with inten-

sity fλind
(see Exp. B) and λind = 54.

Exp. F Dependent bivariate Hawkes processes. The coordinates X1 and X2 of a
same pair respectively have the conditional intensities:

λ1(t)=max
{

0, µ−
∫ t

0
ν1]0,r](t− s) dNX1(s) +

∫ t

0
η1]0,u](t− s) dNX2(s)

}

,

λ2(t)=max
{

0, µ−
∫ t

0
ν1]0,r](t−s) dNX2(s)+

∫ t

0
η1]0,u](t−s) dNX1(s)

}

, with the

spontaneous intensity µ = 54, the interaction intensity η = 6 in the period
designated by u = 0.005 and the refractory period designated by r = 0.001
with ν ≫ µ+ ηu such that once again, λj(t) is null on each ]T, T + r], for T
in Xj . We arbitrarily took ν = 50(2µ+ η).

5.2 Results

Varying number of trials n In Figure 1, the delay is fixed at δ = 0.01 and
the number n of trials varies in {10, 20, 50, 100}. Note that when the number of
trials is too small (n = 10), the estimated variance in (CLT) is sometimes negative,
therefore, the test cannot be implemented.
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Figure 1 – Estimated sizes and powers for different number of trials n, all

the tests being performed with a level α = 0.05. The circles represent the

percentage of rejection on 5000 simulations for each different method, the

triangles represent the corresponding endpoints of a 95% confidence interval.

The corresponding experiments are described in Section 5.1.2.
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The left hand side of Figure 1 corresponds to estimated sizes. On the one hand,
one can see in the case of homogeneous Poisson processes (Exp. A) and in the
case of refractory Hawkes processes (Exp. C) that the methods (CLT), (B), (P) and
(GA) are quite equivalent, but the size (first kind error rate) seems less controlled
in the bootstrap approach (B) especially for small numbers of trials. Yet, one can
see the convergence of the size of the bootstrap test towards α as the number of
trials goes to infinity, which illustrates Proposition 3.6. Note that the (CLT) test
also has a well controlled size even if it cannot be used for very small n. On the
other hand, in the case of inhomogeneous Poisson processes (Exp. B), one can
see that the (GA) test has a huge size and is thus inadequate here. Indeed it is
based on the strong assumption that the data are homogeneous Poisson processes
though they are in fact strongly nonstationary. The test tends thus to reject the
independence null hypothesis even when the data are independent. Finally, in the
three considered cases, the (TS) approach has a very small size, and is thus too
conservative as one can see in the power study. We guess, from our experiments,
that this lack of performance is mainly due to the fact that the (TS) approach is
applied here on a non-centered quantity under (H0), namely C(Xn).

The right hand side of Figure 1 corresponds to estimated powers, which increase
as n grows. This is in line with the consistency of the tests. Now, as it could be
expected when looking at its estimated sizes, for the (TS) approach, the estimated
powers are distinctly lower than the ones for the other methods, which confirms
its conservative behavior. The other approaches are more similar in Exp. D or
Exp. F though (B) clearly seems to outperform all tests, but at the price of a less
controlled size. Note that in the inhomogeneous case (Exp. E), (GA) seems to have
the best power, but this time, at the price of a totally uncontrolled size.

This part of the simulation study illustrates the convergences of the size and the
power of the bootstrap and permutation tests introduced here. The permutation
approach seems to actually guarantee the best control of the size as expected, as
compared with the bootstrap approach. Nevertheless both approaches are quite
effective for any considered kind of point processes and any sample size, unlike
the (GA) test which has very restrictive assumptions. The reference method (TS)
for neuroscientists is clearly too conservative. Moreover, the (CLT) test seems to
have also satisfying results, but with a slower convergence than the (B) and (P)
ones. This seems to illustrate that the conditional bootstrap and permutation
distributions give better approximations of the original one under independence
than a simple Central Limit Theorem. This phenomenon is well-known as the
second order accuracy of the bootstrap in more classical frameworks.

Varying delay δ We now investigate the impact of the choice for the delay δ by
making δ vary in {0.001, 0.005, 0.01, 0.02} for a fixed number of trials n = 50. The
results for the sizes being similar to the previous study, only the estimated powers
are presented in Figure 2.

On the top row of Figure 2, the same process is injected in both coordinates:
the coincidences are exact in the sense that they have no delay. Therefore, the
best choice for the delay parameter δ is the smallest possible value: the obtained
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Figure 2 – Estimated powers for different δ. Same convention as in Figure

1.

power is 1 for very small δ’s (e.g. δ = 0.001) and then decreases as δ increases.
On the contrary on the bottom row, it can be noticed that the highest power is for
δ = 0.005 which is the exact length of the interaction period u. Once again, the
(TS) method performs poorly, as does the (CLT) method. The three other methods
seem to be quite equivalent except in the inhomogeneous case (Exp. E) where the
(GA) method has a power always equal to 1, but at the price of an uncontrolled size.

6 Conclusion

In the present article, we have proposed non-parametric independence tests between
point processes based on U -statistics. The proposed critical values are obtained
either by bootstrap or permutation methods. We have shown that both methods
share the same asymptotic properties under the null hypothesis as well as under the
alternative. From a theoretical point of view, the main asymptotic results (Theorem
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3.1 and Theorem 4.1) have almost the same flavor. However, there are additional
assumptions in the permutation case which make the bootstrap results more general
(despite the additional continuity assumption, which is very mild). From a more
concrete point of view, it is acknowledged (see e.g. [18]) that permutation should
be preferred because of its very general non-asymptotic properties (see Proposition
4.1). This is confirmed by the experimental study, where clearly permutation leads
to a better first kind error rate control. However, both approaches perform much
better than a naive procedure, based on a basic application of a Central Limit
Theorem, when the number of observation is small. They also outperform existing
procedures of the neuroscience literature, namely [62], which assumes the point
processes to be homogeneous Poisson processes and the trial-shuffling procedures
[48, 47], which are biased bootstrap variants applied on a non-centered quantity.

One of the main open question with respect to the existing literature is whether
our results can be translated to test statistics of the form suph Un,h. There are
obviously two main obstacles. The first one lies in the nature of the observed
random variables, that are point processes, and the fact that controlling a supremum
of this type corresponds to a control of the whole U -process. This difficulty can
probably be overcome, since the asymptotic Gaussian behavior of similar statistics
has already been proved in very general spaces under (H0) for product type kernels
(see [9]). The study of such behavior under (H1) is surely much more complex.
The second obstacle comes from a more practical aspect. In neurosciences, and
in the particular case of coincidence count, the use of supδ Un,h

ϕcoinc
δ

leads to the

following fundamental problems. On the one hand, it is not clear that one could
easily compute such a statistic if the space where the supremum is taken is too large,
typically [0, 1]. On the other (more important) hand, neuroscientists are especially
interested in the value of δ which leads to a rejection, since it actually provides the
delay of interaction (see also Section 5). In this respect, an ongoing work involves
multiple testing aspects, which seem to answer this issue.
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Technical Results and Proofs of

"Bootstrap and permutation tests of

independence for point processes"

The references of Equations, Theorems, Propositions, etc, that use only num-
bers such as (3.1) for instance, refer to the main article Bootstrap and permutation
tests of independence for point processes.

A Complete Proofs

All along this section, C and C′ denote positive constants, that may vary from one
line to another one.

A.1 Proof of Proposition 2.1

We focus on the Coincidence case. According to the comment following the def-
inition of (Anon−deg), Un(Xn) is non-degenerate under (H0) if one can find some
borelian set B of X 2 such that P 1 ⊗ P 2(B) > 0 and such that for all x in B,

E
[

hϕcoinc
δ

(x,X)
]

6= 0, where X has distribution P 1 ⊗ P 2.

Consider B = {(∅, ∅)}. Then P 1 ⊗ P 2(B) = P 1 (∅)P 2 (∅) > 0.
Moreover, as ϕcoinc

δ (·, ∅) and ϕcoinc
δ (∅, ·) are both the zero function, under (H0),

E
[

hϕcoinc
δ

((∅, ∅), X)
]

=
1

2
E
[
ϕcoinc
δ

(
X1, X2

)]
> 0,

as ϕcoinc
δ

(
X1, X2

)
is non-negative and not almost surely null under (H0).

See also appendix B.1 for further results on the non-degeneracy of the U -
statistic in more general cases.

A.2 Proof of Proposition 3.1

Consider w : [0, 1]2 → R a continuous integrable function. Let us prove that
h = hϕw given by (2.2) and (2.6) is continuous for the topology induced by d (see
(3.4)). Recall that for x1 = (x1

1, x
2
1) and x2 = (x1

2, x
2
2) in (X 2),

hϕw(x1, x2) =
1

2

(
ϕw(x1

1, x
2
1) + ϕw(x1

2, x
2
2)− ϕw(x1

1, x
2
2)− ϕw(x1

2, x
2
1)
)
.

The first step is to show that for each i, j in {1, 2}, the projection defined by

pi,j :

( (
(X 2)2, d

)
−→

(
X 2, dX 2

)

((
x1
1, x

2
1

)
,
(
x1
2, x

2
2

))
7−→

(
x1
i , x

2
j

)

)

,
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is continuous. Let x =
((
x2
1, x

2
1

)
,
(
x1
2, x

2
2

))
and x

′ =
((

x′1
1,

′2
1

)

,
(

x′1
2, x

′2
2

))

in

(X 2)2. Then,

dX 2(pi,j(x), pi,j(x
′)) = dX 2

((
x1
i , x

2
j

)
,
(

x′1
i , x

′2
j

))

≤ d(x,x′) .

Hence, pi,j is 1-Lipschitz and therefore continuous.

The second step is to show that if w is continuous on
(
[0, 1]2, ‖ · ‖∞

)
, with

‖(u, v)− (u′, v′)‖∞ = max {|u− u′|, |v − v′|}, then ϕw is also continuous.
Let ε > 0 and for z in X , recall that Nz is the counting process associated with z,
defined by

Nz(t) =

∫ 1

0

1u≤tdNz(u).

First notice that, w being continuous on the compact set [0, 1]2, w is uniformly
continuous. Thus one can find some η in (0, 1) such that, for all (u, v), (u′, v′) in
[0, 1]2,

‖(u, v)− (u′, v′)‖∞ ≤ η implies |w(u, v)− w(u′, v′)| ≤ ε. (A.1)

Consider such η.
Let {xn}n≥0 be a sequence in X 2 such that dX 2 (xn, x0) −→

n→+∞
0 and let us show

that ϕw(xn) −→
n→+∞

ϕw(x0). There exists n0 in N such that for all n ≥ n0,

dX 2 (xn, x0) ≤ η. Then, for such n, by definition of dX 2 , we have that dD
(

Nx1
n
, Nx1

0

)

≤
η and dD

(

Nx2
n
, Nx2

0

)

≤ η. Thus, by definition of dD,

∃λ1
n ∈ Λ /

{
supt∈[0,1]

∣
∣λ1

n(t)− t
∣
∣ ≤ η, (1-i)

supt∈[0,1]

∣
∣
∣Nx1

n
(t)−Nx1

0

(
λ1
n(t)

)
∣
∣
∣ ≤ η, (1-ii)

∃λ2
n ∈ Λ /

{
supt∈[0,1]

∣
∣λ2

n(t)− t
∣
∣ ≤ η, (2-i)

supt∈[0,1]

∣
∣
∣Nx2

n
(t)−Nx2

0

(
λ2
n(t)

)
∣
∣
∣ ≤ η. (2-ii)

In particular, as η is chosen strictly smaller than 1 and as the Nxj
n
’s (n ≥ 0,

j = 1, 2) are counting processes with values in N, (1-ii) implies that ∀t ∈ [0, 1],
Nx1

n
(t) = Nx1

0

(
λ1
n(t)

)
and thus,

u0 ∈ x1
0 ⇔ un = λ1

n(u0) ∈ x1
n.

Similarly, (2-ii) implies that

v0 ∈ x2
0 ⇔ vn = λ2

n(v0) ∈ x2
n.
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Therefore,

ϕw(xn) =

∫∫

[0,1]2
w(u, v)dNx1

n
(u)dNx2

n
(v)

=
∑

(un,vn)∈x1
n×x2

n

w(un, vn)

=
∑

(u0,v0)∈x1
0×x2

0

w
(
λ1
n(u0), λ

2
n(v0)

)
.

Hence,

|ϕw(xn)− ϕw(x0)| ≤
∑

(u0,v0)∈x1
0×x2

0

∣
∣w
(
λ1
n(u0), λ

2
n(v0)

)
− w (u0, v0)

∣
∣ .

