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Abstract. Motivated by a neuroscience question about synchrony
detection in spike train analysis, we deal with the independence test-
ing problem for point processes. We introduce non-parametric test
statistics, which are rescaled general U -statistics, whose correspond-
ing critical values are constructed from bootstrap and randomisa-
tion/permutation approaches, making as few assumptions as possi-
ble on the underlying distribution of the point processes. We derive
general consistency results for the bootstrap and for the permutation
w.r.t. to Wasserstein’s metric, which induce weak convergence as well
as convergence of second order moments. The obtained bootstrap or
permutation independence tests are thus proved to be asymptotically
of the prescribed size, and to be consistent against any reasonable
alternative, permutation independence tests having the further ad-
vantage to be exactly (that is non-asymptotically) of the prescribed
level, even when Monte Carlo methods are used to approximate the
randomised quantiles. A simulation study is performed to illustrate
the derived theoretical results, and to compare the performance of
our new tests with existing ones in the neuroscientific literature.

1. Introduction. Inspired by neuroscience problems, the present work
is devoted to independence tests for point processes. The question of testing
whether two random variables are independent is of course largely encoun-
tered in the statistical literature, as it is one of the central goals of data
analysis. From the historical Pearson’s (see [31, 32]) chi-square test of in-
dependence to the recent test of [19] using kernel methods in the spirit of
statistical learning, many non-parametric independence tests have been de-
veloped for real valued random variables or even random vectors. Among
them, of particular interest are the tests based on the randomisation/per-
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mutation principle introduced by Fisher [15], and covered thereafter in the
series of papers by Pitman [36, 37], Scheffe [46], Hoeffding [24] for instance,
or bootstrap approaches derived from Efron’s [14] "naive" one. Two families
of such permutation or bootstrap-based independence tests may be distin-
guished at least: the whole family of rank tests including the tests of Hotelling
and Pabst [27], Kendall [28], Wolfowitz [53] or Hoeffding [23] on the one
hand, the family of Kolmogorov-Smirnov type tests, like Blum, Kiefer, and
Rosenblatt’s [5], Romano’s [42] or Van der Vaart and Wellner’s [51] ones
on the other hand. These tests are purely non-parametric that is they are
completely free of the underlying distributions of the observed random vari-
ables or vectors. They are proved to achieve asymptotically the right desired
size: the probability, under independence, that the independence hypothesis
is rejected tends to a prescribed α in ]0, 1[, as the size of the original samples
of observations grows to infinity. Moreover, the tests based on permutation
are known to be exactly (non-asymptotically meaning) of the desired level,
that is the probability, under independence, that the independence hypoth-
esis is rejected is smaller than the prescribed α, for any sample size. Some
of these tests are proved to be consistent against many alternatives, such as
Hoeffding’s [23] one and the family of Kolmogorov-Smirnov type tests.

Detecting dependence is also a fundamental old point in the neuroscientific
literature (see e.g. [18]). The neuroscience problem we were initially inter-
ested in consists in detecting interactions between occurrences of action po-
tentials on two different neurons simultaneously recorded on n independent
trials, as described in [20]. Each recorded set of time occurrences of action
potentials for each neuron is usually referred to as a spike train, the spikes
being the time occurrences themselves. It is commonly accepted that these
spikes are one of the main components of the brain activity (see [48]). There-
fore, when observing two spike trains coming from two different neurons, one
of the main elementary problem is to assess whether these two spike trains
are independent or not. Unfortunately, even if the real recordings of spike
trains are discretized in time, due to the record resolution, and thus belong
to finite dimensional spaces, the dimension of these spaces is so huge (from
ten thousand up to one million) that it is neither realistic nor reasonable to
model them by finite dimensional variables, and to apply usual independence
tests. Several methods, such as the classical Unitary Events method (see [20]
and the references therein), consists in binning the spike trains at first in
order to deal with vectorial data with reduced dimension. But it has been
shown that these dimension reduction methods involve an information loss
of more than 60% in some cases, making this kind of preprocessing quite
proscribed despite its simplicity of use.
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Modelling the recordings of spike trains by point processes that are only
almost surely finite without any a priori bound on the total number of points,
and using, constructing if needed, independence tests specifically dedicated
to such point processes then appear as realistic and reasonable solutions.
Asymptotic independence tests have been introduced in [49] for point pro-
cesses, but limited to homogeneous Poisson processes. Such a Poisson as-
sumption is necessarily restrictive and even possibly inappropriate, consid-
ering spike train analysis (see [38]). Since the existence of any precise dis-
tribution for the point processes modelling spike train data is subject to
broad debate, to construct model free independence tests for point processes
is of utmost importance. To this end, bootstrap methods have been used in
[35, 34] for binned data with relatively small dimension, without any proper
mathematical justification.

Another field of applications, where detecting dependence between point
processes is crucial, is, for instance, genomics, where point processes, such as
Hawkes processes, may represent positions of motifs or Transcription Regu-
latory Elements on the DNA strand as described in [9].

We here propose to construct new non-parametric tests of independence
between two point processes based on the observation of n independent
copies, with as few assumptions as possible on the underlying distributions.
Our test statistics are based on general U -statistics. The corresponding crit-
ical values are obtained from bootstrap or permutation approaches. Then
the obtained tests are proved to be asymptotically (with respect to the sam-
ple size) of the desired size and consistent against many alternatives. They
also have good performance in practice when the sample size is moderate
to small, as is often the case in neuroscience or genomics for biological or
economical reasons.

A huge number of papers deal with the bootstrap or permutation of U -
statistics of i.i.d. real valued random variables or vectors. Among them, we
can cite for instance [3, 7, 1, 12], or [29] devoted to the bootstrap in a general
framework, [26] or [10] devoted to the permutation in various testing frame-
works, and of course, the papers cited above (see [42, 51]), which are devoted
to Kolmogorov-Smirnov type tests, and based on particular U -statistics in
an independence testing framework.

To our knowledge, there is no previous work on the bootstrap or permuta-
tion of general U -statistics for i.i.d. pairs of point processes, as considered in
the present work. The main difficulties lie here in the nature of the mathe-
matical objects we handle, that is point processes and their associated point
measures which are random measures on the one hand, in the general na-
ture of the results we aim at on the other hand. The proofs of our results,
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although inspired by Romano’s [41, 42] work and Hoeffding’s [24] precur-
sor results on the permutation, are therefore more technical and complex
on many aspects detailed in the sequel, all the more as we obtain the con-
vergence of the conditional distribution of the permuted test statistics (see
Theorem 4.1) under independence, but also under dependence. Such a re-
sult is, as far as we know, new even for more classical settings than point
processes, thus partially solving a problem stated as open question in [51].

This paper is organized as follows.
We first present in Section 2 the testing problem, and introduce the main

notation. Starting from existing works in neuroscience, we introduce our test
statistics, based on general kernel-based U -statistics.

Section 3 is devoted to our bootstrap approach, from its description to the
theoretical asymptotic properties of the corresponding independence tests,
through general results about the consistency of the bootstrap for the con-
sidered U -statistics, expressed in terms of Wasserstein’s metric as in [3]. We
thus state that our tests are asymptotically of the desired size, and that they
are consistent against every reasonable alternative.

Section 4 is devoted to the permutation approach. After a description
of this approach, we give general results about its consistency when the
kernel of the U -statistic has a particular common form. These results are
still expressed in terms of Wasserstein’s metric. Therefore the corresponding
permutation independence tests satisfy the same asymptotic properties as
the bootstrap ones, with the further advantage of being exactly (that is non-
asymptotically) of the desired level, even when a Monte Carlo method is
used to approximate the randomised quantiles.

As a comparison of the performance of our tests with existing ones in
neuroscience, especially when the sample sizes are moderate or even small,
a simulation study is presented in Section 5.

Finally notice that key proofs or sketches of proofs are postponed to the
last section, while the complete proofs are given in a supplementary material.

2. From neuroscience interpretations to general test statistics.

2.1. The testing problem. We consider in this article finite point pro-
cesses, defined on a probability space (Ω,A,P) and observed on [0, 1], that
are random point processes on [0, 1], for which the total number of points is
almost surely finite (see [11] for instance). Typically, in a neuroscience frame-
work, such finite point processes may represent spike trains recorded on a
given finite interval of time, and rescaled so that their values may be assumed
to belong to [0, 1]. The set X of all their possible values is equipped with a



BOOTSTRAP AND PERMUTATION TESTS OF INDEPENDENCE 5

metric dX that we introduce in (3.2). This metric, issued from the Skorohod
topology, makes X separable and allows to define accordingly borelian sets
on X and by extension on X 2 through the product metric.

The point measure dNx associated to an element x of X is defined for
all measurable real-valued function f by

∫

[0,1] f(u)dNx(u) =
∑

u∈x f(u).
In particular, the total number of points of x, denoted by #x, is equal to
∫

[0,1] dNx(u). Moreover, for a point process X defined on (Ω,A,P) and ob-

served on [0, 1],
∫
f(u)dNX(u) becomes a real random variable, defined on

the same probability space (Ω,A,P).
A pair X = (X1,X2) of finite point processes defined on (Ω,A,P), ob-

served on [0, 1], has joint distribution P , with marginals P 1 and P 2 if P (B) =
P(X ∈ B), P 1(B1) = P(X1 ∈ B1), and P 2(B2) = P(X2 ∈ B2), for every
borelian set B of X 2, and all borelian sets B1, B2 of X .

Given the observation of an i.i.d. sample Xn = (X1, . . . ,Xn) from the
same distribution P as X, with Xi = (X1

i ,X
2
i ) for every i = 1 . . . n, we aim

at testing (H0) X
1 and X2 are independent against (H1) X

1 and X2 are not
independent, which can also be written as

(H0) P = P 1 ⊗ P 2 against (H1) P 6= P 1 ⊗ P 2.

2.2. Independence test based on coincidences in neuroscience. Consider-
ing that the i.i.d. sample Xn = (X1, . . . ,Xn) models pairs of rescaled spike
trains issued from two distinct and simultaneously recorded neurons during
n trials, the main dependence feature that needs to be detected between both
neurons corresponds to synchronization in time, referred to as coincidences
[20]. More precisely, neuroscientists expect to detect if such coincidences oc-
cur significantly, that is more than what may be due to chance. They speak
in this case of a detected synchrony.

In [49], the notion of coincidence count between two point processes X1

and X2 with delay δ (δ > 0) is defined by

(2.1) ϕcoinc
δ (X1,X2)=

∫

[0,1]2
coincδ(u, v)dNX1(u)dNX2(v) =

∑

u∈X1,v∈X2

1{|u−v|≤δ},

with coincδ(u, v) = 1{|u−v|≤δ}.
Under the assumption that both X1 and X2 are homogeneous Poisson

processes, the independence test of [49] rejects (H0) when a test statistic
based on

∑n
i=1 ϕ

coinc
δ

(
X1

i ,X
2
i

)
is larger than a given critical value. This

critical value is deduced from the asymptotic Gaussian distribution of the
test statistic under (H0). The test is proved to be asymptotically of the
desired size, but only under the homogeneous Poisson processes assumption.
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However, it is now well-known that this assumption, as well as many other
model assumptions, fails to be satisfied in practice for spike trains [38, 39].

2.3. General non-degenerate U -statistics as independence test statistics.
In the parametric homogeneous Poisson framework of [49], the expectation
of ϕcoinc

δ

(
X1

i ,X
2
i

)
has a simple expression as a function of δ and the inten-

sities λ1 and λ2 of X1 and X2. Since λ1 and λ2 can be easily estimated, an
estimator of this expectation can thus be obtained using the plug-in prin-
ciple, and subtracted from ϕcoinc

δ

(
X1

i ,X
2
i

)
to lead to a test statistic with a

centred asymptotic distribution under (H0).
In the present non-parametric framework where we want to make as few

assumptions as possible on the point processes X1 and X2, such a centring
plug-in tool is not available, and we propose to use instead a self-centring
trick, which amounts to considering

∑

i 6=i′∈{1,...,n}

(
ϕcoinc
δ

(
X1

i ,X
2
i

)
− ϕcoinc

δ

(
X1

i ,X
2
i′
))
.

Furthermore, it is clear that the function ϕcoinc
δ used in [49] suits the depen-

dence feature the neuroscientists expect to detect in a spike train analysis.
However, it is not necessarily the best choice for other kinds of dependence
features to be detected in a general point processes analysis. So we introduce
a more general interaction function defined by

(2.2) ϕw
δ (X

1,X2) =

∫

[0,1]2
wδ(u, v)dNX1(u)dNX2(v),

where wδ is an integrable function possibly depending on a real-valued vec-
tor δ of parameters. Of course, the choice wδ = coincδ with δ > 0 allows
to get back the coincidence count function defined in (2.1), while the choice
w(j,k)(u, v) = ψj,k(v−u), where ψj,k is a rescaled (j) and translated (k) Haar
mother wavelet, leads to the interaction function used in [45] for an inter-
action test in a specific Poisson framework. Even more generally, we could
choose any integrable function ϕ, whose aim would be to detect particular
dependence features on the pair (X1,X2) for instance, so we introduce

(2.3) Tn,ϕ =
∑

i 6=i′∈{1,...,n}

(
ϕ
(
X1

i ,X
2
i

)
− ϕ

(
X1

i ,X
2
i′
))
.

Since Tn,ϕ/(n(n − 1)) is an unbiased estimator of

∫ ∫

ϕ
(
x1, x2

) (
dP (x1, x2)− dP 1(x1)dP 2(x2)

)
,
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it may be a reasonable independence test statistic, with expectation equal
to 0 under (H0), without any assumption on the underlying point processes.

If X1 and X2 were finite dimensional variables with continuous distribu-
tions w.r.t. the Lebesgue measure, this test statistic would be closely related
to generalized Kolmogorov-Smirnov tests of independence. For instance, the
test statistics of Blum, Kiefer, and Rosenblatt [5], Romano [42], Van der

Vaart and Wellner in [51] are equal to n−3/2 supv1∈V1,v2∈V2

∣
∣
∣Tn,ϕ(v1,v2)

∣
∣
∣ , where,

respectively:

• V1 = V2 = R and ϕ(v1,v2)(x
1, x2) = 1{]−∞,v1]}(x

1)1{]−∞,v2]}(x
2),

• V1 and V2 are countable V.-C. classes of subsets of Rd,
and ϕ(v1 ,v2)(x

1, x2) = 1{v1}(x
1)1{v2}(x

2),
• V1 and V2 are well-chosen classes of real-valued functions,

and ϕ(v1 ,v2)(x
1, x2) = v1(x1)v2(x2).

Thus, up to our knowledge, the existing test statistics are based on functions
ϕ of product type. However, as seen in Section 2.2, when dealing with point
processes, natural functions ϕ are not of this type, as for instance ϕcoinc

δ .
This is why we consider more general test statistics.

By setting

(2.4) hϕ(x, y) =
1

2

(
ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

))
,

for every x = (x1, x2), y = (y1, y2) in X 2, Tn,ϕ can also be written as
Tn,ϕ =

∑

i 6=i′∈{1,...,n} hϕ (Xi,Xi′) . Hence Tn,ϕ/(n(n − 1)) is a classical U -
statistic with a symmetric kernel hϕ, as introduced by Hoeffding [22].

Thus, we consider independence test statistics which are based on U -
statistics of the form

(2.5) Un,h(Xn) =
1

n(n− 1)

∑

i 6=i′∈{1,...,n}
h (Xi,Xi′) ,

for some kernel h of the form hϕ given in (2.4), or even for some more
general symmetric kernel h : (X 2)2 → R such that E [h(X,X ′)] = 0 for
every X,X ′ i.i.d. with distribution P on X 2 satisfying (H0) P = P 1 ⊗ P 2.
Assuming that h is symmetric is however not restrictive since for any kernel
h, 2Un,h = Un,hsym, where hsym(x, y) = h(x, y) + h(y, x) is symmetric.

Following the works of Romano [42] or Van der Vaart and Wellner [51], the
tests we propose here are based on bootstrap and permutation approaches
for the above general U -statistics. However, we focus in this article on non-
degenerate U -statistics, discussing below what degeneracy means about the
underlying processes.
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2.4. Non-degeneracy of the U -statistics under (H0). Since under (H0)
Un,h(Xn) is assumed to have zero mean, it is degenerate if and only if for X
with distribution P 1⊗P 2 and P 1⊗P 2-almost every x in X 2, E [h(x,X)] = 0.

In the particular case where h = hϕ, with hϕ defined by (2.4), this amounts
to state that for X = (X1,X2) with distribution P 1 ⊗ P 2 and for P 1 ⊗ P 2-
almost every x = (x1, x2),

ϕ(x1, x2) + E
[
ϕ(X1,X2)

]
− E

[
ϕ(x1,X2)

]
− E

[
ϕ(X1, x2)

]
= 0.

This condition’s fulfillment would however imply a very particular link be-
tween ϕ and the distribution of the bivariate point process X, which is
unknown. When ϕ = ϕw

δ is given by (2.2), the condition can be rewritten as
follows: for P 1 ⊗ P 2-almost every x = (x1, x2),

(2.6)

∫

wδ(u, v)dNx1(u)dNx2(v) + E

[∫

wδ(u, v)dNX1(u)dNX2(v)

]

−E

[∫

wδ(u, v)dNx1(u)dNX2(v)

]

−E

[∫

wδ(u, v)dNX1(u)dNx2(v)

]

= 0.

Therefore, if for instance P 1({∅}) > 0 and P 2({∅}) > 0, which is the case
for Bernoulli processes (discretized processes), Poisson processes, Hawkes
processes or even all processes with conditional intensities, this implies, by
taking x1 = x2 = ∅, that

(2.7) E

[∫

wδ(u, v)dNX1(u)dNX2(v)

]

= 0.

If wδ is nonnegative, then finally,
∫
wδ(u, v)dNX1(u)dNX2(v) = 0 a.s. This

would not usually happen in practice. Indeed, for instance in spike train
analysis, assuming that the processes may be empty is an obvious assumption
as there often exist trials (usually short) where, just by chance, no spikes
have been detected. Moreover, with wδ = coincδ (see (2.1)), δ is chosen
large enough so that coincidences are observed in practice. Hence (2.7) is
not satisfied, and the U -statistic is non-degenerate.
However notice that when wδ(u, v) = ψj,k(v−u), where δ = (j, k) and ψj,k is
a rescaled and translated Haar mother wavelet as in [45], when considering
specific Poisson processes, the condition (2.7) is fulfilled, since

∫
ψj,k(u)du =

0 is required to make the test statistic in [45] a reasonable test statistic. But
even in this particular case, the U -statistic is still non-degenerate since the
left-hand side of (2.6) has zero mean and positive variance, as soon as both
Poisson processes have non zero intensities (see the supplementary material).
It is therefore legitimate to assume Un,h(Xn) non-degenerate in practice.
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3. Bootstrap tests of independence. All along this section, (Xn)n
denotes a sequence of i.i.d. pairs of point processes, with Xi = (X1

i ,X
2
i ) of

distribution P on X 2, whose marginals are respectively P 1 and P 2 on X .
For every n ≥ 2, let Xn = (X1, . . . ,Xn) and let Un,h(Xn) be the U -statistic
given by (2.5), with a measurable symmetric kernel h defined on X 2 × X 2.

