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Bootstrap and permutation tests of independence for point

processes
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Abstract: Motivated by a neuroscience question about synchrony detection in spike trains analysis, we deal
with the independence testing problem for point processes. We introduce non-parametric test statistics, which
are rescaled general U -statistics, whose corresponding critical values are constructed from bootstrap and ran-
domisation or permutation approaches, making as few assumptions as possible on the underlying distribution
of the point processes. We derive general consistency results for the bootstrap and for the permutation w.r.t.
to Wasserstein’s metric, which induce weak convergence as well as convergence of second order moments. The
obtained bootstrap or permutation independence tests are thus proved to be asymptotically of the prescribed
size, and to be consistent against any reasonable alternative, randomisation or permutation independence tests
having the further advantage to be exactly (that is non-asymptotically) of the prescribed level, even when Monte
Carlo methods are used to approximate the randomised quantiles.
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Keywords: Independence test, U -statistics, point processes, bootstrap, randomisation, permutation.

1 Introduction

Originally motivated by a request of neuroscientists about synchrony detection in spike trains studies, we focus
in the present work on independence tests for point processes. The question of testing whether two random
variables are independent is of course largely encountered in the statistical literature, as it is one of the central
goals of data analysis. From the historical Pearson’s (see [38, 39]) chi-square test of independence to the recent
test of Gretton et al. [22, 20, 21] using kernel methods in the spirit of statistical learning, many non-parametric
independence tests have been developed for real valued random variables or even random vectors. Among
them, of particular interest are the tests based on the randomisation or permutation principle introduced by
Fisher [16], and covered thereafter in the series of papers by Pitman [43, 44, 45], Scheffe [54], Hoeffding [31]
for instance, or bootstrap approaches derived from Efron’s [15] "naive" one. Two families of such permutation
or bootstrap-based independence tests may be distinguished at least : the whole family of rank tests including
the tests of Hotelling and Pabst [34], Kendall [35], Wolfowitz [62] or Hoeffding [30] on the one hand, the family
of Kolmogorov-Smirnov type tests, like Blum, Kiefer, and Rosenblatt’s [6], Romano’s [50] or Van der Vaart
and Wellner’s [58] ones on the other hand. These tests are purely non-parametric that is they are completely
free of the underlying distributions of the observed random variables or vectors. They are proved to achieve
asymptotically the right desired size: the probability, under independence, that the independence hypothesis is
rejected tends to a prescribed α in ]0, 1[, as the size of the original samples of observations grows to infinity.
Moreover, the tests based on permutation are also known to be exactly (non-asymptotically meaning) of the
desired level, that is the probability, under independence, that the independence hypothesis is rejected is smaller
than the prescribed α, for any positive size of samples. Some of these tests are also proved to be consistent
against many alternatives, such as Hoeffding’s [30] one and the family of Kolmogorov-Smirnov type tests.
Detecting dependence is also a fundamental old point in the neuroscientific literature (see [19] e.g.), as under-
standing how different areas of the brain interact with respect to a given stimulus helps to understand how the
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brain works. The neuroscience problem we were initially interested in consists of detecting interactions between
occurrences of action potentials on two different neurons, observed on n independent trials, as described in
[25]. Indeed, it is nowadays possible to simultaneously record the time occurrences of action potentials, which
are quick and brutal variations of the electric potential of the neuron membrane, for several neurons at once,
via extracellular multielectrodes. Each recorded set of time occurrences of action potentials for each neuron is
usually referred to as a spike train, the spikes being the time occurrences themselves. It is commonly accepted
that these spikes are one of the main components of the brain activity (see [56]). Therefore, when observing
two spike trains coming from two different neurons, one of the main elementary problem is to assess whether
these two spike trains are independent or not. Unfortunately, even if the real recordings of spike trains are
discretized in time, due to the record resolution, and thus belong to finite dimensional spaces, the dimension
of these spaces is so huge (from ten thousand up to one million) that it is neither realistic nor reasonable to
model them by finite dimensional variables, and to apply usual independence tests. Several methods, such as
the classical Unitary Events method introduced by Grün [23], consists of binning the spike trains at first in
order to deal with vectorial data with reduced dimension. But it has been shown (see [26] e.g.) that these
dimension reduction methods involve an information loss of more than 60% in some cases, making this kind of
preprocessing quite proscribed despite its simplicity of use.
Modelling the recordings of spike trains by point processes that are only almost surely finite without any a
priori bound on the total number of points, and using, constructing if needed, independence tests specifically
dedicated to such point processes then appear as realistic and reasonable solutions.
Another field of applications, where detecting dependence between point processes is crucial, is, for instance,
genomics, where point processes represent positions of motifs on the DNA strand as described in [27], or positions
of Transcription Regulatory Elements on the DNA strand as described in [10].
In the present work, we mainly focus on the application in neuroscience detailed above. Since the existence
of any precise underlying distribution for the point processes modelling spike trains data is subject to broad
debate, to construct model free independence tests for point processes is of utmost importance in this context
at least (see [24] for more details). To this end, bootstrap methods were used in [42, 41, 61] for binned data
with relatively small dimension, without any proper mathematical justification. Besides the loss of information
the binning data pre-processing involves, it appears in fact that the test statistics chosen in these papers are
not suitable for consistency of the bootstrap approach, due to an incorrect centring device leading to some
considerable bias. Asymptotic independence tests were furthermore introduced in [57] for point processes, but
limited to homogeneous Poisson processes. Such a Poisson assumption is necessarily restrictive and even possibly
inappropriate, considering spike trains analyses (see [46]), as well as other fields of applications. Moreover, these
tests, of an asymptotic nature, may suffer from a lack of performance when the number of trials is small or
moderate.
We therefore propose to construct new non-parametric tests of independence between two point processes, from
the observation of an i.i.d. sample with the same distribution as the considered pair of point processes, making
as few assumptions as possible on this underlying distribution. Our test statistics, correctly re-centred and
re-scaled, are based on general U -statistics. The corresponding critical values are obtained from bootstrap or
permutation approaches, so that the final tests that are proved to be asymptotically (with respect to the sample
size) of the desired size and consistent against many alternatives, also have good performance in practice when
the sample size is moderate or even small, as is often the case in neuroscience or genomics for biological or
economic reasons.
A huge number of papers deal with the bootstrap or permutation of U -statistics of i.i.d. real valued random
variables or vectors. Among them, we can cite for instance [4, 8, 1, 13], or [36] devoted to the bootstrap in a
general framework, [33] or [11] devoted to the permutation in various testing frameworks, and of course, the
papers cited above (see [50, 58]), which are devoted to Kolmogorov-Smirnov type tests, and based on particular
U -statistics in an independence testing framework.
To our knowledge, there is no previous work on the bootstrap or permutation of general U -statistics of i.i.d.
pairs of point processes, as considered in the present work. The main difficulties lie here in the nature of the
mathematical objects we handle, that is point processes and their associated point measures which are random
measures on the one hand, in the general nature of the results we aim at on the other hand. The proofs of our
results, although inspired by Romano’s [49, 50] work and Hoeffding’s [31] precursor results on the permutation,
are therefore more technical and complex on many aspects, that we will point out.

This paper is organized as follows.
We first present the problem of testing, and introduce the main notations. Starting from existing works in
neuroscience, we introduce the test statistics we propose to use, based on general kernel-based U -statistics,
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before listing and discussing the main assumptions made on the kernels and the underlying point processes.
These points constitute the content of Section 2.
Section 3 is devoted to our bootstrap approach, from its description to the theoretical asymptotic properties of
the corresponding independence tests, through general results about the consistency of the bootstrap for the
considered U -statistics, expressed in terms of Wasserstein’s metric as in [4]. We thus states that our tests are
asymptotically of the desired size, and that they are consistent against every reasonable alternative.
Section 4 is devoted to the randomisation or permutation approach. We also begin with a description of the
approach, then, we give general results about its consistency when the kernel of the U -statistic has a particular
common form. These results are still expressed in terms of Wasserstein’s metric, and thus induce usual weak
convergence as well as convergence of second order moments. They also lead to prove that the corresponding
permutation independence tests satisfy the same asymptotic properties as the bootstrap ones, with the further
advantage of being exactly (that is non-asymptotically) of the desired level, even when a Monte Carlo method
is used to approximate the randomised quantiles. This last point is easily deduced from a very useful lemma of
Romano and Wolf (see [51, Lemma 1]).
Finally notice that the proofs of the results are postponed in Section 5 at the end of the paper.

2 From the neuroscience interpretation to a general test statistic

2.1 The testing problem

We consider in this paper point processes defined on a probability space (Ω,A,P), and observed on [0, 1]. More
precisely, we consider finite point processes on [0, 1], that is random point processes on [0, 1], for which the total
number of points is almost surely finite (see [12] for instance for more details). Typically, in a neuroscience
framework, such finite point processes may represent spike trains recorded on a given finite interval of time,
and rescaled so that their values may be assumed to belong to [0, 1]. The set X of all their possible values is
equipped with a metric dX , that we introduce in (9). This metric, issued from the Skorohod topology, makes
X separable and allows to define accordingly borelian sets on X , and by extension through the product metric,
on X 2.
Let us recall that the point measure dNx associated to an element x of X is defined for all measurable real-valued
function f by : ∫

[0,1]

f(u)dNx(u) =
∑

u∈x

f(u),

so that, in particular, the total number of points of x, denoted by #x, is equal to
∫

[0,1] dNx(u).

Moreover, for a point process X defined on (Ω,A,P) and observed on [0, 1],
∫
f(u)dNX(u) becomes a real

random variable, defined on the same probability space (Ω,A,P).
Now, a pair X = (X1, X2) of finite point processes defined on (Ω,A,P), and observed on [0, 1], has joint
distribution P if P (B) = P(X = (X1, X2) ∈ B), for any borelian set B of X 2, and marginal distributions P 1

and P 2 if P 1(B1) = P(X1 ∈ B1), and P 2(B2) = P(X2 ∈ B2) for any borelian sets B1 and B2 of X .
Given the observation of an i.i.d. sample Xn = (X1, . . . , Xn) from the same distribution P as X , with Xi =
(X1

i , X
2
i ) for every i = 1 . . . n, we aim at testing

(H0) X
1 and X2 are independent against (H1) X

1 and X2 are not independent,

which can also be written as

(H0) P = P 1 ⊗ P 2 against (H1) P 6= P 1 ⊗ P 2.

2.2 Independence test based on coincidences in neuroscience

Considering that the i.i.d. sample Xn = (X1, . . . , Xn) models pairs of rescaled spike trains recorded for two neu-
rons during n trials, the main dependence feature that needs to be detected between both neurons corresponds
to synchronizations in time, referred to as coincidences (see [25] for instance). More precisely, neuroscientists
expect to detect if such coincidences occur significantly, that is more than what may be due to chance. They
speak in this case of a detected synchrony, which is of the utmost importance to understand how a neural
network behaves.
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Formalising the approach of [26], Tuleau-Malot et al. [57] first introduced the notion of coincidence count
between two point processes X1 and X2 with delay δ (δ > 0), defined by :

ϕcoinc
δ (X1, X2) =

∫

[0,1]2
coincδ(u, v)dNX1(u)dNX2(v), (1)

with coincδ(u, v) = 1{|u−v|≤δ}.
Thus, ϕcoinc

δ (X1, X2) =
∑

u∈X1,v∈X2 1{|u−v|≤δ} is equal to the number of pairs (u, v) such that: u is a point

of X1, v is point of X2, and |u − v| ≤ δ. Then, under the assumption that both X1 and X2 are homogeneous
Poisson processes, Tuleau-Malot et al. proposed an independence test of (H0) against (H1), rejecting (H0) when
a test statistic based on

∑n
i=1 ϕ

coinc
δ

(
X1

i , X
2
i

)
is larger than a given critical value. This critical value is deduced

from the asymptotic Gaussian distribution of the test statistic, under the null hypothesis of independence. The
test is proved to be asymptotically of the desired level, but only under the homogeneous Poisson processes
assumption.
However, it is now well-known that this assumption, as well as many other model assumptions, fails to be
satisfied in practice for spike trains (see [46]). To construct a test detecting synchrony, with as few assumptions
as possible on the underlying processes, is therefore an interesting, and challenging purpose.
In the present work, we propose a new non-parametric independence test for point processes, which allows,
without any Poisson or other specific model assumption on the underlying processes, to detect particular time
dependence features such as synchrony, but also more general ones.

2.3 General non-degenerate U-statistics as independence test statistics

In the parametric homogeneous Poisson framework of [57], the expectation of ϕcoinc
δ

(
X1

i , X
2
i

)
has a simple

expression as a function of δ and the intensities λ1 and λ2 of X1 and X2. Since λ1 and λ2 can be easily
estimated, an estimator of this expectation can thus be obtained using the plug-in principle, and subtracted
from ϕcoinc

δ

(
X1

i , X
2
i

)
to lead to a test statistic with a centred asymptotic distribution under the null hypothesis

of independence.
In the present non-parametric framework where we want to make as few assumptions as possible on the point
processes X1 and X2, such a centring plug-in tool is not available, and we propose to use instead a self-centring
trick, which amounts to consider

∑

i6=i′∈{1,...,n}

(
ϕcoinc
δ

(
X1

i , X
2
i

)
− ϕcoinc

δ

(
X1

i , X
2
i′
))
.