Yet, by (1-i) and (2-i), for each (u0, v0) in x1
0 × x2

0, we have

‖
(
λ1
n(u0), λ

2
n(v0)

)
− (u0, v0) ‖∞ ≤ η,

and thus, applying (A.1), we obtain

|ϕw(xn)− ϕw(x0)| ≤ #x1
0#x2

0ε,

and this for all n ≥ n0, which ends the proof of Proposition 3.1.

A.3 Proof of Proposition 3.2

Let us prove that in the Coincidence case, the kernel h = hϕcoinc
δ

given by (2.1)

and (2.5) is continuous for the topology induced by the metric d (defined in (3.4))
in any (x0, y0) in Cδ satisfying

({
x1
0

}
∪
{
y10
})

∩
({

x2
0 ± δ

}
∪
{
y20 ± δ

})
= ∅.

As in the proof of Proposition 3.1, denote by Nz the counting process associated
with z:

Nz(t) =

∫ 1

0

1u≤tdNz(u).

Consider a sequence {(xn, yn)}n∈N
of elements in X 2 × X 2, where xn =

(
x1
n, x

2
n

)

and yn =
(
y1n, y

2
n

)
such that d ((xn, yn) , (x0, y0)) −→

n→+∞
0 and (x0, y0) belongs to

Cδ.
We want to show that |h (xn, yn)− h (x0, y0)| −→

n→+∞
0.

Since (x0, y0) is in Cδ, for any t0 in
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
, t0 /∈ x1

0, which means that
Nx1

0
is continuous in t0 and therefore constant in a neighborhood:

∃ηt0 > 0 / ∀t ∈ [0, 1], |t− t0| ≤ ηt0 ⇒ Nx1
0
(t) = Nx1

0
(t0).
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As
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
is finite, ηx1

0
= mint0∈{x2

0±δ}∪{y2
0±δ} ηt0 > 0 is well defined,

and satisfies

∀u ∈
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− u| ≤ ηx1

0
⇒ Nx1

0
(t) = Nx1

0
(u).

By the same argument using continuity of Ny1
0

over
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
, one can

find ηy1
0
> 0 such that

∀u ∈
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− u| ≤ ηy1

0
⇒ Ny1

0
(t) = Ny1

0
(u).

Since (x0, y0) ∈ Cδ ⇔
({

x2
0

}
∪
{
y20
})

∩
({

x1
0 ± δ

}
∪
{
y10 ± δ

})
= ∅, one can con-

struct ηx2
0

and ηy2
0

satisfying

∀u ∈
{
x1
0 ± δ

}
∪
{
y10 ± δ

}
, ∀t ∈ [0, 1],

{ |t− u| ≤ ηx2
0
⇒ Nx2

0
(t) = Nx2

0
(u)

|t− u| ≤ ηy2
0
⇒ Ny2

0
(t) = Ny2

0
(u)

.

Finally, if η = min
{

ηx1
0
, ηy1

0
, ηx2

0
, ηy2

0

}

> 0,

∀s ∈
{
x2
0 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− s| ≤ η ⇒

{
Nx1

0
(t) = Nx1

0
(s)

Ny1
0
(t) = Ny1

0
(s)

, (A.2)

∀s ∈
{
x1
0 ± δ

}
∪
{
y10 ± δ

}
, ∀t ∈ [0, 1], |t− s| ≤ η ⇒

{
Nx2

0
(t) = Nx2

0
(s)

Ny2
0
(t) = Ny2

0
(s)

. (A.3)

As d ((xn, yn) , (x0, y0)) →n→+∞ 0, there exists n0 ≥ 0 such that for n ≥ n0,
d ((xn, yn) , (x0, y0)) ≤ η/4. From the definition of d, we deduce that

∃λ1
n ∈ Λ /

{
supt∈[0,1]

∣
∣λ1

n(t)− t
∣
∣ ≤ η

4 (1-i)

supt∈[0,1]

∣
∣
∣Nx1

n
(t)−Nx1

0

(
λ1
n(t)

)
∣
∣
∣ ≤ η

4 (1-ii)
,

and

∃λ2
n ∈ Λ /

{
supt∈[0,1]

∣
∣λ2

n(t)− t
∣
∣ ≤ η

4 (2-i)

supt∈[0,1]

∣
∣
∣Nx2

n
(t)−Nx2

0

(
λ2
n(t)

)
∣
∣
∣ ≤ η

4 (2-ii)
.

Notice that similar results occur for yn and y0, but there are not detailed here since
we do not use them explicitly.
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By definition of h,

h(xn, yn)− h (x0, y0) (A.4)

=
1

2

∫∫

1|u−v|≤δ

{
dNx1

n
dNx2

n
+ dNy1

n
dNy2

n
− dNx1

n
dNy2

n
− dNy1

n
dNx2

n

}
(u, v)

− 1

2

∫∫

1|u−v|≤δ

{

dNx1
0
dNx2

0
+ dNy1

0
dNy2

0
− dNx1

0
dNy2

0
− dNy1

0
dNx2

0

}

(u, v)

=
1

2

∫∫

1|u−v|≤δ

(

dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v) + dNy1
n
(u)
(

dNy2
n
− dNy2

0

)

(v)

− dNx1
n
(u)
(

dNy2
n
− dNy2

0

)

(v) − dNy1
n
(u)
(

dNx2
n
− dNx2

0

)

(v)

+
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v) +

(

dNy1
n
− dNy1

0

)

(u) dNy2
0
(v)

−
(

dNx1
n
− dNx1

0

)

(u) dNy2
0
(v) +

(

dNy1
n
− dNy1

0

)

(u) dNx2
0
(v)
)

.

By symmetry of the problem, we just need to study the terms

An =

∫∫

1|u−v|≤δ

(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v),

and

Bn =

∫∫

1|u−v|≤δdNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

Study of An

An =

∫∫

1|u−v|≤δ

(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

=

∫∫

1u≤v+δ

(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

−
∫∫

1u<v−δ

(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v).

We have that
∣
∣
∣

∫∫

1u≤v+δ

(

dNx1
n
−dNx1

0

)

(u) dNx2
0
(v)
∣
∣
∣

=

∣
∣
∣
∣

∫ (

Nx1
n
(v + δ)−Nx1

0
(v + δ)

)

dNx2
0
(v)

∣
∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0
(T + δ)

∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1
n(T + δ)

)
∣
∣
∣

+
∑

T∈x2
0

∣
∣
∣Nx1

0

(
λ1
n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ .
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Now, using the notation N−
x1
i

(t) =
∫
1u<tdNx1

i
(u),

∣
∣
∣
∣

∫∫

1u<v−δ

(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

∣
∣
∣
∣
≤
∑

T∈x2
0

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ .

Therefore,

|An| ≤
∑

T∈x2
0

(
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1
n(T + δ)

)
∣
∣
∣ (A.5)

+
∣
∣
∣Nx1

0

(
λ1
n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣

+
∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣

)

.

Let us study individually each term in the sum.
Fix T in x2

0. By (1-ii),
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1
n(T + δ)

)
∣
∣
∣ ≤ η

4
≤ ε. (A.6)

From (1-i), one has |λ1
n(T + δ)− (T + δ)| ≤ η

2 ≤ η which, with (A.2), implies
∣
∣
∣Nx1

0

(
λ1
n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ = 0. (A.7)

As N−
x1
n
(T − δ) = lim

u→T−δ
u<T−δ

Nx1
n
(u), there exists uT in [T − δ − η/4, T − δ[ such that

∣
∣
∣N−

x1
n
(T − δ)−Nx1

n
(uT )

∣
∣
∣ ≤ ε,

so
∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1
n(uT )

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1
n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ . (A.8)

From (1-ii), one has
∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1
n(uT )

)
∣
∣
∣ ≤ η/4 ≤ ε.

Then, by continuity of Nx1
0

at T − δ, first remark that N−
x1
0
(T − δ) = Nx1

0
(T − δ).

Moreover, by (1-i) and construction of uT ,
∣
∣λ1

n(uT )− (T − δ)
∣
∣ ≤

∣
∣λ1

n(uT )− uT

∣
∣+ |uT − (T − δ)| ≤ η

4
+

η

4
< η,

hence, using (A.2),
∣
∣
∣Nx1

0

(
λ1
n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ = 0. So finally, (A.8) gives

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ ≤ 2ε. (A.9)

Combining (A.5), (A.6), (A.7), and (A.9), we obtain that for any n ≥ n0:

|An| ≤ 3ε#x2
0. (A.10)
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Study of Bn Recall that Bn =
∫∫

1|u−v|≤δdNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

As for An, Bn is upper bounded by a sum of several terms, that we study separately.

Bn =
∑

T∈x1
n

(

Nx2
n
(T + δ)−Nx2

0
(T + δ)

)

−
∑

T∈x1
n

(

N−
x2
n
(T − δ)−N−

x2
0
(T − δ)

)

.

So
Bn ≤ |Bn,1|+ |Bn,2|+ |Bn,3|+ |Bn,4|, (A.11)

with

Bn,1 =
∑

T∈x1
n

(

Nx2
n
(T + δ)−Nx2

0

(
λ2
n (T + δ)

))

,

Bn,2 =
∑

T∈x1
n

(

Nx2
0

(
λ2
n (T + δ)

)
−Nx2

0
(T + δ)

)

,

Bn,3 =
∑

T∈x1
n

(

N−
x2
n
(T − δ)−N−

x2
0

(
λ2
n (T − δ)

))

,

Bn,4 =
∑

T∈x1
n

(

N−
x2
0

(
λ2
n (T − δ)

)
+N−

x2
0
(T − δ)

)

.

The control of Bn is quite similar to the one of An except that the sums are over
T in x1

n instead of T in x1
0, which prevents us to use (A.3) and (A.2) directly.

Control of Bn,1. Due to (2-ii),
∣
∣
∣Nx2

n
(T + δ)−Nx2

0

(
λ2
n (T + δ)

)
∣
∣
∣ ≤ ε, so

|Bn,1| ≤ ε#x1
n. (A.12)

Control of Bn,2. One can easily see that

Bn,2 =

∫∫
(
1v≤λ2

n(u+δ) − 1v≤u+δ

)
dNx2

0
(v) dNx1

n
(u)

=

∫∫ [(

1− 1u<(λ2
n)

−1(v)−δ

)

− (1− 1u<v−δ)
]

dNx2
0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

N−
x1
n
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

)

.

Fix now T in x2
0.

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

∣
∣
∣ ≤

∣
∣
∣N−

x1
n
(T − δ)−Nx1

0
(T − δ)

∣
∣
∣

+
∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

∣
∣
∣ .

As shown in (A.8),
∣
∣
∣N−

x1
n
(T − δ)−Nx1

0
(T − δ)

∣
∣
∣ ≤ 2ε.

Furthermore, take vT in
[(
λ2
n

)−1
(T )− δ − η/4,

(
λ2
n

)−1
(T )− δ

[

such that

∣
∣
∣N−

x1
n
(
(
λ2
n

)−1
(T )− δ)−Nx1

n
(vT )

∣
∣
∣ ≤ ε.
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So,

∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1
n(vT )

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1
n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ .

By construction of vT and λ1
n (see (1-ii)),

∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1
n(vT )

)
∣
∣
∣ ≤ ε.

Because of (A.2) which is true as

∣
∣λ1

n(vT )− (T − δ)
∣
∣ ≤ |λ1

n(vT )− vT |+ |vT − (T − δ)| ≤ η

4
+

η

4
< η

by (1-i),
∣
∣
∣Nx1

0

(
λ1
n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ = 0. Hence,

∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

∣
∣
∣ ≤ 2ε.

Finally, ∣
∣
∣N−

x1
n
(T − δ)−N−

x1
n
(
(
λ2
n

)−1
(T )− δ)

∣
∣
∣ ≤ 4ε,

and
|Bn,2| ≤ 4ε#x2

0. (A.13)

Control of Bn,3. First, for all T in x1
n, we find some νn,T in ]0, η/4] such that

∀u ∈ [T − δ − νn,T , T − δ[,
∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(u)
∣
∣
∣ ≤ ε.

Setting νn = minT∈x1
n
νn,T ,

|Bn,3| ≤
∑

T∈x1
n

∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(T − δ − νn)

∣
∣
∣

+
∑

T∈x1
n

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2
n (T − δ − νn)

)
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2
n (T − δ − νn)

)
−N−

x2
0

(
λ2
n (T − δ)

))

∣
∣
∣
∣
∣
∣

.