3.1. Description of the bootstrap approach and informal view of the re-
sults. Since the distribution of the test statistic Un,h(Xn) is not free from
the unknown underlying marginal distributions P 1 and P 2 under the null
hypothesis, we turn to a classical bootstrap approach, whose aim is to mimic
the distribution of the test statistic under (H0), for large, but also moderate
or small sample sizes. As each Xi = (X1

i ,X
2
i ) is P 1 ⊗ P 2-distributed under

(H0), the first and second coordinates of the elements of Xn are resampled
according to the corresponding marginal empirical distributions P j

n given by

(3.1) for j = 1, 2, P j
n =

1

n

n∑

i=1

δ
Xj

i
.

The bootstrap sample X∗
n =

(
X∗

n,1, . . . ,X
∗
n,n

)
, with X∗

n,i = (X1∗
n,i,X

2∗
n,i), is

then defined as an n i.i.d. sample from the distribution P 1
n ⊗ P 2

n .
We prove (see Theorem 3.1) that, under appropriate assumptions, the

conditional distribution of
√
nUn,h(X

∗
n) given Xn is asymptotically close to

the one of
√
nUn,h(X

⊥⊥
n ), where X⊥⊥

n is an i.i.d sample from the distribution
P 1 ⊗ P 2. Therefore, using the quantiles of the distribution of

√
nUn,h(X

∗
n)

given Xn (or their Monte Carlo approximation) as critical values, we can
build unilateral or bilateral tests of (H0) against (H1) with asymptotic
size α. These tests are also consistent against some alternatives such that
∫
h(x, x′)dP (x)dP (x′) 6= 0 (see Theorem 3.2 and Proposition 3.6).
Before stating these results, and to avoid any confusion, we introduce

below some notation.

• For any functional Z : (X 2)n → R, L (Z,Q) denotes the distribution
of Z(Xn), where Xn is an i.i.d. sample from the distribution Q on X 2.

• If the distribution Q = Q(W ) depends on a random variable W ,
L (Z,Q|W ) is the conditional distribution of Z(Xn), Xn being an
i.i.d. sample from the distribution Q = Q(W ) on X 2, given W .
In particular, the conditional distribution of

√
nUn,h(X

∗
n) given Xn is

denoted by L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
.

• " Q-a.s. in (Xn)n" at the end of a statement means that the statement
only depends on the sequence (Xn)n, where the Xn’s are i.i.d with
distribution Q, and that there exists an event C only depending on
(Xn)n such that P (C) = 1, on which the statement is true.



10 ALBERT ET AL.

• "Qn =⇒
n→+∞

Q" means that the sequence of distributions (Qn)n con-

verges towards Q in the weak sense, that is for any real valued, con-
tinuous and bounded function g,

∫
g(z)dQn(z) →n→+∞

∫
g(z)dQ(z).

• Finally, as we often work conditionally on Xn, we denote by E∗[·] the
conditional expectation given the sample Xn.

3.2. Main assumptions. Since the random variables we deal with are not
real-valued variables but point processes, our results need some assumptions
whose interpretation may be difficult in this setting. We therefore describe
and discuss them in the present section.

Centring assumptions. First notice that, under (H0), Un,h(Xn) has zero
mean if the kernel h satisfies the following assumption:

(ACent)
For X1 and X2, i.i.d. with distribution P 1 ⊗ P 2 on X 2,
E [h (X1,X2)] = 0.

An empirical and resampled version of this assumption is also stated as:

(A∗
Cent)

For x1 = (x11, x
2
1), . . . , xn = (x1n, x

2
n) in X 2,

∑n
i1,i2,i′1,i

′
2=1 h

((
x1i1 , x

2
i2

)
,
(

x1i′1
, x2i′2

))

= 0.

Notice that both assumptions are fulfilled when h is of the form hϕ given
by (2.4), but (A∗

Cent) does not imply that h is of the form hϕ (see the
supplementary material for a counterexample).

Moment assumptions. Since the considered metric is the L2-Wasserstein
one, moment assumptions are required. In particular, the variance of Un,h(Xn)
should exist, i.e.

(AMmt)
For X1 and X2, i.i.d. with distribution P on X 2,
E
[
h2 (X1,X2)

]
< +∞.

A resampled version of this assumption is also needed:

(A∗
Mmt)

For X1,X2,X3,X4 i.i.d. with distribution P on X 2,
and for i1, i2, i

′
1, i

′
2 in {1, 2, 3, 4},

E
[

h2
((
X1

i1
,X2

i2

)
,
(
X1

i′1
,X2

i′2

))]

< +∞.

Notice that when (A∗
Mmt) is satisfied, this implies that

• (AMmt) is satisfied (taking i1 = i2, i
′
1 = i′2, and i′1 6= i1),

• for X ∼ P , E
[
h2 (X,X)

]
< +∞ (taking i1 = i2 = i′1 = i′2),

• for X1, X2 i.i.d with distribution P 1 ⊗ P 2, E
[
h2 (X1,X2)

]
< +∞

(taking i1, i2, i
′
1, i

′
2 all different).
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A sufficient condition for (A∗
Mmt) and (AMmt) to be satisfied is that there ex-

ist positive constants α1, α2, C such that for every x = (x1, x2), y = (y1, y2)
in X 2, |h(x, y)| ≤ C

(
(#x1)α1 + (#y1)α1

) (
(#x2)α2 + (#y2)α2

)
, with

E[(#X1)4α1 ] < +∞ and E[(#X2)4α2 ] < +∞.
When h is of the form hϕ given by (2.4), a possible sufficient condition is

that there exist some positive constants α1, α2, and C such that for every
x1, x2 in X , |ϕ(x1, x2)| ≤ C(#x1)α1(#x2)α2 , with E[(#X1)4α1 ] < +∞ and
E[(#X2)4α2 ] < +∞.

In particular, the coincidence count function ϕcoinc
δ defined by (2.1) sat-

isfies: for every x1, x2 in X , |ϕcoinc
δ (x1, x2)| ≤ (#x1)(#x2). So, (A∗

Mmt) and
(AMmt) are satisfied as soon as E[(#X1)4] < +∞ and E[(#X2)4] < +∞.

Such moment bounds for the total number of points of the processes are in
fact satisfied by many kinds of point processes: discretized point processes at
resolution 0 < r < 1 (see [49] for a definition), which have at most 1/r points,
Poisson processes, whose total number of points obeys a Poisson distribution
having exponential moments of any order, and point processes with bounded
conditional intensities, which can be constructed by thinning of homogeneous
Poisson processes (see [30]). Similar moment bounds can also be obtained
(see [21]) for linear stationary Hawkes processes with positive interaction
functions that are classical models in spike train analysis (see e.g. [33, 49]).
This finally may be extended to point processes whose conditional intensities
are upper bounded by intensities of linear stationary Hawkes processes with
positive interaction functions, by thinning arguments. This includes more
general Hawkes processes (see [6]) and in particular Hawkes processes used
to model inhibition in spike train analysis (see [21, 49, 40] or [39]).

Continuity of the kernel. The set X of possible values of finite point pro-
cesses defined on a probability space (Ω,A,P) and observed on [0, 1], can be
embedded in the space D of càdlàg functions on [0, 1] through the identifi-

cation I : x ∈ X 7→
(

t 7→
∫ 1
0 1{u≤t}dNx(u)

)

∈ D. Considering the uniform

Skorohod topology on D (see [4]), associated with the metric dD defined by

dD(f, f
′) = inf

{

ε > 0 ; ∃λ ∈ Λ,

{
supt∈[0,1] |λ(t)− t| ≤ ε,

supt∈[0,1] |f(λ(t))− f ′(t)| ≤ ε

}

,

where Λ is the set of strictly increasing, continuous mappings of [0, 1] onto
itself, X can be endowed with the topology induced by dX defined on X by

(3.2) dX (x, x
′) = dD(I(x), I(x

′)) for every x, x′ in X .

Since (D, dD) is a separable metric space, so are (X , dX ),
(
X 2, dX 2

)
, where

dX 2 is the product metric defined from dX (see [13, p 32]), and
(
X 2 × X 2, d

)
,
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where d, the product metric defined from dX 2 , is given by

(3.3) d
(
(x, y), (x′, y′)

)
= sup

{

sup
j=1,2

{

dX (x
j , x

′j)
}

, sup
j=1,2

{

dX (y
j , y

′j)
}
}

,

for every x = (x1, x2), y = (y1, y2), x′ = (x
′1, x

′2), y′ = (y
′1, y

′2) in X 2.
The kernel h defining the U -statistic Un,h(Xn) in (2.5) should satisfy:

(ACont)
There exists a subset C of X 2 ×X 2, such that
(i) h is continuous on C for the topology induced by d,
(ii) (P 1 ⊗ P 2)⊗2(C) = 1.

Here are some examples for which (ACont) holds.

Proposition 3.1. Let wδ : [0, 1]
2 → R be a continuous integrable func-

tion. Then the kernel hϕw
δ

defined on X 2×X 2 by (2.2) and (2.4) is continuous
w.r.t. the topology induced by d, defined by (3.3).

The above result does not apply to hϕcoinc
δ

but the following one holds.

Proposition 3.2. The coincidence count kernel hϕcoinc
δ

defined on X 2×
X 2 by (2.1) and (2.4) is continuous w.r.t. the topology induced by d, on

(3.4) Cδ =
{ (

(x1, x2), (y1, y2)
)
∈ X 2 × X 2 ;

({
x1
}
∪
{
y1
})

∩
({
x2 ± δ

}
∪
{
y2 ± δ

})
= ∅
}
.

As suggested in [49], when dealing with discretized point processes at
resolution r, the right choice for δ is kr + r/2 for an integer k, so (P 1 ⊗
P 2)⊗2(Cδ) = 1, and hϕcoinc

δ
satisfies (ACont). Furthermore, when dealing with

point processes with conditional intensities, so that they may be constructed
by thinning Poisson processes, the probability (P 1 ⊗ P 2)⊗2 of Cδ in (3.4) is
larger than P (X ∩ (X ′ ± δ) = ∅) = 1, when X and X ′ are two independent
Poisson processes. So hϕcoinc

δ
still satisfies (ACont).

3.3. Consistency of the bootstrap approach. As in the historical paper by
Bickel et Freedman [3], the closeness between L

(√
nUn,h, P

1
n ⊗ P 2

n

∣
∣Xn

)
and

L
(√
nUn,h, P

1 ⊗ P 2
)
, both distributions on R, is here measured via the clas-

sical L2-Wasserstein’s metric d2 (also called Mallows’ metric) defined by

(3.5) d22(Q,Q
′) = inf

{
E
[
(Z − Z ′)2

]
, (Z,Z ′) with marginals Q and Q′},

for all the distributions Q, Q′ with finite second order moments. Recall that
convergence w.r.t. d2 is equivalent to both weak convergence and convergence
of second order moments.
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The validity of the bootstrap approach described above for our indepen-
dence tests is mainly due to the following consistency result.

Theorem 3.1. For every n ≥ 2, let P j
n for j = 1, 2 be the empiri-

cal marginal distributions defined by (3.1). Then, under (ACent), (A∗
Cent),

(A∗
Mmt) and (ACont),

d2
(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1⊗P 2
))

−→
n→+∞

0, P -a.s. in (Xn)n.

The proof follows similar arguments to the ones of [3] for the bootstrap
of the mean, or to [12] and [29] for the bootstrap of U -statistics. But the
original data being here finite point processes instead of real-valued random
variables, the main difficult point is to transpose finite point processes in
the separable Skorohod metric space (D, dD), where weak convergence of
sample probability distributions is available (see [52]). This theorem derives
in fact from the following two propositions which may be useful in various
frameworks. The first one states a non-asymptotic result, while the second
one gives rather natural results of convergence.

Proposition 3.3. Under (ACent), (A∗
Cent), (A∗

Mmt), with the notation
of Theorem 3.1, there exists an absolute constant C > 0 such that for n ≥ 2,

d22
(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1 ⊗ P 2
))

≤ C inf
{

E∗
[(
h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

, Y ∗
n,1 ∼ P 1

n ⊗ P 2
n , Y1 ∼ P 1 ⊗ P 2,

and (Y ∗
n,2, Y2) is an independent copy of (Y ∗

n,1, Y1)
}

.

Proposition 3.4. If E [|h(X1,X2)|] < +∞, then

(3.6) Un,h(Xn) −→
n→+∞

E [h(X1,X2)]=

∫

h(x, x′)dP (x)dP (x′), P -a.s. in (Xn)n.

Under (A∗
Mmt), one moreover obtains that P -a.s. in (Xn)n,

1

n4

n∑

i,j,k,l=1

h2
((
X1

i ,X
2
j

)
,
(
X1

k ,X
2
l

))
−→

n→+∞
E
[
h2
((
X1

1 ,X
2
2

)
,
(
X1

3 ,X
2
4

))]
.

3.4. Convergence of cumulative distribution functions (c.d.f.) and quan-
tiles. As usual, N (m, v) stands for the Gaussian distribution with mean m
and variance v, Φm,v for its c.d.f. and Φ−1

m,v for its quantile function. From the
results of Rubin and Vitale [44] generalising Hoeffding’s [22] Central Limit
Theorem for non-degenerate U -statistics when the Xi’s are random vectors,
we deduce the following Central Limit Theorem for Un,h(Xn).
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Proposition 3.5. Assume here that P = P 1 ⊗ P 2, and that h satisfies
(ACent) and (AMmt), and let σ2h,P 1⊗P 2 be defined by

(3.7) σ2h,P 1⊗P 2 = 4V ar (E [h (X1,X2) |X1]) .

If Un,h(Xn) is non-degenerate (i.e. σ2h,P 1⊗P 2 > 0), then

d2

(

L
(√
nUn,h, P

1 ⊗ P 2
)
,N (0, σ2h,P 1⊗P 2)

)

−→
n→+∞

0.

Comment. The above asymptotic normality result may lead to a rather
simple test, of the desired asymptotic size. Let

(3.8) Sn,h(Xn) =

√
nUn,h(Xn)

σ̂h
,

with

σ̂2h =
4

n(n− 1)(n − 2)

∑

i,j,k∈{1,...,n},#{i,j,k}=3

h(Xi,Xj)h(Xi,Xk).

By Slutsky’s lemma and the law of large numbers for U -statistics of order 3,
under (H0), Sn,h(Xn) converges in distribution to N (0, 1). The test rejecting
(H0) when |Sn,h(Xn)| ≥ Φ−1

0,1(1− α/2) is therefore of asymptotic size α and
consistent (i.e. of asymptotic power 1) against any alternative P such that
E [h(X,X ′)] 6= 0, for X, X ′ i.i.d. with distribution P and satisfying (AMmt).
Such a purely asymptotic test may of course suffer from a lack of power when
the sample size n is small or even moderate, which is typically the case for
the application in neuroscience described in Section 2 for biological reasons
(from few tens up to few hundreds at best). Though the bootstrap approach
is mainly justified by asymptotic arguments, the simulation study presented
in Section 5 shows its efficiency in a non-asymptotic context, with respect to
this simpler test.

As Proposition 3.5 implies that the limit distribution of
√
nUn,h(Xn) has

a continuous c.d.f., the convergence of the conditional c.d.f. or quantiles of
the considered bootstrap distributions holds.

Corollary 3.1. For n ≥ 2, with the notation of Theorem 3.1, let X∗
n be

a bootstrap sample, i.e. an i.i.d n-sample from the distribution P 1
n ⊗ P 2

n . Let
X⊥⊥

n be another i.i.d. n-sample from the distribution P 1 ⊗ P 2 on X 2. Under
the assumptions of Theorem 3.1, if Un,h(Xn) is non-degenerate under (H0),
then, P -a.s. in (Xn)n,

sup
z∈R

∣
∣
∣P
(√
nUn,h (X

∗
n) ≤ z

∣
∣Xn

)
−P
(√
nUn,h(X

⊥⊥
n ) ≤ z

)∣
∣
∣ −→
n→+∞

0.
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If moreover, for η in (0, 1), q∗h,η,n(Xn) denotes the conditional η-quantile of√
nUn,h(X

∗
n) given Xn and q⊥⊥h,η,n denotes the η-quantile of

√
nUn,h(X

⊥⊥
n ),

(3.9) |q∗h,η,n(Xn)− q⊥⊥h,η,n| −→
n→+∞

0, P -a.s. in (Xn)n.

3.5. Asymptotic properties of the bootstrap tests. Let α in (0, 1) and let
us now consider Γ the family of three sequences of tests ∆+ = (∆+

h,α,n)n≥2,

∆− = (∆−
h,α,n)n≥2, and ∆+/− = (∆

+/−
h,α,n)n≥2, with critical values q where

(3.10) q = [(q+h,α,n(Xn), q
−
h,α,n(Xn))]n≥2, and for all n ≥ 2,







∆+
h,α,n(Xn) = 1{√nUn,h(Xn)>q+

h,α,n
(Xn)} (test by upper values),

∆−
h,α,n(Xn) = 1{√nUn,h(Xn)<q−

h,α,n
(Xn)} (test by lower values),

∆
+/−
h,α,n(Xn) = max(∆+

h,α/2,n(Xn),∆
−
h,α/2,n(Xn)) (bilateral test),

the last equation being naturally implicitly defined by the corresponding
choices in α/2. Of course, Γ, as well as ∆+, ∆− and ∆+/−, depend on the
choice of α, the desired level in (0, 1) and the kernel h that are considered as
fixed from the beginning of this section. They also more importantly depend
on the critical values sequence q. However to keep the notation as simple and
clear as possible, the corresponding indices are omitted.

Depending on the choice of q, the classical properties that can be expected
to be satisfied by Γ are (Psize) and (Pconsist.) defined by

(Psize)
Each sequence ∆ = (∆n)n≥2 in Γ is asymptotically of size α,

i.e. if P = P 1 ⊗ P 2, P (∆n(Xn) = 1) →n→+∞α,

(Pconsist.)

Each sequence ∆ = (∆n)n≥2 in Γ is consistent,

i.e. P (∆n(Xn) = 1) →n→+∞ 1, against every P such that
-
∫
h(x, x′)dP (x)dP (x′) > 0 if ∆ = ∆+,

-
∫
h(x, x′)dP (x)dP (x′) < 0 if ∆ = ∆−,

-
∫
h(x, x′)dP (x)dP (x′) 6= 0 if ∆ = ∆+/−.

Following Corollary 3.1, the bootstrap tests are associated to

(3.11) q =
[(
q∗h,1−α,n(Xn), q

∗
h,α,n(Xn)

)]

n≥2
.

Theorem 3.2. Let Γ∗ be the family of tests defined by (3.10) and (3.11).
If (ACent), (A∗

Cent), (A∗
Mmt) and (ACont) hold and if for all n ≥ 2, Un,h(Xn)

is non-degenerate under (H0), then Γ∗ satisfies both (Psize) and (Pconsist.).

Comments. In the particular case where h = hϕ defined by (2.4),
∫

h(x, x′)dP (x)dP (x′) =
∫

ϕ(x1, x2)
[
dP (x1, x2)− dP 1(x1)dP 2(x2)

]
.
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This means that under the assumptions of Theorem 3.2, the bilateral test
in Γ∗ is consistent against any alternative such that

∫
ϕ(x1, x2)dP (x1, x2)

differs from what is expected under (H0), i.e.
∫
ϕ(x1, x2)dP 1(x1)dP 2(x2).