Furthermore, it is clear that the function ϕcoinc
δ used in [57] suits the dependence feature the neuroscientists

expect to detect in a spike trains analysis. However, it is not necessarily the best choice for other kinds of
dependence features to be detected in a general point processes analysis. So we introduce a more general
interaction function defined by

ϕw
δ (X

1, X2) =

∫

[0,1]2
wδ(u, v)dNX1(u)dNX2(v), (2)

where wδ is an integrable function possibly depending on a real-valued vector δ of parameters. Of course, the
choice wδ = coincδ with δ > 0 allows to get back the coincidence count function defined in (1), while the choice
w(j,k)(u, v) = ψj,k(v − u), where ψj,k is a rescaled (j) and translated (k) Haar mother wavelet, leads to the
interaction function used in [53] for an interaction test with strong theoretical and practical properties in a
specific Poisson framework.
Even more generally, we could choose any integrable function ϕ, whose aim would be to detect particular
dependence features on the pair (X1, X2) for instance, and for which we introduce:

Tn,ϕ =
∑

i6=i′∈{1,...,n}

(
ϕ
(
X1

i , X
2
i

)
− ϕ

(
X1

i , X
2
i′
))
. (3)

Since Tn,ϕ/(n(n − 1)) is an unbiased estimator of
∫ ∫

ϕ
(
x1, x2

) (
dP (x1, x2)− dP 1(x1)dP 2(x2)

)
, it may be a

reasonable independence test statistic, with expectation equal to 0 under (H0), and this without any assumption
on the underlying point processes.
Notice that if X1 and X2 were finite dimensional variables with continuous distributions with respect to the
Lebesgue measure, this test statistic would be closely related to generalized Kolmogorov-Smirnov type tests of
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independence. For instance, the test statistics of Blum, Kiefer, and Rosenblatt [6], Romano [50], Van der Vaart
and Wellner in [58] are equal to

n−3/2 sup
v1∈V1,v2∈V2

∣
∣
∣Tn,ϕ(v1,v2)

∣
∣
∣ ,

where, respectively:

• V1 = V2 = R and ϕ(v1,v2)(x
1, x2) = 1{]−∞,v1]}(x

1)1{]−∞,v2]}(x
2),

• V1 and V2 are countable V.-C. classes of subsets of Rd, and ϕ(v1,v2)(x
1, x2) = 1{v1}(x

1)1{v2}(x
2),

• V1 and V2 are well-chosen classes of real-valued functions and ϕ(v1,v2)(x
1, x2) = v1(x1)v2(x2).

Now, let us notice that setting

hϕ(x, y) =
1

2

(
ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

))
, (4)

for every x = (x1, x2), y = (y1, y2) in X 2, then Tn,ϕ can also be written as

Tn,ϕ =
∑

i6=i′∈{1,...,n}
hϕ (Xi, Xi′) , with Xi = (X1

i , X
2
i ), Xi′ = (X1

i′ , X
2
i′),

so Tn,ϕ/(n(n− 1)) is a classical U -statistic with a symmetric kernel hϕ, as introduced by Hoeffding [29].
Therefore, we finally consider in the present work independence test statistics which are based on U -statistics
of the form:

Un,h(Xn) =
1

n(n− 1)

∑

i6=i′∈{1,...,n}
h (Xi, Xi′) , (5)

for some kernel h of the form hϕ given in (4), or even for some general symmetric kernel h : (X 2)2 → R such
that E [h(Xi, Xi′)] = 0 for every Xi, Xi′ i.i.d. with distribution P on X 2 satisfying (H0) P = P 1 ⊗ P 2.

Notice that assuming that h is symmetric is not restrictive since for any kernel h, 2Un,h = Un,hsym
where

hsym(x, y) = h(x, y) + h(y, x) always defines a symmetric kernel.

Following the works of Romano [50] or Van der Vaart and Wellner [58], the tests we propose here are based on
bootstrap and permutation approaches for the above general U -statistics.

Most of our theoretical results are true, whether the considered U -statistics Un,h(Xn) are degenerate or not.
However, for degenerate U -statistics, the interpretation of these results is very poor. So, we will focus on non-
degenerate U -statistics, and therefore discuss below what degeneracy means about the underlying processes.

Since under (H0) Un,h(Xn) is assumed to have zero mean, it will be degenerate if and only if for X with
distribution P 1 ⊗ P 2 and for P 1 ⊗ P 2-almost every x in X 2,

E [h(x,X)] = 0.

In the particular case where h = hϕ, with hϕ defined by (4) and ϕ some integrable function, this amounts to
state that for X = (X1, X2) with distribution P 1 ⊗ P 2 and for P 1 ⊗ P 2-almost every x = (x1, x2),

ϕ(x1, x2) + E
[
ϕ(X1, X2)

]
− E

[
ϕ(x1, X2)

]
− E

[
ϕ(X2, x1)

]
= 0.

This condition’s fulfillment would however imply a very particular link between ϕ and the distribution of the
bivariate point process X , which is unknown. Let us look more deeply at the case where ϕ = ϕw

δ given by (2).
In this case, the above condition can be rewritten as follows: for P 1 ⊗ P 2-almost every x = (x1, x2),

∫

wδ(u, v)dNx1(u)dNx2(v) + E

[∫

wδ(u, v)dNX1(u)dNX2(v)

]

− E

[∫

wδ(u, v)dNx1(u)dNX2(v)

]

− E

[∫

wδ(u, v)dNX1(u)dNx2(v)

]

= 0. (6)
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Therefore, if for instance P 1({∅}) > 0 and P 2({∅}) > 0, which is the case for Bernoulli processes (discretized
processes), Poisson processes, Hawkes processes or more generally any processes with conditional intensities,
this implies, by taking x1 = x2 = ∅, that

E

[∫

wδ(u, v)dNX1(u)dNX2(v)

]

= 0. (7)

If the function wδ is nonnegative, then this finally gives that
∫
wδ(u, v)dNX1(u)dNX2(v) is almost surely equal

to 0. However, in practice, it is always possible to choose a function wδ so that the observation of at least one
of the

∫
wδ(u, v)dNX1

i
(u)dNX2

i
(v)’s is not equal to zero, and the U -statistic is not degenerate.

When considering spike trains analysis in neuroscience, notice first that assuming that the processes may be
empty (but not empty almost surely) is an obvious assumption in practice. Indeed, there often exist trials
(usually short) where, just by chance, no spikes have been detected for some trials while some spikes have been
detected for other trials. Moreover, if wδ = coincδ as in (1), δ is chosen large enough so that coincidences are
observed in practice, so (7) is not satisfied, and the U -statistic is non-degenerate.
However notice that when wδ(u, v) = ψj,k(v − u), where δ = (j, k) and ψj,k is a rescaled and translated
Haar mother wavelet as in [53], when considering specific Poisson processes, the condition (7) is fulfilled, since
∫
ψj,k(u)du = 0 is required to make the test statistic in [53] a reasonable test statistics. But in this case, the

U -statistic is still non-degenerate since the left-hand side of (6) has zero mean and positive variance, as soon
as both Poisson processes have non zero intensities (see Section 3.5 for more details).

3 Bootstrap tests of independence

3.1 Description of the bootstrap approach and informal view of the results

Recall that we observe an i.i.d. sample Xn = (X1, . . . , Xn) with Xi = (X1
i , X

2
i ) of distribution P on X 2,

whose marginals are respectively denoted P 1 and P 2, and that the test statistics we consider are based on
the U -statistics Un,h(Xn) defined by (5). Since the distribution of these test statistics is not free from the
unknown underlying marginal distributions P 1 and P 2 under the null hypothesis, we turn to a classical bootstrap
approach, whose aim is to mimic the distribution of the test statistics under (H0), for large, but also moderate or
small sample sizes. Since eachXi = (X1

i , X
2
i ) is P 1⊗P 2-distributed under (H0), the first and second coordinates

of the elements of Xn are resampled according to the corresponding marginal empirical distributions. More

precisely, we consider, for j = 1, 2, the marginal sample distribution P j
n of

(

Xj
1 , . . . , X

j
n

)

given by

P j
n =

1

n

n∑

i=1

δXj
i
. (8)

Then the bootstrap sample X∗
n =

(
X∗

n,1, . . . , X
∗
n,n

)
, with X∗

n,i =
(
X1∗

n,i, X
2∗
n,i

)
, is defined as an n i.i.d. sample

from the distribution P 1
n ⊗ P 2

n .
In particular, we prove (see Theorem 1) that, under appropriate assumptions, the conditional distribution of√
nUn,h(X

∗
n) given Xn is asymptotically close to the one of

√
nUn,h(X

⊥⊥
n ), where X⊥⊥

n is an i.i.d sample from the
distribution P 1⊗P 2. Therefore, using the quantiles of the conditional distribution of

√
nUn,h(X

∗
n) given Xn as

critical values, we can build unilateral or bilateral tests of (H0) against (H1) with asymptotic size α. These tests
also satisfy consistence properties against alternatives such that

∫
h(x, x′)dP (x)dP (x′) 6= 0 (see Theorem 2).

Before stating these results and to avoid any confusion, we introduce a few notations.

• For any functional Z : (X 2)n → R, L (Z,Q) denotes the distribution of the variable Z(Xn), where Xn is
an i.i.d. sample from the distribution Q on X 2.

• If the distribution Q = Q(W ) is random and depends on a random variable W , then L (Z,Q|W ) is
the conditional distribution of the variable Z(Xn), where Xn is an i.i.d. sample from the distribution
Q = Q(W ) on X 2, given W .

• " Q-a.s. in (Xn)n" at the end of a statement means that the statement only depends on the sequence
(Xn)n, where the Xn’s are i.i.d with distribution Q, and that there exists an event C only depending on
(Xn)n such that P (C) = 1, on which the statement is true.
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• "Qn ⇒ Q" means that the sequence of distributions (Qn)n converges towards Q in the weak sense, that
is for any real valued, continuous and bounded function g,

∫
g(z)dQn(z) −→

n→+∞

∫
g(z)dQ(z).

• Finally, as we often work conditionally on Xn, we will denote by E∗[·] the conditional expectation given
the sample Xn.

In particular, the conditional distribution of
√
nUn,h(X

∗
n) given Xn is denoted by L

(√
nUn,h, P

1
n ⊗ P 2

n

∣
∣Xn

)
.

3.2 Main assumptions

Since the random variables we deal with are not real-valued variables but point processes, the proofs of our
results will need many assumptions, which may seem to be somewhat abstract. We therefore describe and
discuss them in the present section.

Centring assumptions on the kernel h

First notice that, under (H0), the U -statistic introduced in (5) has zero mean if the kernel h satisfies the
following assumption:

(ACent)
For Xi and Xi′ , i.i.d. with distribution P 1 ⊗ P 2 on X 2,

E [h (Xi, Xi′)] = 0.

An empirical and resampled version of this assumption is furthermore stated as:

(A∗
Cent)

For x1 = (x11, x
2
1), . . . , xn = (x1n, x

2
n) in X 2,

∑n
i1,i2,i′1,i

′
2=1 h

((
x1i1 , x

2
i2

)
,
(

x1i′1
, x2i′2

))

= 0.

Notice that both assumptions are fulfilled as soon as h is of the form hϕ given by (4), though it is not necessary.
The kernel h :

((
x1, x2

)
,
(
y1, y2

))
7→ #x1 · #x2 · #y1 · #y2

(
#x1 −#y1

) (
#x2 −#y1

)
indeed satisfies both

assumptions though it can not be written as an hϕ.

Moment assumptions on the kernel h

Since the metric we use in the following to prove the asymptotic validity of our bootstrap procedure is the
L2-Wasserstein distance, we will need moment assumptions on the kernel h. In particular, we will assume that
the variance of Un,h(Xn) exists, i.e.

(AMmt)
For Xi and Xi′ , i.i.d. with distribution P on X 2,

E
[
h2 (Xi, Xi′)

]
<∞.

We will also need a resampled version of this assumption as:

(A∗
Mmt)

For X1, X2, X3, X4 i.i.d. with distribution P on X 2, i1, i2, i
′
1, i

′
2 in {1, 2, 3, 4},

E
[

h2
((
X1

i1
, X2

i2

)
,
(
X1

i′1
, X2

i′2

))]

< +∞.

Notice that when (A∗
Mmt) is satisfied, this implies that:

• (AMmt) is satisfied (taking i1 = i2, i
′
1 = i′2, and i′1 6= i1),

• for Xi with distribution P , E
[
h2 (Xi, Xi)

]
< +∞ (taking i1 = i2 = i′1 = i′2),

• for Xi, Xi′ i.i.d with distribution P 1 ⊗ P 2, E
[
h2 (Xi, Xi′)

]
< +∞ (taking i1, i2, i

′
1, i

′
2 all different).

A sufficient condition for (A∗
Mmt) (and consequently (AMmt)) to be satisfied is that there exist some positive

constants α1, α2, C such that for every x = (x1, x2), y = (y1, y2) in X 2,

|h(x, y)| ≤ C
(
(#x1)α1 + (#y1)α1

) (
(#x2)α2 + (#y2)α2

)
,

with E
[
(#X1)4α1

]
< +∞ and E

[
(#X2)4α2

]
< +∞.

In the particular case where h is of the form hϕ given by (4), a possible sufficient condition is that there
exist some positive constants α1, α2, C such that for every x1, x2 in X , |ϕ(x1, x2)| ≤ C(#x1)α1(#x2)α2 , with

E
[(
#X1

)4α1
]

< +∞ and E
[(
#X2

)4α2
]

< +∞.
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Notice that the coincidence count function ϕcoinc
δ defined by (1), satisfies, for every x1, x2 in X ,

|ϕcoinc
δ (x1, x2)| ≤ (#x1)(#x2).

Therefore, (A∗
Mmt) and (AMmt) are satisfied as soon as E

[(
#X1

)4
]

< +∞ and E
[(
#X2

)4
]

< +∞.

Moment bounds for the total number of points of the processes, such as the ones stated above, are in fact satisfied
in many situations. Since any discretized point process at resolution 0 < r < 1 (see [57] for a definition) has at
most 1/r points, such moment bounds are obviously satisfied in the case where the considered point processes
are discretized ones. Moreover, since any Poisson process has a total number of points obeying a Poisson
distribution, which has exponential moment of any order, such moment bounds are also obviously satisfied in
the case of Poisson processes, as well as in the case of point processes with bounded conditional intensities,
which can be constructed by thinning of homogeneous Poisson processes on R [37]. Similar moment bounds can
also be obtained (see [28]) for linear stationary Hawkes processes with positive interaction functions, that are
quite classical models in spike trains analysis (see for instance [40, 57]). This finally may be extended to point
processes whose conditional intensities is upper bounded by intensities of linear stationary Hawkes processes
with positive interaction functions, by thinning arguments again, which includes more general Hawkes processes
(see [7]) and in particular Hawkes processes used to model inhibition in spike trains analysis (see [28, 57, 48] or
[47]).