For each T in x1
n,
∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(T − δ − νn)

∣
∣
∣ ≤ ε and

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2
n (T − δ − νn)

)
∣
∣
∣ ≤ ε by (2-ii). Therefore,

|Bn,3| ≤ 2ε#x1
n +

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2
n (T − δ − νn)

)
−N−

x2
0

(
λ2
n (T − δ)

))

∣
∣
∣
∣
∣
∣

.
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Now,

∑

T∈x1
n

(

Nx2
0

(

λ2
n (T − δ − νn)

)

−N−
x2
0

(
λ2
n (T − δ)

) )

=

∫∫

1v≤λ2
n(u−δ−νn) − 1v<λ2

n(u−δ)dNX1
n
(u) dNX2

0
(v)

=
∑

T∈x2
0

(

Nx1
n

((
λ2
n

)−1
(T ) + δ

)

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

))

.

For each T in x2
0,

∣
∣
∣Nx1

n

( (
λ2
n

)−1
(T ) + δ

)

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

) ∣
∣
∣

≤
∣
∣
∣Nx1

n

((
λ2
n

)−1
(T ) + δ

)

−Nx1
0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))

−Nx1
0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

)∣
∣
∣

≤ 2ε+
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

)∣
∣
∣ ,

where the last line comes from (1-ii), and (A.2).

We now find some wT in
[(
λ2
n

)−1
(T ) + δ + νn − η/4 ,

(
λ2
n

)−1
(T ) + δ + νn

[

such

that ∣
∣
∣N−

x1
n

((
λ2
n

)−1
(T ) + δ + νn

)

−Nx1
n
(wT )

∣
∣
∣ ≤ ε,

so
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

)∣
∣
∣

≤
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

−Nx1
0

(
λ1
n (wT )

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1
n (wT )

)
−Nx1

n
(wT )

∣
∣
∣+ ε.

From (1-ii), we deduce that
∣
∣
∣Nx1

0

(
λ1
n (wT )

)
−Nx1

n
(wT )

∣
∣
∣ ≤ ε. Due to (A.2), (1-i),

and the construction of wT ,

∣
∣
∣

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

− (T − δ)
∣
∣
∣ ≤ 3η

4
< η,

and
∣
∣
(
λ1
n (wT )

)
− (T − δ)

∣
∣ ≤

∣
∣
(
λ1
n (wT )− wT

)∣
∣+ |wT − (T − δ)| < η.

So
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ + νn

))

−Nx1
0

(
λ1
n (wT )

)
∣
∣
∣ = 0. As a consequence,

∣
∣
∣Nx1

n

( (
λ2
n

)−1
(T ) + δ

)

−N−
x1
n

((
λ2
n

)−1
(T ) + δ + νn

) ∣
∣
∣ ≤ 4ε,
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and
|Bn,3| ≤ 2ε#x1

n + 4ε#x2
0. (A.14)

Control of Bn,4.

Bn,4 =

∫∫
(
1v<λ2

n(u−δ) − 1v<u−δ

)
dNx2

0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

Nx1
n
(T + δ)−Nx1

n

((
λ2
n

)−1
(T ) + δ

))

.

Let us fix T in x2
0. We have

∣
∣
∣Nx1

n
(T + δ)−Nx1

n

((
λ2
n

)−1
(T ) + δ

) ∣
∣
∣

≤
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1
n (T + δ)

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1
n (T + δ)

)
−Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))

−Nx1
n

((
λ2
n

)−1
(T ) + δ

)∣
∣
∣ .

The first and the last terms are upper bounded by ε due to (1-ii). Furthermore,

since Nx1
0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))

= Nx1
0
(T + δ) = Nx1

0

(
λ1
n (T + δ)

)
by applying

(A.2) and using (1-i) and (2-i),

∣
∣
∣Nx1

0

(
λ1
n (T + δ)

)
−Nx1

0

(

λ1
n

((
λ2
n

)−1
(T ) + δ

))∣
∣
∣ = 0.

So finally,
|Bn,4| ≤ 2ε#x2

0. (A.15)

Combining (A.11), (A.12), (A.13), (A.14), and (A.15), we can conclude that

|Bn| ≤ 3ε#x1
n + 10ε#x2

0. (A.16)

We now just remark that
(
#x1

n

)

n≥n0
is bounded because it converges to #x1

0.

Indeed, since #x1
n = Nx1

n
(1), #x1

0 = Nx1
0
(1) and for every n, λ1

n(1) = 1,

∣
∣#x1

n −#x1
0

∣
∣ =

∣
∣
∣Nx1

n
(1)−Nx1

0
(1)
∣
∣
∣

=
∣
∣
∣Nx1

n
(1)−Nx1

0

(
λ1
n(1)

)
∣
∣
∣

−→
n→+∞

0.

With (A.4), (A.10), and (A.16), this concludes the proof of Proposition 3.2.

40



A.4 Proof of Theorem 3.1

By Proposition 3.3, for all n ≥ 2,

d2

(

L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√

nUn, P
1 ⊗ P 2

) )

≤ C inf
(Y ∗

n,a,Ya),(Y ∗
n,b,Yb) i.i.d /

Y ∗
n,a,Y

∗
n,b∼P 1

n⊗P 2
n, Ya,Yb∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,a, Y

∗
n,b

)
− h (Ya, Yb)

)2
]

.

Our goal is to construct, for almost all ω in Ω, a sequence of random variables
(
Ȳ ∗
n,ω,a

)

n≥1
such that for every n ≥ 1, Ȳ ∗

n,ω,a ∼ P 1
n,ω ⊗ P 2

n,ω, where P j
n,ω =

n−1
∑n

i=1 δXj
i (ω) is the jth marginal empirical measure corresponding to the re-

alization Xn(ω), a random variable Ȳω,a ∼ P 1 ⊗ P 2, and

{(

Ȳ ∗
n,ω,b

)

n≥1
, Ȳω,b

}

an

independent copy of
{(

Ȳ ∗
n,ω,a

)

n≥1
, Ȳω,a

}

on some probability space (Ω′
ω ,A′

ω,P
′
ω)

depending on ω such that

E′
ω

[(

h
(
Ȳ ∗
n,ω,a, Ȳ

∗
n,ω,b

)
− h

(
Ȳω,a, Ȳω,b

) )2
]

−→
n→+∞

0, (A.17)

where E′
ω denotes the expectation corresponding to P′

ω . Then from (A.17), we can
conclude by noting that, for almost all ω in Ω,

inf
(Y ∗

n,a,Ya),(Y ∗
n,b,Yb) i.i.d /

Y ∗
n,a,Y

∗
n,b∼P 1

n,ω⊗P 2
n,ω, Ya,Yb∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,a, Y

∗
n,b

)
− h (Ya, Yb)

)2
]

(ω)

≤ E′
ω

[(

h
(
Ȳ ∗
n,ω,a, Ȳ

∗
n,ω,b

)
− h

(
Ȳω,a, Ȳω,b

) )2
]

−→
n→+∞

0.

To prove (A.17), consider (Ω,A,P) the probability space on which all the Xi’s
are defined. In what follows, one can keep in mind that Ω represents the randomness
in the original sequence (Xi)i. Thus, a given ω in Ω represents a given realization
of (Xi)i.
As a preliminary step, from Proposition 3.4, there exists some subset Ω1 of Ω such
that P(Ω1) = 1 and for every ω in Ω1,

1

n4

n∑

i,j,k,l=1

h2
((
X1

i (ω), X
2
j (ω)

)
,
(
X1

k(ω), X
2
l (ω)

))

−→
n→+∞

E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
. (A.18)

Applying Theorem 3 in [7], since (X , dX ) defined by (3.3) is separable, P -a.s. in
(Xi)i, P

1
n =⇒

n→+∞
P 1 and P 2

n =⇒
n→+∞

P 2. Hence there exists some subset Ω2 of Ω

such that P(Ω2) = 1 and for every ω in Ω2,

P 1
n,ω ⊗ P 2

n,ω =⇒
n→+∞

P 1 ⊗ P 2, (A.19)
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Now, consider Ω0 = Ω1 ∩ Ω2, and fix ω in Ω0.
Following the proof of Skorokhod’s representation theorem in [3, Theorem 11.7.2,
p. 415], since (X 2, dX 2) is a separable space, it is possible to construct

• some probability space (Ω′
ω,A′

ω,P
′
ω),

• some random variables Ȳ ∗
n,ω,a : Ω′

ω → X 2, Ȳ ∗
n,ω,b : Ω

′
ω → X 2 with distribution

P 1
n,ω ⊗ P 2

n,ω,

• Ȳω,a : Ω′
ω → X 2, Ȳω,b : Ω

′
ω → X 2 with distribution P 1 ⊗ P 2,

satisfying:

• P′
ω-a.s., Ȳ ∗

n,ω,a −→
n→+∞

Ȳω,a and Ȳ ∗
n,ω,b −→

n→+∞
Ȳω,b,

•
{(

Ȳ ∗
n,ω,a

)

n≥1
, Ȳω,a

}

and

{(

Ȳ ∗
n,ω,b

)

n≥1
, Ȳω,b

}

are independent,

so that w.r.t. the metric d (see (3.4)),

P′
ω-a.s.,

(
Ȳ ∗
n,ω,a, Ȳ

∗
n,ω,b

)
−→

n→+∞

(
Ȳω,a, Ȳω,b

)
. (A.20)

But under (ACont), h is continuous on a set C s. t. P′
ω

((
Ȳω,a, Ȳω,b

)
∈ C
)

=
(
P 1 ⊗ P 2

)⊗2
(C) = 1, hence

P′
ω-a.s., h

(
Ȳ ∗
n,ω,a, Ȳ

∗
n,ω,b

)
→n→+∞ h

(
Ȳω,a, Ȳω,b

)
.

As P′
ω-a.s. convergence implies convergence in probability, to obtain (A.17), we only

need to prove that the sequence
(

h2
(

Ȳ ∗
n,ω,a, Ȳ

∗
n,ω,b

))

n≥1
is uniformly integrable,

according to Theorem 16.6 p. 165 of [5]. We therefore conclude since (A.18) is
equivalent to

E′
ω

[
h2
(
Ȳ ∗
n,ω,a,Ȳ

∗
n,ω,b

)]
=

1

n4

n∑

i,j,k,l=1

h2
(
(X1

i (ω), X
2
j (ω)), (X

1
k(ω), X

2
l (ω))

)

−→
n→+∞

E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
= E′

ω

[
h2
(
Ȳω,a, Ȳω,b

)]
.

(A.17) is thus obtained for any ω in Ω0, with P(Ω0) = 1. This ends the proof.

A.5 Proof of Proposition 3.3

Fix some integer n ≥ 2 and recall that the P j
n’s, (j = 1, 2), are the marginal

empirical measures associated with Xn.
Let

(
Y ∗
n,i, Yi

)

1≤i≤n
be an i.i.d. sample such that for every i=1 . . . n, Y ∗

n,i ∼ P 1
n⊗P 2

n ,

Yi ∼ P 1⊗P 2, and such that, from the definition of Wasserstein’s metric d2 recalled
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in (3.2),

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√

nUn, P
1 ⊗ P 2

))

≤ 1

n(n− 1)2
E∗









∑

i6=i′

(
h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′ )

)





2



 .

Notice that the upper bound is finite under (A∗
Mmt).

Introducing for (i, i′, j, j′) in {1, 2, . . . , n}4, and m in {2, 3, 4},

E(i,i′,j,j′) = E∗
[(

h
(
Y ∗
n,i, Y

∗
n,i′
)
− h(Yi, Yi′ )

)(

h
(
Y ∗
n,j , Y

∗
n,j′
)
− h(Yj , Yj′ )

)]

,

Im =
{

(i, i′, j, j′) ∈ {1, 2, . . . , n}4 ; i 6= i′, j 6= j′, # {i, i′, j, j′} = m
}

,

where # {i, i′, j, j′} denotes the number of different elements in {i, i′, j, j′}, one has:

E∗





(∑

i6=i′

(
h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′)

) )2





=
∑

(i,i′,j,j′)∈I4

E(i,i′,j,j′) +
∑

(i,i′,j,j′)∈I3

E(i,i′,j,j′) +
∑

(i,i′,j,j′)∈I2

E(i,i′,j,j′).

Let us now upper bound each term of this sum separately.
If (i, i′, j, j′) is in I4, then by independence,

E(i,i′,j,j′) =
(
E∗[h

(
Y ∗
n,i, Y

∗
n,i′
)]

− E [h (Yi, Yi′)]
)
×

(
E∗[h

(
Y ∗
n,j , Y

∗
n,j′
)]

− E [h (Yj , Yj′ )]
)
.