(i) When ϕ = ϕcoinc
δ defined by (2.1), the assumptions of Theorem 3.2

are fulfilled for instance if X1 and X2 are discretized at resolution r, with
δ = kr + r/2 for some integer k, or if X1 and X2 have bounded condi-
tional intensities, with δ large enough so that ϕcoinc

δ (X1,X2) is not a.s. null.
Theorem 3.2 means in such cases that the corresponding bilateral test is
asymptotically of power 1 for any alternative P such that,

∫

1{|v−u|≤δ}E [dNX1(u)dNX2(v)] 6=
∫

1{|v−u|≤δ}E [dNX1(u)]E [dNX2(v)]].

Note that no δ ensuring this condition can be found if heuristically, the
repartition of the delays |v − u| between points of X1 and X2 is the same
under (H0) and under (H1). For neuroscientists, it means that the cross-
correlogram (histogram of the delays, that is classically represented as the
first description of the data) does not show different behaviors in the depen-
dent and independent cases. This would only occur if the dependence could
not be measured in terms of delay between points. Though this is quite
not likely to happen in spike train analysis, the question of the choice of δ
remains an open question.

(ii) When ϕ = ϕw
δ defined by (2.2), Theorem 3.2 means that the corre-

sponding bilateral test is consistent against any alternative such that

βw,δ =

∫

wδ(u, v) (E [dNX1(u)dNX2(v)]− E [dNX1(u)]E [dNX2(v)]) 6= 0.

Under the specific Poisson assumptions of Sansonnet and Tuleau-Malot [45],
if wδ(u, v) = ψj,k(v−u) where δ = (j, k) and ψj,k is a rescaled and translated
Haar mother wavelet, βw,δ is linked to the coefficient in the Haar basis of
the so-called interaction function, which measures the dependence between
both processes X1 and X2. Working non asymptotically, one of the main
result of [45] states, after reformulation in the present setting, that if βw,δ is
larger than an explicit lower bound, then the Type II error rate is less than
a prescribed β in (0, 1). Theorem 3.2 thus generalizes their result to a set-up
with much less reductive assumptions on the underlying stochastic models,
but in an asymptotic way.

3.6. Bootstrap tests with Monte Carlo approximation. The above fam-
ily of tests Γ∗ involves an exact computation of the conditional quantiles
q∗h,η,n (Xn). Though such a computation is possible, it is not often reasonable
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in practice even when the sample size n is moderate (n ≥ 15), since comput-
ing Un,h(X

∗
n) itself may be complex from an algorithmic point of view, for

particular choices of h. Therefore, the conditional quantiles q∗h,η,n (Xn) are
approximated, as usual, by a Monte Carlo method.

More precisely, for a chosen number B ≥ 1 of iterations for the Monte
Carlo method, let

(
X∗1

n , . . . ,X
∗B
n

)
be B independent bootstrap samples from

Xn, that is B i.i.d. random variables from the distribution (P 1
n ⊗P 2

n)
⊗n. For

each b in {1, . . . , B}, define U∗b = Un,h

(
X∗b

n

)
. The order statistic associated

with
(
U∗1, . . . , U∗B) is denoted as usual by

(
U∗(1), . . . , U∗(B)

)
. Then, for any

sequence (Bn)n≥2 of positive integers, the Monte Carlo bootstrap tests are
associated to

(3.12) q =
[

n1/2
(

U∗(⌈(1−α)Bn⌉), U∗(⌊αBn⌋+1)
)]

n≥2
.

Proposition 3.6. Let Γ∗
MC be the family of tests defined by (3.10) com-

bined with (3.12). If Bn →n→+∞ +∞, under the same assumptions as in
Theorem 3.2, Γ∗

MC also satisfies both (Psize) and (Pconsist.).

4. Permutation tests of independence. All along this section, (Xn)n
still denotes a sequence of i.i.d. pairs of point processes, with Xi = (X1

i ,X
2
i )

of distribution P on X 2, whose marginals are respectively P 1 and P 2 on X .
For every n ≥ 2, Xn = (X1, . . . ,Xn), and Un,h(Xn) is the U -statistic given
by (2.5). We focus here on the particular case where h is of the form hϕ for
some integrable function ϕ, as defined in (2.4).

4.1. Description of the permutation approach and overview of the results.
The permutation approach we consider consists in randomly permuting the
second coordinates of the observed pairs of point processes. More precisely,
if πn is a permutation of {1, . . . , n}, one defines

(4.1) Xπn
n = (Xπn

1 , . . . ,Xπn
n ) with Xπn

i =
(

X1
i ,X

2
πn(i)

)

,

and for Πn a random permutation taken uniformly at random in Sn inde-
pendently of Xn, the corresponding permuted sample is defined by XΠn

n . Let
P ⋆
n be the conditional distribution of XΠn

n given Xn. Like for the bootstrap,
the idea of the permutation principle is to mimic the distribution of the test
statistic assuming that (H0) is satisfied. Theorem 4.1 and Proposition 3.5
actually imply that under appropriate assumptions, the conditional distribu-
tion of

√
nUn,hϕ(X

Πn
n ) given Xn is asymptotically close to the distribution of√

nUn,hϕ(X
⊥⊥
n ), where X⊥⊥

n is an i.i.d. sample from the distribution P 1 ⊗ P 2.
Thus, we can propose new permutation tests of independence of the desired
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asymptotic size, using the conditional quantiles of
√
nUn,hϕ(X

Πn
n ) given Xn

(or their Monte Carlo approximation) as critical values, which are consistent
against any reasonable alternative. Following the statements of our bootstrap
results in Section 3, we still express the closeness in distributions between
the permuted and original statistics in terms of Wasserstein’s metric and this
even under (H1), which distinguishes, up to our knowledge, our results from
previous ones in the permutation independence tests scene.

In addition, the main advantage of the permutation approach lies in the
resulting tests being exactly of the desired level, even when the critical values
are approximated by a Monte Carlo method. Such non-asymptotic results
are proved thanks to [43, Lemma 1] and the following Proposition, at the
heart of the permutation principle. Note that such results have no known
counterpart for the bootstrap approach, despite very few non-asymptotic
results in more classical settings [2, 17, 16].

Proposition 4.1. Let πn be a deterministic permutation of {1, . . . , n},
and Πn be a uniformly distributed random permutation of {1, . . . , n}, inde-
pendent of the observed sample Xn = (X1, . . . ,Xn). If P = P 1 ⊗ P 2, that is
under (H0), then Xπn

n and XΠn
n defined in (4.1) both have the same distri-

bution as the original sample Xn.

4.2. Consistency of the permutation approach. Since we focus in this sec-
tion on U -statistics based on symmetric kernels of the form hϕ, as defined in
(2.4), the centring assumption (ACent) is always satisfied, and we only need
here the following moment assumption:

(Aϕ,Mmt) ForX with distribution P or P 1⊗P 2 on X 2, E
[
ϕ4
(
X1,X2

)]
<∞.

Theorem 4.1. For all n ≥ 2, let P ⋆
n be the conditional distribution of the

permuted sample given Xn. Under (Aϕ,Mmt), with the notation of Section 3,

(4.2) d2

(

L
(√
nUn,hϕ , P

⋆
n

∣
∣Xn

)
,N

(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0,

where
P−→ stands for the usual convergence in P-probability.

Comments. Unlike the bootstrap approach, the convergence for Wasser-
stein’s metric occurs in probability and not almost surely, but no continuity
assumption for the kernel hϕ is used anymore, at the only price that the
moment assumption is stronger than the one used for the bootstrap. The
above result is one of the newest result presented here and its scope is well
beyond the only generalisation to the point processes setting. Indeed, be-
cause it holds not only under (H0) but also under (H1), it goes further than
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existing ones such as the ones of Romano [42]. Note that the behavior under
dependence of their permuted test statistic, closely related to ours, was also
left as an open question by Van der Vaart and Wellner in [51]. The proof
of this result is based on an asymptotic normality result for martingale dif-
ference arrays. A sketch of proof is given in Section 6, the complete longer
version being given in the supplementary material.

From Theorem 4.1, we deduce the following Corollary, which, combined
with Proposition 3.5, is a key point to prove that the conditional quantiles
of L

(√
nUn,hϕ , P

⋆
n

∣
∣Xn

)
can be used as critical values.

Corollary 4.1. For every n ≥ 2 and η in (0, 1), let q⋆ϕ,η,n (Xn) denote
the η-quantile of L

(√
nUn,hϕ , P

⋆
n

∣
∣Xn

)
, with the notation of Theorem 4.1.

Then, under the assumptions of Theorem 4.1,

q⋆ϕ,α,n (Xn)
P−→

n→+∞
Φ−1
0,σ2

hϕ,P1⊗P2
(η).

4.3. Asymptotic properties of the permutation tests. With the notation
of Corollary 4.1 and of (3.10), the permutation tests are associated to

(4.3) q =
[(
q⋆ϕ,1−α,n (Xn) , q

⋆
ϕ,α,n (Xn)

)]

n≥2
.

Theorem 4.2. Let Γ⋆ be the family of tests defined by (3.10) and (4.3).
If (Aϕ,Mmt) holds, and if for all n ≥ 2, Un,hϕ(Xn) is non-degenerate under
(H0), then Γ⋆ satisfies both (Psize) and (Pconsist.).

4.4. Non-asymptotic properties of the permutation tests. As seen above,
the main theoretical advantage of the permutation approach, as compared
with the bootstrap one, lies on the result of Proposition 4.1, which allows
in fact to prove that the tests also satisfy non-asymptotic properties. For a
fixed integer n ≥ 2, considering for instance the test ∆+

hϕ,α,n
in Γ⋆, one has

indeed under (H0), by Proposition 4.1,

S := P
(

∆+
hϕ,α,n

(Xn) = 1
)

= P
(√
nUn,hϕ (Xn) > q⋆ϕ,1−α,n (Xn)

)

=
1

n!

∑

πn∈Sn

P
(√
nUn,hϕ(X

πn
n ) > q⋆ϕ,1−α,n (X

πn
n )
)
.

Since the distribution of
√
nUn,hϕ

(
XΠn◦πn

n

)
given Xπn

n is the same as the
one of

√
nUn,hϕ

(
XΠn

n

)
given Xn, q⋆ϕ,1−α,n (X

πn
n ) = q⋆ϕ,1−α,n (Xn). Hence,

S =
∑

πn∈Sn

P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆ϕ,1−α,n (Xn)

∣
∣Πn = πn

)
P (Πn = πn)

= P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆ϕ,1−α,n (Xn)

)

= E
[
P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆ϕ,1−α,n (Xn)

∣
∣Xn

)]
≤ α.
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The same arguments, adapted to any test in Γ⋆, lead to the following result.

Proposition 4.2. Let Γ⋆ be the family of tests defined by (3.10) and
(4.3). For each n ≥ 2, each test ∆n of a sequence ∆ = (∆n)n≥2 in Γ⋆ is

exactly of level α, i.e. if P = P 1 ⊗ P 2, P (∆n(Xn) = 1) ≤ α.

4.5. Permutation tests with Monte Carlo approximation. Every test in
Γ⋆ involves an exact computation of the quantiles q⋆ϕ,η,n (Xn). Though such
a computation is possible by sorting the n! values of

{
Un,hϕ(X

πn
n )
}

πn∈Sn
, as

for the bootstrap approach, it does not often have a reasonable algorithmic
complexity. Therefore, those quantiles are approximated as usual by a Monte
Carlo method without changing their asymptotic properties. Moreover, it
is interesting to point out that, even if they are based on a Monte Carlo
approximation, these tests are still exactly of the desired level. This is proved
using Proposition 4.1 and [43, Lemma 1].

More precisely, let B ≥ 1 be a chosen number of iterations for the Monte
Carlo method, and

(
Π1

n, . . . ,Π
B
n

)
be a sample of i.i.d. random permuta-

tions uniformly distributed on Sn. For each b in {1, . . . , B}, we introduce

U⋆,b = Un,hϕ

(

X
Πb

n
n

)

, and we denote by U⋆,B+1 the statistic Un,hϕ (Xn)

computed on the original sample Xn. The order statistic associated with
(
U⋆,1, . . . , U⋆,B+1

)
is denoted as usual by

(
U⋆,(1), . . . , U⋆,(B+1)

)
. For a se-

quence (Bn)n≥2 of positive integers, the Monte Carlo permuted tests are
associated to

(4.4) q =
[

n1/2
(

U⋆,(⌈(1−α)(Bn+1)⌉), U⋆,(⌊α(Bn+1)⌋+1)
)]

n≥2
.

Proposition 4.3. Let Γ⋆
MC be the family of tests defined by (3.10) and

(4.4). Then for every n ≥ 2, whatever the choice of Bn, each test ∆n of
a sequence ∆ = (∆n)n≥2 in Γ⋆

MC is exactly of level α, i.e. if P = P 1 ⊗
P 2, P (∆n(Xn) = 1) ≤ α. Moreover, if Bn →n→+∞ +∞, under the same
assumptions as in Theorem 4.2, Γ⋆

MC satisfies both (Psize) and (Pconsist.).

5. Simulation study. In this section, we study our testing procedures
from a practical point of view, by giving estimations of the size and the power
for various underlying distributions that are coherent with real neuronal
data. This allows to verify the usability of these new methods in practice,
and to compare them to existing classical methods. A real data sets study
and a more operational and complete method for neuroscientists derived from
the present ones is the subject of an ongoing work. The programs have been
optimised, parallelised in C++ and interfaced with R. The code is available at
https://code.google.com/p/neuro-stat/.

https://code.google.com/p/neuro-stat/
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5.1. Presentation of the study. All along the study, h is taken equal to
hϕcoinc

δ
(see (2.4)), where ϕcoinc

δ is defined in (2.1) and α = 0.05. We only
present the results for unilateral tests by upper values, but an analogous
study has been performed for tests by lower values with similar results. Five
different testing procedures are compared.

5.1.1. Testing procedures.

(CLT) Test based on the Central Limit Theorem for U -statistics (see Propo-
sition 3.5) which rejects (H0) when the test statistic Sn,h(Xn) in (3.8)
is larger than the (1−α)-quantile of the standard normal distribution.

(B) Monte Carlo bootstrap test by upper values of Γ∗
MC (see (3.10) and

(3.12)).
(P) Monte Carlo permutation test by upper values of Γ⋆

MC (see (3.10) and
(4.4)).

(GA) Unilateral test by upper values introduced in [49, Definition 3] under
the notation ∆+

GAUE(α), based on a Gaussian approximation of the
total number of coincidences.

(TS) Trial-shuffling test based on a Monte Carlo approximation of the p-
value introduced in [34, equation (3)], but adapted to the present notion
of coincidences. This test is the reference distribution-free method for
neuroscientists. To be more precise, let C(Xn) =

∑n
i=1 ϕ

coinc
δ

(
X1

i ,X
2
i

)
,

where Xi =
(
X1

i ,X
2
i

)
, be the total number of coincidences of Xn =

(X1, . . . ,Xn). The trial-shuffling method consists in uniformly draw-
ing with replacement n i.i.d. pairs of indices {(i∗(k), j∗(k))}1≤k≤n in

{(i, j), 1 ≤ i 6= j ≤ n}, and considering the associated TS-sample XTS
n =

((

X1
i∗(k),X

2
j∗(k)

))

1≤k≤n
. The Monte Carlo p-value is defined by αTS

B =

1
B

∑B
j=1 1{C(XTS,j

n )≥C(Xn)}, where
(

X
TS,1
n , . . . ,XTS,B

n

)

are B indepen-

dent TS-samples, and the test rejects (H0) if αTS
B ≤ α.

The number B of steps in the Monte Carlo methods is taken equal to 10000.

5.1.2. Simulated data. Various types of point processes are simulated
here to check the distribution-free character of our approaches and to inves-
tigate their limits. Of course, each of the considered point processes satisfies
the moment assumptions on the number of points so that the theorems in
this article can be applied. From now on and to be coherent with the neuro-
science application which originally motivated this work, the point processes
are simulated on a time slot [a, b] of length 0.1.

Estimation of the size. The three data sets simulated under (H0) consist
of i.i.d. samples of pairs of independent point processes. For simplicity, both
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processes have the same distribution, though this is not required.

Exp. A Homogeneous Poisson processes on [a, b] with intensity λ = 60.
Exp. B Inhomogeneous Poisson processes with intensity fλ : t ∈ [a, b] 7→ λt

and λ = 60.
Exp. C Hawkes Processes as detailed in [49] i.e. point processes with con-

ditional intensity λ(t) = max
(

0, µ −
∫ t
a ν 1{]0,r]}(t− s) dNX(s)

)

, for

t in [a, b], with spontaneous intensity µ = 60, refractory period r =
0.001, and ν > µ such that for all point T in NX and t in ]T, T + r],
λ(t) = 0. This choice of ν prevents two points to occur at a distance
less than the refractory period r to reflect typical neuronal behavior.

Study of the power. The three data sets simulated under (H1) are such
that the number of coincidences is larger than expected under (H0). The
models (injection or Hawkes) are classical in neuroscience and already used
in [49, 20].

Exp. D Homogeneous injection model. X1 = X1
ind∪Xcom and X2 = X2

ind∪
Xcom, withX1

ind andX2
ind being two independent homogeneous Poisson

processes with intensity λind = 54,Xcom being a common homogeneous
Poisson process with intensity λcom = 6.

Exp. E Inhomogeneous injection model. As Exp. D, except that both X1
ind

and X2
ind are independent inhomogeneous Poisson processes with in-

tensity fλind
(see Exp. B) and λind = 54.

Exp. F Dependent bivariate Hawkes processes. The coordinates X1 and X2

of a same pair respectively have the conditional intensities:

λ1(t)=max
{

0, µ−
∫ t
aν1{]0,r]}(t−s) dNX1(s)+

∫ t
aη1{]0,u]}(t−s) dNX2(s)

}

,

λ2(t)=max
{

0, µ−
∫ t
aν1{]0,r]}(t−s) dNX2(s)+

∫ t
aη1{]0,u]}(t−s) dNX1(s)

}

,

with the spontaneous intensity µ = 54, the interaction intensity η = 6
in the period designated by u = 0.005 and the refractory period des-
ignated by r = 0.001 with ν ≫ µ + ηu such that once again, λj(t) is
null on each ]T, T + r], T in N j. We arbitrarily took ν = 50(2µ + η).

5.2. Results.

Varying number of trials n. In Figure 1, the delay is fixed at δ = 0.01 and
the number n of trials varies in {10, 20, 50, 100}. Note that when the number
of trials is too small (n = 10), the estimated variance in (CLT) is sometimes
negative, therefore, the test cannot be implemented.

The left hand side of Figure 1 corresponds to estimated sizes. On the one
hand, one can see in the case of homogeneous Poisson processes (Exp. A)
and in the case of refractory Hawkes processes (Exp. C) that the methods
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Figure 1: Estimated sizes and powers for different number of trials n, all
the tests being performed with a level α = 0.05. The circles represent the
percentage of rejection on 5000 simulations for each different method, the
triangles represent the corresponding endpoints of a 95% confidence interval.
The corresponding experiments are described in Section 5.1.2.

(CLT), (B), (P) and (GA) are quite equivalent, even though the size, or Type
I error rate, seems less controlled in the bootstrap approach (B) especially
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for small numbers of trials. Yet, one can see the convergence of the size
of the bootstrap test to α as the number of trials goes to infinity, which
illustrates Proposition 3.6. On the other hand, in the case of inhomogeneous
Poisson processes (Exp. B), one can see that the (GA) test has a huge Type
I error rate and is thus inadequate here. Indeed it is based on the strong
assumption that the data are homogeneous Poisson processes though they are
in fact strongly nonstationary. The test tends thus to reject the independence
null hypothesis even when the data are independent. Finally, in the three
considered cases, the (TS) approach has a very small size, and is thus too
conservative as one can see in the power study.