Continuity of the kernel h

Let us recall that X is the set of the possible values of finite point processes defined on a probability space
(Ω,A,P) and observed on [0, 1], and notice that it can be identified with the space D of càdlàg functions on

[0, 1] through the identification I : x ∈ X 7→
(

t 7→
∫ 1

0
1{u≤t}dxu

)

∈ D. Now, considering the uniform Skorohod

topology on D, associated with the metric dD defined by (see [5] e.g.):

dD(f, f
′) = inf

{

ε > 0
/

∃λ ∈ Λ, sup
t∈[0,1]

|λ(t)− t| ≤ ε, sup
t∈[0,1]

|f(λ(t)) − f ′(t)| ≤ ε

}

,

where Λ denotes the class of strictly increasing, continuous mappings of [0, 1] onto itself, X can be endowed
with the topology induced by the metric dX defined on X by:

dX (x, x′) = dD(I(x), I(x
′)) for every x, x′ in X . (9)

Since (D, dD) is a separable metric space, so are the spaces (X , dX ),
(
X 2, dX 2

)
, where dX 2 is the usual product

metric defined from dX (see [14, p32] e.g.), and
(
X 2 ×X 2, d

)
, where d is the product metric defined from dX ,

finally given by:

d
(
(x, y), (x′, y′)

)
= sup

{

sup
j=1,2

{

dX (xj , x
′j)
}

, sup
j=1,2

{

dX (yj , y
′j)
}}

, (10)

for every x = (x1, x2), y = (y1, y2), x′ = (x
′1, x

′2), y′ = (y
′1, y

′2) in X 2.

We assume that the kernel h defining the U -statistic Un,h(Xn) in (5) satisfies:

(ACont)
There exists a subset C of X 2 ×X 2, such that
(i) h is continuous in every (x, y) in C for the topology induced by the metric d defined by (10),
(ii) (P 1 ⊗ P 2)⊗2(C) = 1.

Notice that in the particular case where h is of the form hϕw
δ

defined by (2) and (4), with a continuous function

wδ : [0, 1]2 → R, then (ACont) is necessarily fulfilled.
Considering the coincidence count kernel hϕcoinc

δ
, defined by (1) and (4), since the function (u, v) ∈ [0, 1]2 7→

1{|u−v|≤δ} is not continuous, it is not so clear. However, one has the following result whose proof is given in
Section 5.14.

Proposition 1. The coincidence count kernel hϕcoinc
δ

defined on X 2 × X 2 by (1) and (4) is continuous w.r.t.

the topology induced by d, defined by (10), on the set

Cδ =
{(

(x1, x2), (y1, y2)
)
∈ X 2 ×X 2

/ ({
x1
}
∪
{
y1
})

∩
({
x2 ± δ

}
∪
{
y2 ± δ

})
= ∅
}

. (11)
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As suggested in [57], when dealing with discretized point processes at resolution r in spike trains analysis, the
right choice for δ is dr + r/2 for some integer d. Thus, in this case, the condition (ii) in (ACont) is satisfied by
the set Cδ of (11), hence (ACont) is satisfied by hϕcoinc

δ
. Furthermore, when dealing with point processes that

have conditional intensities, so that they may be constructed by thinning Poisson processes (see [37] e.g.), the
probability (P 1 ⊗ P 2)⊗2 of Cδ in (11) is larger than the probability that X ∩ (X ′ ± δ) = ∅, when X and X ′ are
two independent Poisson processes. Thus, (ACont) is also satisfied by hϕcoinc

δ
in this case.

3.3 Consistency of the bootstrap approach

As in the historical paper by Bickel et Freedman [4], the closeness between L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
and

L
(√
nUn,h, P

1 ⊗ P 2
)
, that are both distributions on R, is here measured via the classical L2-Wasserstein’s

metric d2 (also called Mallows’ metric) on the space Γ2 of distributions Q on R such that
∫
z2dQ(z) < ∞.

Recall that the metric d2 is defined by:

d22(Q,Q
′) = inf

{
E
[
(Z − Z ′)2

]
, (Z,Z ′) has marginal distributions Q and Q′} , (12)

for every Q, Q′ in Γ2, and that convergence w.r.t. d2 is equivalent to both weak convergence and convergence
of second order moments.

The validity of the bootstrap approach described above for our independence tests is mainly due to the following
consistency result.

Theorem 1. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2 and with
marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), let P j

n for j = 1, 2 be the empirical
marginal distributions defined by (8) and let Un,h be defined by (5), with a measurable symmetric kernel h on
X 2 ×X 2. Assume that (ACent), (A∗

Cent), (A∗
Mmt) and (ACont) are all satisfied. Then,

d2
(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1 ⊗ P 2
))

−→
n→+∞

0 P -a.s. in (Xn)n.

The proof follows similar arguments to the ones of [4] for the bootstrap of the mean, or to [13] and [36] for
the bootstrap of U -statistics. The difficulty of the present proof lies in the original data being here finite point
processes instead of real-valued random variables. The main point is therefore to transpose finite point processes
in the separable Skorohod metric space (D, dD), where weak convergence of sample probability distributions is
available (see [60]).
This theorem derives from the following two propositions which may be useful in various frameworks. The first
one states a non-asymptotic result, while the second one gives rather natural results of convergence.

Proposition 2. Under assumptions (ACent), (A∗
Cent), (AMmt), and in the notation of Theorem 1, there exists

some constant C > 0 such that for every integer n ≥ 2,

d22
(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1 ⊗ P 2
))

≤ C inf
{

E∗
[(
h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

,

Y ∗
n,1 ∼ P 1

n ⊗ P 2
n , Y1 ∼ P 1 ⊗ P 2, and (Y ∗

n,2, Y2) is an independent copy of (Y ∗
n,1, Y1)

}

.

Proposition 3. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2 and with
marginals P 1 and P 2 on X . Let Xn = (X1, . . . , Xn) for every n ≥ 2, let h be a measurable symmetric kernel
on X 2 ×X 2, and let Un,h(Xn) be the U -statistic defined by (5).

• If E [|h(X,X ′)|] < +∞, for X,X ′ i.i.d with distribution P , then one has

Un,h(Xn) −→
n→+∞

E [h(X,X ′)] =

∫

h(x, x′)dP (x)dP (x′) P -a.s. in (Xn)n. (13)

• Under (A∗
Mmt), one moreover obtains

1

n4

n∑

i,j,k,l=1

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))
−→

n→+∞
E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
P -a.s. in (Xn)n. (14)
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3.4 Convergence of cumulative distribution functions and quantiles

As usual, N (m, v) stands for the Gaussian distribution with mean m and variance v, Φm,v for its cumulative
distribution function (c.d.f.) and Φ−1

m,v for the corresponding quantile function. From the results of Rubin and
Vitale [52] generalising Hoeffding’s [29] Central Limit Theorem for nondegenerate U -statistics when the Xi’s
are random vectors, we can also easily deduce the following Central Limit Theorem for Un,h(Xn).

Proposition 4. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P 1 ⊗ P 2 on X 2.
Let h be a measurable symmetric kernel satisfying (ACent) and (AMmt) and for every n ≥ 2, let Un,h be the
U -statistic defined by (5). Then, if Un,h is nondegenerate,

L
(√
nUn,h, P

1 ⊗ P 2
)
⇒ N (0, σ2

h,P 1⊗P 2),

with
σ2
h,P 1⊗P 2 = 4V ar (E [h (X,X ′) |X ]) = 4Cov (h (X,X ′) , h (X,X ′′)) > 0, (15)

X,X ′, X ′′ being i.i.d. pairs of point processes with distribution P 1 ⊗ P 2 on X 2.

Moreover, since E
[

(
√
nUn,h(Xn))

2
]

→ σ2
h,P 1⊗P 2 , the following also holds

d2
(
L
(√
nUn,h, P

1 ⊗ P 2
)
,N (0, σ2

h,P 1⊗P 2)
)
−→
n→∞

0.

Comment. The above asymptotic normality result may lead to a rather simple test, of the desired asymptotic
size. Indeed, by Slutsky’s lemma and the law of large numbers for U -statistics of order 3, if

Sn,h(Xn) =
√
nUn,h(Xn)/σ̂h,

with

σ̂2
h =

4

n(n− 1)(n− 2)

∑

i,j,k∈{1,...,n},#{i,j,k}=3

h(Xi, Xj)h(Xi, Xk),

then under (H0), Sn,h(Xn) converges in distribution towards N (0, 1).
Therefore, the test that rejects (H0) when |Sn,h(Xn)| ≥ Φ−1

0,1(1−α/2) is of asymptotic size α. One can also easily
prove that it is consistent (i.e. of asymptotic power 1) against any alternative P such that E [h(X,X ′)] 6= 0, for
X , X ′ i.i.d. with distribution P and satisfying (AMmt).
Such tests, which are purely asymptotic, may of course suffer from a lack of power when the sample size n is
small or even moderate, which is typically the case for the application in neuroscience described in Section 2,
since the number of trials can never be very large for biological reasons (from few tens up to few hundreds at
best).
This is the reason why we turn here to bootstrap and permutation approaches developed by Romano [50] in
another framework, which are known to better fit for small or moderate sample sizes.

Notice that the asymptotic normality of
√
nUn,h(Xn), stated in Proposition 4, has not been used in the proof

of Theorem 1. Since it notably means that
√
nUn,h(Xn) weakly converges to a distribution with continuous

c.d.f., we can however use it to prove the convergence of the conditional c.d.f. or quantiles of the considered
bootstrap distributions in the following Corollary.

Corollary 1. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2 and with
marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), and in the notation of Theorem 1, let
X∗

n be a bootstrap sample defined as an i.i.d sample from the distribution P 1
n ⊗ P 2

n . Let X⊥⊥
n be another i.i.d.

sample with distribution P 1⊗P 2 on X 2, with size n. Then under the same assumptions as in Theorem 1, when
Un,h(Xn) is non-degenerate under (H0), then

sup
z∈R

∣
∣P
(√

nUn,h (X
∗
n) ≤ z

∣
∣Xn

)
− P

(√
nUn,h(X

⊥⊥
n ) ≤ z

)∣
∣ −→
n→+∞

0 P -a.s. in (Xn)n. (16)

If moreover, for every η ∈ (0, 1), q∗n,h,η(Xn) and q⊥⊥n,h,η respectively denote the conditional η-quantile of
√
nUn,h(X

∗
n)

given Xn and the η-quantile of
√
nUn,h(X

⊥⊥
n ), then

q∗n,h,η(Xn) −→
n→+∞

Φ−1
0,σ2

h,P1⊗P2
(η) and |q∗n,h,η(Xn)− q⊥⊥n,h,η| −→

n→+∞
0 P -a.s. in (Xn)n, (17)

where σ2
h,P 1⊗P 2 is defined as in (15).
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3.5 Asymptotic properties of the bootstrap tests

Starting from Corollary 1 and with the same notation, for any fixed α in (0, 1), we introduce the following tests:







∆∗+
h,α(Xn) = 1{√nUn,h(Xn)>q∗

n,h,1−α
(Xn)},

∆∗−
h,α(Xn) = 1{√nUn,h(Xn)<q∗

n,h,α
(Xn)},

∆∗
h,α(Xn) = ∆∗+

h,α/2(Xn) + ∆∗−
h,α/2(Xn).

(18)

Note that q∗n,h,η(Xn) is random, depending on Xn and that it may be exactly computed by considering all

possible n2n bootstrap samples. The algorithmic complexity of such an exact computation is usually so large,
that a Monte Carlo approximation of the bootstrap quantiles, based on resampling from the original data Xn,
is preferred in practice. This Monte Carlo step is considered in the next section.

From Corollary 1, we deduce that, under non very restrictive assumptions, ∆∗+
h,α, ∆∗−

h,α and ∆∗
h,α are asymptot-

ically of size α, and also consistent against particular alternatives.

Theorem 2. Let α ∈ (0, 1). Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on
X 2 and with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn) and let ∆∗ be one of the three
tests defined in (18). Assume that (ACent), (A∗

Cent), (A∗
Mmt) and (ACont) are satisfied and that Un,h(Xn) is

non-degenerate under (H0). Then,

• ∆∗ is asymptotically of size α, that is: if P = P 1 ⊗ P 2, then P (∆∗(Xn) = 1) −→
n→+∞

α.

• If ∆∗ = ∆∗+
h,α, then ∆∗ is consistent against any alternative P such that

∫
h(x, x′)dP (x)dP (x′) > 0, that

is: for such P , P (∆∗(Xn) = 1) −→
n→+∞

1

• If ∆∗ = ∆∗−
h,α, then ∆∗ is consistent against any alternative P such that

∫
h(x, x′)dP (x)dP (x′) < 0.

• If ∆∗ = ∆∗
h,α, then ∆∗ is consistent against any alternative P such that

∫
h(x, x′)dP (x)dP (x′) 6= 0.

Notice that in the case where h = hϕ with an integrable function ϕ (see (4)),

∫

h(x, x′)dP (x)dP (x′) =

∫

ϕ(x1, x2)
[
dP (x1, x2)− dP 1(x1)dP 2(x2)

]
.

This means that the bilateral test ∆∗
h,α is consistent for any alternative such that

∫
ϕ(x1, x2)dP (x1, x2) is

different from what is expected under (H0), i.e.
∫
ϕ(x1, x2)dP 1(x1)dP 2(x2). When ϕ = ϕw

δ defined by (2), this
amounts to state that

βw,δ =

∫

wδ(u, v) (E [dNX1(u)dNX2(v)]− E [dNX1(u)]E [dNX2(v)]) 6= 0.

Under the specific Poisson assumptions of Sansonnet and Tuleau-Malot [53], if wδ(u, v) = ψj,k(v − u) where
δ = (j, k) and ψj,k is a rescaled and translated Haar mother wavelet, βw,δ is linked to the coefficient in the Haar
basis of the so-called interaction function, which measures the dependence between both processes X1 and X2.
Working non asymptotically, one of the main result of [53] states, after reformulation in the present setting,
that if βw,δ is larger than an explicit lower bound, then the Type II error is less than a prescribed β ∈ (0, 1).
Theorem 3.7 thus generalizes their result to a set-up with much less reductive assumptions on the underlying
stochastic models, but in an asymptotic way.

3.6 Bootstrap tests with Monte Carlo approximation

As seen above the tests defined in (18) have satisfactory theoretical properties, but involve an exact computation
of the conditional quantiles q∗n,h,η (Xn). Though such a computation is possible, it is not often reasonable in
practice even when the sample size n is moderate, since computing Un,h(X

πn
n ) itself may be complex from

an algorithmic point of view, from some particular choices for h. Therefore, we choose to approximate the
conditional quantiles q∗n,ϕ,η (Xn), as usual, by a Monte Carlo method.
We prove that, even if such a Monte Carlo method is used, the resulting tests have the same asymptotic
properties as the ones defined in (18), as the number of bootstrap samples grows to infinity.
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Let B ≥ 1 be a chosen number of iterations for the Monte Carlo method, and
(
X∗1

n , . . . ,X
∗B
n

)
be B independent

bootstrap samples from Xn, that is B i.i.d. random variables from the distribution P 1
n ⊗ P 2

n .
For each b in {1, . . . , B},we introduce U∗b = Un,h

(
X∗b

n

)
. The order statistic associated with

(
U∗1, . . . , U∗B)

is now denoted as usual by
(
U∗(1), . . . , U∗(B)

)
.