Under (ACent) and (A∗
Cent), E [h(Yi, Yi′)] = E∗[h

(
Y ∗
n,i, Y

∗
n,i′

)]
= 0, so

E(i,i′,j,j′) = 0.
If (i, i′, j, j′) is in I3, by the Cauchy-Schwarz inequality,

E(i,i′,j,j′) ≤ E∗
[(

h
(
Y ∗
n,a, Y

∗
n,b

)
− h(Ya, Yb)

)2
]

,

where
(
Y ∗
n,a, Ya

)
and

(

Y ∗
n,b, Yb

)

are independent copies of the (Yn,i, Yi)’s. If (i, i′, j, j′)

is in I2, then E(i,i′,j,j′) = E∗
[(

h
(

Y ∗
n,a, Y

∗
n,b

)

− h (Ya, Yb)
)2
]

is immediate.

But #I3 = 4n(n− 1)(n− 2) and #I2 = 2n(n− 1), so

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√

nUn, P
1 ⊗ P 2

))

≤ 4E∗
[(

h
(
Y ∗
n,a, Y

∗
n,b

)
− h
(
Ya, Yb

))2
]

.

Since
(
Y ∗
n,a, Ya

)
and

(

Y ∗
n,b, Yb

)

may be arbitrarily chosen, Proposition 3.3 follows.
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A.6 Proof of Proposition 3.4

Let us first notice that (3.6) is a direct application of the strong law of large numbers
for U -statistics, proved by Hoeffding [4].

Next, for m in {1, . . . , 4}, introduce

gm (Xi1 , . . . , Xim) =
∑

(i,j,k,l)∈I{i1,...im}

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))
,

where I{i1,...im} is the set
{

(i, j, k, l) ∈ {i1, . . . im}4 ; # {i, j, k, l} = m
}

.

Then,

1

n4

n∑

i,j,k,l=1

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))

=

4∑

m=1

1

m!

(

1

n4

∑

(i1,...,im)∈{1,...,n}m

i1,...,im all different

gm (Xi1 , . . . , Xim)

)

.

Each of the four terms in the right hand side of the above decomposition be-
ing, up to a multiplicative factor, a classical U -statistic, and since under (A∗

Mmt),
E [|gm(Xi1 , . . . , Xim)|] < +∞, we can now apply the strong law of large numbers
for U -statistics again. Therefore P -a.s. in (Xi)i,

1

n(n−1) . . . (n−m+1)

∑

(i1,...,im)

gm (Xi1 , . . . , Xim) −→
n→+∞

E [gm (X1, . . . , Xm)] .

In particular, P -a.s. in (Xi)i, n
−4
∑

(i1,...,im) gm (Xi1 , . . . , Xim) converges towards

0 for m in {1, 2, 3}, and towards E [g4 (X1, X2, X3, X4)] for m = 4. Finally noticing
that E [g4 (X1, X2, X3, X4)] = 4!E

[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
allows to conclude.

A.7 Proof of Proposition 3.5

Let (Xi)i be a sequence of i.i.d pairs of point processes with distribution P 1 ⊗ P 2

on X 2. According to (ACent), for i 6= j, E [h(Xi, Xj)] = 0. For a better readability,
we set E [h|Xi] = E [h(Xi, X)|Xi] = E [h(X,Xi)|Xi] for some X with distribution
P 1⊗P 2, and independent of Xi. By Hoeffding’s decomposition for non-degenerate
U -statistics, we obtain that

√
nUn(Xn) =

2√
n(n− 1)

(Tn +Mn) ,

where Tn =
∑

i<j (E [h|Xi] + E [h|Xj ]), and Mn =
∑

i<j g(Xi, Xj), with g(Xi, Xj) =
h(Xi, Xj)− E [h|Xi]− E [h|Xj ].
Firstly, we have that E

[
M2

n

]
=
∑

i<j

∑

k<l E [g(Xi, Xj)g(Xk, Xl)] . But if {i, j} ∩
{k, l} = ∅, i < j, k < l, E [g(Xi, Xj)g(Xk, Xl)] = (E [g(Xi, Xj)])

2 = 0. If
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#({i, j} ∩ {k, l}) = 1, with for instance k = i, j 6= l, (i < j, i < l) (the other
cases may be treated similarly), then

E [g(Xi, Xj)g(Xi, Xl)] = E [E [g(Xi, Xj)|Xi]E [g(Xi, Xl)|Xi]] = 0.

Therefore, E
[
M2

n

]
=
∑

i<j E
[
g2(Xi, Xj)

]
= n(n − 1)E

[
g2(X1, X2)

]
/2, and since

E
[
g2(Xi, Xj)

]
< +∞, from Chebychev’s inequality, we deduce that

2√
n(n− 1)

Mn
P−→

n→+∞
0. (A.21)

Secondly, we have that Tn = (n − 1)
∑n

i=1 E [h|Xi] . Since the E [h|Xi]’s are i.i.d,
with E [E [h|Xi]] = 0 and Var (E [h|Xi]) = σ2

P 1⊗P 2/4, thanks to (AMmt), the Cen-
tral Limit Theorem leads to

2√
n(n− 1)

Tn
L−→

n→+∞
N
(
0, σ2

P 1⊗P 2

)
. (A.22)

Thus, combining (A.21) and (A.22), Slutsky’s lemma ensures the convergence in
distribution of

√
nUn(Xn) towards N

(
0, σ2

P 1⊗P 2

)
.

Now, in order to obtain the convergence in the Wasserstein metric, one needs to
check the convergence of the second order moments. Notice that

E
[(√

nUn(Xn)
)2
]

=
1

n(n− 1)2

∑

i6=i′

∑

j 6=j′

E [h(Xi, Xi′)h(Xj , Xj′)] .

Let us consider all the cases where i 6= i′ and j 6= j′.
If #{i, i′, j, j′} = 4, E [h(Xi, Xi′)h(Xj , Xj′)] = 0, by independence and (ACent).
If #{i, i′, j, j′}=3, E [h(Xi, Xi′)h(Xj , Xj′)]=σ2

P 1⊗P 2/4, by symmetry of h.

If #{i, i′, j, j′} = 2, E [h(Xi, Xi′)h(Xj , Xj′)] = E
[

(h(X1, X2))
2
]

. Therefore,

E
[(√

nUn(Xn)
)2
]

=
n− 2

n− 1
σ2
P 1⊗P 2 +

2

n− 1
E
[

(h(X1, X2))
2
]

−→
n→+∞

σ2
P 1⊗P 2 ,

which ends the proof of Proposition 3.5.

A.8 Proof of Corollary 3.1

By Proposition 3.5, we have that

L
(√

nUn, P
1 ⊗ P 2

)
=⇒

n→+∞
N (0, σ2

P 1⊗P 2), (A.23)

where N (0, σ2
P 1⊗P 2) has a continuous c.d.f. Therefore, by [6, Lemma 2.11],

sup
z∈R

∣
∣
∣P
(√

nUn(X
⊥⊥
n ) ≤ z

)
− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0. (A.24)
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Furthermore, since convergence w.r.t the d2 distance implies weak convergence,
Theorem 3.1 combined with (A.23) leads to

L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
=⇒

n→+∞
N (0, σ2

P 1⊗P 2) P -a.s. in (Xi)i. (A.25)

Hence,

sup
z∈R

∣
∣
∣P
(√

nUn(X
∗
n)≤z|Xn

)
−Φ0,σ2

P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0 P -a.s. in (Xi)i, (A.26)

and the first part of the corollary is obtained.

Moreover, [6, Lemma 21.2] can then be applied to both (A.23) and (A.25), to
obtain that on the event where (A.25) holds

q∗η,n (Xn) −→
n→+∞

Φ−1
0,σ2

P1⊗P2
(η) P -a.s. in (Xi)i, (A.27)

and that q⊥⊥η,n also converges to Φ−1
0,σ2

P1⊗P2
(η).

A.9 Proof of Theorem 3.2

Let us focus on the sequence of upper-tailed tests in Γ(q∗), the proof for the other
tests being similar.

Under (H0), from Proposition 3.5 and (A.27), by Slutsky’s lemma,
(
√
nUn(Xn), q

∗
1−α,n(Xn)) converges in distribution to (Z,Φ−1

0,σ2
P1⊗P2

(1−α)), where

Z ∼ N (0, σ2
P 1⊗P 2). Therefore, under (H0),

P(
√
nUn(Xn) > q∗1−α,n (Xn)) →n→+∞ α,

which proves (Psize).
Under any alternative such that

∫
h(x, x′)dP (x)dP (x′) > 0, by Proposition 3.4,

Un(Xn) −→
n→+∞

∫

h(x, x′)dP (x)dP (x′) > 0, P -a.s. in (Xi)i.

Furthermore, due to (A.27), q∗1−α,n (Xn) /
√
n →n→+∞ 0 P -a.s. in (Xi)i. Hence,

P(
√
nUn(Xn) ≤ q∗1−α,n(Xn)) →n→+∞ 0, and thus (Pconsist.) is proved.

A.10 Proof of Proposition 3.6

As above, we focus on the sequence of upper-tailed tests in Γ(q∗MC). Let Z ∼ N (0, 1)
and define for z in R,

F ∗
n,Xn

(z) = P
(√

nUn(X
∗
n) ≤ z|Xn

)
, F ∗Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1√
nUn(X∗b

n )≤z.
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By the Dvoretzky-Kiefer-Wolfowitz inequality (see [6]), for n ≥ 2 and ε > 0,

P

(

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)−F ∗

n,Xn
(z)
∣
∣
∣>ε

)

=E

[

P

(

sup
z∈R

∣
∣
∣F

∗,Bn

n,Xn
(z)−F ∗

n,Xn
(z)
∣
∣
∣>ε

∣
∣
∣
∣
Xn

)]

≤ 2e−2Bnε
2 −→

n→+∞
0,

that is supz∈R
|F ∗Bn

n,Xn
(z)− F ∗

n,Xn
(z)| P−→

n→+∞
0. With (A.26), this leads to

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣

P−→
n→+∞

0. (A.28)

We finish the proof using similar arguments as in [6, Lemma 21.2], combined with
a subsequence argument [3, Theorem 9.2.1]. Let φ0 be an extraction. Then, by
(A.28), there exists an extraction φ1, and some Ω0 ⊂ Ω such that P (Ω0) = 1, and
for every ω in Ω0,

sup
z∈R

∣
∣
∣F

∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(z)− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0.

From now on, fix ω in Ω0. In particular, this fixes a realisation of Xn, and a realisa-

tion of
(
X∗1

n , . . . ,X∗Bn
n

)
and thus, F ∗Bn

n,Xn
(ω) is deterministic. Hence, F

∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(Z)

a.s.−→
n→+∞

Φ0,σ2
P1⊗P2

(Z), and for η in (0, 1),

Φ0,1

((

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η)

)

= P
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(Z) < η

)

−→
n→+∞

P
(

Φ0,σ2
P1⊗P2

(Z) < η
)

= Φ0,1

((

Φ0,σ2
P1⊗P2

)−1

(η)

)

.

Finally, as Φ0,1 is a one-to-one function and Φ−1
0,1 is continuous,

√

φ1◦φ0(n)U
∗(⌈η(Bφ1◦φ0(n))⌉)(ω)

=
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η) −→
n→+∞

Φ−1
0,σ2

P1⊗P2
(η), (A.29)

and this for all ω in Ω0, and any initial extraction φ0. Therefore, we obtain that√
nU∗(⌈ηBn⌉) P−→

n→+∞
Φ−1

0,σ2
P1⊗P2

(η). We conclude as for Theorem 3.2.

A.11 Proof of Theorem 4.1

For the sake of clarity and a better readability, we first present a sketch of the proof
of this Theorem in Subsection A.11.1. A complete version is detailed in Subsection
A.11.2.
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A.11.1 Sketch of proof of Theorem 4.1

Let dBL denote the bounded Lipschitz metric, which metrizes the weak convergence
[3, Prop. 11.3.2 and Th. 11.3.3]. For any variable Zn depending on Xn and
Πn, L (Zn|Xn) denotes the conditional distribution of Zn given Xn and for any
integrable function f , EP 1⊗P 2 [f ] = E[f(X1

1 , X
2
2 )].