The right hand side of Figure 1 corresponds to estimated powers, which
increase as n grows. This is in line with the consistency of the tests. Now,
as it could be expected when looking at the sizes for the (TS) approach,
the power is distinctly lower than the ones for the other methods, which
confirms its conservative behavior. The other approaches are more similar
in Exp. D or Exp. F though (B) clearly outperforms all tests. Note that in
the inhomogeneous case (Exp. E), (GA) seems to have a better power, but
this is at the price of an uncontrolled Type I error.

This part of the simulation study illustrates the convergences of the size
and the power of the tests introduced here. The permutation approach seems
to guarantee a better control of the size, whereas the bootstrap approach
guarantees a better power, both approaches being effective for any consid-
ered kind of point processes and any sample size, unlike the (GA) test which
has very restrictive assumptions. Moreover, the (CLT) test seems to have also
satisfying results, but with a slower convergence than the (B) and (P) ones.
This seems to illustrate that the conditional bootstrap and permutation dis-
tributions give better approximations of the original one under independence
than a simple central limit theorem. This phenomenon is well-known as the
second order accuracy of the bootstrap in more classical frameworks.

Varying delay δ. We now investigate the impact of the choice for the delay
δ by making δ vary in {0.001, 0.005, 0.01, 0.02} for a fixed number of trials
n = 50. The results for the sizes being similar to the previous study, only
the estimated powers are presented in Figure 2.

On the top row of Figure 2, the same process is injected in both coor-
dinates: the coincidences are exact in the sense that they have no delay.
Therefore, the best choice for the delay parameter δ is the smallest possible
value: the obtained power is 1 for very small δ’s (e.g. δ = 0.001) and then
decreases as δ increases. On the contrary on the bottom row, it can be no-
ticed that the highest power is for δ = 0.005 which is the exact length of
the interaction period u. Once again, the (TS) method performs poorly, as
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Figure 2: Estimated powers for different δ. Same convention as in Figure 1.

does the (CLT) method. The three other methods seem to be quite equivalent
except in the inhomogeneous case (Exp. E) where the (GA) method has a
power always equal to 1, but at the price of an uncontrolled Type I error.

To conclude, we wish to underline the importance of the choice of the
delay parameter δ, which is an open theoretical question. Note that from
a neuroscience point of view, this cannot be simply reduced to the study
of supδ |Un,h

ϕcoinc
δ

| since the values of δ for which the rejection takes place

contain a very important information for biologists: the delay of interaction.
This is the purpose of a future work.
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6. Key proofs or sketches of proofs. All along this section, C and
C ′ denote positive constants, that may vary from one line to another one.

6.1. Proof of Theorem 3.1. By Proposition 3.3, for all n ≥ 2,

d2

(

L
(√
nUn,h, P

1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1 ⊗ P 2
) )

≤ C inf
(Y ∗

n,1,Y1),(Y ∗
n,2,Y2) i.i.d /

Y ∗
n,1,Y

∗
n,2∼P 1

n⊗P 2
n, Y1,Y2∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

.

Our goal is to construct, for almost all ω in Ω, a sequence of random
variables

(
Ȳ ∗
n,ω,1

)

n≥1
such that for every n ≥ 1, Ȳ ∗

n,ω,1 ∼ P 1
n,ω ⊗ P 2

n,ω,

where P j
n,ω = n−1

∑n
i=1 δXj

i (ω)
is the jth marginal empirical measure cor-

responding to the realisation Xn(ω), a random variable Ȳω,1 ∼ P 1⊗P 2, and
{(
Ȳ ∗
n,ω,2

)

n≥1
, Ȳω,2

}

an independent copy of
{(
Ȳ ∗
n,ω,1

)

n≥1
, Ȳω,1

}

on some

probability space (Ω′
ω,A′

ω,P
′
ω) depending on ω such that

(6.1) E′
ω

[(

h
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
− h

(
Ȳω,1, Ȳ,ω2

) )2
]

−→
n→+∞

0,

where E′
ω denotes the expectation corresponding to P′

ω. Then from (6.1), we
can conclude by noting that, for almost all ω in Ω,

inf
(Y ∗

n,1,Y1),(Y ∗
n,2,Y2) i.i.d /

Y ∗
n,1,Y

∗
n,2∼P 1

n,ω⊗P 2
n,ω , Y1,Y2∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

(ω)

≤ E′
ω

[(

h
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
− h

(
Ȳω,1, Ȳω,2

))2
]

−→
n→+∞

0.

To prove (6.1), consider (Ω,A,P) the probability space on which all the
Xn’s are defined. In what follows, one can keep in mind that Ω represents the
randomness in the original sequence (Xn)n. Thus, a given ω in Ω represents
a given realisation of (Xn)n.
As a preliminary step, from Proposition 3.4, there exists some subset Ω1 of
Ω such that P(Ω1) = 1 and for every ω in Ω1,

(6.2)
1

n4

n∑

i,j,k,l=1

h2
((
X1

i (ω),X
2
j (ω)

)
,
(
X1

k(ω),X
2
l (ω)

))

−→
n→+∞

E
[
h2
((
X1

1 ,X
2
2

)
,
(
X1

3 ,X
2
4

))]
.
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Applying Theorem 3 in [52], since (X , dX ) defined by (3.2) is separable, P -
a.s. in (Xn)n, P 1

n =⇒
n→+∞

P 1 and P 2
n =⇒

n→+∞
P 2. Hence there exists some subset

Ω2 of Ω such that P(Ω2) = 1 and for every ω in Ω2,

(6.3) P 1
n,ω ⊗ P 2

n,ω =⇒
n→+∞

P 1 ⊗ P 2,

Now, let us consider Ω0 = Ω1 ∩Ω2, and fix ω in Ω0.
Following the proof of Skorokhod’s representation theorem in [13, Theo-
rem 11.7.2 p. 415], since (X 2, dX 2) is a separable space, it is possible to
construct some probability space (Ω′

ω,A′
ω,P

′
ω), and some random variables

Ȳ ∗
n,ω,1 : Ω′

ω → X 2, Ȳ ∗
n,ω,2 : Ω′

ω → X 2 with distribution P 1
n,ω ⊗ P 2

n,ω, and

Ȳω,1 : Ω′
ω → X 2, Ȳω,2 : Ω′

ω → X 2 with distribution P 1 ⊗ P 2 such that

P′
ω-a.s., Ȳ ∗

n,ω,1 −→
n→+∞

Ȳω,1 and Ȳ ∗
n,ω,2 −→

n→+∞
Ȳω,2,

{(
Ȳ ∗
n,ω,1

)

n≥1
, Ȳω,1

}

and
{(
Ȳ ∗
n,ω,2

)

n≥1
, Ȳω,2

}

being independent, so that w.r.t. the metric d (see (3.3)),

(6.4) P′
ω-a.s.,

(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
−→

n→+∞

(
Ȳω,1, Ȳω,2

)
.

But under (ACont), h is continuous on a set C s. t. P′
ω

((
Ȳω,1, Ȳω,2

)
∈ C
)
=

(
P 1 ⊗ P 2

)⊗2
(C) = 1, hence P′

ω-a.s., h
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
→n→+∞ h

(
Ȳω,1, Ȳω,2

)
.

As P′
ω-a.s. convergence implies convergence in probability, to obtain (6.1),

we only need to prove that the sequence
(
h2
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

))

n≥1
is uniformly

integrable, according to Theorem 16.6 p. 165 of [47]. We therefore conclude
since (6.2) is equivalent to

E′
ω

[
h2
(
Ȳ ∗
n,ω,1,Ȳ

∗
n,ω,2

)]
=

1

n4

n∑

i,j,k,l=1

h2
(
(X1

i (ω),X
2
j (ω)), (X

1
k (ω),X

2
l (ω))

)

−→
n→+∞

E
[
h2
((
X1

1 ,X
2
2

)
,
(
X1

3 ,X
2
4

))]
= E′

ω

[
h2
(
Ȳω,1, Ȳω,2

)]
.

6.2. Proof of Corollary 3.1. By Proposition 3.5, we have that

(6.5) L
(√
nUn,h, P

1 ⊗ P 2
)

=⇒
n→+∞

N (0, σ2h,P 1⊗P 2),

where N (0, σ2h,P 1⊗P 2) has a continuous c.d.f. Therefore, by [50, Lemma 2.11],

(6.6) sup
z∈R

∣
∣
∣
∣
P
(√

nUn,h(X
⊥⊥
n ) ≤ z

)

− Φ0,σ2
h,P1⊗P2

(z)

∣
∣
∣
∣

−→
n→+∞

0.

Furthermore, since convergence w.r.t the d2 distance implies weak conver-
gence, Theorem 3.1 combined with (6.5) leads to

(6.7) L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
=⇒

n→+∞
N (0, σ2h,P 1⊗P 2) P -a.s. in (Xn)n.
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Hence,

(6.8) sup
z∈R

∣
∣
∣
∣
P
(√
nUn,h(X

∗
n)≤z|Xn

)
−Φ0,σ2

h,P1⊗P2
(z)

∣
∣
∣
∣
−→

n→+∞
0 P -a.s. in (Xn)n,

and the first part of the corollary is obtained. Then [50, Lemma 21.2] can
then be applied to both (6.5) and (6.7), to obtain that on the event where
(6.7) holds

(6.9) q∗h,1−α,n (Xn) −→
n→+∞

Φ−1
0,σ2

h,P1⊗P2
(1− α) P -a.s. in (Xn)n,

and that q⊥⊥h,η,n also converges to Φ−1
0,σ2

h,P1⊗P2
(η).

6.3. Proof of Theorem 3.2. Let us focus on the sequence of tests by upper
values in Γ∗, the proof for the other tests being similar. Under (H0), from
Proposition 3.5 and (6.9), by Slutsky’s lemma, (

√
nUn,h(Xn), q

∗
h,1−α,n(Xn))

converges in distribution to (Z,Φ−1
0,σ2

h,P1⊗P2
(1−α)), where Z ∼ N (0, σ2h,P 1⊗P 2).

Therefore, under (H0), P(
√
nUn,h(Xn) > q∗h,1−α,n (Xn)) →n→+∞ α.

Under (H1), by Proposition 3.4,

Un,h(Xn) −→
n→+∞

∫

h(x, x′)dP (x)dP (x′) > 0, P -a.s. in (Xn)n.

Furthermore, due to (6.9), q∗h,1−α,n (Xn) /
√
n →n→+∞ 0 P -a.s. in (Xn)n.

Hence, P(
√
nUn,h(Xn) ≤ q∗h,1−α,n(Xn)) →n→+∞ 0.

6.4. Proof of Proposition 3.6. As above, let us focus on the sequence of
tests by upper values in Γ∗

MC . Let Z ∼ N (0, 1) and let us define for z in R,

F ∗
n,Xn

(z) = P
(√
nUn,h(X

∗
n) ≤ z|Xn

)
, F ∗Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1{√nUn,hϕ(X∗b
n )≤z}.

By the Dvoretzky-Kiefer-Wolfowitz inequality (see [50]), for n ≥ 2 and ε > 0,

P

(

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)−F ∗

n,Xn
(z)
∣
∣
∣>ε

)

=E

[

P

(

sup
z∈R

∣
∣
∣F

∗,Bn

n,Xn
(z)−F ∗

n,Xn
(z)
∣
∣
∣>ε

∣
∣
∣
∣
Xn

)]

≤ 2e−2Bnε2 −→
n→+∞

0,

that is supz∈R |F ∗Bn

n,Xn
(z)− F ∗

n,Xn
(z)| P−→

n→+∞
0. With (6.8), this leads to

(6.10) sup
z∈R

∣
∣
∣
∣
F ∗Bn

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)

∣
∣
∣
∣

P−→
n→+∞

0.
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We finish the proof using similar arguments as in [50, Lemma 21.2], combined
with a subsequence argument [13, Theorem 9.2.1]. Let φ0 be an extraction.
Then, by (6.10), there exists an extraction φ1, and some Ω0 ⊂ Ω such that
P (Ω0) = 1, and for every ω in Ω0,

sup
z∈R

∣
∣
∣
∣
F

∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(z) − Φ0,σ2

h,P1⊗P2
(z)

∣
∣
∣
∣

−→
n→+∞

0.

From now on, fix ω in Ω0. In particular, this fixes a realisation of Xn, and
a realisation of

(
X∗1

n , . . . ,X
∗Bn
n

)
and thus, F ∗Bn

n,Xn
(ω) is deterministic. Hence,

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(Z)

a.s.−→
n→+∞

Φ0,σ2
h,P1⊗P2

(Z), and for η in (0, 1),

Φ0,1

((

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η)

)

= P
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(Z) < η

)

−→
n→+∞

P

(

Φ0,σ2
h,P1⊗P2

(Z) < η

)

= Φ0,1

((

Φ0,σ2
h,P1⊗P2

)−1

(η)

)

.

Finally, as Φ0,1 is a one-to-one function and Φ−1
0,1 is continuous,

(6.11)
√

φ1◦φ0(n)U∗(⌈η(Bφ1◦φ0(n))⌉)(ω)

=
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η) −→
n→+∞

Φ−1
0,σ2

h,P1⊗P2
(η),

and this for all ω in Ω0, and any initial extraction φ0. Therefore, we obtain

that
√
nU∗(⌈ηBn⌉) P−→

n→+∞
Φ−1
0,σ2

h,P1⊗P2
(η). We conclude as for Theorem 3.2.

6.5. Sketch of proof of Theorem 4.1. We present here a sketch of the
proof, whose complete version can be found in the supplementary material.
Let dBL denote the bounded Lipschitz metric, which metricises the weak
convergence [13, Prop. 11.3.2 and Th. 11.3.3]. For Zn any variable depending
on Xn and Πn, L (Zn|Xn) denotes the conditional distribution of Zn given
Xn and for any integrable function f , EP 1⊗P 2 [f ] = E[f(X1

1 ,X
2
2 )].

• The first step of the proof consists in decomposing
√
nUn,hϕ

(
XΠn

n

)
in

√
nUn,hϕ

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn (Xn)√

n

)

,

where MΠn
n (Xn) =

1√
n

∑

i 6=j 1{Πn(i)=j}Ci,j ,

RΠn
n (Xn) =

∑n
i=1

(
1{Πn(i)=i} − 1

n

)
Ci,i, and Tn (Xn) =

1
n

∑

i 6=j Ci,j, with

Ci,j = ϕ
(
X1

i ,X
2
j

)
−E

[
ϕ
(
X1

i ,X
2
)∣
∣X1

i

]
−E

[
ϕ
(
X1,X2

j

)∣
∣X2

j

]
+EP 1⊗P 2 [ϕ] ,
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X = (X1,X2) being P -distributed and independent of (Xn)n.
We then prove from Cauchy-Schwarz inequality that

E





(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

])2


 −→
n→+∞

0 and E

[(
Tn (Xn)√

n

)2
]

−→
n→+∞

0,

therefore from Markov’s inequality,

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→+∞

0 and
Tn (Xn)√

n

P−→
n→+∞

0.

From the definition of dBL, this allows us to derive that

(6.12) dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→+∞

0.

• The second, and most difficult, step of the proof consists in proving that

(6.13) dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N

(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

Consider

(6.14) Yn,i =
1√
n

i−1∑

j=1

(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
,

and for Π′
n another uniformly distributed random permutation with values

in Sn, independent of Πn and Xn, define accordingly Y ′
n,i by replacing Πn

by Π′
n in (6.14), so that MΠn

n (Xn) =
∑n

i=1 Yn,i and similarly for M
Π′

n
n (Xn).

Denoting Fn,i = σ (Πn,Π
′
n,X1,X2, . . . ,Xi) for n ≥ i ≥ 2, we prove through

technical computations that for a, b in R,
(

aYn,i + bY ′
n,i,Fn,i

)

2≤i≤n
is a mar-

tingale difference array which satisfies the assumptions of the following result,
commonly attributed to Brown [8].

Theorem 6.1. Let (Xn,k)k∈{1,...,pn},n∈N∗ be a martingale difference ar-
ray, i.e. such that there exists an array of σ-algebra (Fn,k)k∈{1,...,pn},n∈N∗

that is increasing w.r.t. k such that for all k = 1, ..., pn, E [Xn,k|Fn,k−1] = 0.

Let An =
∑pn

k=1E
[

X2
n,k|Fn,k−1

]

, and assume that

• An
P−→

n→+∞
σ2 > 0,

• ∀ε > 0,

pn∑

k=1

E
[

X2
n,k1{|Xn,k|>ε}

]

→n→+∞ 0.

Then Zn =
∑pn

k=1Xn,k converges in distribution towards N (0, σ2).
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Thus, given a, b in R, we obtain that

L
(

aMΠn
n (Xn) + bMΠ′

n
n (Xn)

)

=⇒
n→+∞

N
(

0,
(
a2 + b2

)
σ2hϕ,P 1⊗P 2

)

,

which, according to the Cramér-Wold device, leads to Lemma 6.1 below.

Lemma 6.1. Considering the above notation,

L
((

MΠn
n (Xn) ,M

Π′
n

n (Xn)
)′)

=⇒
n→+∞

N2

(

0,

(

σ2hϕ,P 1⊗P 2 0

0 σ2hϕ,P 1⊗P 2

))

,

where N2 (M,V ) denotes the 2-dimensional Gaussian distribution with mean
vector M and variance-covariance matrix V .

From Lemma 6.1, we deduce that for every t in R,






P
(
MΠn

n (Xn) ≤ t
)

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(t),

P
(

MΠn
n (Xn) ≤ t,M

Π′
n

n (Xn) ≤ t
)

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(t).

Using Chebychev’s inequality, with the fact (see [13, Th. 9.2.1] for instance)
that in a separable metric space, convergence in probability is metrizable,
and therefore is equivalent to almost-sure convergence of a sub-sequence of
any initial subsequence, we prove that this leads to (6.13), therefore,

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N

(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

• The third, and final, step of the proof consists in deriving, by direct compu-
tations and the strong law of large numbers of Hœffding [25], the convergence

E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2hϕ,P 1⊗P 2 ,

which ends the proof.

6.6. Proof of Corollary 4.1. Here, unlike the bootstrap approach, we only
have in Theorem 4.1 a consistency result in probability. Thus, as for Propo-
sition 3.6, we use an argument of sub-sequences. So let φ0 : N → N be an
extraction defining a sub-sequence. By Theorem 4.1, there exists an extrac-
tion φ1 such that P -a.s. in (Xn)n,
(6.15)

L
(√

φ1◦φ0(n)Uφ1◦φ0(n),hϕ

(

X
Πφ1◦φ0(n)

φ1◦φ0(n)

)∣
∣
∣Xφ1◦φ0(n)

)

=⇒
n→+∞

N
(

0, σ2hϕ,P 1⊗P 2

)

.

In particular, applying [50, Lemma 21.2] on the event where the conver-
gence is true, we obtain that for η in (0, 1), q⋆ϕ,η,φ1◦φ0(n)

(
Xφ1◦φ0(n)

) a.s.−→
n→+∞

Φ−1
0,σ2

hϕ,P1⊗P2
(η), which ends the proof by [13, Theorem 9.2.1].
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Supplementary Material

This Supplement consists of the proofs of Propositions 3.1, 3.2, 3.3, 3.4,
3.5, 4.1, 4.3, of Theorem 4.2, and of the complete proof of Theorem 4.1.
It also contains some additional results concerning non-degeneracy and the
empirical centring assumption.