Given α in (0, 1), we can now introduce the Monte Carlo-based bootstrap tests defined by:







∆∗+
B,h,α (Xn) = 1{Un,h(Xn)>U∗(⌈(1−α)B⌉)},

∆∗−
B,h,α (Xn) = 1{Un,h(Xn)<U∗(⌊αB⌋+1)},

∆∗
B,h,α (Xn) = ∆∗+

B,h,α/2(Xn) + ∆∗−
B,h,α/2(Xn).

(19)

Proposition 5. Let α ∈ (0, 1), and let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution
P on X 2, with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), and for B ≥ 1, let ∆∗

B be
one of the tests defined in (19). Under the same assumptions as in Theorem 2, if Bn −→

n→∞
+∞, then

• ∆∗
Bn

is asymptotically of size α, that is: if P = P 1 ⊗ P 2, then P
(
∆∗

Bn
(Xn) = 1

)
−→

n→+∞
α.

• If ∆∗
Bn

= ∆∗+
Bn,h,α

, then ∆∗
Bn

is consistent against any alternative P such that
∫
h(x, x′)dP (x)dP (x′) > 0, that is: for such P , P

(
∆∗

Bn
(Xn) = 1

)
−→

n→+∞
1.

• If ∆∗
Bn

= ∆∗−
Bn,h,α

, then ∆∗
Bn

is consistent against any alternative P such that
∫
h(x, x′)dP (x)dP (x′) < 0.

• If ∆∗
Bn

= ∆∗
Bn,h,α

, then ∆∗
Bn

is consistent against any alternative P such that
∫
h(x, x′)dP (x)dP (x′) 6= 0.

3.7 Back to spike trains analysis in neuroscience

Let us focus on the case where h is of the form hϕcoinc
δ

, defined by (4) and (1), which originally motivated
the study. The assumptions of Theorem 3.7 are at least fulfilled in those three generic cases that are of major
importance in neuroscience:

1. The processes X1 and X2 are discretized at resolution r and satisfy P 1({∅})P 2({∅}) > 0, like in particular
Bernoulli processes. In this case, a natural choice for δ is δ = dr + r/2 for some integer d.

2. The processes X1 and X2 have bounded conditional intensities, like in particular Poisson processes.

3. The processesX1 andX2 have conditional intensities bounded by the intensity of linear stationary Hawkes
processes with positive interaction, like general Hawkes processes used in particular to model inhibition
(see [28] e.g.).

In any case, δ should be chosen large enough to ensure that ϕcoinc
δ (X1, X2) is not a.s. null, but it is always

possible to choose such a δ a posteriori, by looking at the coincidence count on the observed trials.
Theorem means here that ∆∗

h
ϕcoinc
δ

,α is asymptotically of power 1 for any alternative P such that

∫

1{|v−u|≤δ}E [dNX1(u)dNX2(v)] 6=
∫

1{|v−u|≤δ}E [dNX1(u)]E [dNX2(v)]].

Notice that one cannot find such a δ if heuristically, the repartition of the delays |v − u| between points of X1

and X2 is the same under (H0) and under (H1). This also means for neuroscientists, that the cross-correlogram1

shows no different behavior between the dependent and independent case and this even if one has access to an
infinite number of trials. Hence this heuristically means one cannot find such a δ if the dependence cannot be
measured in terms of delay between points. Though this is quite not likely to happen for classical spike trains,
the question of the choice of δ remains an open question for model free independence test.

1histogram of the delays, that is classically represented in neuroscience as the first description of the data
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4 Permutation tests of independence

4.1 Description of the permutation approach and overview of the results

We still observe an i.i.d sample Xn = (X1, . . . , Xn) with Xi =
(
X1

i , X
2
i

)
of distribution P on X 2, whose

marginals are respectively denoted by P 1 and P 2.
We consider here the U -statistic Un,h(Xn) defined by (5), in the particular case where h equals hϕ for some
integrable function ϕ, as defined in (4). The permutation approach we propose to use consists of randomly
permuting the second coordinates of the observed pairs of point processes. More precisely, if Πn denotes a
random permutation of {1, . . . , n}, the corresponding permuted sample is defined by

XΠn
n =

(

XΠn

1 , . . . , XΠn
n

)

with XΠn

i =
(

X1
i , X

2
Πn(i)

)

, (20)

and we denote by P ⋆
n the conditional distribution of XΠn

n given Xn.
Like for the bootstrap, the idea of the randomization or permutation principle is to mimic the distribution of
the test statistics, assuming that (H0) is satisfied.
We actually prove (see Theorem 3 and Theorem 4) that under appropriate assumptions, the conditional distri-
bution of

√
nUn,hϕ

(XΠn
n ) given Xn is asymptotically close to the distribution of

√
nUn,hϕ

(X⊥⊥
n ), where X⊥⊥

n is
an i.i.d. sample from the distribution P 1 ⊗ P 2. Thus, we can propose new permutation tests of independence
of the desired asymptotic size, using the conditional quantiles of

√
nUn,hϕ

(XΠn
n ) given Xn as critical values,

and prove that these tests are consistent against any reasonable alternative. Following the statement of our
bootstrap results in Section 3, we still express the closeness in distributions between the permuted and original
statistics in terms of Wasserstein’s metric, which distinguishes, to our knowledge, our results from previous ones
in the permutation tests scene.
At this stage, since the permutation independence tests satisfy the same asymptotic properties as the bootstrap
ones, but with much more computation difficulties to prove them, one might wonder whether the introduction of
the permutation tests is of genuine interest. Though the bootstrap approaches are known to perform well when
moderate or even small sample sizes are considered in practice, there are very few non-asymptotic theoretical
results giving evidence of it, since such results are based on concentration inequalities that are not always
accessible in complex models (see [2, 3, 18] in testing frameworks, [17] in a classification framework).
One of the main advantages of the permutation approach we use here lies in the resulting tests being exactly of the
desired level, even when a Monte Carlo method is used to approximate the critical values. Such non-asymptotic
results, stated in Proposition 7 and Proposition 8, can be proved without any sophisticated concentration
inequality-type tool, only thanks to [51, Lemma 1] and the following Proposition, at the heart of the permutation
principle.

Proposition 6. Let πn be a given deterministic permutation of {1, . . . , n}, and Πn be a uniformly distributed
random permutation of {1, . . . , n}, independent of the observed sample Xn = (X1, . . . , Xn). If P = P 1 ⊗ P 2,
that is under (H0), then the permuted samples Xπn

n and XΠn
n defined in (20) both have the same distribution as

the original sample Xn.

4.2 Consistency of the permutation approach

Since we only consider in this section U -statistics based on symmetric kernels of the form hϕ, as defined in (4),
we notice that the centring assumption (ACent) is satisfied. Therefore, we will only need here the following
moment assumption on ϕ:

(Aϕ,Mmt)
For X with distribution P or P 1 ⊗ P 2 on X 2,

E
[
ϕ4
(
X1, X2

)]
<∞.

Theorem 3. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2, with marginals
P 1 and P 2. We consider an integrable function ϕ satisfying (Aϕ,Mmt), hϕ and Un,hϕ

defined by (4) and (5).
For every n ≥ 2, let Xn = (X1, . . . , Xn), let Πn be a uniformly distributed random permutation independent of
(Xn)n, and XΠn

n be the corresponding permuted sample defined by (20). In the notation of Section 3,

d2

(

L
(√
nUn,hϕ

, P ⋆
n

∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→+∞
0, (21)

where
P−→ stands for the usual convergence in P-probability.
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Comment. Notice that we do not need the continuity assumption for the kernel hϕ that we had in the bootstrap
approach, but the existence of a fourth order moment for this kernel, at the price however that the convergence
for Wasserstein’s metric occurs in probability and not almost surely as for the bootstrap.
We also wish to emphasize that the above result, whose proof is based on asymptotic normality results for
martingale difference arrays, goes further than the ones of Romano [50] for instance, since we have a convergence
result which is satisfied whether the independence hypothesis is satisfied or not.

From Theorem 3, we deduce the following Corollary, which will be, combined with Theorem 4, a key point to
prove that we can use the conditional quantiles of L

(√
nUn,hϕ

, P ⋆
n

∣
∣Xn

)
as critical values to obtain permutation

tests of independence of the desired asymptotic size.

Corollary 2. Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2, with marginals
P 1 and P 2. For every n ≥ 2, let Xn = (X1, . . . , Xn), and Πn be a uniformly distributed random permutation
independent of the (Xn)n. For η in (0, 1), let q⋆n,ϕ,η (Xn) denote the η-quantile of

√
nUn,hϕ

(
XΠn

n

)
given Xn

that is L
(√
nUn,hϕ

, P ⋆
n

∣
∣Xn

)
. Then, under the same assumptions as in Theorem 3,

q⋆n,ϕ,η (Xn)
P−→

n→+∞
Φ−1

0,σ2
h,P 1⊗P2

(η). (22)

4.3 Asymptotic properties of the permutation tests

In the notation of Corollary 2, for any fixed α in (0, 1), we introduce the following tests:







∆⋆+
ϕ,α (Xn) = 1{√nUn,hϕ (Xn)>q⋆n,ϕ,1−α(Xn)},

∆⋆−
ϕ,α (Xn) = 1{√nUn,hϕ (Xn)<q⋆n,ϕ,α(Xn)},

∆⋆
ϕ,α(Xn) = ∆⋆+

ϕ,α/2 (Xn) + ∆⋆−
ϕ,α/2 (Xn) .

(23)

Notice that like for the bootstrap approach, the critical values used in the tests defined by (23) are random,
depending on the observed sample Xn.
Recall that Πn is a uniformly distributed random permutation on the set Sn of all the permutations of {1, . . . , n}
and independent of Xn. Hence, given Xn, the conditional distribution of

√
nUn,hϕ

(
XΠn

n

)
is discrete and takes

the values
{√

nUn,hϕ
(Xπn

n )
}

πn∈Sn
. Let

√
nU

(1)
n,hϕ

(Xn) ≤ . . . ≤ √
nU

(n!)
n,hϕ

(Xn) be these ordered values. Then,

q⋆n,ϕ,η (Xn) =
√
nU

(⌈n!η⌉)
n,hϕ

(Xn), and it is therefore possible to compute it exactly.

Theorem 4. Let α ∈ (0, 1). Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P on X 2

and with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), ∆
⋆ be one of the permutation

tests defined by (23), and assume that (Aϕ,Mmt) is satisfied. Then,

• ∆⋆ is asymptotically of size α, that is: if P = P 1 ⊗ P 2, then P (∆⋆ (Xn) = 1) −→
n→+∞

α.

• If ∆⋆ = ∆⋆+
ϕ,α, then ∆⋆ is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) > 0, or equivalently
∫
ϕ
(
x1, x2

) (
dP (x1, x2)− dP 1(x1)dP 2(x2)

)
> 0 that is: for

such P , P (∆⋆ (Xn) = 1) −→
n→+∞

1.

• If ∆⋆ = ∆⋆−
ϕ,α, then ∆⋆ is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) < 0.

• If ∆⋆ = ∆⋆
ϕ,α, then ∆⋆ is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) 6= 0.

4.4 Non-asymptotic properties of the permutation tests

As seen above, one of the advantages of the permutation approach, as compared with the bootstrap one, lies on
the result of Proposition 6, which allows in fact to prove that the tests also satisfy non-asymptotic properties.
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Considering for instance ∆⋆ = ∆⋆+
ϕ,α, then under (H0),

P (∆⋆ (Xn) = 1) = P
(√
nUn,hϕ

(Xn) > q⋆n,ϕ,1−α (Xn)
)

=
1

n!

∑

πn∈Sn

P
(√
nUn,hϕ

(Xπn
n ) > q⋆n,ϕ,1−α (Xπn

n )
)

(24)

=
1

n!

∑

πn∈Sn

P
(√
nUn,hϕ

(Xπn
n ) > q⋆n,ϕ,1−α (Xn)

)
, (25)

where (24) comes from Proposition 6, and the equality q⋆n,ϕ,1−α (Xπn
n ) = q⋆n,ϕ,1−α (Xn) in (25) is explained

from the fact that the conditional distribution of
√
nUn,hϕ

(
XΠn◦πn

n

)
given Xn is the same as the one of√

nUn,hϕ

(
XΠn

n

)
. Therefore,

P (∆⋆ (Xn) = 1) =
∑

πn∈Sn

P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆n,ϕ,1−α (Xn)

∣
∣Πn = πn

)
P (Πn = πn)

= P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆n,ϕ,1−α (Xn)

)

= E
[
P
(√
nUn,hϕ

(
XΠn

n

)
> q⋆n,ϕ,1−α (Xn)

∣
∣Xn

)]

≤ α.

These arguments may be adapted to every permutation test defined in (23), leading to the following Proposition.

Proposition 7. Let α ∈ (0, 1). Let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P
on X 2 and with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), and ∆⋆ be one of the
permutation tests defined by (23). Then ∆⋆ is exactly of level α, that is: if P = P 1⊗P 2, P (∆⋆ (Xn) = 1) ≤ α.

4.5 Permutation tests with Monte Carlo approximation

The tests defined in (23) involve an exact computation of the conditional quantiles q⋆n,ϕ,η (Xn). Such a compu-

tation is possible by sorting the n! values of
{
Un,hϕ

(Xπn
n )
}

πn∈Sn
, but, as for the bootstrap approach, it has not

often a reasonable algorithmic complexity. Therefore, we also choose to approximate the conditional quantiles
q⋆n,ϕ,η (Xn) by a Monte Carlo method, and we prove that the resulting tests have the same asymptotic properties
as the ones defined in (23).
Moreover, it is interesting to point out that, even if they are based on a Monte Carlo approximation, these tests
are still exactly of the desired level. This is proved using Proposition 6 and [51, Lemma 1] again.

Let B ≥ 1 be a chosen number of iterations for the Monte Carlo method, and
(
Π1

n, . . . ,Π
B
n

)
be a sample of i.i.d.

random permutations uniformly distributed on Sn. For each b in {1, . . . , B}, we introduce U⋆b = Un,hϕ

(

X
Πb

n
n

)

,

and we denote by U⋆(B+1) the statistic Un,hϕ
(Xn) computed on the original sample Xn. The order statistic

associated with
(
U⋆1, . . . , U⋆(B+1)

)
is now denoted as usual by

(
U⋆(1), . . . , U⋆((B+1))

)
.