• The first step of the proof consists in decomposing
√
nUn

(
XΠn

n

)
in

√
nUn

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn (Xn)√

n

)

,

where

• MΠn
n (Xn) =

1√
n

∑

i6=j

1Πn(i)=jCi,j ,

• RΠn
n (Xn) =

n∑

i=1

(

1Πn(i)=i −
1

n

)

Ci,i,

• Tn (Xn) =
1

n

∑

i6=j

Ci,j ,

with

Ci,j = ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

j

)∣
∣X2

j

]
+ EP 1⊗P 2 [ϕ] ,

X = (X1, X2) being P -distributed and independent of (Xi)i.
We then prove from Cauchy-Schwarz inequality that

E





(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

])2


 −→
n→+∞

0 and E

[(
Tn (Xn)√

n

)2
]

−→
n→+∞

0,

therefore from Markov’s inequality,

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→+∞

0 and
Tn (Xn)√

n

P−→
n→+∞

0.

From the definition of dBL, this allows us to derive that

dBL

(

L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→+∞

0. (A.30)

• The second, and most difficult, step of the proof consists in proving that

dBL

(
L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

)) P−→
n→+∞

0. (A.31)

Consider

Yn,i =
1√
n

i−1∑

j=1

(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)
, (A.32)
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and for Π′
n another uniformly distributed random permutation with values in Sn,

independent of Πn and Xn, define accordingly Y ′
n,i by replacing Πn by Π′

n in (A.32),

so that MΠn
n (Xn) =

∑n
i=1 Yn,i and similarly for M

Π′
n

n (Xn).
Denoting Fn,i = σ (Πn,Π

′
n, X1, X2, . . . , Xi) for n ≥ i ≥ 2, we prove through tech-

nical computations that for a, b in R,
(
aYn,i + bY ′

n,i,Fn,i

)

2≤i≤n
is a martingale

difference array which satisfies the assumptions of the following result, commonly
attributed to Brown [1].

Theorem A.1. Let (Xn,k)k∈{1,...,pn},n∈N∗ be a martingale difference array, i.e.
such that there exists an array of σ-algebra (Fn,k)k∈{1,...,pn},n∈N∗ that is increasing
w.r.t. k such that for all k = 1, ..., pn, E [Xn,k|Fn,k−1] = 0.

Let An =
∑pn

k=1 E
[

X2
n,k|Fn,k−1

]

, and assume that

• An
P−→

n→+∞
σ2 > 0,

• ∀ε > 0,

pn∑

k=1

E
[
X2

n,k1|Xn,k|>ε

]
→n→+∞ 0.

Then Zn =
∑pn

k=1 Xn,k converges in distribution towards N (0, σ2).

Thus, given a, b in R, we obtain that

L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

=⇒
n→+∞

N
(
0,
(
a2 + b2

)
σ2
P 1⊗P 2

)
,

which, according to the Cramér-Wold device, leads to Lemma A.1 below.

Lemma A.1. Considering the above notation,

L
((

MΠn
n (Xn) ,M

Π′
n

n (Xn)
)′)

=⇒
n→+∞

N2

(

0,

(
σ2
P 1⊗P 2 0
0 σ2

P 1⊗P 2

))

,

where N2 (M,V ) denotes the 2-dimensional Gaussian distribution with mean vector
M and variance-covariance matrix V .

From Lemma A.1, we deduce that for every t in R,







P
(
MΠn

n (Xn) ≤ t
)

−→
n→+∞

Φ0,σ2
P1⊗P2

(t),

P
(

MΠn
n (Xn) ≤ t,M

Π′
n

n (Xn) ≤ t
)

−→
n→+∞

Φ2
0,σ2

P1⊗P2
(t).

Using Chebychev’s inequality, with the fact (see [3, Th. 9.2.1] for instance) that in
a separable metric space, convergence in probability is metrizable, and therefore is
equivalent to almost sure convergence of a subsequence of any initial subsequence,
we prove that this leads to (A.31), and therefore,

dBL

(
L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

)) P−→
n→+∞

0.
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• The third, and final, step of the proof consists in deriving, by direct computa-
tions and the strong law of large numbers of Hœffding [4], the convergence of the
conditional second order moments

E
[(√

nUn

(
XΠn

n

))2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2
P 1⊗P 2 ,

which ends the proof.

A.11.2 Complete proof of Theorem 4.1

Recall that dBL denotes the bounded Lipschitz metric which metrizes the weak
convergence, defined by

dBL(µ, ν) = sup
f∈BL, ‖f‖BL≤1

∣
∣
∣
∣

∫

R

f (dµ− dν)

∣
∣
∣
∣
,

where, as defined in [3], BL is the set of bounded Lipschitz functions on R, and

‖f‖BL = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
|x− y| .

Recall that the proof consists of three steps presented in Section A.11.1. We give
below a complete proof for each of these steps.

First step: decomposition of
√
nUn

(
XΠn

n

)
in the Linear case It is

obvious that by the definition (2.6) of hϕ,

Un

(
XΠn

n

)
=

1

n− 1
UΠn
n , (A.33)

where UΠn
n =

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)
, so,

UΠn
n =

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)]

− 1

n

n∑

i,j=1

(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

−E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)] )
.
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On the one hand, if EP [f ] and EP 1⊗P 2 [f ] respectively denote E
[
f
(
X1

1 , X
2
1

)]
, and

E
[
f
(
X1

1 , X
2
2

)]
, for any integrable function f , then

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)]

=

n∑

i,j=1

1Πn(i)=jE
[
ϕ
(
X1

i , X
2
j

)]
−

n∑

i,j=1

(

1Πn(i)=j −
1

n

)

E
[
ϕ
(
X1

i , X
2
j

)]

=

n∑

i,j=1

1Πn(i)=jE
[
ϕ
(
X1

i , X
2
j

)]
−(EP [ϕ]−EP 1⊗P 2 [ϕ])

n∑

i=1

(

1Πn(i)=i −
1

n

)

.

On the other hand,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
=

n∑

i,j=1

1Πn(i)=jE
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

−
n∑

i=1

(

1Πn(i)=i −
1

n

)
(
E
[
ϕ
(
X1

i , X
2
i

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

])
,

where X = (X1, X2) is assumed to be P -distributed and independent of (Xi)i, and
in the same way,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
=

n∑

i,j=1

1Πn(i)=jE
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]

−
n∑

j=1

(

1Πn(j)=j −
1

n

)
(
E
[
ϕ
(
X1

j , X
2
j

)∣
∣X2

j

]
− E

[
ϕ
(
X1, X2

j

)∣
∣X2

j

])
.

Therefore, UΠn
n is equal to

n∑

i,j=1

1Πn(i)=j

(

ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

− E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)] )

+
n∑

i=1

(

1Πn(i)=i −
1

n

)(

E
[
ϕ
(
X1

i , X
2
i

)∣
∣X1

i

]
+ E

[
ϕ
(
X1

i , X
2
i

)∣
∣X2

i

]

− E
[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

i

)∣
∣X2

i

]
− EP [ϕ] + EP 1⊗P 2 [ϕ]

)

− 1

n

n∑

i,j=1

(

ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)] )

.

As a consequence, setting

Ci,j = ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

j

)∣
∣X2

j

]
+ EP 1⊗P 2 [ϕ] ,
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√
nUn

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn(Xn)√

n

)

, (A.34)

with

MΠn
n (Xn) =

1√
n

∑

i6=j

1Πn(i)=jCi,j ,

RΠn
n (Xn) =

n∑

i=1

(

1Πn(i)=i −
1

n

)

Ci,i,

Tn(Xn) =
1

n

∑

i6=j

Ci,j .

Let us now prove that

dBL

(

L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→+∞

0. (A.35)

To do this, first notice that for every function f in BL such that ‖f‖BL ≤ 1,

∣
∣
∣
∣
E
[
f
(√

nUn

(
XΠn

n

))∣
∣Xn

]
− E

[

f

(
n

n− 1
MΠn

n (Xn)

)∣
∣
∣
∣
Xn

] ∣
∣
∣
∣

≤ E

[∣
∣
∣
∣

√
nUn

(
XΠn

n

)
− n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣

∣
∣
∣
∣
Xn

]

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn(Xn)|√

n

)

.

Hence, taking the supremum over {f ∈ BL; ‖f‖BL ≤ 1},

dBL

(

L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn(Xn)|√

n

)

. (A.36)

Moreover, on the one hand, since Πn is independent of (Xi)i, by Cauchy-Schwarz
inequality,

E





(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

])2


 ≤ 1

n
E
[(
RΠn

n (Xn)
)2
]

,
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and

E
[(
RΠn

n (Xn)
)2
]

≤
n∑

i,j=1

E

[(

1Πn(i)=i −
1

n

)(

1Πn(j)=j −
1

n

)]

E [Ci,iCj,j ]

≤ C
(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])

n∑

i,j=1

(

E
[
1Πn(i)=i1Πn(j)=j

]
− 1

n2

)

≤ C
(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])





n∑

i=1

(
1

n
− 1

n2

)

+
∑

i6=j

(
1

n(n− 1)
− 1

n2

)




≤ C
(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])

< +∞.

Therefore, from Markov’s inequality, we deduce that

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→+∞

0.

On the other hand,

E

[(
Tn(Xn)√

n

)2
]

=
1

n3

∑

i6=j

∑

k 6=l

E [Ci,jCk,l] .

Notice that for i 6= j, E [Ci,j |Xi] = E [Ci,j |Xj ] = 0.

If # {i, j, k, l} = 4, then E [Ci,jCk,l] = (E [Ci,j ])
2
= 0.

If i, j, l are all different, then

E [Ci,jCi,l] = E [E [Ci,jCi,l|Xi, Xl]]

= E [E [Ci,j |Xi]Ci,l]

= 0.

In the same way, for i, j, k all different, then E [Ci,jCk,i] = 0.
If i 6= j,

E
[
C2

i,j

]
= σ2

P 1⊗P 2 , and E [Ci,jCj,i] ≤ σ2
P 1⊗P 2 , (A.37)

by the Cauchy-Schwarz inequality. Combining the above computations, we obtain
that

E

[(
Tn(Xn)√

n

)2
]

≤ 2
n(n− 1)

n3
σ2
P 1⊗P 2 −→

n→+∞
0,

and therefore,
Tn(Xn)√

n

P−→
n→+∞

0.

Finally, from (A.36), we derive (A.35).
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Second step: asymptotic normality of MΠn

n
(Xn) given Xn, in prob-

ability Recall that

MΠn
n (Xn) =

1√
n

∑

i6=j

1Πn(i)=jCi,j

=
1√
n

n∑

i=2

i−1∑

j=1

(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)
.

Let Π′
n be another uniformly distributed random permutation with values in Sn,

independent of Πn and Xn, and

M
Π′

n
n (Xn) =

1√
n

∑

i6=j

1Π′
n(i)=jCi,j

=
1√
n

n∑

i=2

i−1∑

j=1

(
1Π′

n(i)=jCi,j + 1Π′
n(j)=iCj,i

)
.

Let us now recall the result of Lemma A.1:

L
((

MΠn
n (Xn) ,M

Π′
n

n (Xn)
)′)

=⇒
n→+∞

N2

(

0,

(
σ2
P 1⊗P 2 0
0 σ2

P 1⊗P 2

))

.

Proof of Lemma A.1 According to the Cramér-Wold device, given a, b in R,
we aim at proving that

L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

=⇒
n→+∞

N
(
0,
(
a2 + b2

)
σ2
P 1⊗P 2

)
.

In order to deal with simpler mathematical expressions, we introduce below some
additional notation.

• For n ≥ i ≥ 2, Fn,i = σ (Πn,Π
′
n, X1, X2, . . . , Xi).

• Let

Yn,i =
1√
n

i−1∑

j=1

(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)
,

Y ′
n,i =

1√
n

i−1∑

j=1

(
1Π′

n(i)=jCi,j + 1Π′
n(j)=iCj,i

)
,

so that MΠn
n (Xn) =

∑n
i=1 Yn,i and M

Π′
n

n (Xn) =
∑n

i=1 Y
′
n,i.
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Let us first prove that for a fixed integer n ≥ 2,
(
aYn,i + bY ′

n,i,Fn,i

)

2≤i≤n
is a

martingale difference array. Note that for 2 ≤ i ≤ n,

E [Yn,i|Fn,i−1] =
1√
n

i−1∑

j=1

E
[
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

∣
∣Fn,i−1

]

=
1√
n

i−1∑

j=1

(
1Πn(i)=jE [Ci,j |Xj ] + 1Πn(j)=iE [Cj,i|Xj]

)

= 0.

In the same way, we have that E
[
Y ′
n,i

∣
∣Fn,i−1

]
= 0, so E

[
aYn,i + bY ′

n,i

∣
∣Fn,i−1

]
= 0.

From Theorem A.1, we thus deduce that if

(i)

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]
P−→

n→+∞
(a2 + b2)σ2

P 1⊗P 2 ,

(ii)

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1|aYn,i+bY ′

n,i|>ε

]

−→
n→+∞

0 for any ε > 0,

then
L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

=⇒
n→+∞

N
(
0,
(
a2 + b2

)
σ2
P 1⊗P 2

)
.