APPENDIX A: COMPLETE PROOFS

A.1. Proof of Proposition 3.1. Consider wδ : [0, 1]2 → R a contin-
uous function. For sake of simplicity, denote w = wδ and ϕw = ϕw

δ . Let us
prove that h = hϕw is continuous for the topology induced by d (see (3.3)).
Recall that for x1 = (x11, x

2
1) and x2 = (x12, x

2
2) in (X 2),

hϕw(x1, x2) = ϕw(x11, x
2
1) + ϕw(x12, x

2
2)− ϕw(x11, x

2
2)− ϕw(x12, x

2
1).

and that for z in X , Nz denotes the counting function defined by

Nz(t) =

∫

1{u≤t}dNz(u).

The first step is to show that for each i, j in {1, 2}, the projection defined by

pi,j :

( (
(X 2)2, d

)
−→

(
X 2, dX 2

)

((
x11, x

2
1

)
,
(
x12, x

2
2

))
7−→

(

x1i , x
2
j

)

)

,

is continuous. Let x =
((
x21, x

2
1

)
,
(
x12, x

2
2

))
and x

′ =
((

x′11,
′2
1

)

,
(

x′12, x
′2
2

))

in (X 2)2. Then,

dX 2

(
pi,j(x), pi,j(x

′)
)
= dX 2

((
x1i , x

2
j

)
,
(

x′1i , x
′2
j

))

≤ d
(
x,x′) .

Hence, pi,j is 1-Lipschitz and therefore continuous.

The second step is to show that if w is continuous on
(
[0, 1]2, ‖ · ‖∞

)
, with

‖(u, v) − (u′, v′)‖∞ = max {|u− u′|, |v − v′|}, then ϕw is also continuous.
Let ε > 0. First notice that, w being continuous on the compact set [0, 1]2,
w is uniformly continuous. Thus one can find some η in (0, 1) such that, for
all (u, v), (u′, v′) in [0, 1]2,

(A.1) ‖(u, v) − (u′, v′)‖∞ ≤ η implies
∣
∣w(u, v) − w(u′, v′)

∣
∣ ≤ ε.

Consider such η.
Let {xn}n≥0 be a sequence in X 2 such that dX 2 (xn, x0) −→

n→+∞
0 and let us
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show that ϕw(xn) −→
n→+∞

ϕw(x0). There exists n0 in N such that for each

n ≥ n0, dX 2 (xn, x0) ≤ η. Then, for such n, by definition of dX 2 , we have

that dD

(

Nx1
n
, Nx1

0

)

≤ η and dD

(

Nx2
n
, Nx2

0

)

≤ η. Thus, by definition of dD,

∃λ1n ∈ Λ /

{
supt∈[0,1]

∣
∣λ1n(t)− t

∣
∣ ≤ η, (1-i)

supt∈[0,1]

∣
∣
∣Nx1

n
(t)−Nx1

0

(
λ1n(t)

)∣∣
∣ ≤ η, (1-ii)

∃λ2n ∈ Λ /

{
supt∈[0,1]

∣
∣λ2n(t)− t

∣
∣ ≤ η, (2-i)

supt∈[0,1]

∣
∣
∣Nx2

n
(t)−Nx2

0

(
λ2n(t)

)
∣
∣
∣ ≤ η. (2-ii)

In particular, as η is chosen strictly smaller than 1 and as the N
xj
n

for

n ≥ 0 and j = 1, 2 are counting processes with values in N, (1-ii) implies
that ∀t ∈ [0, 1], Nx1

n
(t) = Nx1

0

(
λ1n(t)

)
and thus,

u0 ∈ x10 ⇔ un = λ1n(u0) ∈ x1n.

Similarly, (2-ii) implies that

v0 ∈ x20 ⇔ vn = λ2n(v0) ∈ x2n.

Therefore,

ϕw(xn) =

∫∫

[0,1]2
w(u, v)dNx1

n
(u)dNx2

n
(v)

=
∑

(un,vn)∈x1
n×x2

n

w(un, vn)

=
∑

(u0,v0)∈x1
0×x2

0

w
(
λ1n(u0), λ

2
n(v0)

)
.

Hence,

|ϕw(xn)− ϕw(x0)| ≤
∑

(u0,v0)∈x1
0×x2

0

∣
∣w
(
λ1n(u0), λ

2
n(v0)

)
− w (u0, v0)

∣
∣ .

Yet, by (1-i) and (2-i), for each (u0, v0) in x10×x20, we have ‖
(
λ1n(u0), λ

2
n(v0)

)
−

(u0, v0) ‖∞ ≤ η, and thus, applying (A.1), we obtain

|ϕw(xn)− ϕw(x0)| ≤ #x10#x
2
0ε,

and this for all n ≥ n0, which ends the proof of Proposition 3.1.
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A.2. Proof of Proposition 3.2. Let us prove that h = hϕcoinc
δ

is con-

tinuous for the topology induced by the metric d (introduced in (3.3)) in any
(x0, y0) in Cδ satisfying

({
x10
}
∪
{
y10
})

∩
({
x20 ± δ

}
∪
{
y20 ± δ

})
= ∅.

Consider a sequence {(xn, yn)}n∈N of elements of X 2 × X 2, where xn =
(
x1n, x

2
n

)
and yn =

(
y1n, y

2
n

)
such that d ((xn, yn) , (x0, y0)) −→

n→+∞
0 and

(x0, y0) belongs to Cδ.
We want to show that |h (xn, yn)− h (x0, y0)| −→

n→+∞
0.

Since (x0, y0) is in Cδ, for any t0 in
{
x20 ± δ

}
∪
{
y20 ± δ

}
, t0 /∈ x10, which means

that Nx1
0

is continuous in t0 and therefore constant in a neighborhood:

∃ηt0 > 0 / ∀t ∈ [0, 1], ”|t− t0| ≤ ηt0” implies ”Nx1
0
(t) = Nx1

0
(t0)”.

As
{
x20 ± δ

}
∪
{
y20 ± δ

}
is finite, ηx1

0
= mint0∈{x2

0±δ}∪{y20±δ} ηt0 > 0 is well

defined, and satisfies

∀u ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], ”|t−u| ≤ ηx1

0
” implies ”Nx1

0
(t) = Nx1

0
(u)”.

By the same argument using continuity of Ny10
over

{
x20 ± δ

}
∪
{
y20 ± δ

}
, one

can find ηy10 > 0 such that

∀u ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], ”|t−u| ≤ ηy10” implies ”Ny10

(t) = Ny10
(u)”.

Since (x0, y0) ∈ Cδ ⇔
({
x20
}
∪
{
y20
})

∩
({
x10 ± δ

}
∪
{
y10 ± δ

})
= ∅, one can

construct ηx2
0

and ηy20 satisfying

∀u ∈
{
x10 ± δ

}
∪
{
y10 ± δ

}
, ∀t ∈ [0, 1],

{

”|t− u| ≤ ηx2
0
” implies ”Nx2

0
(t) = Nx2

0
(u)”,

”|t− u| ≤ ηy20” implies ”Ny20
(t) = Ny20

(u)”.

Finally, if η = min
{

ηx1
0
, ηy10 , ηx2

0
, ηy20

}

> 0,

(A.2)

∀s ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
,∀t ∈ [0, 1], ”|t−s| ≤ η” implies

{

Nx1
0
(t) = Nx1

0
(s),

Ny10
(t) = Ny10

(s),

(A.3)

∀s ∈
{
x10 ± δ

}
∪
{
y10 ± δ

}
,∀t ∈ [0, 1], ”|t−s| ≤ η” implies

{

Nx2
0
(t) = Nx2

0
(s),

Ny20
(t) = Ny20

(s).
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As d ((xn, yn) , (x0, y0)) →n→+∞ 0, there exists n0 ≥ 0 such that for n ≥ n0,
d ((xn, yn) , (x0, y0)) ≤ η/4. From the definition of d, we deduce that

∃λ1n ∈ Λ /

{
supt∈[0,1]

∣
∣λ1n(t)− t

∣
∣ ≤ η

4 , (1-i)

supt∈[0,1]

∣
∣
∣Nx1

n
(t)−Nx1

0

(
λ1n(t)

)
∣
∣
∣ ≤ η

4 , (1-ii)

∃λ2n ∈ Λ /

{
supt∈[0,1]

∣
∣λ2n(t)− t

∣
∣ ≤ η

4 , (2-i)

supt∈[0,1]

∣
∣
∣Nx2

n
(t)−Nx2

0

(
λ2n(t)

)
∣
∣
∣ ≤ η

4 . (2-ii)

Notice that similar results occur for yn and y0, but there are not detailed
here since we do not use them explicitly.
By definition of h,

h(xn, yn)− h (x0, y0)

(A.4)

=
1

2

∫∫

1{|u−v|≤δ}
{
dNx1

n
dNx2

n
+ dNy1n

dNy2n
− dNx1

n
dNy2n

− dNy1n
dNx2

n

}
(u, v)

− 1

2

∫∫

1{|u−v|≤δ}
{

dNx1
0
dNx2

0
+ dNy10

dNy20
− dNx1

0
dNy20

− dNy10
dNx2

0

}

(u, v)

=
1

2

∫∫

1{|u−v|≤δ}
(

dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v) + dNy1n
(u)
(

dNy2n
− dNy20

)

(v)

− dNx1
n
(u)
(

dNy2n
− dNy20

)

(v)− dNy1n
(u)
(

dNx2
n
− dNx2

0

)

(v)

+
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v) +

(

dNy1n
− dNy10

)

(u) dNy20
(v)

−
(

dNx1
n
− dNx1

0

)

(u) dNy20
(v) +

(

dNy1n
− dNy10

)

(u) dNx2
0
(v)
)

.

By symmetry of the problem, we just need to study the terms

An =

∫∫

1{|u−v|≤δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v),

and

Bn =

∫∫

1{|u−v|≤δ}dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

Study of An.

An =

∫∫

1{|u−v|≤δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

=

∫∫

1{u≤v+δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

−
∫∫

1{u<v−δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v).
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We have that
∣
∣
∣

∫∫

1{u≤v+δ}
(

dNx1
n
−dNx1

0

)

(u) dNx2
0
(v)
∣
∣
∣

=

∣
∣
∣
∣

∫ (

Nx1
n
(v + δ) −Nx1

0
(v + δ)

)

dNx2
0
(v)

∣
∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0
(T + δ)

∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣

+
∑

T∈x2
0

∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ .

Now, using the notation N−
x1
i

(t) =
∫
1{u<t}dNx1

i
(u),

∣
∣
∣
∣

∫∫

1{u<v−δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

∣
∣
∣
∣
≤
∑

T∈x2
0

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ .

Therefore,

|An| ≤
∑

T∈x2
0

(
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣(A.5)

+
∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣

+
∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣

)

.

Let us study individually each term in the sum.
Fix T in x20. By (1-ii),

(A.6)
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣ ≤ η

4
≤ ε.

From (1-i), one has |λ1n(T + δ)− (T + δ)| ≤ η
2 ≤ η which, with (A.2), implies

(A.7)
∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ = 0.

As N−
x1
n
(T − δ) = lim

u→T−δ
u<T−δ

Nx1
n
(u), there exists uT in [T − δ − η/4, T − δ[ such

that ∣
∣
∣N−

x1
n
(T − δ)−Nx1

n
(uT )

∣
∣
∣ ≤ ε,
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so
∣
∣
∣N−

x1
n
(T − δ) −N−

x1
0
(T − δ)

∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1n(uT )

)
∣
∣
∣(A.8)

+
∣
∣
∣Nx1

0

(
λ1n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ .

From (1-ii), one has
∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1n(uT )

)
∣
∣
∣ ≤ η

4 ≤ ε.

Then, by continuity ofNx1
0
in T−δ, first remark thatN−

x1
0
(T−δ) = Nx1

0
(T−δ).

Moreover, by (1-i) and construction of uT ,

∣
∣λ1n(uT )− (T − δ)

∣
∣ ≤

∣
∣λ1n(uT )− uT

∣
∣+ |uT − (T − δ)| ≤ η

4
+
η

4
< η,

hence, using (A.2),
∣
∣
∣Nx1

0

(
λ1n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ = 0. So finally, (A.8) gives

(A.9)
∣
∣
∣N−

x1
n
(T − δ) −N−

x1
0
(T − δ)

∣
∣
∣ ≤ 2ε.

Combining (A.5), (A.6), (A.7), and (A.9), we obtain that for any n ≥ n0:

(A.10) |An| ≤ 3ε#x20.

Study of Bn. Recall that Bn =
∫∫

1{|u−v|≤δ}dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

As for An, Bn is upper bounded by a sum of several terms, that we study
separately.

Bn =
∑

T∈x1
n

(

Nx2
n
(T + δ)−Nx2

0
(T + δ)

)

−
∑

T∈x1
n

(

N−
x2
n
(T − δ)−N−

x2
0
(T − δ)

)

.

So

(A.11) Bn ≤ |Bn,1|+ |Bn,2|+ |Bn,3|+ |Bn,4|,

with

Bn,1 =
∑

T∈x1
n

(

Nx2
n
(T + δ) −Nx2

0

(
λ2n (T + δ)

))

,

Bn,2 =
∑

T∈x1
n

(

Nx2
0

(
λ2n (T + δ)

)
−Nx2

0
(T + δ)

)

,

Bn,3 =
∑

T∈x1
n

(

N−
x2
n
(T − δ) −N−

x2
0

(
λ2n (T − δ)

))

,

Bn,4 =
∑

T∈x1
n

(

N−
x2
0

(
λ2n (T − δ)

)
+N−

x2
0
(T − δ)

)

.
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The control of Bn is quite similar to the one of An except that the sums are
over T in x1n instead of T in x10, which prevents us to use (A.3) and (A.2)
directly.

Control of Bn,1. Due to (2-ii),
∣
∣
∣Nx2

n
(T + δ)−Nx2

0

(
λ2n (T + δ)

)
∣
∣
∣ ≤ ε, so

(A.12) |Bn,1| ≤ ε#x1n.

Control of Bn,2. One can easily see that

Bn,2 =

∫∫
(
1{v≤λ2

n(u+δ)} − 1{v≤u+δ}
)
dNx2

0
(v) dNx1

n
(u)

=

∫∫ [(

1− 1{u<(λ2
n)

−1(v)−δ}
)

−
(
1− 1{u<v−δ}

)]

dNx2
0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

N−
x1
n
(T − δ) −N−

x1
n
(
(
λ2n
)−1

(T )− δ)
)

.

Fix now T in x20.

∣
∣
∣N−

x1
n
(T − δ) −N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤

∣
∣
∣N−

x1
n
(T − δ)−Nx1

0
(T − δ)

∣
∣
∣

+
∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ .

As shown in (A.8),
∣
∣
∣N−

x1
n
(T − δ) −Nx1

0
(T − δ)

∣
∣
∣ ≤ 2ε.

Furthermore, take vT in
[(
λ2n
)−1

(T )− δ − η/4,
(
λ2n
)−1

(T )− δ
[

such that

∣
∣
∣N−

x1
n
(
(
λ2n
)−1

(T )− δ)−Nx1
n
(vT )

∣
∣
∣ ≤ ε.

So,

∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1n(vT )

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ .

By construction of vT and λ1n (see (1-ii)),
∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1n(vT )

)
∣
∣
∣ ≤ ε.

Because of (A.2) which is true as
∣
∣λ1n(vT )− (T − δ)

∣
∣ ≤ |λ1n(vT )−vT |+ |vT −

(T − δ)| ≤ η
4 + η

4 < η by (1-i),
∣
∣
∣Nx1

0

(
λ1n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ = 0. Hence,

∣
∣
∣Nx1

0
(T − δ) −N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ 2ε. Finally,

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ 4ε,



42 ALBERT ET AL.

and

(A.13) |Bn,2| ≤ 4ε#x20.

Control of Bn,3. First, for all T in x1n, we find some νn,T in ]0, η/4] such that

∀u ∈ [T − δ − νn,T , T − δ[,
∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(u)
∣
∣
∣ ≤ ε.

Setting νn = minT∈x1
n
νn,T ,

|Bn,3| ≤
∑

T∈x1
n

∣
∣
∣N−

x2
n
(T − δ) −Nx2

n
(T − δ − νn)

∣
∣
∣

+
∑

T∈x1
n

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2n (T − δ − νn)

)
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2n (T − δ − νn)

)
−N−

x2
0

(
λ2n (T − δ)

))

∣
∣
∣
∣
∣
∣

.

For each T in x1n,
∣
∣
∣N−

x2
n
(T − δ) −Nx2

n
(T − δ − νn)

∣
∣
∣ ≤ ε and

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2n (T − δ − νn)

)
∣
∣
∣ ≤ ε by (2-ii). Therefore,

|Bn,3| ≤ 2ε#x1n +

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2n (T − δ − νn)

)
−N−

x2
0

(
λ2n (T − δ)

))

∣
∣
∣
∣
∣
∣

.

Now,
∑

T∈x1
n

(

Nx2
0

(

λ2n (T − δ − νn)
)

−N−
x2
0

(
λ2n (T − δ)

) )

=

∫∫

1{v≤λ2
n(u−δ−νn)} − 1{v<λ2

n(u−δ)}dNX1
n
(u) dNX2

0
(v)

=
∑

T∈x2
0

(

Nx1
n

((
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

))

.

For each T in x20,
∣
∣
∣Nx1

n

( (
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

) ∣
∣
∣

≤
∣
∣
∣Nx1

n

((
λ2n
)−1

(T ) + δ
)

−Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

−Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣

≤ 2ε+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣ ,
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where the last line comes from (1-ii), and (A.2).

We now find some wT in
[(
λ2n
)−1

(T ) + δ + νn − η/4 ,
(
λ2n
)−1

(T ) + δ + νn

[

such that ∣
∣
∣N−

x1
n

((
λ2n
)−1

(T ) + δ + νn

)

−Nx1
n
(wT )

∣
∣
∣ ≤ ε,

so
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣

≤
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−Nx1
0

(
λ1n (wT )

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1n (wT )

)
−Nx1

n
(wT )

∣
∣
∣+ ε.

From (1-ii), we deduce that
∣
∣
∣Nx1

0

(
λ1n (wT )

)
−Nx1

n
(wT )

∣
∣
∣ ≤ ε. Due to (A.2),

(1-i), and the construction of wT ,
∣
∣
∣

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

− (T − δ)
∣
∣
∣ ≤ 3η

4
< η,

and
∣
∣
(
λ1n (wT )

)
− (T − δ)

∣
∣ ≤

∣
∣
(
λ1n (wT )−wT

)∣
∣+ |wT − (T − δ)| < η,

so
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−Nx1
0

(
λ1n (wT )

)∣∣
∣ = 0. As a consequence,

∣
∣
∣Nx1

n

( (
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

) ∣
∣
∣ ≤ 4ε,

and

(A.14) |Bn,3| ≤ 2ε#x1n + 4ε#x20.

Control of Bn,4.

Bn,4 =

∫∫
(
1{v<λ2

n(u−δ)} − 1{v<u−δ}
)
dNx2

0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

Nx1
n
(T + δ)−Nx1

n

((
λ2n
)−1

(T ) + δ
))

.