Given α in (0, 1), we can now introduce the Monte Carlo-based permutation tests defined by:







∆⋆+
B,ϕ,α (Xn) = 1{Un,hϕ (Xn)>U⋆(⌈(1−α)(B+1)⌉)},

∆⋆−
B,ϕ,α (Xn) = 1{Un,hϕ (Xn)<U⋆(⌊α(B+1)⌋+1)},

∆⋆
B,ϕ,α (Xn) = ∆⋆+

B,ϕ,α/2(Xn) + ∆⋆−
B,ϕ,α/2(Xn).

(26)

Proposition 8. Let α ∈ (0, 1), and let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution
P on X 2, with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), and for B ≥ 1, let ∆⋆

B be
one of the tests defined in (26). If Bn −→

n→∞
+∞, if Un,hϕ

is non degenerate, and if (Aϕ,Mmt) is satisfied, then

• ∆⋆
Bn

is asymptotically of size α, that is: if P = P 1 ⊗ P 2, then P
(
∆⋆

Bn
(Xn) = 1

)
−→

n→+∞
α.

• If ∆⋆
Bn

= ∆⋆+
Bn,ϕ,α, then ∆⋆

Bn
is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) > 0, that is: for such P , P
(
∆⋆

Bn
(Xn) = 1

)
−→

n→+∞
1.

• If ∆⋆
Bn

= ∆⋆−
Bn,ϕ,α, then ∆⋆

Bn
is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) < 0.

15



• If ∆⋆
Bn

= ∆⋆
Bn,ϕ,α, then ∆⋆

Bn
is consistent against any alternative P such that

∫
hϕ(x, x

′)dP (x)dP (x′) 6= 0.

Proposition 9. Let α ∈ (0, 1), and let (Xn)n be a sequence of i.i.d. pairs of point processes with distribution P
on X 2, with marginals P 1 and P 2 on X . For every n ≥ 2, let Xn = (X1, . . . , Xn), and ∆⋆

B be one of the tests
defined in (26), for some B ≥ 1. Then ∆⋆

B is exactly of level α, that is: if P = P 1⊗P 2, P (∆⋆
B (Xn) = 1) ≤ α.

5 Proofs

All along the proofs in this section, C and C′ will denote universal positive constants, that may vary from one
line to another one.

5.1 Proof of Proposition 2

For some integer n ≥ 2, let
(
Y ∗
n,i, Yi

)

1≤i≤n
be an i.i.d. sample such that for every i = 1 . . . n, Y ∗

n,i ∼ P 1
n ⊗ P 2

n ,

and Yi ∼ P 1 ⊗ P 2, and so that in particular:

√
n

n(n− 1)

∑

i6=i′

h
(
Y ∗
n,i, Y

∗
n,i′
)
∼ L

(√
nUn, P

1
n ⊗ P 2

n

∣
∣Xn

)
,

and √
n

n(n− 1)

∑

i6=i′

h (Yi, Yi′ ) ∼ L
(√
nUn, P

1 ⊗ P 2
)
.

From the definition of Wasserstein’s metric d2, recalled in (12), we then deduce that:

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn, P

1 ⊗ P 2
))

≤ 1

n(n− 1)2
E∗









∑

i6=i′

(
h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′)

)





2



 ,

(27)
where the upper bound is finite under (A∗

Mmt).
Introducing the quantities

E(i,i′,j,j′) = E∗
[(

h
(
Y ∗
n,i, Y

∗
n,i′
)
− h(Yi, Yi′ )

)(

h
(
Y ∗
n,j , Y

∗
n,j′
)
− h(Yj , Yj′)

)]

,

for (i, i′, j, j′) in {1, 2, . . . , n}4, and the sets

Im =
{

(i, i′, j, j′) ∈ {1, 2, . . . , n}4 / i 6= i′, j 6= j′, # {i, i′, j, j′} = m
}

,

for m in {2, 3, 4}, where # {i, i′, j, j′} denotes the number of different elements in {i, i′, j, j′}, we easily see that:

E∗









∑

i6=i′

h
(
Y ∗
n,i, Y

∗
n,i′
)
−
∑

i6=i′

h (Yi, Yi′)





2



 =

∑

(i,i′,j,j′)∈I4

E(i,i′,j,j′) +
∑

(i,i′,j,j′)∈I3

E(i,i′,j,j′) +
∑

(i,i′,j,j′)∈I2

E(i,i′,j,j′).

(28)
Let us now upper bound each term of this sum separately.

1. If (i, i′, j, j′) ∈ I4, then by independence,

E(i,i′,j,j′) = E∗[h
(
Y ∗
n,i, Y

∗
n,i′
)
− h (Yi, Yi′)

]
E∗[h

(
Y ∗
n,j , Y

∗
n,j′
)
− h (Yj , Yj′)

]

=
(
E∗[h

(
Y ∗
n,i, Y

∗
n,i′
)]

− E [h (Yi, Yi′)]
)(
E∗[h

(
Y ∗
n,j , Y

∗
n,j′
)]

− E [h (Yj , Yj′)]
)
.

Yet, under assumptions (ACent) and (A∗
Cent), E [h (Yi, Yi′)] = E∗[h

(
Y ∗
n,i, Y

∗
n,i′

)]
= 0, so E(i,i′,j,j′) = 0.
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2. If (i, i′, j, j′) ∈ I3, by the Cauchy-Schwarz inequality,

E(i,i′,j,j′) ≤
√

E∗
[(

h
(
Y ∗
n,i, Y

∗
n,i′

)
− h(Yi, Yi′)

)2
]
√

E∗
[(

h
(
Y ∗
n,j , Y

∗
n,j′

)
− h(Yj , Yj′)

)2
]

= E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h(Y1, Y2)

)2
]

.

3. If (i, i′, j, j′) ∈ I2, we immediately obtain that

E(i,i′,j,j′) = E∗
[(
h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

.

Since #I3 = 4n(n− 1)(n− 2) and #I2 = 2n(n− 1), we thus obtain that

∑

i6=i′

j 6=j′

E(i,i′,j,j′) ≤ 4n(n− 1)2 E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h
(
Y1, Y2

))2
]

. (29)

From (27), (28), (29), we finally derive that

d22
(
L
(√

nUn, P
1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn, P

1 ⊗ P 2
))

≤ 4 E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h
(
Y1, Y2

))2
]

,

where the i.i.d sample
(
Y ∗
n,i, Yi

)

1≤2
may be arbitrarily chosen such that for every i in {1, 2}, Y ∗

n,i ∼ P 1
n ⊗ P 2

n ,

Yi ∼ P 1 ⊗ P 2. This ends the proof of Proposition 2.

5.2 Proof of Proposition 3

Let us first notice that (13) is a direct application of the strong law of large numbers for U -statistics, stated for
instance in [32].
Next, let us notice that if

gm (Xi1 , . . . , Xim) =
∑

(i,j,k,l)∈I{i1,...im}

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))
,

with I{i1,...im} =
{

(i, j, k, l) ∈ {i1, . . . im}4 /# {i, j, k, l} = m
}

, and m in {1, . . . , 4}, then

1

n4

n∑

i,j,k,l=1

h2
((
X1

i , X
2
j

)
,
(
X1

k , X
2
l

))
=

4∑

m=1

1

m!







1

n4

∑

(i1,...,im)∈{1,...,n}m

i1,...,im all different

gm (Xi1 , . . . , Xim)






.

Each of the four terms in the right hand side of the above decomposition being, up to a multiplicative factor,
some classical U -statistic, and since under (A∗

Mmt), E [|gm(Xi1 , . . . , Xim)|] < +∞, we can now apply the strong
law of large numbers for U -statistics proved by Hoeffding in [32] for instance. Therefore P -a.s. in (Xn)n,

1

n(n− 1) . . . (n−m+ 1)

∑

(i1,...,im)∈{1,...,n}m

i1,...,im all different

gm (Xi1 , . . . , Xim) −→
n→+∞

E [gm (X1, . . . , Xm)] .

In particular, for m ∈ {1, 2, 3}, P -a.s. in (Xn)n,

1

n4

∑

(i1,...,im)∈{1,...,n}m

i1,...,im all different

gm (Xi1 , . . . , Xim) −→
n→+∞

0,

and
1

n4

∑

(i1,...,i4)∈{1,...,n}4

i1,...,i4 all different

g4 (Xi1 , Xi2 , Xi3 , Xi4) −→
n→+∞

E [g4 (X1, X2, X3, X4)] .

Finally noticing that E [g4 (X1, X2, X3, X4)] = 4! E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
, this concludes the proof.
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5.3 Proof of Theorem 1

By Proposition 2, for all n ≥ 2,

d2

(

L
(√
nUn,h, P

1
n ⊗ P 2

n

∣
∣Xn

)
,L
(√
nUn,h, P

1 ⊗ P 2
) )

≤ C inf
(Y ∗

n,1,Y1),(Y ∗
n,2,Y2) i.i.d /

Y ∗
n,1,Y

∗
n,2∼P 1

n⊗P 2
n, Y1,Y2∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

.

Our goal is here to construct, for almost all ω in Ω, a sequence of random variables
(
Ȳ ∗
n,ω,1

)

n≥1
such that for every

n ≥ 1, Ȳ ∗
n,ω,1 ∼ P 1

n,ω ⊗P 2
n,ω, where P j

n,ω = n−1
∑n

i=1 δXj
i (ω) (j = 1, 2) are the empirical measures corresponding

to the realisation Xn(ω), a random variable Ȳω,1 ∼ P 1 ⊗ P 2, and
{(
Ȳ ∗
n,ω,2

)

n≥1
, Ȳω,2

}

an independent copy of
{(
Ȳ ∗
n,ω,1

)

n≥1
, Ȳω,1

}

on some probability space (Ω′
ω,A′

ω,P
′
ω) depending on ω such that

E′
ω

[(

h
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
− h

(
Ȳω,1, Ȳ,ω2

) )2
]

−→
n→+∞

0, (30)

where E′
ω denotes the expectation corresponding to P′

ω. From this, we shall directly deduce that, for almost all
ω in Ω,

inf
(Y ∗

n,1,Y1),(Y ∗
n,2,Y2) i.i.d /

Y ∗
n,1,Y

∗
n,2∼P 1

n,ω⊗P 2
n,ω, Y1,Y2∼P 1⊗P 2

E∗
[(

h
(
Y ∗
n,1, Y

∗
n,2

)
− h (Y1, Y2)

)2
]

(ω)

≤ E′
ω

[(

h
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
− h

(
Ȳω,1, Ȳω,2

) )2
]

−→
n→+∞

0,

which will conclude the proof of the theorem.

Consider (Ω,A,P) the probability space on which all the Xn’s are defined. In what follows, we can keep in
mind that Ω represents the randomness in the original sequence (Xn)n. Thus, a given ω in Ω represents a given
realisation of (Xn)n.
As a preliminary step, from Proposition 3, there exists some subset Ω1 of Ω such that P(Ω1) = 1 and for every
ω in Ω1,

1

n4

n∑

i,j,k,l=1

h2
((
X1

i (ω), X
2
j (ω)

)
,
(
X1

k(ω), X
2
l (ω)

))
−→

n→+∞
E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
. (31)

Applying Theorem 3 in [60], since (X , dX ) defined by (9) is separable, P -a.s. in (Xn)n, P 1
n ⇒ P 1 and P 2

n ⇒ P 2.
We deduce that there exists some subset Ω2 of Ω such that P(Ω2) = 1 and for every ω in Ω2,

P 1
n,ω ⊗ P 2

n,ω ⇒ P 1 ⊗ P 2, (32)

Now, let us consider Ω0 = Ω1 ∩ Ω2, and fix ω in Ω0.
Following the proof of Skorokhod’s representation theorem in [14, Theorem 11.7.2 p.415], since (X 2, dX 2),
as defined from (9) in Section 3.2, is a separable space, it is possible to construct some probability space
(Ω′

ω,A′
ω,P

′
ω), and some random variables Ȳ ∗

n,ω,1 : Ω′
ω → X 2, Ȳ ∗

n,ω,2 : Ω′
ω → X 2 with distribution P 1

n,ω ⊗ P 2
n,ω,

and Ȳω,1 : Ω′
ω → X 2, Ȳω,2 : Ω′

ω → X 2 with distribution P 1 ⊗ P 2 such that

P′
ω-a.s., Ȳ ∗

n,ω,1 −→
n→+∞

Ȳω,1,

P′
ω-a.s., Ȳ ∗

n,ω,2 −→
n→+∞

Ȳω,2,

{(
Ȳ ∗
n,ω,1

)

n≥1
, Ȳω,1

}

and
{(
Ȳ ∗
n,ω,2

)

n≥1
, Ȳω,2

}

being independent, so that:

P′
ω-a.s.,

(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
−→

n→+∞

(
Ȳω,1, Ȳω,2

)
, (33)
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with respect to the product metric d defined by (10).

But under (ACont), h is continuous on C such that P′
ω

((
Ȳω,1, Ȳω,2

)
∈ C
)
=
(
P 1 ⊗ P 2

)⊗2
(C) = 1, hence

P′
ω-a.s., h

(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)
−→

n→+∞
h
(
Ȳω,1, Ȳω,2

)
.

Since P′
ω-a.s. convergence implies convergence in probability, in order to obtain the L2-convergence in (30),

according to Theorem 16.6 p. 165 of [55], we only need to prove that the sequence
(
h2
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

))

n≥1
is

uniformly integrable, or that

E′
ω

[
h2
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)]
−→

n→+∞
E′

ω

[
h2
(
Ȳω,1, Ȳω,2

)]
.

Moreover by (31) we have

E′
ω

[
h2
(
Ȳ ∗
n,ω,1, Ȳ

∗
n,ω,2

)]
=

1

n4

n∑

i,j,k,l=1

h2
(
(X1

i (ω), X
2
j (ω)), (X

1
k(ω), X

2
l (ω))

)

−→
n→+∞

E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
= E′

ω

[
h2
(
Ȳω,1, Ȳω,2

)]
.

We finally obtained (30) for any ω in Ω0, with P(Ω0) = 1, which ends the proof.