Let us now check that both (i) and (ii) are satisfied.

Assumption (i). In all the following, only consider n ≥ 4. Noticing that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]

= (a2 + b2)

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]
+ 2ab

n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
, (A.38)

the proof of (i) can be decomposed into two points.
The first point consists in proving that

n∑

i=2

E
[
Y 2
n,i

]
−→

n→+∞
σ2
P 1⊗P 2 and Var

(
n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]

)

−→
n→+∞

0,

which leads, thanks to Chebychev’s inequality, to

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

] P−→
n→+∞

σ2
P 1⊗P 2 .

The second point consists in proving that

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→+∞

0,
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so
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

] P−→
n→+∞

0.

• First point. On the one hand,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j,k=1

E
[ (

1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)
×

(
1Πn(i)=kCi,k + 1Πn(k)=iCk,i

) ]
.

Furthermore, if 1 ≤ j 6= k ≤ i− 1,

E
[(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

) (
1Πn(i)=kCi,k + 1Πn(k)=iCk,i

)]

= E
[
E
[(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

) (
1Πn(i)=kCi,k + 1Πn(k)=iCk,i

)∣
∣Xi, Xj ,Πn

]]

= E
[(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

) (
1Πn(i)=kE [Ci,k|Xi] + 1Πn(k)=iE [Ck,i|Xi]

)]

= 0.

Thus,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j=1

E
[(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)2
]

=
1

n

n∑

i=2

i−1∑

j=1

E
[
1Πn(i)=jC

2
i,j + 1Πn(j)=iC

2
j,i + 21Πn(i)=j1Πn(j)=iCi,jCj,i

]

=
1

n

n∑

i=2

i−1∑

j=1

(
2

n
E
[
C2

i,j

]
+

2

n(n− 1)
E [Ci,jCj,i]

)

=
2

n2

n∑

i=2

(i− 1)

(

E
[
C2

1,2

]
+

1

n− 1
E [C1,2C2,1]

)

,

so
∑n

i=2 E
[
Y 2
n,i

]
= n−1

n E
[
C2

1,2

]
+ 1

nE [C1,2C2,1] . From (A.37), we derive that

n∑

i=2

E
[
Y 2
n,i

]
−→

n→+∞
σ2
P 1⊗P 2 . (A.39)

On the other hand, we have that

E
[
Y 2
n,i

∣
∣Fn,i−1

]
=

1

n

i−1∑

j=1

1Πn(i)=jE
[
C2

i,j

∣
∣Xj

]
+

1

n

i−1∑

j=1

1Πn(j)=iE
[
C2

j,i

∣
∣Xj

]

+
2

n

i−1∑

j=1

1Πn(i)=j1Πn(j)=iE [Ci,jCj,i|Xj]

+
2

n

∑

1≤j 6=k≤i−1

1Πn(i)=j1Πn(k)=iE [Ci,jCk,i|Xj , Xk] .
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Then,

n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

]
− E

[
Y 2
n,i

])
= An,1 +An,2 + 2An,3 + 2An,4,

with

An,1 =
1

n

∑

1≤j<i≤n

(

1Πn(i)=jE
[
C2

i,j

∣
∣Xj

]
− 1

n
E
[
C2

i,j

]
)

,

An,2 =
1

n

∑

1≤j<i≤n

(

1Πn(j)=iE
[
C2

j,i

∣
∣Xj

]
− 1

n
E
[
C2

i,j

]
)

,

An,3 =
1

n

∑

1≤j<i≤n

(

1Πn(i)=j1Πn(j)=iE [Ci,jCj,i|Xj ]−
1

n(n− 1)
E [Ci,jCj,i]

)

,

An,4 =
1

n

∑

1≤j 6=k<i≤n

(
1Πn(i)=j1Πn(k)=iE [Ci,jCk,i|Xj, Xk]

)
.

Thus,

Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

≤ 4
(
E
[
A2

n,1

]
+ E

[
A2

n,2

]
+ 4E

[
A2

n,3

]
+ 4E

[
A2

n,4

])
. (A.40)

Let us now control each term of the above right-hand side.
Convergence of E

[
A2

n,1

]
and E

[
A2

n,2

]
.

E
[
A2

n,1

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

(

E
[
1Πn(i)=j1Πn(k)=l

]
×

E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
− 1

n2

(
E
[
C2

k,l

])2
)

.

Let us now consider all the cases where 1 ≤ j < i ≤ n, and 1 ≤ l < k ≤ n.
If i = k and j = l, then

E
[
1Πn(i)=j1Πn(k)=l

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
=

1

n
E
[(
E
[
C2

2,1

∣
∣X1

])2
]

.

If i = k and j 6= l, or if i 6= k and j = l, then

E
[
1Πn(i)=j1Πn(k)=l

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
= 0.

If i 6= k and j 6= l, then

E
[
1Πn(i)=j1Πn(k)=l

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
=

1

n(n− 1)

(
E
[
C2

2,1

])2
.
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By combining these results, from (A.37) and under the assumption (Aϕ,Mmt), we
obtain that

E
[
A2

n,1

]
≤ n− 1

2n2

(

E
[(
E
[
C2

2,1

∣
∣X1

])2
]

−
σ4
P 1⊗P 2

n

)

+ C n2

(
1

n(n− 1)
− 1

n2

)

σ4
P 1⊗P 2 −→

n→+∞
0.

One can prove in the same way that E
[
A2

n,2

]
−→

n→+∞
0.

Convergence of E
[
A2

n,3

]
. We easily prove that

E
[
A2

n,3

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

κi,j,k,l −
1

4n2
(E [C1,2C2,1])

2
,

where

κi,j,k,l = E
[
1Πn(i)=j1Πn(j)=i1Πn(k)=l1Πn(l)=k

]
×

E [E [Ci,jCj,i|Xj]E [Ck,lCl,k|Xl]] .

Let us again consider κi,j,k,l in all the cases where 1 ≤ j < i ≤ n, and 1 ≤ l < k ≤ n.
If i = k and j = l, then

κi,j,k,l =
1

n(n− 1)
E
[

(E [C2,1C1,2|X1])
2
]

.

If i = k and j 6= l, or if i 6= k and j = l, then κi,j,k,l = 0.
If i 6= k and j 6= l, then

κi,j,k,l =
(E [C1,2C2,1])

2

n(n− 1)(n− 2)(n− 3)
.

Thus, under (Aϕ,Mmt), we finally have that

E
[
A2

n,3

]
≤ 1

2n2
E
[

(E [C1,2C2,1|X1])
2
]

+ C
n (E [C1,2C2,1])

2

(n− 1)(n− 2)(n− 3)
−→

n→+∞
0.

Convergence of E
[
A2

n,4

]
.

E
[
A2

n,4

]
=

1

n2

∑

1≤j 6=k<i≤n
1≤p6=q<l≤n

(

E
[
1Πn(i)=j1Πn(k)=i1Πn(l)=p1Πn(q)=l

]
×

E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]]
)

.

Let us consider all the cases where 1 ≤ j 6= k < i ≤ n, and 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} ≥ 3, there exists at least one element in {j, k, p, q}, j for instance
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(the other cases are studied in the same way), which differs from the other ones.
Then,

E
[
E
[
Ci,jCk,i

∣
∣Xj , Xk

]
E [Cl,pCq,l|Xp, Xq]

]

= E [E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]|Xk, Xp, Xq]]

= E [E [Ci,jCk,i|Xk]E [Cl,pCq,l|Xp, Xq]]

= E [E [E [Ci,jCk,i|Xi, Xk]|Xk]E [Cl,pCq,l|Xp, Xq]]

= E [E [Ck,iE [Ci,j |Xi]|Xk]E [Cl,pCq,l|Xp, Xq]] .

Since E [Ci,j |Xi] = 0, this leads to

E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]] = 0. (A.41)

If j = p, k = q, and i = l, then,

E
[
1Πn(i)=j1Πn(k)=i1Πn(l)=p1Πn(q)=l

]
=

1

n(n− 1)
,

and

|E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]]| = E
[

(E [Ci,jCk,i|Xj , Xk])
2
]

= E
[

(E [C3,1C2,3|X1, X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, and i 6= l, then 1Πn(k)=i1Πn(q)=l = 0, so

E
[
1Πn(i)=j1Πn(k)=i1Πn(l)=p1Πn(q)=l

]
= 0.

If j = q, k = p, and i = l, then 1Πn(i)=j1Πn(l)=p = 0, so

E
[
1Πn(i)=j1Πn(k)=i1Πn(l)=p1Πn(q)=l

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1Πn(i)=j1Πn(k)=i1Πn(l)=p1Πn(q)=l

]
=

(n− 4)!

n!
,

and

|E [E [Ci,jCk,i|Xj, Xk]E [Cl,pCq,l|Xp, Xq]]| = |E [E [Ci,jCk,iCl,kCj,l|Xj , Xk]]|
≤ E [|C3,1C2,3C4,2C1,4|]
< +∞ under (Aϕ,Mmt).

By combining these results, we obtain that

E
[
A2

n,4

]
≤ C

n3

n2

E
[

(E [C3,1C2,3|X1, X2])
2
]

n(n− 1)

+ C′ n4

n2

(n− 4)!

n!
E [C3,1C2,3C4,2C1,4] −→

n→+∞
0.
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From (A.40), and the above results of convergence towards 0 for E
[
A2

n,1

]
, E
[
A2

n,2

]
,

E
[
A2

n,3

]
, and E

[
A2

n,4

]
, we firstly derive that

Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

−→
n→+∞

0.

• Second point. Notice that

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
= Bn,1 +Bn,2 +Bn,3 +Bn,4,

with

Bn,1 =
1

n

∑

1≤j<i≤n

1Πn(i)=j1Π′
n(i)=jE

[
C2

i,j

∣
∣Xj

]
,

Bn,2 =
1

n

∑

1≤j<i≤n

1Πn(j)=i1Π′
n(j)=iE

[
C2

j,i

∣
∣Xj

]
,

Bn,3 =
1

n

∑

1≤j<i≤n

(
1Πn(i)=j1Π′

n(j)=i + 1Πn(j)=i1Π′
n(i)=j

)
E [Ci,jCj,i|Xj ] ,

and

Bn,4 =
1

n

∑

1≤j 6=k<i≤n

(

1Πn(i)=j1Π′
n(i)=kE [Ci,jCi,k|Xj , Xk]

+ 1Πn(i)=j1Π′
n(k)=iE [Ci,jCk,i|Xj , Xk]

+ 1Πn(j)=i1Π′
n(i)=kE [Cj,iCi,k|Xj, Xk]

+ 1Πn(j)=i1Π′
n(k)=iE [Cj,iCk,i|Xj, Xk]

)

.

Thus,

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2




≤ 4
(
E
[
B2

n,1

]
+ E

[
B2

n,2

]
+ E

[
B2

n,3

]
+ E

[
B2

n,4

])
. (A.42)

Convergence of E
[
B2

n,1

]
and E

[
B2

n,2

]
. It can be proved that

E
[
B2

n,1

]
≤ 1

n3

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1Πn(i)=j1Πn(k)=l

]
×

E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
.

Then, with the same computations as for the convergence of E
[
A2

n,1

]
above, we

prove that

E
[
B2

n,1

]
≤ n− 1

2n3
E
[(
E
[
C2

1,2

∣
∣X2

])2
]

+ C
σ4
P 1⊗P 2

n− 1
−→

n→+∞
0.
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In the same way, we also prove that E
[
B2

n,2

]
−→

n→+∞
0.

Convergence of E
[
B2

n,3

]
. We also have that

E
[
B2

n,3

]
≤ 4

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1Πn(i)=j1Πn(k)=l

]
×

E
[
1Π′

n(j)=i1Π′
n(l)=k

]
E [E [Ci,jCj,i|Xj]E [Ck,lCl,k|Xl]] .

Now, with similar computations as for the convergence of E
[
A2

n,1

]
above again, we

prove that

E
[
B2

n,3

]
≤ 2

n− 1

n3
E
[

(E [C1,2C2,1|X2])
2
]

+ C
(E [C1,2C2,1])

2

n− 1
−→

n→+∞
0.