Let us fix T in x20. We have
∣
∣
∣Nx1

n
(T + δ)−Nx1

n

((
λ2n
)−1

(T ) + δ
) ∣
∣
∣

≤
∣
∣
∣Nx1

n
(T + δ) −Nx1

0

(
λ1n (T + δ)

)∣∣
∣

+
∣
∣
∣Nx1

0

(
λ1n (T + δ)

)
−Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

−Nx1
n

((
λ2n
)−1

(T ) + δ
)∣
∣
∣ .
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The first and the last terms are upper bounded by ε due to (1-ii). Further-

more, since Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

= Nx1
0
(T + δ) = Nx1

0

(
λ1n (T + δ)

)

by applying (A.2) and using (1-i) and (2-i),
∣
∣
∣Nx1

0

(
λ1n (T + δ)

)
−Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣ = 0.

So finally,

(A.15) |Bn,4| ≤ 2ε#x20.

Combining (A.11), (A.12), (A.13), (A.14), and (A.15), we can conclude that

(A.16) |Bn| ≤ 3ε#x1n + 10ε#x20.

We now just remark that
(
#x1n

)

n≥n0
is bounded because it converges to #x10.

Indeed, since #x1n = Nx1
n
(1), #x10 = Nx1

0
(1) and for every n, λ1n(1) = 1,

∣
∣#x1n −#x10

∣
∣ =

∣
∣
∣Nx1

n
(1) −Nx1

0
(1)
∣
∣
∣

=
∣
∣
∣Nx1

n
(1) −Nx1

0

(
λ1n(1)

)∣∣
∣

−→
n→+∞

0.

With (A.4), (A.10), and (A.16), this concludes the proof of Proposition 3.2.

A.3. Proof of Proposition 3.3. For some integer n ≥ 2, let
(

Y ∗
n,i, Yi

)

1≤i≤n

be an i.i.d. sample such that for every i=1 . . . n, Y ∗
n,i ∼ P 1

n⊗P 2
n , where the

marginal empirical measures P j
n, j=1, 2 are associated to Xn, Yi ∼ P 1⊗P 2,

and such that, from the definition of Wasserstein’s metric d2 recalled in (3.5),

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn, P

1 ⊗ P 2
))

≤ 1

n(n− 1)2
E∗





(∑

i 6=i′

(
h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′)

))2



 ,

where the upper bound is finite under (A∗
Mmt).

Introducing for (i, i′, j, j′) in {1, 2, . . . , n}4, and m in {2, 3, 4},

E(i,i′,j,j′) = E∗
[(

h
(
Y ∗
n,i, Y

∗
n,i′
)
− h(Yi, Yi′)

)(

h
(
Y ∗
n,j, Y

∗
n,j′
)
− h(Yj , Yj′)

)]

,

Im =
{

(i, i′, j, j′) ∈ {1, 2, . . . , n}4 ; i 6= i′, j 6= j′, #
{
i, i′, j, j′

}
= m

}

,
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where # {i, i′, j, j′} denotes the number of different elements in {i, i′, j, j′},
one has:

E∗





(∑

i 6=i′

(
h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′)

) )2





=
∑

(i,i′,j,j′)∈I4
E(i,i′,j,j′) +

∑

(i,i′,j,j′)∈I3
E(i,i′,j,j′) +

∑

(i,i′,j,j′)∈I2
E(i,i′,j,j′).

Let us now upper bound each term of this sum separately.
If (i, i′, j, j′) is in I4, then by independence,

E(i,i′,j,j′) =
(
E∗[h

(
Y ∗
n,i, Y

∗
n,i′
)]

− E [h (Yi, Yi′)]
)
×

(
E∗[h

(
Y ∗
n,j, Y

∗
n,j′
)]

− E
[
h
(
Yj, Yj′

)] )
.

Under (ACent) and (A∗
Cent), E [h(Yi, Yi′)] = E∗

[

h
(

Y ∗
n,i, Y

∗
n,i′

)]

= 0, so

E(i,i′,j,j′) = 0.
If (i, i′, j, j′) is in I3, by the Cauchy-Schwarz inequality,

E(i,i′,j,j′) ≤ E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h(Y1, Y2)

)2
]

.

If (i, i′, j, j′) is in I2, then E(i,i′,j,j′) = E∗
[(
h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

is

immediate.
But #I3 = 4n(n− 1)(n − 2) and #I2 = 2n(n− 1), so

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn, P

1 ⊗ P 2
))

≤ 4E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h
(
Y1, Y2

))2
]

.

Since
(

Y ∗
n,i, Yi

)

j=1,2
may be arbitrarily chosen, Proposition 3.3 follows.

A.4. Proof of Proposition 3.4. Let us first notice that (3.6) is a direct
application of the strong law of large numbers for U -statistics, proved by Ho-
effding [25]. Next, let us notice that if for m in {1, . . . , 4}, gm (Xi1 , . . . ,Xim)

denotes the sum
∑

(i,j,k,l)∈I{i1,...im}
h2
((

X1
i ,X

2
j

)

,
(
X1

k ,X
2
l

))

, where I{i1,...im}

is the set
{

(i, j, k, l) ∈ {i1, . . . im}4 ;# {i, j, k, l} = m
}

, then

1

n4

n∑

i,j,k,l=1

h2
((
X1

i ,X
2
j

)
,
(
X1

k ,X
2
l

))
=

4∑

m=1

1

m!

( 1

n4

∑

(i1,...,im)∈{1,...,n}m
i1,...,im all different

gm (Xi1 , . . . ,Xim)
)

.
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Each of the four terms in the right hand side of the above decomposition
being, up to a multiplicative factor, a classical U -statistic, and since under
(A∗

Mmt), E [|gm(Xi1 , . . . ,Xim)|] < +∞, we can now apply the strong law of
large numbers for U -statistics again. Therefore P -a.s. in (Xn)n,

1

n(n−1) . . . (n−m+1)

∑

(i1,...,im)

gm (Xi1 , . . . ,Xim) −→
n→+∞

E [gm (X1, . . . ,Xm)] .

In particular, P -a.s. in (Xn)n, n−4
∑

(i1,...,im) gm (Xi1 , . . . ,Xim) converges to-
wards 0 for m in {1, 2, 3}, and towards E [g4 (X1,X2,X3,X4)] for m = 4. Fi-
nally noticing that E [g4 (X1,X2,X3,X4)] = 4!E

[
h2
((
X1

1 ,X
2
2

)
,
(
X1

3 ,X
2
4

))]

allows to conclude.

A.5. Proof of Proposition 3.5. Let (Xn)n be a sequence of i.i.d pairs
of point processes with distribution P 1 ⊗ P 2 on X 2. According to (ACent),
for i 6= j, E [h(Xi,Xj)] = 0. For a better readability, we set E [h|Xi] =
E [h(Xi,X)|Xi] = E [h(X,Xi)|Xi] for some X with distribution P 1 ⊗ P 2,
and independent of Xi. By Hoeffding’s decomposition for non-degenerate
U -statistics, we obtain that

√
nUn,h(Xn) =

2√
n(n− 1)

(Tn +Mn) ,

where Tn =
∑

i<j (E [h|Xi] + E [h|Xj ]), and Mn =
∑

i<j g(Xi,Xj), with
g(Xi,Xj) = h(Xi,Xj)− E [h|Xi]− E [h|Xj ].
Firstly, we have that E

[
M2

n

]
=
∑

i<j

∑

k<lE [g(Xi,Xj)g(Xk ,Xl)] . But if

{i, j}∩{k, l} = ∅, i < j, k < l, E [g(Xi,Xj)g(Xk,Xl)] = (E [g(Xi,Xj)])
2 = 0.

If #({i, j} ∩ {k, l}) = 1, with for instance k = i, j 6= l, (i < j, i < l) (the
other cases may be treated similarly), then

E [g(Xi,Xj)g(Xi,Xl)] = E [E [g(Xi,Xj)|Xi]E [g(Xi,Xl)|Xi]] = 0.

Therefore, E
[
M2

n

]
=
∑

i<j E
[
g2(Xi,Xj)

]
= n(n− 1)E

[
g2(X1,X2)

]
/2, and

since E
[
g2(Xi,Xj)

]
< +∞, from Chebychev’s inequality, we deduce that

(A.17)
2√

n(n− 1)
Mn

P−→
n→+∞

0.

Secondly, we have that Tn = (n − 1)
∑n

i=1 E [h|Xi] . Since the E [h|Xi]’s
are i.i.d, with E [E [h|Xi]] = 0 and Var (E [h|Xi]) = σ2h,P 1⊗P 2/4, thanks to

(AMmt), the Central Limit Theorem leads to

(A.18)
2√

n(n − 1)
Tn

L−→
n→+∞

N
(

0, σ2h,P 1⊗P 2

)

.
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Thus, combining (A.17) and (A.18), Slutsky’s lemma ensures the convergence

in distribution of
√
nUn,h(Xn) towards N

(

0, σ2h,P 1⊗P 2

)

.

Now, notice that

E
[(√

nUn,h(Xn)
)2
]

=
1

n(n− 1)2

∑

i 6=i′

∑

j 6=j′

E
[
h(Xi,Xi′)h(Xj ,Xj′)

]
.

Let us consider all the cases where i 6= i′ and j 6= j′.
If #{i, i′, j, j′} = 4, E

[
h(Xi,Xi′)h(Xj ,Xj′)

]
= 0, by independence and

(ACent).
If #{i, i′, j, j′}=3, E

[
h(Xi,Xi′)h(Xj ,Xj′)

]
=σ2h,P 1⊗P 2/4, by symmetry of h.

If #{i, i′, j, j′} = 2, E
[
h(Xi,Xi′)h(Xj ,Xj′)

]
= E

[

(h(X1,X2))
2
]

. Therefore,

E
[(√

nUn,h(Xn)
)2
]

=
n− 2

n− 1
σ2h,P 1⊗P 2+

2

n− 1
E
[

(h(X1,X2))
2
]

−→
n→+∞

σ2h,P 1⊗P 2 ,

which ends the proof of Proposition 3.5.

A.6. Proof of Proposition 4.1. As the σ-algebra considered on
(
X 2
)⊗n

is generated by the family (stable by intersection) containing all products
∏n

i=1

(
A1

i ×A2
i

)
, with A1

i and A2
i Borel sets of (X , dX ), we just need to ver-

ify that for all A =
∏n

i=1

(
A1

i ×A2
i

)
of this form, P (Xπn

n ∈ A) = P (Xn ∈ A),
and P

(
XΠn

n ∈ A
)
= P (Xn ∈ A). We first have that under (H0),

P (Xπn
n ∈ A) = P

(
n⋂

i=1

{

Xi ∈ A1
i ×A2

π−1
n (i)

}
)

=

n∏

i=1

[

P 1
(
A1

i

)
P 2
(

A2
π−1
n (i)

)]

=

n∏

i=1

P 1
(
A1

i

)
n∏

k=1

P 2
(
A2

k

)

=

n∏

i=1

[
P 1
(
A1

i

)
P 2
(
A2

i

)]

= P

(
n⋂

i=1

{
Xi ∈ A1

i ×A2
i

}

)

= P (Xn ∈ A) .
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Now consider a random permutation Πn, uniformly distributed on Sn, and
independent of Xn. Then

P
(
XΠn

n ∈ A
)

=
∑

πn∈Sn

P (Xπn
n ∈ A)P (Πn = πn)

=
1

n!

∑

πn∈Sn

P (Xn ∈ A)

= P (Xn ∈ A) ,

which ends the proof.

A.7. Complete proof of Theorem 4.1. Recall that dBL denotes the
bounded Lipschitz metric (which metrizes the weak convergence), defined by

dBL(µ, ν) = sup
f∈BL, ‖f‖BL≤1

∣
∣
∣
∣

∫

R

f (dµ− dν)

∣
∣
∣
∣
,

where, as defined in [13], BL is the set of bounded Lipschitz function on R,

and ‖f‖BL = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
|x− y| .

Recall that the proof consists of three steps presented in Section 6.5. We give
below a complete proof for each of these steps.

First step: decomposition of
√
nUn,hϕ

(
XΠn

n

)
. It is obvious that by the def-

inition (2.4) of hϕ,

(A.19) Un,hϕ

(
XΠn

n

)
=

1

n− 1
UΠn
n ,

where UΠn
n =

∑n
i=1 ϕ

(

X1
i ,X

2
Πn(i)

)

− 1
n

∑n
i,j=1ϕ

(

X1
i ,X

2
j

)

, so,

UΠn
n =

n∑

i=1

ϕ
(

X1
i ,X

2
Πn(i)

)

− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]

− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]
+

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)]

− 1

n

n∑

i,j=1

(
ϕ
(
X1

i ,X
2
j

)
− E

[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]

−E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i ,X
2
j

)] )
.
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On the one hand, if EP [f ] and EP 1⊗P 2 [f ] respectively denote E
[
f
(
X1

1 ,X
2
1

)]
,

and E
[
f
(
X1

1 ,X
2
2

)]
, for any integrable function f , then

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)]

=
n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i ,X
2
j

)]
−

n∑

i,j=1

(

1{Πn(i)=j} −
1

n

)

E
[
ϕ
(
X1

i ,X
2
j

)]

=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i ,X
2
j

)]
−(EP [ϕ]−EP 1⊗P 2 [ϕ])

n∑

i=1

(

1{Πn(i)=i} −
1

n

)

.

On the other hand,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]
=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]

−
n∑

i=1

(

1{Πn(i)=i} −
1

n

)
(
E
[
ϕ
(
X1

i ,X
2
i

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i ,X
2
)∣
∣X1

i

])
,

where X = (X1,X2) is assumed to be P -distributed and independent of
(Xn)n, and in the same way,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]
=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]

−
n∑

j=1

(

1{Πn(j)=j} −
1

n

)
(
E
[
ϕ
(
X1

j ,X
2
j

)∣
∣X2

j

]
− E

[
ϕ
(
X1,X2

j

)∣
∣X2

j

])
.

Therefore, UΠn
n is equal to

n∑

i,j=1

1{Πn(i)=j}
(

ϕ
(
X1

i ,X
2
j

)
− E

[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]

−E
[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i ,X
2
j

)] )

+
n∑

i=1

(

1{Πn(i)=i} −
1

n

)(

E
[
ϕ
(
X1

i ,X
2
i

)∣
∣X1

i

]
+E

[
ϕ
(
X1

i ,X
2
i

)∣
∣X2

i

]

−E
[
ϕ
(
X1

i ,X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1,X2

i

)∣
∣X2

i

]
− EP [ϕ] + EP 1⊗P 2 [ϕ]

)

− 1

n

n∑

i,j=1

(

ϕ
(
X1

i ,X
2
j

)
− E

[
ϕ
(
X1

i ,X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i ,X
2
j

)∣
∣X2

j

]
+E

[
ϕ
(
X1

i ,X
2
j

)] )

.
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As a consequence, setting

Ci,j = ϕ
(
X1

i ,X
2
j

)
−E

[
ϕ
(
X1

i ,X
2
)∣
∣X1

i

]
−E

[
ϕ
(
X1,X2

j

)∣
∣X2

j

]
+EP 1⊗P 2 [ϕ] ,

where X = (X1,X2) with distribution P is independent of Xn,

(A.20)
√
nUn,hϕ

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn (Xn)√

n

)

,

with

MΠn
n (Xn) =

1√
n

∑

i 6=j

1{Πn(i)=j}Ci,j,

RΠn
n (Xn) =

n∑

i=1

(

1{Πn(i)=i} −
1

n

)

Ci,i,

Tn (Xn) =
1

n

∑

i 6=j

Ci,j.

Let us now prove that
(A.21)

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→+∞

0.

To do this, first notice that for every function f in BL such that ‖f‖BL ≤ 1,

∣
∣
∣
∣
E
[
f
(√
nUn,hϕ

(
XΠn

n

))∣
∣Xn

]
− E

[

f

(
n

n− 1
MΠn

n (Xn)

)∣
∣
∣
∣
Xn

] ∣
∣
∣
∣

≤ E

[∣
∣
∣
∣

√
nUn,hϕ

(
XΠn

n

)
− n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣

∣
∣
∣
∣
Xn

]

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn (Xn)|√

n

)

.

Hence, taking the supremum over {f ∈ BL; ‖f‖BL ≤ 1},

(A.22) dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn (Xn)|√

n

)

.
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Moreover, on the one hand, since Πn is independent of (Xn)n, by Cauchy-
Schwarz inequality,

E





(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

])2


 ≤ 1

n
E
[(
RΠn

n (Xn)
)2
]

,

and

E
[(
RΠn

n (Xn)
)2
]

≤
n∑

i,j=1

E

[(

1{Πn(i)=i} −
1

n

)(

1{Πn(j)=j} −
1

n

)]

E [Ci,iCj,j]

≤ C
(
EP

[
ϕ2
]
+EP 1⊗P 2

[
ϕ2
])

n∑

i,j=1

(

E
[
1{Πn(i)=i}1{Πn(j)=j}

]
− 1

n2

)

≤ C
(
EP

[
ϕ2
]
+EP 1⊗P 2

[
ϕ2
])





n∑

i=1

(
1

n
− 1

n2

)

+
∑

i 6=j

(
1

n(n− 1)
− 1

n2

)




≤ C
(
EP

[
ϕ2
]
+EP 1⊗P 2

[
ϕ2
])
< +∞.

Therefore, from Markov’s inequality, we deduce that

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→+∞

0.

On the other hand,

E

[(
Tn (Xn)√

n

)2
]

=
1

n3

∑

i 6=j

∑

k 6=l

E [Ci,jCk,l] .

Notice that for i 6= j, E [Ci,j|Xi] = E [Ci,j |Xj ] = 0.
If # {i, j, k, l} = 4, then E [Ci,jCk,l] = (E [Ci,j])

2 = 0.
If i, j, l are all different, then

E [Ci,jCi,l] = E [E [Ci,jCi,l|Xi,Xl]]

= E [E [Ci,j|Xi]Ci,l]

= 0.

In the same way, for i, j, k all different, then E [Ci,jCk,i] = 0.
If i 6= j,

(A.23) E
[
C2
i,j

]
= σ2hϕ,P 1⊗P 2 , and E [Ci,jCj,i] ≤ σ2hϕ,P 1⊗P 2 ,
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by the Cauchy-Schwarz inequality. Combining the above computations, we
obtain that

E

[(
Tn (Xn)√

n

)2
]

≤ 2
n(n− 1)

n3
σ2hϕ,P 1⊗P 2 −→

n→+∞
0,

and therefore,
Tn (Xn)√

n

P−→
n→+∞

0.

Finally, from (A.22), we derive (A.21).

Second step: asymptotic normality of MΠn
n (Xn) given Xn, in probability.

Recall that

MΠn
n (Xn) =

1√
n

∑

i 6=j

1{Πn(i)=j}Ci,j

=
1√
n

n∑

i=2

i−1∑

j=1

(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
.

Let Π′
n be another uniformly distributed random permutation with values

in Sn, independent of Πn and Xn, and

MΠ′
n

n (Xn) =
1√
n

∑

i 6=j

1{Π′
n(i)=j}Ci,j

=
1√
n

n∑

i=2

i−1∑

j=1

(
1{Π′

n(i)=j}Ci,j + 1{Π′
n(j)=i}Cj,i

)
.

Let us now recall the result of Lemma 6.1:

L
((

MΠn
n (Xn) ,M

Π′
n

n (Xn)
)′
)

=⇒
n→+∞

N2

(

0,

(

σ2hϕ,P 1⊗P 2 0

0 σ2hϕ,P 1⊗P 2

))

.