5.4 Proof of Proposition 4

Let (Xn)n be a sequence of i.i.d pairs of point processes with distribution P 1 ⊗ P 2 on X 2. Then, according to
(ACent), for all i 6= j, E [h(Xi, Xj)] = 0.
For a better readability, we introduce E [h|Xi] = E [h(Xi, X)|Xi] = E [h(X,Xi)|Xi] for someX with distribution
P 1 ⊗ P 2, and independent of Xi. By Hoeffding’s decomposition for non degenerate U -statistics, we obtain

√
nUn,h(Xn) =

2√
n(n− 1)

∑

i<j

h(Xi, Xj)

=
2√

n(n− 1)

∑

i<j

(E [h|Xi] + E [h|Xj ])

︸ ︷︷ ︸

Tn

+
2√

n(n− 1)

∑

i<j

g(Xi, Xj)

︸ ︷︷ ︸

Mn

,

with g(Xi, Xj) = h(Xi, Xj)− E [h|Xi]− E [h|Xj ].

• Let us prove that
2√

n(n− 1)
Mn

P−→
n→+∞

0. (34)

We first notice that for i < j, E [g(Xi, Xj)] = 0, E
[
g2(Xi, Xj)

]
< +∞, and give a simpler ex-

pression for E
[
M2

n

]
=
∑

i<j

∑

k<l E [g(Xi, Xj)g(Xk, Xl)] . If {i, j} ∩ {k, l} = ∅, i < j, k < l, then

E [g(Xi, Xj)g(Xk, Xl)] = (E [g(Xi, Xj)])
2
= 0. If #({i, j} ∩ {k, l}) = 1, with for instance k = i, j 6= l,

(i < j, i < l) (the other cases may be treated similarly), then

E [g(Xi, Xj)g(Xi, Xl)] = E [E [g(Xi, Xj)|Xi]E [g(Xi, Xl)|Xi]] = 0.

Finally, we obtain

E
[
M2

n

]
=
∑

i<j

E
[
g2(Xi, Xj)

]
=
n(n− 1)

2
E
[
g2(X1, X2)

]
.

As a consequence, for ε > 0, Chebychev’s inequality leads to

P

(∣
∣
∣
∣

2√
n(n− 1)

Mn

∣
∣
∣
∣
> ε

)

= P
(

|Mn| >
√
n(n− 1)

ε

2

)

≤ 4E
[
M2

n

]

n(n− 1)2ε2
=

2E
[
g2(X1, X2)

]

(n− 1)ε2
−→

n→+∞
0.
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• Now, let us prove that
2√

n(n− 1)
Tn

L−→
n→∞

N
(
0, σ2

h,P 1⊗P 2

)
. (35)

Notice that Tn =
∑n

i=1(n− i)E [h|Xi] +
∑n

j=1(j − 1)E [h|Xj] = (n− 1)
∑n

i=1 E [h|Xi] .
Thus,

2√
n(n− 1)

Tn =
2√
n

n∑

i=1

E [h|Xi] .

Since the E [h|Xi] are i.i.d, with E [E [h|Xi]] = 0 and Var (E [h|Xi]) = σ2
h,P 1⊗P 2/4, thanks to (AMmt),

the Central Limit Theorem leads to (35).

Finally, combining (34) and (35), Slutsky’s lemma ensures the convergence in distribution of
√
nUn,h(Xn)

towards N
(

0, σ2
h,P 1⊗P 2

)

.

Now, notice that

E
[(√

nUn,h(Xn)
)2
]

=
1

n(n− 1)2

∑

i6=i′

∑

j 6=j′

E [h(Xi, Xi′)h(Xj , Xj′)] .

Let us consider all the cases where i 6= i′ and j 6= j′.
If #{i, i′, j, j′} = 4, then by independence, E [h(Xi, Xi′)h(Xj , Xj′)] = E [h(Xi, Xi′)]E [h(Xj , Xj′)] = 0.
If #{i, i′, j, j′} = 3, then, by symmetry of h, E [h(Xi, Xi′)h(Xj , Xj′)] = E [h(X1, X2)h(X1, X2)] = σ2

h,P 1⊗P 2/4.

Finally, if #{i, i′, j, j′} = 2, E [h(Xi, Xi′)h(Xj , Xj′)] = E
[

(h(X1, X2))
2
]

.

Therefore,

E
[(√

nUn,h(Xn)
)2
]

=
1

n(n− 1)2

(

4n(n− 1)(n− 2)
σ2
h,P 1⊗P 2

4
+ 2n(n− 1)E

[

(h(X1, X2))
2
]
)

−→
n→∞

σ2
h,P 1⊗P 2 ,

which ends the proof of Proposition 4.

5.5 Proof of Corollary 1

By Proposition 4, we have that

L
(√
nUn,h, P

1 ⊗ P 2
)
⇒ N (0, σ2

h,P 1⊗P 2), (36)

where N (0, σ2
h,P 1⊗P 2) has a continuous c.d.f. Therefore, by application of [59, Lemma 2.11],

sup
z∈R

∣
∣
∣P
(√
nUn,h(X

⊥⊥
n ) ≤ z

)
− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0.

Furthermore, since convergence w.r.t the d2 distance implies weak convergence, Theorem 1 combined with (36)
leads to

L
(√

nUn,h, P
1
n ⊗ P 2

n

∣
∣Xn

)
⇒ N (0, σ2

h,P 1⊗P 2) P -a.s. in (Xn)n, (37)

so
sup
z∈R

∣
∣
∣P
(√
nUn,h(X

∗
n) ≤ z|Xn

)
− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0 P -a.s. in (Xn)n. (38)

As a consequence,

sup
z∈R

∣
∣P
(√
nUn,h(X

∗
n) ≤ z|Xn

)
− P

(√
nUn,h(X

⊥⊥
n ) ≤ z

)∣
∣ −→
n→+∞

0 P -a.s. in (Xn)n.

As for the second part of the result, since Φ−1
0,σ2

h,P1⊗P2
is continuous on [0, 1], it is sufficient to apply [59, Lemma

21.2] to both (36) and (37), on the event where (37) holds, to obtain that q∗n,h,η(Xn) and q⊥⊥n,h,η both converge

towards Φ−1
0,σ2

h,P 1⊗P2
(η) on the same event. This ends the proof.
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5.6 Proof of Theorem 2

Let us focus on the case ∆ = ∆∗+
h,α, the proof in the other cases being similar. Given α in (0, 1), we deduce from

Corollary 1 that
q∗n,h,1−α (Xn) −→

n→+∞
Φ−1

0,σ2
h,P1⊗P2

(1− α) P -a.s. in (Xn)n. (39)

Then, from Proposition 4 and Slutsky’s lemma, under (H0),
(√

nUn,h(Xn), q
∗
n,h,1−α (Xn)

)

converges in distri-

bution towards (Z,Φ−1
0,σ2

h,P 1⊗P2
(1− α)), where Z ∼ N (0, σ2

h,P 1⊗P 2). Therefore, under (H0),

P
(√
nUn,h(Xn) > q∗n,h,1−α (Xn)

)
−→

n→+∞
α.

Under (H1), by Proposition 3,

Un,h(Xn) −→
n→+∞

∫

h(x, x′)dP (x)dP (x′) > 0 P -a.s. in (Xn)n.

Furthermore, from (39), we deduce that

q∗n,h,1−α (Xn) /
√
n −→

n→+∞
0 P -a.s. in (Xn)n,

as a consequence, there exists an integer n0 large enough such that for every n ≥ n0,

P
(√
nUn,h(Xn) ≤ q∗n,h,1−α (Xn)

)
≤ P

(
1

2

∫

h(x, x′)dP (x)dP (x′) ≤ q∗n,h,1−α (Xn) /
√
n

)

−→
n→+∞

0,

since
∫
h(x, x′)dP (x)dP (x′) > 0.

5.7 Proof of Proposition 5

Let us focus again on the case ∆∗
Bn

= ∆∗+
Bn,h,α

, the other cases being similar. First notice that ∆∗
Bn

(Xn) =
1{√nUn,h(Xn)>

√
nU∗(⌈(1−α)Bn⌉)}.

Let us introduce the c.d.f F ∗
n,Xn

of L
(√
nUn,hϕ

, P 1
n ⊗ P 2

n |Xn

)
defined byF ∗

n,Xn
(z) = P (

√
nUn,h(X

∗
n) ≤ z|Xn),

and let F ∗,Bn

n,Xn
be the empirical c.d.f of L

(√
nUn,hϕ

, P 1
n ⊗ P 2

n |Xn

)
associated with the bootstrap sample

(
X∗1

n , . . . ,X
∗Bn
n

)
,

that is

∀z ∈ R, F ∗Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1{√nUn,hϕ(X
∗b
n )≤z}.

Then, using the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see [59] p.268 for instance), we derive that for
all n ≥ 2, all possible realisation xn of Xn, and for all ε > 0,

P

(

sup
z∈R

∣
∣F ∗Bn

n,xn
(z)− F ∗

n,xn
(z)
∣
∣ > ε

)

≤ 2e−2Bnε
2

.

Therefore, we obtain that

P

(

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)− F ∗

n,Xn
(z)
∣
∣
∣ > ε

)

= E

[

P

(

sup
z∈R

∣
∣
∣F

∗,Bn

n,Xn
(z)− F ∗

n,Xn
(z)
∣
∣
∣ > ε

∣
∣
∣
∣
Xn

)]

≤ 2e−2Bnε
2 −→

n→∞
0,

that is exactly

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)− F ∗

n,Xn
(z)
∣
∣
∣

P−→
n→∞

0. (40)

Moreover, by (38), supz∈R

∣
∣
∣F ∗

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣ −→
n→+∞

0 P -a.s. in (Xn)n.

Therefore, we obtain that

sup
z∈R

∣
∣
∣F ∗Bn

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣

P−→
n→∞

0. (41)
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We finish the proof using the similar arguments as in [59, Lemma 21.2], combined with a subsequence argument
since the convergence in (41) occurs in probability, and not almost surely. Let φ0 be an extraction. Then, by
(41), there exists an extraction φ1, and some Ω0 ⊂ Ω such that P (Ω0) = 1, and for every ω in Ω0,

sup
z∈R

∣
∣
∣F

∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣ −→
n→∞

0.

From now on, fix ω in Ω0. Notice that this comes down to fix a realisation of Xn, and a realisation of
(
X∗1

n , . . . ,X
∗Bn
n

)
, and in particular, F ∗Bn

n,Xn
(ω) is deterministic.

Consider V ∼ N (0, 1). Then, we obtain that F
∗,Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(V )

a.s.−→
n→∞

Φ0,σ2
h,P1⊗P2

(V ). In particular, for

all η in (0, 1),

Φ0,1

((

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η)

)

= P
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)(V ) < η

)

−→
n→∞

P
(

Φ0,σ2
h,P1⊗P2

(V ) < η
)

= Φ0,1

((

Φ0,σ2
h,P1⊗P2

)−1

(η)

)

.

Finally, as Φ0,1 is a one-to-one function and Φ−1
0,1 is continuous, we obtain that

√

φ1 ◦ φ0(n)U∗(⌈η(Bφ1◦φ0(n))⌉)(ω) =
(

F
∗Bφ1◦φ0(n)

φ1◦φ0(n),Xφ1◦φ0(n)
(ω)
)−1

(η) −→
n→∞

Φ−1
0,σ2

h,P1⊗P2
(η),

and this for all ω in Ω0, and any initial extraction φ0. Therefore, we obtain

√
nU∗(⌈ηBn⌉) P−→

n→∞
Φ−1

0,σ2
h,P1⊗P2

(η),

and the proof is ended exactly as the proof of Theorem 2.

5.8 Proof of Proposition 6

As the sigma-algebra considered on
(
X 2
)⊗n

is generated by the family containing all products
∏n

i=1

(
A1

i ×A2
i

)
,

with A1
i and A2

i Borel sets of (X , dX ), we just need to verify that for all A =
∏n

i=1

(
A1

i ×A2
i

)
of this form,

P (Xπn
n ∈ A) = P (Xn ∈ A), and P

(
XΠn

n ∈ A
)
= P (Xn ∈ A). We first have that under (H0),

P (Xπn
n ∈ A) = P

(
n⋂

i=1

{

Xi ∈ A1
i ×A2

π−1
n (i)

}
)

=

n∏

i=1

[

P 1
(
A1

i

)
P 2
(

A2
π−1
n (i)

)]

=

n∏

i=1

[
P 1
(
A1

i

)
P 2
(
A2

i

)]

= P

(
n⋂

i=1

{
Xi ∈ A1

i ×A2
i

}

)

= P (Xn ∈ A) .

Now consider a random permutation Πn, uniformly distributed on (Sn), and independent of Xn. Then

P
(
XΠn

n ∈ A
)

=
∑

πn∈Sn

P (Xπn
n ∈ A)P (Πn = πn)

=
1

n!

∑

πn∈Sn

P (Xn ∈ A)

= P (Xn ∈ A) ,

which ends the proof.
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5.9 Proof of Theorem 3

Sketch of proof. Let dBL denote the bounded Lipschitz metric, which metrizes the weak convergence (see
[14, Prop. 11.3.2 and Th. 11.3.3] for instance), and defined by

dBL(µ, ν) = sup
f∈BL, ‖f‖BL≤1

∣
∣
∣
∣

∫

R

f (dµ− dν)

∣
∣
∣
∣
,

where BL denotes the set of bounded Lipschitz function on R, and ‖f‖BL = ‖f‖∞ + supx 6=y
|f(x)−f(y)|

|x−y| .

In the following, when Zn is real-valued random variable depending on Xn and Πn, we will denote by L (Zn|Xn)
the conditional distribution of Zn given Xn with respect to the Lebesgue measure.

The first step of the proof consists of decomposing
√
nUn,hϕ

(
XΠn

n

)
in three terms:

√
nUn,hϕ

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn (Xn)√

n

)

,

where MΠn
n (Xn) is associated with a martingale difference array, and:

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→∞

0 and
Tn (Xn)√

n

P−→
n→∞

0.

So,

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→∞

0.

The second step will be to prove, from the Cramér-Wold device and the Central Limit Theorem for martingales,
that

dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0,

so that
dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0.

The third step will be to obtain the convergence:

E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]
P−→

n→∞
σ2
hϕ,P 1⊗P 2 ,

so that finally

d2

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0.

First step: decomposition of
√
nUn,hϕ

(
XΠn

n

)
.