Convergence of E
[
B2

n,4

]
. Setting

Bn,4,1 =
1

n

∑

1≤j 6=k<i≤n

1Πn(i)=j1Π′
n(i)=kE [Ci,jCi,k|Xj , Xk] ,

Bn,4,2 =
1

n

∑

1≤j 6=k<i≤n

1Πn(i)=j1Π′
n(k)=iE [Ci,jCk,i|Xj , Xk] ,

Bn,4,3 =
1

n

∑

1≤j 6=k<i≤n

1Πn(j)=i1Π′
n(i)=kE [Cj,iCi,k|Xj , Xk] ,

Bn,4,4 =
1

n

∑

1≤j 6=k<i≤n

1Πn(j)=i1Π′
n(k)=iE [Cj,iCk,i|Xj , Xk] ,

then Bn,4 = Bn,4,1 +Bn,4,2 +Bn,4,3 +Bn,4,4 and in particular,

E
[
Bn,4

2
]
≤ 4

(
E
[
Bn,4

2
]
+ E

[
Bn,4

2
]
+ E

[
Bn,4

2
]
+ E

[
Bn,4

2
])

.

Yet,

E
[
B2

n,4,1

]
=

1

n2

∑

1≤j 6=k<i≤n

∑

1≤p6=q<l≤n

E
[
1Πn(i)=j1Πn(l)=p

]
×

E
[
1Π′

n(i)=k1Π′
n(l)=q

]
E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q |Xp, Xq]] .

Now, consider all the cases where 1 ≤ j 6= k < i ≤ n, 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} ≥ 3, using a similar argument as in (A.41), we obtain that

E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]] = 0.

If j = p, k = q, and i = l, then,

E
[
1Πn(i)=j1Πn(l)=p

]
E
[
1Π′

n(i)=k1Π′
n(l)=q

]
=

1

n2
,
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and

|E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]]| = E
[

(E [Ci,jCi,k|Xj , Xk])
2
]

= E
[

(E [C3,1C3,2|X1, X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, i 6= l, or if j = q, k = p, i = l, then 1Πn(i)=j1Πn(l)=p is equal to 0,
so

E
[
1Πn(i)=j1Πn(l)=p

]
E
[
1Π′

n(i)=k1Π′
n(l)=q

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1Πn(i)=j1Πn(l)=p

]
E
[
1Π′

n(i)=k1Π′
n(l)=q

]
=

1

n2(n− 1)2
,

and

|E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]]| = |E [E [Ci,jCi,kCl,kCl,j |Xj , Xk]]|
= E [|C3,1C2,3C4,2C1,4|]
< +∞ under (Aϕ,Mmt).

By combining these results, we obtain that

E
[
B2

n,4,1

]
≤ C

E
[

(E [C3,1C3,2|X1, X2])
2
]

n
+ C′E [C3,1C2,3C4,2C1,4]

(n− 1)2
−→

n→+∞
0.

Following the same lines of proof, we furthermore obtain that E
[
B2

n,4,2

]
, E
[
B2

n,4,3

]
,

and E
[
B2

n,4,4

]
also converge towards 0. Hence, E

[
B2

n,4

]
−→

n→+∞
0. From (A.42), and

the convergence towards 0 of E
[
B2

n,1

]
, E
[
B2

n,2

]
, E
[
B2

n,3

]
, and E

[
B2

n,4

]
, we derive

that

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→+∞

0,

which finally allows to conclude that assumption (i) is satisfied.

Assumption (ii). Given ε > 0, let us prove that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1|aYn,i+bY ′

n,i|>ε

]

−→
n→+∞

0.

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1|aYn,i+bY ′

n,i|>ε

]

≤ 1

ε2

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)4
]

≤ 23

ε2

n∑

i=2

(

a4E
[
Y 4
n,i

]
+ b4E

[

Y ′
n,i

4
])

≤ 23(a4 + b4)

ε2

n∑

i=2

E
[
Y 4
n,i

]
.
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Since Yn,i = n−1/2
(

1Πn(i)<iCi,Πn(i) + 1Π−1
n (i)<iCΠ−1

n (i),i

)

,

E
[
Y 4
n,i

]
≤ 23

n2
E
[

1Πn(i)<iC
4
i,Πn(i)

+ 1Π−1
n (i)<iC

4
Π−1

n (i),i

]

≤ 23

n2

i−1∑

j=1

(

E
[
1Πn(i)=jC

4
i,j

]
+ E

[

1Π−1
n (i)=jC

4
j,i

])

≤ 24

n2
E
[
C4

1,2

]
.

We thus obtain that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1|aYn,i+bY ′

n,i|>ε

]

≤ 27(a4 + b4)

ε2n
E
[
C4

1,2

]
,

where the right-hand side tends to 0 as soon as E
[
C4

1,2

]
< +∞.

This last condition is ensured by (Aϕ,Mmt), which allows to confirm that assumption
(ii) is also checked, and that

L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

=⇒
n→+∞

N
(
0,
(
a2 + b2

)
σ2
P 1⊗P 2

)
.

This ends the proof of Lemma A.1.

Recall that we aim at proving that

dBL

(
L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

))
P−→

n→+∞
0.

From Lemma A.1, we deduce that for every t in R,






P
(
MΠn

n (Xn) ≤ t
)

−→
n→+∞

Φ0,σ2
P1⊗P2

(t),

P
(

MΠn
n (Xn) ≤ t,M

Π′
n

n (Xn) ≤ t
)

−→
n→+∞

Φ2
0,σ2

P1⊗P2
(t).

Setting Mn = MΠn
n (Xn) for the sake of simplicity, this leads to






E [E [1Mn≤t|Xn]] −→
n→+∞

Φ0,σ2
P1⊗P2

(t),

E
[

(E [1Mn≤t|Xn])
2
]

−→
n→+∞

Φ2
0,σ2

P1⊗P2
(t).

(A.43)

In a separable metric space, convergence in probability is metrizable (see [3, Th.
9.2.1] for instance), therefore it is equivalent to almost sure convergence of a sub-
sequence of any initial subsequence. So, let us fix an initial extraction φ0 : N → N,
which defines a subsequence

(
Mφ0(n)

)

n∈N
of (Mn)n∈N

. Let us denote by (qm)m∈N

a sequence such that {qm,m ∈ N} = Q. For any m in N, from (A.43), we derive
that 





E
[

E
[

1Mφ0(n)≤qm

∣
∣
∣Xφ0(n)

]]

−→
n→+∞

Φ0,σ2
P1⊗P2

(qm),

E

[(

E
[

1Mφ0(n)≤qm

∣
∣
∣Xφ0(n)

]2
)]

−→
n→+∞

Φ2
0,σ2

P1⊗P2
(qm),
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which leads (by Chebychev’s inequality) to

E
[

1Mφ0(n)≤qm

∣
∣
∣Xφ0(n)

]
P−→

n→+∞
Φ0,σ2

P1⊗P2
(qm). (A.44)

Therefore, there exist an extraction φ1 and a subset Ω1 of Ω such that P (Ω1) = 1,
and for every ω in Ω1,

E
[

1Mφ1◦φ(n)≤q1

∣
∣
∣Xφ1◦φ(n)

]

(ω) −→
n→+∞

Φ0,σ2
P1⊗P2

(q1).

Now, let m ≥ 1 for which there exist an extraction φm and a subset Ωm of Ω such
that P (Ωm) = 1, and for every ω ∈ Ωm,

E
[

1Mφm◦φm−1◦...◦φ0(n)≤qm

∣
∣
∣Xφm◦φm−1◦...◦φ0(n)

]

(ω) −→
n→+∞

Φ0,σ2
P1⊗P2

(qm).

Then, from (A.44), there also exist an extraction φm+1 and a subset Ωm+1 of Ω
such that P (Ωm+1) = 1, and for every ω in Ωm+1,

E
[

1Mφm+1◦φm◦φm−1◦...◦φ0(n)≤qm+1

∣
∣
∣Xφm+1◦φm◦...◦φ0(n)

]

(ω)

−→
n→+∞

Φ0,σ2
P1⊗P2

(qm+1).

Setting Ω̃ =
⋂

m∈N
Ωm and for every n in N, φ̃(n) = φn ◦ . . . ◦ φ2 ◦ φ1(n), then

P
(

Ω̃
)

= 1. Moreover, for every ω in Ω̃, m in N,

E
[

1Mφ̃◦φ0(n)≤qm

∣
∣
∣Xφ̃◦φ0(n)

]

(ω) −→
n→+∞

Φ0,σ2
P1⊗P2

(qm).

Since Φ0,σ2
P1⊗P2

is a continuous distribution function, it can be proved that this

follows
dBL

(

L
(

Mφ̃◦φ0(n)

∣
∣
∣Xφ̃◦φ0(n)

)

,N
(
0, σ2

P 1⊗P 2

)) a.s.−→
n→+∞

0.

To conclude, we actually proved that

dBL

(
L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

)) P−→
n→+∞

0,

which, combined with (A.35), leads to

dBL

(
L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

)) P−→
n→+∞

0.

Third step: convergence of conditional second order moments Re-
call that from (A.33), Un

(
XΠn

n

)
= 1

n−1U
Πn
n , where

UΠn
n =

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)

=
n∑

i,j=1

(

1Πn(i)=j −
1

n

)

ϕ
(
X1

i , X
2
j

)
.
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Therefore,

E
[(√

nUn

(
XΠn

n

))2
∣
∣
∣Xn

]

=
n2

(n− 1)2

(
1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

])

, (A.45)

and if Ci,j,k,l =
(
E
[
1Πn(i)=j1Πn(k)=l

]
− 1

n2

)
ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
,

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]

=
1

n

n∑

i,j=1

n∑

k,l=1

Ci,j,k,l.

Firstly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

Ci,j,k,l =
(n− 2)(n− 3)

n2
Un,1,

where

Un,1 =
(n− 4)!

n!

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)

is clearly a U -statistic of order 4. From the strong law of large numbers of Hœffding
[4], we thus have that

(n− 2)(n− 3)

n2
Un,1

a.s.−→
n→+∞

(
E
[
ϕ
(
X1

1 , X
2
2

)])2
.

Secondly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3

i=j,i=l,j=k, or k=l

Ci,j,k,l =
2(n− 2)

n2
Un,2,

where

Un,2 =
(n− 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

k , X
2
l

)
+ ϕ

(
X1

i , X
2
l

)
ϕ
(
X1

k , X
2
i

))

is a U -statistic of order 3 which converges almost surely, so

2(n− 2)

n2
Un,2

a.s.−→
n→+∞

0.

Thirdly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3
i=k, or j=l

Ci,j,k,l = −n(n− 1)(n− 2)

n3
Un,3,
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where

Un,3 =
(n− 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i , X
2
k

)
ϕ
(
X1

i , X
2
l

)
+ ϕ

(
X1

i , X
2
l

)
ϕ
(
X1

k , X
2
l

))

is a U -statistic of order 3. So,

− n(n− 1)(n− 2)

n3
Un,3

a.s.−→
n→+∞

−E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X2

])2
]

.

Fourthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=j=k,i=j=l,

i=k=l, or j=k=l

Ci,j,k,l = −2(n− 1)

n2
Un,4,

where

Un,4 =
1

n(n− 1)

∑

1≤i6=j≤n

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

i , X
2
j

)
+ ϕ

(
X1

i , X
2
i

)
ϕ
(
X1

j , X
2
i

))

is a U -statistic of order 2, so

−2(n− 1)

n2
Un,4

a.s.−→
n→+∞

0.

Fifthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2

i=j 6=k=l, or i=l 6=j=k

Ci,j,k,l =
1

n2
Un,5,

where

Un,5 =
1

n(n− 1)

∑

1≤i6=j≤n

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

j , X
2
j

)
+ ϕ

(
X1

i , X
2
j

)
ϕ
(
X1

j , X
2
i

))

is a U -statistic of order 2, so

1

n2
Un,5

a.s.−→
n→+∞

0.

Sixthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=k 6=j=l

Ci,j,k,l =
(n− 1)2

n2
Un,6,
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where

Un,6 =
1

n(n− 1)

∑

1≤i6=j≤n

ϕ2
(
X1

i , X
2
j

)

is a U -statistic of order 2, so

(n− 1)2

n2
Un,6

a.s.−→
n→+∞

E
[
ϕ2
(
X1

1 , X
2
2

)]
.

Seventhly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=1

Ci,j,k,l =
n− 1

n3

n∑

i=1

ϕ
(
X1

i , X
2
i

)
,

which almost surely tends to 0 thanks to the strong law of large numbers.
By combining all these results, and the fact that

σ2
P 1⊗P 2 = E

[
ϕ2
(
X1

1 , X
2
2

)]
+
(
E
[
ϕ
(
X1

1 , X
2
2

)])2

− E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X2

])2
]

,

we finally obtain that

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2
P 1⊗P 2 ,

and from (A.45), we deduce that

E
[(√

nUn

(
XΠn

n

))2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2
P 1⊗P 2 .