Proof of Lemma 6.1. According to the Cramér-Wold device, given a, b in
R, we aim at proving that

L
(

aMΠn
n (Xn) + bMΠ′

n
n (Xn)

)

=⇒
n→+∞

N
(

0,
(
a2 + b2

)
σ2hϕ,P 1⊗P 2

)

.

In order to deal with simpler mathematical expressions, we introduce below
some additional notation.

• For n ≥ i ≥ 2, Fn,i = σ (Πn,Π
′
n,X1,X2, . . . ,Xi).
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• Let

Yn,i =
1√
n

i−1∑

j=1

(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
,

Y ′
n,i =

1√
n

i−1∑

j=1

(
1{Π′

n(i)=j}Ci,j + 1{Π′
n(j)=i}Cj,i

)
,

so that MΠn
n (Xn) =

∑n
i=1 Yn,i and M

Π′
n

n (Xn) =
∑n

i=1 Y
′
n,i.

Let us first prove that for a fixed integer n ≥ 2,
(

aYn,i + bY ′
n,i,Fn,i

)

2≤i≤n
is

a martingale difference array. Note that for 2 ≤ i ≤ n,

E [Yn,i|Fn,i−1] =
1√
n

i−1∑

j=1

E
[
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

∣
∣Fn,i−1

]

=
1√
n

i−1∑

j=1

(
1{Πn(i)=j}E [Ci,j|Xj ] + 1{Πn(j)=i}E [Cj,i|Xj ]

)

= 0.

In the same way, we have that E
[

Y ′
n,i

∣
∣
∣Fn,i−1

]

= 0, so E
[

aYn,i + bY ′
n,i

∣
∣
∣Fn,i−1

]

=

0. From Theorem 6.1, we thus deduce that if

(i)
n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]
P−→

n→+∞
(a2 + b2)σ2hϕ,P 1⊗P 2 ,

(ii)

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

−→
n→+∞

0 for any ε > 0,

then

L
(

aMΠn
n (Xn) + bMΠ′

n
n (Xn)

)

=⇒
n→+∞

N
(

0,
(
a2 + b2

)
σ2hϕ,P 1⊗P 2

)

.

Let us now check that both (i) and (ii) are satisfied.

Assumption (i). In all the following, only consider n ≥ 4. Noticing that

(A.24)

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]

= (a2 + b2)

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]
+ 2ab

n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
,
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the proof of (i) can be decomposed into two points.
The first point consists in proving that

n∑

i=2

E
[
Y 2
n,i

]
−→

n→+∞
σ2hϕ,P 1⊗P 2 and Var

(
n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]

)

−→
n→+∞

0,

which leads, thanks to Chebychev’s inequality, to

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

] P−→
n→+∞

σ2hϕ,P 1⊗P 2 .

The second point consists in proving that

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→+∞

0,

so
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

] P−→
n→+∞

0.

• First point. On the one hand,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j,k=1

E
[ (

1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
×

(
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

) ]
.

Furthermore, if 1 ≤ j 6= k ≤ i− 1,

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)]

= E
[
E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)∣
∣Xi,Xj ,Πn

]]

= E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}E [Ci,k|Xi] + 1{Πn(k)=i}E [Ck,i|Xi]

)]

= 0.
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Thus,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j=1

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)2
]

=
1

n

n∑

i=2

i−1∑

j=1

E
[
1{Πn(i)=j}C

2
i,j + 1{Πn(j)=i}C

2
j,i + 21{Πn(i)=j}1{Πn(j)=i}Ci,jCj,i

]

=
1

n

n∑

i=2

i−1∑

j=1

(
2

n
E
[
C2
i,j

]
+

2

n(n− 1)
E [Ci,jCj,i]

)

=
2

n2

n∑

i=2

(i− 1)

(

E
[
C2
1,2

]
+

1

n− 1
E [C1,2C2,1]

)

,

so
∑n

i=2 E
[

Y 2
n,i

]

= n−1
n E

[
C2
1,2

]
+ 1

nE [C1,2C2,1] . From (A.23), we derive that

(A.25)

n∑

i=2

E
[
Y 2
n,i

]
−→

n→+∞
σ2hϕ,P 1⊗P 2 .

On the other hand, we have that

E
[
Y 2
n,i

∣
∣Fn,i−1

]
=

1

n

i−1∑

j=1

1{Πn(i)=j}E
[
C2
i,j

∣
∣Xj

]
+

1

n

i−1∑

j=1

1{Πn(j)=i}E
[
C2
j,i

∣
∣Xj

]

+
2

n

i−1∑

j=1

1{Πn(i)=j}1{Πn(j)=i}E [Ci,jCj,i|Xj ]

+
2

n

∑

1≤j 6=k≤i−1

1{Πn(i)=j}1{Πn(k)=i}E [Ci,jCk,i|Xj ,Xk] .

Then,

n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

]
− E

[
Y 2
n,i

])
= An,1 +An,2 + 2An,3 + 2An,4,
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with

An,1 =
1

n

∑

1≤j<i≤n

(

1{Πn(i)=j}E
[
C2
i,j

∣
∣Xj

]
− 1

n
E
[
C2
i,j

]
)

,

An,2 =
1

n

∑

1≤j<i≤n

(

1{Πn(j)=i}E
[
C2
j,i

∣
∣Xj

]
− 1

n
E
[
C2
i,j

]
)

,

An,3 =
1

n

∑

1≤j<i≤n

(

1{Πn(i)=j}1{Πn(j)=i}E [Ci,jCj,i|Xj ]−
1

n(n− 1)
E [Ci,jCj,i]

)

,

An,4 =
1

n

∑

1≤j 6=k<i≤n

(
1{Πn(i)=j}1{Πn(k)=i}E [Ci,jCk,i|Xj ,Xk]

)
.

Thus,

(A.26) Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

≤ 4
(
E
[
A2

n,1

]
+ E

[
A2

n,2

]
+ 4E

[
A2

n,3

]
+ 4E

[
A2

n,4

])
.

Let us now control each term of the above right-hand side.
Convergence of E

[
A2

n,1

]
and E

[
A2

n,2

]
.

E
[
A2

n,1

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
×

E
[
E
[
C2
i,j

∣
∣Xj

]
E
[
C2
k,l

∣
∣Xl

]]
− 1

n2
(
E
[
C2
k,l

])2
)

.

Let us now consider all the cases where 1 ≤ j < i ≤ n, and 1 ≤ l < k ≤ n.
If i = k and j = l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2
i,j

∣
∣Xj

]
E
[
C2
k,l

∣
∣Xl

]]
=

1

n
E
[(
E
[
C2
2,1

∣
∣X1

])2
]

.

If i = k and j 6= l, or if i 6= k and j = l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2
i,j

∣
∣Xj

]
E
[
C2
k,l

∣
∣Xl

]]
= 0.

If i 6= k and j 6= l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2
i,j

∣
∣Xj

]
E
[
C2
k,l

∣
∣Xl

]]
=

1

n(n− 1)

(
E
[
C2
2,1

])2
.
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By combining these results, from (A.23) and under the assumption (Aϕ,Mmt),
we obtain that

E
[
A2

n,1

]
≤ n− 1

2n2

(

E
[(
E
[
C2
2,1

∣
∣X1

])2
]

−
σ4hϕ,P 1⊗P 2

n

)

+ C n2
(

1

n(n− 1)
− 1

n2

)

σ4hϕ,P 1⊗P 2 −→
n→+∞

0.

One can prove in the same way that E
[
A2

n,2

]
−→

n→+∞
0.

Convergence of E
[
A2

n,3

]
. We easily prove that

E
[
A2

n,3

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

κi,j,k,l −
1

4n2
(E [C1,2C2,1])

2 ,

where

κi,j,k,l = E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
×

E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xl]] .

Let us again consider κi,j,k,l in all the cases where 1 ≤ j < i ≤ n, and
1 ≤ l < k ≤ n. If i = k and j = l, then

κi,j,k,l =
1

n(n− 1)
E
[

(E [C2,1C1,2|X1])
2
]

.

If i = k and j 6= l, or if i 6= k and j = l, then κi,j,k,l = 0.
If i 6= k and j 6= l, then

κi,j,k,l =
(E [C1,2C2,1])

2

n(n− 1)(n − 2)(n − 3)
.

Thus, under (Aϕ,Mmt), we finally have that

E
[
A2

n,3

]
≤ 1

2n2
E
[

(E [C1,2C2,1|X1])
2
]

+ C
n (E [C1,2C2,1])

2

(n− 1)(n − 2)(n − 3)
−→

n→+∞
0.

Convergence of E
[
A2

n,4

]
.

E
[
A2

n,4

]
=

1

n2

∑

1≤j 6=k<i≤n
1≤p 6=q<l≤n

(

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
×

E [E [Ci,jCk,i|Xj ,Xk]E [Cl,pCq,l|Xp,Xq]]
)

.
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Let us consider all the cases where 1 ≤ j 6= k < i ≤ n, and 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} ≥ 3, there exists at least one element in {j, k, p, q}, j for
instance (the other cases are studied in the same way), which differs from
the other ones. Then,

E
[
E
[
Ci,jCk,i

∣
∣Xj ,Xk

]
E [Cl,pCq,l|Xp,Xq]

]

= E [E [E [Ci,jCk,i|Xj ,Xk]E [Cl,pCq,l|Xp,Xq]|Xk,Xp,Xq]]

= E [E [Ci,jCk,i|Xk]E [Cl,pCq,l|Xp,Xq]]

= E [E [E [Ci,jCk,i|Xi,Xk]|Xk]E [Cl,pCq,l|Xp,Xq]]

= E [E [Ck,iE [Ci,j |Xi]|Xk]E [Cl,pCq,l|Xp,Xq]] .

Since E [Ci,j|Xi] = 0, this leads to

(A.27) E [E [Ci,jCk,i|Xj ,Xk]E [Cl,pCq,l|Xp,Xq]] = 0.

If j = p, k = q, and i = l, then,

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
=

1

n(n− 1)
,

and

|E [E [Ci,jCk,i|Xj ,Xk]E [Cl,pCq,l|Xp,Xq]]| = E
[

(E [Ci,jCk,i|Xj,Xk])
2
]

= E
[

(E [C3,1C2,3|X1,X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, and i 6= l, then 1{Πn(k)=i}1{Πn(q)=l} = 0, so

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
= 0.

If j = q, k = p, and i = l, then 1{Πn(i)=j}1{Πn(l)=p} = 0, so

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
=

(n− 4)!

n!
,

and

|E [E [Ci,jCk,i|Xj ,Xk]E [Cl,pCq,l|Xp,Xq]]| = |E [E [Ci,jCk,iCl,kCj,l|Xj ,Xk]]|
≤ E [|C3,1C2,3C4,2C1,4|]
< +∞ under (Aϕ,Mmt).
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By combining these results, we obtain that

E
[
A2

n,4

]
≤ C

n3

n2

E
[

(E [C3,1C2,3|X1,X2])
2
]

n(n− 1)

+ C ′ n
4

n2
(n− 4)!

n!
E [C3,1C2,3C4,2C1,4] −→

n→+∞
0.

From (A.26), and the above results of convergence towards 0 for E
[
A2

n,1

]
,

E
[
A2

n,2

]
, E
[
A2

n,3

]
, and E

[
A2

n,4

]
, we firstly derive that

Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

−→
n→+∞

0.

• Second point. Notice that

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
= Bn,1 +Bn,2 +Bn,3 +Bn,4,

with

Bn,1 =
1

n

∑

1≤j<i≤n

1{Πn(i)=j}1{Π′
n(i)=j}E

[
C2
i,j

∣
∣Xj

]
,

Bn,2 =
1

n

∑

1≤j<i≤n

1{Πn(j)=i}1{Π′
n(j)=i}E

[
C2
j,i

∣
∣Xj

]
,

Bn,3 =
1

n

∑

1≤j<i≤n

(
1{Πn(i)=j}1{Π′

n(j)=i} + 1{Πn(j)=i}1{Π′
n(i)=j}

)
E [Ci,jCj,i|Xj ] ,

and

Bn,4 =
1

n

∑

1≤j 6=k<i≤n

(

1{Πn(i)=j}1{Π′
n(i)=k}E [Ci,jCi,k|Xj ,Xk]

+ 1{Πn(i)=j}1{Π′
n(k)=i}E [Ci,jCk,i|Xj ,Xk]

+ 1{Πn(j)=i}1{Π′
n(i)=k}E [Cj,iCi,k|Xj ,Xk]

+ 1{Πn(j)=i}1{Π′
n(k)=i}E [Cj,iCk,i|Xj ,Xk]

)

.

Thus,

(A.28) E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2




≤ 4
(
E
[
B2

n,1

]
+ E

[
B2

n,2

]
+ E

[
B2

n,3

]
+ E

[
B2

n,4

])
.
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Convergence of E
[
B2

n,1

]
and E

[
B2

n,2

]
. It can be proved that

E
[
B2

n,1

]
≤ 1

n3

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
×

E
[
E
[
C2
i,j

∣
∣Xj

]
E
[
C2
k,l

∣
∣Xl

]]
.

Then, with the same computations as for the convergence of E
[
A2

n,1

]
above,

we prove that

E
[
B2

n,1

]
≤ n− 1

2n3
E
[(
E
[
C2
1,2

∣
∣X2

])2
]

+ C
σ4hϕ,P 1⊗P 2

n− 1
−→

n→+∞
0.

In the same way, we also prove that E
[
B2

n,2

]
−→

n→+∞
0.

Convergence of E
[
B2

n,3

]
. We also have that

E
[
B2

n,3

]
≤ 4

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
×

E
[
1{Π′

n(j)=i}1{Π′
n(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xl]] .

Now, with similar computations as for the convergence of E
[
A2

n,1

]
above

again, we prove that

E
[
B2

n,3

]
≤ 2

n− 1

n3
E
[

(E [C1,2C2,1|X2])
2
]

+ C
(E [C1,2C2,1])

2

n− 1
−→

n→+∞
0.

Convergence of E
[
B2

n,4

]
. Setting

Bn,4,1 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(i)=j}1{Π′
n(i)=k}E [Ci,jCi,k|Xj ,Xk] ,

Bn,4,2 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(i)=j}1{Π′
n(k)=i}E [Ci,jCk,i|Xj ,Xk] ,

Bn,4,3 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(j)=i}1{Π′
n(i)=k}E [Cj,iCi,k|Xj ,Xk] ,

Bn,4,4 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(j)=i}1{Π′
n(k)=i}E [Cj,iCk,i|Xj ,Xk] ,

then Bn,4 = Bn,4,1 +Bn,4,2 +Bn,4,3 +Bn,4,4 and in particular,

E
[
Bn,4

2
]
≤ 4

(
E
[
Bn,4

2
]
+ E

[
Bn,4

2
]
+ E

[
Bn,4

2
]
+ E

[
Bn,4

2
])
.
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Yet,

E
[
B2

n,4,1

]
=

1

n2

∑

1≤j 6=k<i≤n

∑

1≤p 6=q<l≤n

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
×

E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
E [E [Ci,jCi,k|Xj,Xk]E [Cl,pCl,q|Xp,Xq]] .

Now, consider all the cases where 1 ≤ j 6= k < i ≤ n, 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} ≥ 3, using a similar argument as in (A.27), we obtain that

E [E [Ci,jCi,k|Xj ,Xk]E [Cl,pCl,q|Xp,Xq]] = 0.

If j = p, k = q, and i = l, then,

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
=

1

n2
,

and

|E [E [Ci,jCi,k|Xj ,Xk]E [Cl,pCl,q|Xp,Xq]]| = E
[

(E [Ci,jCi,k|Xj,Xk])
2
]

= E
[

(E [C3,1C3,2|X1,X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, i 6= l, or if j = q, k = p, i = l, then 1{Πn(i)=j}1{Πn(l)=p} is
equal to 0, so

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
=

1

n2(n− 1)2
,

and

|E [E [Ci,jCi,k|Xj ,Xk]E [Cl,pCl,q|Xp,Xq]]| = |E [E [Ci,jCi,kCl,kCl,j|Xj ,Xk]]|
= E [|C3,1C2,3C4,2C1,4|]
< +∞ under (Aϕ,Mmt).

By combining these results, we obtain that

E
[
B2

n,4,1

]
≤ C

E
[

(E [C3,1C3,2|X1,X2])
2
]

n
+ C ′E [C3,1C2,3C4,2C1,4]

(n− 1)2
−→

n→+∞
0.
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Following the same lines of proof, we furthermore obtain that E
[
B2

n,4,2

]
,

E
[
B2

n,4,3

]
, and E

[
B2

n,4,4

]
also converge towards 0. Hence, E

[
B2

n,4

]
−→

n→+∞
0.

From (A.28), and the convergence towards 0 of E
[
B2

n,1

]
, E
[
B2

n,2

]
, E
[
B2

n,3

]
,

and E
[
B2

n,4

]
, we derive that

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→+∞

0,

which finally allows to conclude that assumption (i) is satisfied.

Assumption (ii). Given ε > 0, let us prove that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

−→
n→+∞

0.

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

≤ 1

ε2

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)4
]

≤ 23

ε2

n∑

i=2

(

a4E
[
Y 4
n,i

]
+ b4E

[

Y ′
n,i

4
])

≤ 23(a4 + b4)

ε2

n∑

i=2

E
[
Y 4
n,i

]
.

Since Yn,i = n−1/2
(

1{Πn(i)<i}Ci,Πn(i) + 1{Π−1
n (i)<i}CΠ−1

n (i),i

)

,

E
[
Y 4
n,i

]
≤ 23

n2
E
[

1{Πn(i)<i}C
4
i,Πn(i)

+ 1{Π−1
n (i)<i}C

4
Π−1

n (i),i

]

≤ 23

n2

i−1∑

j=1

(

E
[
1{Πn(i)=j}C

4
i,j

]
+ E

[

1{Π−1
n (i)=j}C

4
j,i

])

≤ 24

n2
E
[
C4
1,2

]
.

We thus obtain that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

≤ 27(a4 + b4)

ε2n
E
[
C4
1,2

]
,

where the right-hand side tends to 0 as soon as E
[
C4
1,2

]
< +∞.

This last condition is ensured by (Aϕ,Mmt), which allows to confirm that
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assumption (ii) is also checked, and that

L
(

aMΠn
n (Xn) + bMΠ′

n
n (Xn)

)

=⇒
n→+∞

N
(

0,
(
a2 + b2

)
σ2hϕ,P 1⊗P 2

)

.

This ends the proof of Lemma 6.1.

Recall that we aim at proving that

dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

From Lemma 6.1, we deduce that for every t in R,







P
(
MΠn

n (Xn) ≤ t
)

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(t),

P
(

MΠn
n (Xn) ≤ t,M

Π′
n

n (Xn) ≤ t
)

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(t).

Setting Mn =MΠn
n (Xn) for the sake of simplicity, this leads to

(A.29)







E
[
E
[
1{Mn≤t}

∣
∣Xn

]]
−→

n→+∞
Φ0,σ2

hϕ,P1⊗P2
(t),

E
[(
E
[
1{Mn≤t}

∣
∣Xn

])2
]

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(t).