It is obvious that by the definition (4) of hϕ,

Un,hϕ

(
XΠn

n

)
=

1

n− 1
UΠn
n , (42)

where

UΠn
n =

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)

=

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− 1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)]

− 1

n

n∑

i,j=1

(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)])
.
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On the one hand, if EP [f ] and EP 1⊗P 2 [f ] respectively denote E
[
f
(
X1

i , X
2
i

)]
, and E

[
f
(
X1

i , X
2
j

)]
with j 6= i,

for any integrable function f , then

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)]
=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i , X
2
j

)]
−

n∑

i,j=1

(

1{Πn(i)=j} −
1

n

)

E
[
ϕ
(
X1

i , X
2
j

)]

=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i , X
2
j

)]
− (EP [ϕ]− EP 1⊗P 2 [ϕ])

n∑

i=1

(

1{Πn(i)=i} −
1

n

)

.

On the other hand,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
−

n∑

i,j=1

(

1{Πn(i)=j} −
1

n

)

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

=
n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]

−
n∑

i=1

(

1{Πn(i)=i} −
1

n

)
(
E
[
ϕ
(
X1

i , X
2
i

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

])
,

where X = (X1, X2) is assumed to be P -distributed and independent of (Xn)n, and in the same way,

1

n

n∑

i,j=1

E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
=

n∑

i,j=1

1{Πn(i)=j}E
[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]

−
n∑

j=1

(

1{Πn(j)=j} −
1

n

)
(
E
[
ϕ
(
X1

j , X
2
j

)∣
∣X2

j

]
− E

[
ϕ
(
X1, X2

j

)∣
∣X2

j

])
.

Therefore,

UΠn
n =

n∑

i,j=1

1{Πn(i)=j}
(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)])

+
n∑

i=1

(

1{Πn(i)=i} −
1

n

)(

E
[
ϕ
(
X1

i , X
2
i

)∣
∣X1

i

]
+ E

[
ϕ
(
X1

i , X
2
i

)∣
∣X2

i

]

−E
[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

i

)∣
∣X2

i

]
− EP [ϕ] + EP 1⊗P 2 [ϕ]

)

− 1

n

n∑

i,j=1

(

ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)] )

.

As a consequence,
√
nUn,hϕ

(
XΠn

n

)
=

n

n− 1

(

MΠn
n (Xn) +

RΠn
n (Xn)√

n
− Tn (Xn)√

n

)

, (43)

with:

MΠn
n (Xn) =

1√
n

∑

i6=j

1{Πn(i)=j}
(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)])
,

RΠn
n (Xn) =

n∑

i=1

(

1{Πn(i)=i} −
1

n

)
(
ϕ
(
X1

i , X
2
i

)
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

i

)∣
∣X2

i

]
+ EP 1⊗P 2 [ϕ]

)
,

Tn (Xn) =
1

n

∑

i6=j

(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)])
.

Let us now prove that

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→∞

0.
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To do this, we first notice that for every function f in BL, and such that ‖f‖BL ≤ 1,
∣
∣
∣
∣
E
[
f
(√
nUn,hϕ

(
XΠn

n

))∣
∣Xn

]
− E

[

f

(
n

n− 1
MΠn

n (Xn)

)∣
∣
∣
∣
Xn

]∣
∣
∣
∣

≤ E

[∣
∣
∣
∣

√
nUn,hϕ

(
XΠn

n

)
− n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣

∣
∣
∣
∣
Xn

]

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn (Xn)|√

n

)

,

hence,

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

≤ n

n− 1

(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

+
|Tn (Xn)|√

n

)

.

(44)
Moreover, on the one hand, by Cauchy-Schwarz and Jensen’s inequalities, and Πn is independent of (Xn)n,

E





(

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

])2


 ≤ 1

n
E
[(
RΠn

n (Xn)
)2
]

≤ 1

n

(
n∑

i,j=1

E

[(

1{Πn(i)=i} −
1

n

)(

1{Πn(j)=j} −
1

n

)]

×

E
[(

ϕ
(
X1

i , X
2
i

)
− E

[
ϕ
(
X1

i , X
2
)∣
∣X1

i

]
− E

[
ϕ
(
X1, X2

i

)∣
∣X2

i

]
+ EP 1⊗P 2 [ϕ]

)

×
(

ϕ
(
X1

j , X
2
j

)
− E

[
ϕ
(
X1

j , X
2
)∣
∣X1

j

]
− E

[
ϕ
(
X1, X2

j

)∣
∣X2

j

]
+ EP 1⊗P 2 [ϕ]

)]
)

≤ C

n

(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])

n∑

i,j=1

(

E
[
1{Πn(i)=i}1{Πn(j)=j}

]
− 1

n2

)

≤ C

n

(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])





n∑

i=1

(
1

n
− 1

n2

)

+
∑

i6=j

(
1

n(n− 1)
− 1

n2

)




≤ C

n

(
EP

[
ϕ2
]
+ EP 1⊗P 2

[
ϕ2
])

−→
n→∞

0.

Therefore, from Markov’s inequality, we deduce that

E

[∣
∣RΠn

n (Xn)
∣
∣

√
n

∣
∣
∣
∣
∣
Xn

]

P−→
n→∞

0.

On the other hand, denoting by Ci,j the centred random variable

Ci,j = ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)]
,

then

Tn (Xn) =
1

n

∑

i6=j

Ci,j .

Hence,

E

[(
Tn (Xn)√

n

)2
]

=
1

n3

∑

i6=j

∑

k 6=l

E [Ci,jCk,l] .

Notice that for i 6= j, E [Ci,j |Xi] = E [Ci,j |Xj] = 0.

If # {i, j, k, l} = 4, then E [Ci,jCk,l] = (E [Ci,j ])
2
= 0.

If i, j, l are all different, then

E [Ci,jCi,l] = E [E [Ci,jCi,l|Xi, Xl]]

= E [E [Ci,j |Xi]Ci,l]

= 0.
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In the same way, for i, j, k all different, then E [Ci,jCk,i] = 0.
For i 6= j, then

E
[
C2

i,j

]
= σ2

hϕ,P 1⊗P 2 , and E [Ci,jCj,i] ≤ σ2
hϕ,P 1⊗P 2 , (45)

by the Cauchy-Schwarz inequality.
Combining the above computations, we obtain that

E

[(
Tn (Xn)√

n

)2
]

≤ 2
n(n− 1)

n3
σ2
hϕ,P 1⊗P 2 −→

n→∞
0,

therefore,
Tn (Xn)√

n

P−→
n→∞

0.

Finally, from (44), we derive that:

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,L
(

n

n− 1
MΠn

n (Xn)

∣
∣
∣
∣
Xn

))

P−→
n→∞

0. (46)

Second step: asymptotic normality of MΠn

n (Xn) given Xn, in probability.

Recall that

MΠn
n (Xn) =

1√
n

∑

i6=j

1{Πn(i)=j}
(
ϕ
(
X1

i , X
2
j

)
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X1

i

]
− E

[
ϕ
(
X1

i , X
2
j

)∣
∣X2

j

]
+ E

[
ϕ
(
X1

i , X
2
j

)])
,

that is, with the above notation,

MΠn
n (Xn) =

1√
n

∑

i6=j

1{Πn(i)=j}Ci,j =
1√
n

n∑

i=2

i−1∑

j=1

(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
.

Let Π′
n be another uniformly distributed random permutation with values in Sn, independent of Πn and Xn,

and

M
Π′

n
n (Xn) =

1√
n

∑

i6=j

1{Π′
n(i)=j}Ci,j =

1√
n

n∑

i=2

i−1∑

j=1

(
1{Π′

n(i)=j}Ci,j + 1{Π′
n(j)=i}Cj,i

)
.

Lemma 1. Considering the above notation,

L
((

MΠn
n (Xn) ,M

Π′
n

n (Xn)
)′)

⇒ N2

(

0,

(

σ2
hϕ,P 1⊗P 2 0

0 σ2
hϕ,P 1⊗P 2

))

,

where N2 (M,V ) denotes the 2-dimensional Gaussian distribution with expectation M and variance-covariance
matrix V .

Proof. According to the Cramér-Wold device, given a, b in R, we aim at proving that

L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

⇒ N
(

0,
(
a2 + b2

)
σ2
hϕ,P 1⊗P 2

)

.

In order to deal with simpler mathematical expressions, we introduce below a few notations more.

• For any fixed integer n ≥ 2, Fn,k denotes the filtration σ (Πn,Π
′
n, X1, X2, . . . , Xk).

• Let

Yn,i =
1√
n

i−1∑

j=1

(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)
,

Y ′
n,i =

1√
n

i−1∑

j=1

(
1{Π′

n(i)=j}Ci,j + 1{Π′
n(j)=i}Cj,i

)
,

Mn,k =
∑k

i=2 Yn,i and M ′
n,k =

∑k
i=2 Y

′
n,i, so that MΠn

n (Xn) =Mn,n and M
Π′

n
n (Xn) =M ′

n,n.
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Let us first prove that for a fixed integer n ≥ 2,
(

aMn,k + bM ′
n,k,Fn,k

)

2≤k≤n
is a martingale difference array.

Note that for 2 ≤ i ≤ n,

E [Yn,i|Fn,i−1] =
1√
n

i−1∑

j=1

E
[
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

∣
∣Fn,i−1

]

=
1√
n

i−1∑

j=1

(
1{Πn(i)=j}E [Ci,j |Xj ] + 1{Πn(j)=i}E [Cj,i|Xj]

)

= 0.

In the same way, we have that E
[
Y ′
n,i

∣
∣Fn,i−1

]
= 0, so

E
[
aMn,k + bM ′

n,k

∣
∣Fn,k−1

]
= aMn,k1 + bM ′

n,k−1.

We now use the following result which is commonly attributed to Brown [9].

Theorem 5. Let (Xn,k)k∈{1,...,pn},n∈N∗ be a martingale difference array, i.e. such that there exists an array of
σ-algebra (Fn,k)k∈{1,...,pn},n∈N∗ that is increasing w.r.t. k such that for all k = 1, ..., pn,

E [Xn,k|Fn,k−1] = 0.

Let An =
∑pn

k=1 E
[

X2
n,k|Fn,k−1

]

. Assume that

• An
P−→

n→∞
σ2 > 0.

• For all ε > 0,
∑pn

k=1 E
[

X2
n,k1{|Xn,k|>ε}

]

→n→∞ 0

Then Zn =
∑pn

k=1Xn,k converges in distribution towards N (0, σ2).

From Theorem 5, we deduce that if:

(i)
n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]
P−→

n→∞
(a2 + b2)σ2

hϕ,P 1⊗P 2 ,

(ii)

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

→ 0 for any ε > 0,

then
L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

⇒ N
(

0,
(
a2 + b2

)
σ2
hϕ,P 1⊗P 2

)

.

Let us now check that both (i) and (ii) are satisfied.

Assumption (i). Noticing that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
∣
∣
∣Fn,i−1

]

= (a2 + b2)

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]
+ 2ab

n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
, (47)

the proof of (i) can be decomposed into two points.
The first point consists of deriving that

n∑

i=2

E
[
Y 2
n,i

]
−→
n→∞

σ2
hϕ,P 1⊗P 2 , and Var

(
n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]

)

−→
n→∞

0,

which leads, thanks to Chebychev’s inequality, to

n∑

i=2

E
[
Y 2
n,i

∣
∣Fn,i−1

]
P−→

n→∞
σ2
hϕ,P 1⊗P 2 .
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The second point consists of proving that

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→∞

0,

so
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

] P−→
n→∞

0.

First point.

On the one hand,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j,k=1

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)]
.

Furthermore, if 1 ≤ j 6= k ≤ i− 1,

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)]

= E
[
E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)∣
∣Xi, Xj ,Πn

]]

= E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}E [Ci,k|Xi] + 1{Πn(k)=i}E [Ck,i|Xi]

)]

= 0.

Thus,

n∑

i=2

E
[
Y 2
n,i

]
=

1

n

n∑

i=2

i−1∑

j=1

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

)2
]

=
1

n

n∑

i=2

i−1∑

j=1

E
[
1{Πn(i)=j}C

2
i,j + 1{Πn(j)=i}C

2
j,i + 21{Πn(i)=j}1{Πn(j)=i}Ci,jCj,i

]

=
1

n

n∑

i=2

i−1∑

j=1

(
2

n
E
[
C2

i,j

]
+

2

n(n− 1)
E [Ci,jCj,i]

)

=
2

n2

n∑

i=2

(i− 1)

(

E
[
C2

1,2

]
+

1

n− 1
E [C1,2C2,1]

)

so
n∑

i=2

E
[
Y 2
n,i

]
=
n− 1

n
E
[
C2

1,2

]
+

1

n
E [C1,2C2,1] . (48)

From (45), we finally derive that
n∑

i=2

E
[
Y 2
n,i

]
−→
n→∞

σ2
hϕ,P 1⊗P 2 . (49)
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On the other hand, we have that:

E
[
Y 2
n,i

∣
∣Fn,i−1

]
=

1

n

i−1∑

j,k=1

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Πn(i)=k}Ci,k + 1{Πn(k)=i}Ck,i

)∣
∣Fn,i−1

]

=
1

n

i−1∑

j=1

E
[
1{Πn(i)=j}C

2
i,j + 21{Πn(i)=j}1{Πn(j)=i}Ci,jCj,i + 1{Πn(j)=i}C

2
j,i

∣
∣Fn,i−1

]

+
1

n

∑

1≤j 6=k≤i−1

E
[
1{Πn(i)=j}1{Πn(k)=i}Ci,jCk,i + 1{Πn(j)=i}1{Πn(i)=k}Cj,iCi,k

∣
∣Fn,i−1

]

=
1

n

i−1∑

j=1

1{Πn(i)=j}E
[
C2

i,j

∣
∣Xj

]
+

1

n

i−1∑

j=1

1{Πn(j)=i}E
[
C2

j,i

∣
∣Xj

]

+
2

n

i−1∑

j=1

1{Πn(i)=j}1{Πn(j)=i}E [Ci,jCj,i|Xj ]

+
2

n

∑

1≤j 6=k≤i−1

1{Πn(i)=j}1{Πn(k)=i}E [Ci,jCk,i|Xj , Xk] .

Then,
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

]
− E

[
Y 2
n,i

])
= An,1 +An,2 + 2An,3 + 2An,4,

with

An,1 =
1

n

∑

1≤j<i≤n

(

1{Πn(i)=j}E
[
C2

i,j

∣
∣Xj

]
− 1

n
E
[
C2

i,j

]
)

,

An,2 =
1

n

∑

1≤j<i≤n

(

1{Πn(j)=i}E
[
C2

j,i

∣
∣Xj

]
− 1

n
E
[
C2

i,j

]
)

,

An,3 =
1

n

∑

1≤j<i≤n

(

1{Πn(i)=j}1{Πn(j)=i}E [Ci,jCj,i|Xj]−
1

n(n− 1)
E [Ci,jCj,i]

)

,

An,4 =
1

n

∑

1≤j 6=k<i≤n

(
1{Πn(i)=j}1{Πn(k)=i}E [Ci,jCk,i|Xj, Xk]

)
.