Since dBL

(
L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

))
P−→

n→+∞
0, this allows to conclude

that
d2
(
L
(√

nUn

(
XΠn

n

)∣
∣Xn

)
,N
(
0, σ2

P 1⊗P 2

))
P−→

n→+∞
0.

A.12 Proof of Corollary 4.1

Here, unlike the bootstrap approach, we only have in Theorem 4.1 a consistency
result in probability. Thus, as for Proposition 3.6, we use an argument of subse-
quences. So let φ0 : N → N be an extraction defining a subsequence. By Theorem
4.1, there exists an extraction φ1 such that P -a.s. in (Xi)i,

L
(√

φ1◦φ0(n)Uφ1◦φ0(n)

(

X
Πφ1◦φ0(n)

φ1◦φ0(n)

)∣
∣
∣Xφ1◦φ0(n)

)

=⇒
n→+∞

N
(
0, σ2

P 1⊗P 2

)
. (A.46)

In particular, applying [6, Lemma 21.2] on the event where the convergence is true,

we obtain that for η in (0, 1), q⋆η,φ1◦φ0(n)

(
Xφ1◦φ0(n)

) a.s.−→
n→+∞

Φ−1
0,σ2

P1⊗P2
(η), which

ends the proof by [3, Theorem 9.2.1].
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A.13 Proof of Theorem 4.2

As in the proof of Theorem 3.2, we focus on the upper-tailed tests of Γ(q⋆), the other
cases being similar. The proof of Theorem 4.2 is very similar to the one of Theorem

3.2, just replacing the argument of (A.27) by q⋆1−α,n (Xn)
P−→

n→+∞
Φ−1

0,σ2
P1⊗P2

(1−α),

which is derived from Corollary 4.1.
Now for the test with the Monte Carlo approximation of the quantiles, as above,

we focus on the upper-tailed test of Γ(q⋆MC). The proof is very similar to the one
of Proposition 3.6. We first show, following the proof of [6, Lemma 21.2], that

√
nU⋆(⌈(1−α)(Bn+1)⌉) P−→

n→+∞
Φ−1

0,σ2
P1⊗P2

(1 − α), (A.47)

then, we conclude using the same arguments as in the proof of Theorem 4.2.
Let F ⋆

n,Xn
be the c.d.f of L (

√
nUn, P

⋆
n |Xn), and let us first show that

sup
z∈R

∣
∣
∣F ⋆

n,Xn
(z)− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣

P−→
n→+∞

0. (A.48)

As Theorem 4.1 provides only a convergence in probability, similar arguments of
subsequences as in the proof of Corollary 4.1, have to be used. So, let φ0 be an initial
extraction and φ1 be the extraction such that (A.46) is satisfied. As convergence
in the dBL metric is equivalent to a weak convergence (see [3, Proposition 11.3.3]
for instance), and as the limit is continuous, by [6, Lemma 2.11] we obtain that

sup
z∈R

∣
∣
∣F ⋆

φ1◦φ0(n),Xφ1◦φ0(n)
(z)− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣

a.s.−→
n→+∞

0.

This being true for any initial extraction φ0, we obtain (A.48).
Let F ⋆Bn

n,Xn
denote the empirical c.d.f of L (

√
nUn, P

⋆
n |Xn) associated with the sample

(
Π1

n, . . . ,Π
Bn
n

)
, that is

∀z ∈ R, F ⋆Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1√
nUn

(

X
Πb
n

n

)

≤z
.

Then, by the DKW inequality, we obtain as in the proof of Proposition 3.6,

sup
z∈R

∣
∣
∣F ⋆Bn

n,Xn
(z)− F ⋆

n,Xn
(z)
∣
∣
∣

P−→
n→+∞

0. (A.49)

Finally, let

G⋆Bn

n,Xn
(z) =

1

Bn + 1

Bn+1∑

b=1

1√
nU⋆b≤z.

Since G⋆Bn

n,Xn
(z) = 1

Bn+1

(

1√
nUn(Xn)≤z +BnF

⋆Bn

n,Xn
(z)
)

,

sup
z∈R

∣
∣
∣G⋆Bn

n,Xn
(z)− F ⋆Bn

n,Xn
(z)
∣
∣
∣ ≤ 2

Bn + 1
−→

n→+∞
0. (A.50)
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Combining (A.48), (A.49) and (A.50), we obtain that

sup
z∈R

∣
∣
∣G⋆Bn

n,Xn
(z)− Φ0,σ2

P1⊗P2
(z)
∣
∣
∣

P−→
n→+∞

0.

Since √
nU⋆(⌈(1−α)(Bn+1)⌉) =

(

G⋆Bn

n,Xn

)−1

(1 − α),

we obtain (A.47) and we conclude as in the proof of Proposition 3.6.

B Additional Results

B.1 About the non-degeneracy of the U-statistic

We focus on the Linear case with ϕ = ϕw given by (2.2). Define

Z(x) =

∫

w(u, v)dNx1(u)dNx2(v) + E

[∫

w(u, v)dNX1(u)dNX2(v)

]

− E

[∫

w(u, v)dNx1(u)dNX2(v)

]

− E

[∫

w(u, v)dNX1(u)dNx2(v)

]

.

Recall that in this case, degeneracy is equivalent to stating that for X =
(X1, X2) with distribution P 1 ⊗ P 2, Z(X) is a random variable which is almost
surely null under (H0). Since E [Z(X)] = 0, Z(X) = 0 a.s. is equivalent to
Var (Z(X)) = 0. Here we provide a computation of Var (Z(X)).

Let us introduce dM
[1]
1 (u) and dM

[1]
2 (v) the mean measures of respectively X1

with distribution P 1 and X2 of distribution P 2 [2, Chapter 5], then one can rewrite

Z(X) =

∫

w(u, v)dNX1 (u)dNX2(v) +

∫

w(u, v)dM
[1]
1 (u)dM

[1]
2 (v)

−
∫

w(u, v)dNX1(u)dM
[1]
2 (v)−

∫

w(u, v)dM
[1]
1 (u)dNX2(v).

Therefore, E [Z(X)] = 0, and

Var (Z(X)) = E
[
Z(X)2

]

=

∫

[0,1]4
w(u, v)w(s, t)E [dNX1(u)dNX1(s)]E [dNX2(v)dNX2(t)]

−
∫

[0,1]4
w(u, v)w(s, t)E [dNX1(u)dNX1(s)] dM

[1]
2 (v)dM

[1]
2 (t)

−
∫

[0,1]4
w(u, v)w(s, t)dM

[1]
1 (u)dM

[1]
1 (s)E [dNX2(v)dNX2 (t)]

+

∫

[0,1]4
w(u, v)w(s, t)dM

[1]
1 (u)dM

[1]
1 (s)dM

[1]
2 (v)dM

[1]
2 (t).
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By assuming that #X1 (resp. #X2) has second order moment, (see also Sec-
tion 3.2 for comment on this assumption), one can introduce the second factorial

moment measure associated with X1 (resp. X2), and denoted by dM
[2]
1 (u, s) (resp.

dM
[2]
2 (v, t)). Then straightforward computations show that

Var(Z(X)) =

∫

[0,1]2
w(u, v)2dM

[1]
1 (u)dM

[1]
2 (v)

+

∫

[0,1]3
w(u, v)w(u, t)dM

[1]
1 (u)

(

dM
[2]
2 (v, t)− dM

[1]
2 (v)dM

[1]
2 (t)

)

+

∫

[0,1]3
w(u, v)w(s, v)

(

dM
[2]
1 (u, s)− dM

[1]
1 (u)dM

[1]
1 (s)

)

dM
[1]
2 (v)

+

∫

[0,1]4
w(u, v)w(s, t)

(

dM
[2]
1 (u, s)− dM

[1]
1 (u)dM

[1]
1 (s)

)

×
(

dM
[2]
2 (v, t) − dM

[1]
2 (v)dM

[1]
2 (t)

)

.

In particular, for Poisson processes, dM [2](u, s) = dM [1](u)dM [1](s) and

Var (Z(X)) =

∫

[0,1]2
w(u, v)2dM

[1]
1 (u)dM

[1]
2 (v) > 0,

as soon as the Poisson processes have non zero intensities since for j = 1, 2,

dM
[1]
j (u) = λj(u)du, with λj the intensity of Xj.

B.2 About the empirical centering assumption

Recall that

(A∗
Cent)

For x1 = (x1
1, x

2
1), . . . , xn = (x1

n, x
2
n) in X 2,

∑n
i1,i2,i′1,i

′
2=1 h

((
x1
i1 , x

2
i2

)
,
(

x1
i′1
, x2

i′2

))

= 0.

On the one hand, in the Linear case, that is if h = hϕ, then for n ≥ 1 and for
x1 = (x1

1, x
2
1), . . . , xn = (x1

n, x
2
n) in X 2,

n∑

i,i′,j,j′=1

h
((
x1
i , x

2
i′
)
,
(
x1
j , x

2
j′
))

=
1

2

n∑

i,i′,j,j′=1

(
ϕ
(
x1
i , x

2
i′
)
+ ϕ

(
x1
j , x

2
j′
)
− ϕ

(
x1
i , x

2
j′
)
− ϕ

(
x1
j , x

2
i′
))

=
n2

2





n∑

i,i′=1

ϕ
(
x1
i , x

2
i′
)
+

n∑

j,j′=1

ϕ
(
x1
j , x

2
j′
)
−

n∑

i,j′=1

ϕ
(
x1
i , x

2
j′
)
−

n∑

j,i′=1

ϕ
(
x1
j , x

2
i′
)





= 0.

So (A∗
Cent) is immediately satisfied in the Linear case.
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On the other hand, (A∗
Cent) does not imply that h is of the form hϕ.

Indeed, consider

h
((
x1, x2

)
,
(
y1, y2

))
= #x1 ·#x2 ·#y1 ·#y2

[(
#x1 −#y1

) (
#x2 −#y2

)]
.

• The kernel h is obviously symmetric.

• The kernel h satisfies (A∗
Cent). Indeed, let

f
(
x1, y1

)
= #x1 ·#y1

(
#x1 −#y1

)
.

First, notice that f
(
x1, x1

)
= 0 and f

(
x1, y1

)
= −f

(
y1, x1

)
.

Moreover, h
((
x1, x2

)
,
(
y1, y2

))
= f

(
x1, y1

)
f
(
x2, y2

)
. Thus

n∑

i,i′,j,j′=1

h
((
x1
i , x

2
i′
)
,
(
x1
j , x

2
j′
))

=

n∑

i,i′,j,j′=1

f
(
x1
i , x

1
j

)
f
(
x2
i′ , x

2
j′
)

=





n∑

i,j=1

f
(
x1
i , x

1
j

)









n∑

i′,j′=1

f
(
x2
i′ , x

2
j′
)





=






n∑

i=1

f
(
x1
i , x

1
i

)

︸ ︷︷ ︸

0

+
∑

1≤i<j≤n

f
(
x1
i , x

1
j

)
+f
(
x1
j , x

1
i

)

︸ ︷︷ ︸

0










n∑

i′,j′=1

f
(
x2
i′ , x

2
j′
)





= 0,

and thus (A∗
Cent) is satisfied by h.

• The kernel h cannot be written as an hϕ.
On the one hand, first notice that for any ϕ : X 2 → R, the difference

Dhϕ
:= hϕ

((
x1, x2

)
,
(
y1, y2

))
− hϕ

((
x̃1, x2

)
,
(
y1, y2

))

does not depend on y1. Indeed,

Dhϕ
=

1

2

(

ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

)

−ϕ
(
x̃1, x2

)
− ϕ

(
y1, y2

)
+ ϕ

(
x̃1, y2

)
+ ϕ

(
y1, x2

) )

=
1

2

(
ϕ
(
x1, x2

)
− ϕ

(
x̃1, x2

)
+ ϕ

(
x̃1, y2

)
− ϕ

(
x1, y2

))
.

On the other hand, for the kernel h introduced above, the difference Dh does
depend on y1. Indeed

Dh = h
((
x1, x2

)
,
(
y1, y2

))
− h

((
x̃1, x2

)
,
(
y1, y2

))

= #x2 ·#y1 ·#y2
(
#x2 −#y2

)
×

[
#x1 ·

(
#x1 −#y1

)
−#x̃1 ·

(
#x̃1 −#y1

)]
,
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and if for instance, #x1 = #y2 = 1 and #x̃1 = #x2 = 2, then

Dh = 2#y1
[
−3 + #y1

]
,

which clearly depends on y1.

So finally, there does not exist any ϕ such that h = hϕ.
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