In a separable metric space, convergence in probability is metrizable (see [13,
Th. 9.2.1] for instance), therefore it is equivalent to almost-sure convergence
of a sub-sequence of any initial subsequence. So, let us fix an initial extraction
φ0 : N → N, which defines a sub-sequence

(
Mφ0(n)

)

n∈N of (Mn)n∈N. Let us
denote by (qm)m∈N a sequence such that {qm,m ∈ N} = Q. For any m in
N, from (A.29), we derive that







E
[

E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]]

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(qm),

E

[(

E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]2
)]

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(qm),

which leads (by Chebychev’s inequality) to

(A.30) E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]
P−→

n→+∞
Φ0,σ2

hϕ,P1⊗P2
(qm).

Therefore, there exist an extraction φ1 and a subset Ω1 of Ω such that
P (Ω1) = 1, and for every ω in Ω1,

E
[

1{Mφ1◦φ(n)≤q1}
∣
∣
∣Xφ1◦φ(n)

]

(ω) −→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(q1).
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Now, let m ≥ 1 for which there exist an extraction φm and a subset Ωm of
Ω such that P (Ωm) = 1, and for every ω ∈ Ωm,

E

[

1{

Mφm◦φm−1◦...◦φ0(n)≤qm
}

∣
∣
∣
∣
Xφm◦φm−1◦...◦φ0(n)

]

(ω) −→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(qm).

Then, from (A.30), there also exist an extraction φm+1 and a subset Ωm+1

of Ω such that P (Ωm+1) = 1, and for every ω in Ωm+1,

E

[

1{

Mφm+1◦φm◦φm−1◦...◦φ0(n)≤qm+1

}

∣
∣
∣
∣
Xφm+1◦φm◦...◦φ0(n)

]

(ω)

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(qm+1).

Setting Ω̃ =
⋂

m∈NΩm and for every n in N, φ̃(n) = φn ◦ . . . ◦ φ2 ◦ φ1(n),
then P

(

Ω̃
)

= 1. Moreover, for every ω in Ω̃, m in N,

E

[

1{

M
φ̃◦φ0(n)≤qm

}

∣
∣
∣
∣
Xφ̃◦φ0(n)

]

(ω) −→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(qm).

Since Φ0,σ2
hϕ,P1⊗P2

is a continuous distribution function, it can be proved

that this follows

dBL

(

L
(

Mφ̃◦φ0(n)

∣
∣
∣Xφ̃◦φ0(n)

)

,N
(

0, σ2hϕ,P 1⊗P 2

))
a.s.−→

n→+∞
0.

To conclude, we actually proved that

dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0,

which, combined with (A.21), leads to

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N

(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

Third step: convergence of conditional second order moments. Recall that
from (A.19), Un,hϕ

(
XΠn

n

)
= 1

n−1U
Πn
n , where

UΠn
n =

n∑

i=1

ϕ
(

X1
i ,X

2
Πn(i)

)

− 1

n

n∑

i,j=1

ϕ
(
X1

i ,X
2
j

)

=
n∑

i,j=1

(

1{Πn(i)=j} −
1

n

)

ϕ
(
X1

i ,X
2
j

)
.
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Therefore,

(A.31) E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]

=
n2

(n− 1)2

(
1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

])

,

and if Ci,j,k,l =
(
E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)
ϕ
(

X1
i ,X

2
j

)

ϕ
(
X1

k ,X
2
l

)
,

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]

=
1

n

n∑

i,j=1

n∑

k,l=1

Ci,j,k,l.

Firstly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

Ci,j,k,l =
(n− 2)(n − 3)

n2
Un,1,

where

Un,1 =
(n− 4)!

n!

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

ϕ
(
X1

i ,X
2
j

)
ϕ
(
X1

k ,X
2
l

)

is clearly a U -statistic of order 4. From the strong law of large numbers of
Hœffding [25], we thus have that

(n− 2)(n − 3)

n2
Un,1

a.s.−→
n→+∞

(
E
[
ϕ
(
X1

1 ,X
2
2

)])2
.

Secondly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3

i=j,i=l,j=k, or k=l

Ci,j,k,l =
2(n− 2)

n2
Un,2,

where

Un,2 =
(n − 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i ,X
2
i

)
ϕ
(
X1

k ,X
2
l

)
+ ϕ

(
X1

i ,X
2
l

)
ϕ
(
X1

k ,X
2
i

))

is a U -statistic of order 3 which converges almost-surely, so

2(n − 2)

n2
Un,2

a.s.−→
n→+∞

0.

Thirdly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3
i=k, or j=l

Ci,j,k,l = −n(n− 1)(n − 2)

n3
Un,3,
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where

Un,3 =
(n − 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i ,X
2
k

)
ϕ
(
X1

i ,X
2
l

)
+ ϕ

(
X1

i ,X
2
l

)
ϕ
(
X1

k ,X
2
l

))

is a U -statistic of order 3. So,

− n(n− 1)(n − 2)

n3
Un,3

a.s.−→
n→+∞

−E
[(
E
[
ϕ(X1

1 ,X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 ,X
2
2 )
∣
∣X2

])2
]

.

Fourthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=j=k,i=j=l,

i=k=l, or j=k=l

Ci,j,k,l = −2(n− 1)

n2
Un,4,

where

Un,4 =
1

n(n− 1)

∑

1≤i 6=j≤n

(
ϕ
(
X1

i ,X
2
i

)
ϕ
(
X1

i ,X
2
j

)
+ ϕ

(
X1

i ,X
2
i

)
ϕ
(
X1

j ,X
2
i

))

is a U -statistic of order 2, so

−2(n− 1)

n2
Un,4

a.s.−→
n→+∞

0.

Fifthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2

i=j 6=k=l, or i=l 6=j=k

Ci,j,k,l =
1

n2
Un,5,

where

Un,5 =
1

n(n− 1)

∑

1≤i 6=j≤n

(
ϕ
(
X1

i ,X
2
i

)
ϕ
(
X1

j ,X
2
j

)
+ ϕ

(
X1

i ,X
2
j

)
ϕ
(
X1

j ,X
2
i

))

is a U -statistic of order 2, so

1

n2
Un,5

a.s.−→
n→+∞

0.
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Sixthly,
1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=k 6=j=l

Ci,j,k,l =
(n− 1)2

n2
Un,6,

where

Un,6 =
1

n(n− 1)

∑

1≤i 6=j≤n

ϕ2
(
X1

i ,X
2
j

)

is a U -statistic of order 2, so

(n− 1)2

n2
Un,6

a.s.−→
n→+∞

E
[
ϕ2
(
X1

1 ,X
2
2

)]
.

Seventhly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=1

Ci,j,k,l =
n− 1

n3

n∑

i=1

ϕ
(
X1

i ,X
2
i

)
,

which almost-surely tends to 0 thanks to the strong law of large numbers.
By combining all these results, and the fact that

σ2hϕ,P 1⊗P 2 = E
[
ϕ2
(
X1

1 ,X
2
2

)]
+
(
E
[
ϕ
(
X1

1 ,X
2
2

)])2

− E
[(
E
[
ϕ(X1

1 ,X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 ,X
2
2 )
∣
∣X2

])2
]

,

we finally obtain that

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2hϕ,P 1⊗P 2 ,

and from (A.31), we deduce that

E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]
a.s.−→

n→+∞
σ2hϕ,P 1⊗P 2 .

Since dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N

(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0, this allows

to conclude that

d2

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

A.8. Proof of Theorem 4.2. As in the proof of Theorem 3.2 and
Proposition 3.6, we focus on the test by upper values. The proof of Theorem
4.2 is very similar to the one of Theorem 3.2, just replacing the argument

of (6.9) by q⋆ϕ,1−α,n (Xn)
P−→

n→+∞
Φ−1
0,σ2

hϕ,P1⊗P2
(1 − α), which is derived from

Corollary 4.1.
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A.9. Proof of Proposition 4.3. As above, we focus on the test by
upper values. The proof is very similar to the one of Proposition 3.6. For
the asymptotic part of the result, we first show, following the proof of [50,
Lemma 21.2], that

(A.32)
√
nU⋆,(⌈(1−α)(Bn+1)⌉) P−→

n→+∞
Φ−1
0,σ2

h,P1⊗P2
(1− α),

then, we conclude using the same arguments as in the proof of Theorem 4.2.
Let F ⋆

n,Xn
be the c.d.f of L

(√
nUn,hϕ , P

⋆
n |Xn

)
, and let us first show that

(A.33) sup
z∈R

∣
∣
∣
∣
F ⋆
n,Xn

(z)− Φ0,σ2
h,P1⊗P2

(z)

∣
∣
∣
∣

P−→
n→+∞

0.

As Theorem 4.1 provides only a convergence in probability, similar arguments
of subsequences as in the proof of Corollary 4.1, have to be used. So, let φ0
be an initial extraction and φ1 be the extraction such that (6.15) is satisfied.
As convergence in the dBL metric is equivalent to a weak convergence (see
[13, Proposition 11.3.3] for instance), and as the limit is continuous, by [50,
Lemma 2.11] we obtain that

sup
z∈R

∣
∣
∣
∣
F ⋆
φ1◦φ0(n),Xφ1◦φ0(n)

(z)− Φ0,σ2
h,P1⊗P2

(z)

∣
∣
∣
∣

a.s.−→
n→+∞

0.

This being true for any initial extraction φ0, we obtain (A.33).
Let F ⋆Bn

n,Xn
denote the empirical c.d.f of L

(√
nUn,hϕ , P

⋆
n |Xn

)
associated with

the sample
(
Π1

n, . . . ,Π
Bn
n

)
, that is

∀z ∈ R, F ⋆Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1{√
nUn,hϕ

(

X
Πb
n

n

)

≤z

}.

Then, by the DKW inequality, we obtain as in the proof of Proposition 3.6,

(A.34) sup
z∈R

∣
∣
∣F

⋆,Bn

n,Xn
(z)− F ⋆

n,Xn
(z)
∣
∣
∣

P−→
n→+∞

0.

Finally, let

G⋆Bn

n,Xn
(z) =

1

Bn + 1

Bn+1∑

b=1

1{√nU⋆,b≤z}.

Since G⋆Bn

n,Xn
(z) = 1

Bn+1

(

1{√nUn,hϕ (Xn)≤z} +BnF
⋆Bn

n,Xn
(z)
)

,

(A.35) sup
z∈R

∣
∣
∣G⋆Bn

n,Xn
(z)− F ⋆,Bn

n,Xn
(z)
∣
∣
∣ ≤ 2

Bn + 1
−→

n→+∞
0.
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Combining (A.33), (A.34) and (A.35), we obtain that

sup
z∈R

∣
∣
∣
∣
G⋆Bn

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)

∣
∣
∣
∣

P−→
n→+∞

0.

Since √
nU⋆,(⌈(1−α)(Bn+1)⌉) =

(

G⋆Bn

n,Xn

)−1
(1− α),

we obtain (A.32) and we conclude as in the proof of Proposition 3.6.

Now, let us prove the non asymptotic part of the result. Under (H0),

from Proposition 4.1, we deduce that X
Π1

n
n , . . . ,X

ΠB
n

n ,Xn, and hence also
U⋆,1, . . . , U⋆,B+1, are exchangeable real-valued random variables. Then,

P
(

U⋆,B+1 >U⋆,(⌈(1−α)(B+1)⌉)
)

= P

(
B+1∑

b=1

1{U⋆,b<U⋆,B+1} ≥ (B + 1)− ⌊α(B + 1)⌋
)

= P

(
B+1∑

b=1

1{U⋆,b≥U⋆,B+1} ≤ ⌊α(B + 1)⌋
)

= P

(
B+1∑

b=1

1{U⋆,b≥U⋆,B+1} ≤ α(B + 1)

)

.

By exchangeability of U⋆,1, . . . , U⋆,B+1, applying Lemma 1 in [43], whose
proof is given in [2], we finally obtain that

P
(

U⋆,B+1 > U⋆,(⌈(1−α)(B+1)⌉)
)

≤ α,

which ends the proof.

APPENDIX B: ADDITIONAL RESULTS

B.1. About the non-degeneracy of the U-statistic. Define

Z(x) =

∫

w(u, v)dNx1(u)dNx2(v) + E

[∫

w(u, v)dNX1(u)dNX2(v)

]

−E

[∫

w(u, v)dNx1(u)dNX2(v)

]

− E

[∫

w(u, v)dNX1(u)dNx2(v)

]

.

Recall that in this case, the degeneration is equivalent to stating that
for X = (X1,X2) with distribution P 1 ⊗ P 2, Z(X) is a random variable
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which is almost surely null under (H0). Since E [Z(X)] = 0, Z(X) = 0
a.s. is equivalent to Var (Z(X)) = 0. Here we provide a computation of
Var (Z(X)).

Let us introduce dM
[1]
1 (u) and dM

[1]
2 (v) the mean measures of respectively

X1 with distribution P 1 and X2 of distribution P 2 [11, Chapter 5], then one
can rewrite

Z(X) =

∫

w(u, v)dNX1 (u)dNX2(v) +

∫

w(u, v)dM
[1]
1 (u)dM

[1]
2 (v)

−
∫

w(u, v)dNX1 (u)dM
[1]
2 (v) −

∫

w(u, v)dM
[1]
1 (u)dNX2(v).

Therefore, E [Z(X)] = 0, and

Var (Z(X)) = E
[
Z(X)2

]

=

∫

[0,1]4
w(u, v)w(s, t)E [dNX1(u)dNX1(s)]E [dNX2(v)dNX2(t)]

−
∫

[0,1]4
w(u, v)w(s, t)E [dNX1(u)dNX1(s)] dM

[1]
2 (v)dM

[1]
2 (t)

−
∫

[0,1]4
w(u, v)w(s, t)dM

[1]
1 (u)dM

[1]
1 (s)E [dNX2(v)dNX2(t)]

+

∫

[0,1]4
w(u, v)w(s, t)dM

[1]
1 (u)dM

[1]
1 (s)dM

[1]
2 (v)dM

[1]
2 (t).

By assuming that #X1 (resp #X2) has second order moment, (see also
Section 3.2 for comment on this assumption), one can introduce the sec-
ond factorial moment measure associated to X1 (resp. X2), and denoted

dM
[2]
1 (u, s) (resp. dM

[2]
2 (v, t)). Then straightforward computations show that

Var(Z(X)) =

∫

[0,1]2
w(u, v)2dM

[1]
1 (u)dM

[1]
2 (v)

+

∫

[0,1]3
w(u, v)w(u, t)dM

[1]
1 (u)

(

dM
[2]
2 (v, t) − dM

[1]
2 (v)dM

[1]
2 (t)

)

+

∫

[0,1]3
w(u, v)w(s, v)

(

dM
[2]
1 (u, s)− dM

[1]
1 (u)dM

[1]
1 (s)

)

dM
[1]
2 (v)

+

∫

[0,1]4
w(u, v)w(s, t)

(

dM
[2]
1 (u, s)− dM

[1]
1 (u)dM

[1]
1 (s)

)

×
(

dM
[2]
2 (v, t) − dM

[1]
2 (v)dM

[1]
2 (t)

)

.



BOOTSTRAP AND PERMUTATION TESTS OF INDEPENDENCE 71

In particular, for Poisson processes, dM [2](u, s) = dM [1](u)dM [1](s) and

Var (Z(X)) =

∫

[0,1]2
w(u, v)2dM

[1]
1 (u)dM

[1]
2 (v) > 0,

as soon as the Poisson processes have non zero intensities since for j = 1, 2,

dM
[1]
j (u) = λj(u)du, with λj the intensity of Xj .

B.2. About the empirical centring assumption. Recall that

(A∗
Cent)

For x1 = (x11, x
2
1), . . . , xn = (x1n, x

2
n) in X 2,

∑n
i1,i2,i′1,i

′
2=1 h

((
x1i1 , x

2
i2

)
,
(

x1i′1
, x2i′2

))

= 0.

On the one hand, if h = hϕ, then for n ≥ 1 and for x1 = (x11, x
2
1), . . . , xn =

(x1n, x
2
n) in X 2,

n∑

i,i′,j,j′=1

h
((
x1i , x

2
i′
)
,
(
x1j , x

2
j′
))

=

n∑

i,i′,j,j′=1

ϕ
(
x1i , x

2
i′
)
+ ϕ

(
x1j , x

2
j′
)
− ϕ

(
x1i , x

2
j′
)
− ϕ

(
x1j , x

2
i′
)

= n2





n∑

i,i′=1

ϕ
(
x1i , x

2
i′
)
+

n∑

j,j′=1

ϕ
(
x1j , x

2
j′
)
−

n∑

i,j′=1

ϕ
(
x1i , x

2
j′
)
−

n∑

j,i′=1

ϕ
(
x1j , x

2
i′
)





= 0.

So (A∗
Cent) is immediately satisfied if the kernel h is of the form hϕ.

On the other hand, (A∗
Cent) does not imply that h is of the form hϕ.

Indeed, consider

h
((
x1, x2

)
,
(
y1, y2

))
= #x1 ·#x2 ·#y1 ·#y2

[(
#x1 −#y1

) (
#x2 −#y2

)]
.

• The kernel h is obviously symmetric.
• The kernel h satisfies (A∗

Cent). Let

f
(
x1, y1

)
= #x1 ·#y1

(
#x1 −#y1

)
.

First, notice that f
(
x1, x1

)
= 0 and f

(
x1, y1

)
= −f

(
y1, x1

)
. More-
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over, h
((
x1, x2

)
,
(
y1, y2

))
= f

(
x1, y1

)
f
(
x2, y2

)
. Thus

n∑

i,i′,j,j′=1

h
((
x1i , x

2
i′
)
,
(
x1j , x

2
j′
))

=

n∑

i,i′,j,j′=1

f
(
x1i , x

1
j

)
f
(
x2i′ , x

2
j′
)

=





n∑

i,j=1

f
(
x1i , x

1
j

)









n∑

i′,j′=1

f
(
x2i′ , x

2
j′
)





=






n∑

i=1

f
(
x1i , x

1
i

)

︸ ︷︷ ︸

0

+
∑

1≤i<j≤n

f
(
x1i , x

1
j

)
+f
(
x1j , x

1
i

)

︸ ︷︷ ︸

0










n∑

i′,j′=1

f
(
x2i′ , x

2
j′
)





= 0,

and (A∗
Cent) is satisfied by h.

• The kernel h cannot be written as an hϕ.
On the one hand, first notice that for any ϕ : X 2 → R, the difference

∆hϕ := hϕ
((
x1, x2

)
,
(
y1, y2

))
− hϕ

((
x̃1, x2

)
,
(
y1, y2

))

does not depend on y1. Indeed,

∆hϕ = ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

)

−ϕ
(
x̃1, x2

)
− ϕ

(
y1, y2

)
+ ϕ

(
x̃1, y2

)
+ ϕ

(
y1, x2

)

= ϕ
(
x1, x2

)
− ϕ

(
x̃1, x2

)
+ ϕ

(
x̃1, y2

)
− ϕ

(
x1, y2

)
.

And on the other hand, for the h introduced above, the difference ∆h

does depend on y1. Indeed

∆h = h
((
x1, x2

)
,
(
y1, y2

))
− h

((
x̃1, x2

)
,
(
y1, y2

))

= #x2 ·#y1 ·#y2
(
#x2 −#y2

)
×

[
#x1 ·

(
#x1 −#y1

)
−#x̃1 ·

(
#x̃1 −#y1

)]
.

Thus, if for instance, #x1 = #y2 = 1 and #x̃1 = #x2 = 2, then

∆h = 2#y1
[
−3 + #y1

]
,

which clearly depends on y1.
So finally, there does not exist any ϕ such that h = hϕ.
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