Thus,

Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

= E
[

(An,1 +An,2 + 2An,3 + 2An,4)
2
]

≤ 4
(
E
[
A2

n,1

]
+ E

[
A2

n,2

]
+ 4E

[
A2

n,3

]
+ 4E

[
A2

n,4

])
. (50)

Let us now control each term of the above right-hand side.

Convergence of E
[
A2

n,1

]
and E

[
A2

n,2

]
.

E
[
A2

n,1

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E

[(

1{Πn(i)=j}E
[
C2

i,j

∣
∣Xj

]
− 1

n
E
[
C2

i,j

]
)(

1{Πn(k)=l}E
[
C2

k,l

∣
∣Xl

]
− 1

n
E
[
C2

k,l

]
)]

=
1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
− 1

n2

(
E
[
C2

k,l

])2
)

.

Let us now consider all the cases where 1 ≤ j < i ≤ n, and 1 ≤ l < k ≤ n.
If i = k and j = l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
=

1

n
E
[(
E
[
C2

i,j

∣
∣Xj

])2
]

.
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If i = k and j 6= l, or if i 6= k and j = l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
= 0.

If i 6= k and j 6= l, then

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
=

1

n(n− 1)

(
E
[
C2

i,j

])2
.

By combining these results, from (45) and under the assumption (Aϕ,Mmt), we obtain that:

E
[
A2

n,1

]
≤ n− 1

2n2

(

E
[(
E
[
C2

i,j

∣
∣Xj

])2
]

−
σ4
hϕ,P 1⊗P 2

n

)

+ Cn2

(
1

n(n− 1)
− 1

n2

)

σ4
hϕ,P 1⊗P 2 −→

n→∞
0.

One can prove in the same way that
E
[
A2

n,2

]
−→
n→∞

0.

Convergence of E
[
A2

n,3

]
.

E
[
A2

n,3

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E

[(

1{Πn(i)=j}1{Πn(j)=i}E [Ci,jCj,i|Xj ]−
1

n(n− 1)
E [Ci,jCj,i]

)

×

(

1{Πn(k)=l}1{Πn(l)=k}E [Ck,lCl,k|Xl]−
1

n(n− 1)
E [Ck,lCl,k]

)]

=
1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

(

E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xj ]]

− 1

n2(n− 1)2
(E [Ci,jCj,i])

2

)

=
1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xj]]

− 1

4n2
(E [C1,2C2,1])

2
.

Let us again consider all the cases where 1 ≤ j < i ≤ n, and 1 ≤ l < k ≤ n.
If i = k and j = l, then

E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xj ]] =

1

n(n− 1)
E
[

(E [Ci,jCj,i|Xj ])
2
]

.

If i = k and j 6= l, or if i 6= k and j = l, then

E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
E [E [Ci,jCj,i|Xj]E [Ck,lCl,k|Xj ]] = 0.

If i 6= k and j 6= l, then

E
[
1{Πn(i)=j}1{Πn(j)=i}1{Πn(k)=l}1{Πn(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xj]] =

(E [C1,2C2,1])
2

n(n− 1)(n− 2)(n− 3)
.

Thus, under (Aϕ,Mmt), we finally have that:

E
[
A2

n,3

]
≤ 1

2n2
E
[

(E [C1,2C2,1|X1])
2
]

+ C
n (E [C1,2C2,1])

2

(n− 1)(n− 2)(n− 3)
−→
n→∞

0.

Convergence of E
[
A2

n,4

]
.

E
[
A2

n,4

]
=

1

n2

∑

1≤j 6=k<i≤n

∑

1≤p6=q<l≤n

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
×

E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]] .
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Let us now consider all the cases where 1 ≤ j 6= k < i ≤ n, and 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} ≥ 3, there exists at least one element in {j, k, p, q}, j for instance (the other cases are studied in
the same way), which differs from the other ones. Then,

E [E [Ci,jCk,i|Xj, Xk]E [Cl,pCq,l|Xp, Xq]] = E [E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]|Xk, Xp, Xq]]

= E [E [Ci,jCk,i|Xk]E [Cl,pCq,l|Xp, Xq]]

= E [E [E [Ci,jCk,i|Xi, Xk]|Xk]E [Cl,pCq,l|Xp, Xq]]

= E [E [Ck,iE [Ci,j |Xi]|Xk]E [Cl,pCq,l|Xp, Xq]] .

Since E [Ci,j |Xi] = 0, this leads to:

E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]] = 0. (51)

If j = p, k = q, and i = l, then,

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
=

1

n(n− 1)
,

and

E [E [Ci,jCk,i|Xj , Xk]E [Cl,pCq,l|Xp, Xq]] = E
[

(E [Ci,jCk,i|Xj , Xk])
2
]

= E
[

(E [C3,1C2,3|X1, X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, and i 6= l, then 1{Πn(k)=i}1{Πn(q)=l} = 0, so

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
= 0.

If j = q, k = p, and i = l, then 1{Πn(i)=j}1{Πn(l)=p} = 0, so

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1{Πn(i)=j}1{Πn(k)=i}1{Πn(l)=p}1{Πn(q)=l}

]
=

(n− 4)!

n!
,

and

E [E [Ci,jCk,i|Xj, Xk]E [Cl,pCq,l|Xp, Xq]] = E [E [Ci,jCk,i|Xj , Xk]E [Cl,kCj,l|Xj , Xk]]

= E [E [Ci,jCk,iCl,kCj,l|Xj , Xk]]

= E [C1,4C4,2C3,1C2,3]

< +∞ under (Aϕ,Mmt).

By combining these results, we obtain that:

E
[
A2

n,4

]
≤ C

n3

n2

E
[

(E [C3,1C2,3|X1, X2])
2
]

n(n− 1)
+ C′n

4

n2

(n− 4)!

n!
E [C1,4C4,2C3,1C2,3] −→

n→∞
0.

From (50), and the above results of convergence towards 0 for E
[
A2

n,1

]
, E
[
A2

n,2

]
, E
[
A2

n,3

]
, and E

[
A2

n,4

]
, we

firstly derive that:

Var

(
n∑

i=2

(
E
[
Y 2
n,i

∣
∣Fn,i−1

])

)

−→
n→∞

0.
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Second point.

Notice that

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]
=

1

n

i−1∑

j,k=1

E
[(
1{Πn(i)=j}Ci,j + 1{Πn(j)=i}Cj,i

) (
1{Π′

n(i)=k}Ci,k + 1{Π′
n(k)=i}Ck,i

)∣
∣Fn,i−1

]

= Bn,1 +Bn,2 +Bn,3 +Bn,4,

with

Bn,1 =
1

n

∑

1≤j<i≤n

(
1{Πn(i)=j}1{Π′

n(i)=j}E
[
C2

i,j

∣
∣Xj

])
,

Bn,2 =
1

n

∑

1≤j<i≤n

(
1{Πn(j)=i}1{Π′

n(j)=i}E
[
C2

j,i

∣
∣Xj

])
,

Bn,3 =
1

n

∑

1≤j<i≤n

((
1{Πn(i)=j}1{Π′

n(j)=i} + 1{Πn(j)=i}1{Π′
n(i)=j}

)
E [Ci,jCj,i|Xj ]

)
,

Bn,4 =
1

n

∑

1≤j 6=k<i≤n

(

1{Πn(i)=j}1{Π′
n(i)=k}E [Ci,jCi,k|Xj , Xk] + 1{Πn(i)=j}1{Π′

n(k)=i}E [Ci,jCk,i|Xj , Xk]

+1{Πn(j)=i}1{Π′
n(i)=k}E [Cj,iCi,k|Xj , Xk] + 1{Πn(j)=i}1{Π′

n(k)=i}E [Cj,iCk,i|Xj, Xk]

)

.

Thus,

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 ≤ 4
(
E
[
B2

n,1

]
+ E

[
B2

n,2

]
+ E

[
B2

n,3

]
+ E

[
B2

n,4

])
. (52)

Convergence of E
[
B2

n,1

]
and E

[
B2

n,2

]
.

E
[
B2

n,1

]
=

1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E

[

(
1{Πn(i)=j}1{Π′

n(i)=j}E
[
C2

i,j

∣
∣Xj

]) (
1{Πn(k)=l}1{Π′

n(k)=l}E
[
C2

k,l

∣
∣Xl

])

]

=
1

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
1{Π′

n(i)=j}1{Π′
n(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]

≤ 1

n3

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
E
[
C2

i,j

∣
∣Xj

]
E
[
C2

k,l

∣
∣Xl

]]
.

Then, with the same computations as for the convergence of E
[
A2

n,1

]
above, we prove that:

E
[
B2

n,1

]
≤ n− 1

2n3
E
[(
E
[
C2

1,2

∣
∣X2

])2
]

+ C
σ4
hϕ,P 1⊗P 2

n− 1
−→
n→∞

0

In the same way, we also prove that:

E
[
B2

n,2

]
−→
n→∞

0

Convergence of E
[
B2

n,3

]
.

E
[
B2

n,3

]
≤ 4

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E

[

(
1{Πn(i)=j}1{Π′

n(j)=i}E [Ci,jCj,i|Xj]
) (

1{Πn(k)=l}1{Π′
n(l)=k}E [Ck,lCl,k|Xl]

)

]

≤ 4

n2

∑

1≤j<i≤n

∑

1≤l<k≤n

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
E
[
1{Π′

n(j)=i}1{Π′
n(l)=k}

]
E [E [Ci,jCj,i|Xj ]E [Ck,lCl,k|Xl]] .
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Now, with similar computations as for the convergence of E
[
A2

n,1

]
above again, we prove that:

E
[
B2

n,3

]
≤ 2

n− 1

n3
E
[

(E [C1,2C2,1|X2])
2
]

+ C
(E [C1,2C2,1])

2

n− 1
−→
n→∞

0.

Convergence of E
[
B2

n,4

]
.

Setting

Bn,4,1 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(i)=j}1{Π′
n(i)=k}E [Ci,jCi,k|Xj , Xk] ,

Bn,4,2 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(i)=j}1{Π′
n(k)=i}E [Ci,jCk,i|Xj , Xk] ,

Bn,4,3 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(j)=i}1{Π′
n(i)=k}E [Cj,iCi,k|Xj , Xk] ,

Bn,4,4 =
1

n

∑

1≤j 6=k<i≤n

1{Πn(j)=i}1{Π′
n(k)=i}E [Cj,iCk,i|Xj , Xk] ,

then Bn,4 = Bn,4,1 +Bn,4,2 +Bn,4,3 +Bn,4,4.

E
[
B2

n,4,1

]
=

1

n2

∑

1≤j 6=k<i≤n

∑

1≤p6=q<l≤n

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
×

E [E [Ci,jCi,k|Xj, Xk]E [Cl,pCl,q|Xp, Xq]] .

Let us consider all the cases where 1 ≤ j 6= k < i ≤ n and 1 ≤ p 6= q < l ≤ n.
If #{j, k, p, q} = 3, using a similar argument as in (51), we obtain that:

E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]] = 0.

If j = p, k = q, and i = l, then,

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
=

1

n2
,

and

E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]] = E
[

(E [Ci,jCi,k|Xj , Xk])
2
]

= E
[

(E [C3,1C3,2|X1, X2])
2
]

< +∞ under (Aϕ,Mmt).

If j = p, k = q, and i 6= l, or if j = q, k = p, and i = l, then 1{Πn(i)=j}1{Πn(l)=p} = 0, so

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
= 0.

If j = q, k = p, and i 6= l, then

E
[
1{Πn(i)=j}1{Πn(l)=p}

]
E
[
1{Π′

n(i)=k}1{Π′
n(l)=q}

]
=

1

n2(n− 1)2
,

and

E [E [Ci,jCi,k|Xj , Xk]E [Cl,pCl,q|Xp, Xq]] = E [E [Ci,jCi,k|Xj , Xk]E [Cl,kCl,j |Xj , Xk]]

= E [E [Ci,jCi,kCl,kCl,j |Xj , Xk]]

= E [C1,4C1,3C2,3C2,4]

< +∞ under (Aϕ,Mmt).
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By combining these results, we obtain that:

E
[
B2

n,4,1

]
≤ C

E
[

(E [C3,1C3,2|X1, X2])
2
]

n
+ C′E [C1,4C1,3C2,3C2,4]

(n− 1)2
−→
n→∞

0.

Following the same lines of proof, we furthermore obtain that E
[
B2

n,4,2

]
, E
[
B2

n,4,3

]
, and E

[
B2

n,4,4

]
also converge

towards 0.
As a consequence,

E
[
B2

n,4

]
−→
n→∞

0.

From (52), and the convergence towards 0 for E
[
B2

n,1

]
, E
[
B2

n,2

]
, E
[
B2

n,3

]
, and E

[
B2

n,4

]
, we derive that:

E





(
n∑

i=2

E
[
Yn,iY

′
n,i

∣
∣Fn,i−1

]

)2


 −→
n→∞

0,

which finally allows to conclude that assumption (i) is satisfied.

Assumption (ii). Given ε > 0, let us prove that

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

−→
n→∞

0.

Since 1{|aYn,i+bY ′
n,i|>ε} ≤

(
aYn,i+bY ′

n,i

ε

)2

,

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

≤ 1

ε2

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)4
]

≤ 23

ε2

n∑

i=2

(

a4E
[
Y 4
n,i

]
+ b4E

[

Y ′
n,i

4
])

≤ 23(a4 + b4)

ε2

n∑

i=2

E
[
Y 4
n,i

]
.

But it is easy to see that

Yn,i =
1√
n

(

Ci,Πn(i)1{Πn(i)<i} + CΠ−1
n (i),i1{Π−1

n (i)<i}
)

.

Hence,

E
[
Y 4
n,i

]
≤ 23

n2
E
[

C4
i,Πn(i)

1{Πn(i)<i} + C4
Π−1

n (i),i
1{Π−1

n (i)<i}
]

.

≤ 23

n2

i−1∑

j=1

(

E
[
C4

i,j1{Πn(i)=j}
]
+ E

[

C4
j,i1{Π−1

n (i)=j}
])

≤ 24

n2
E
[
C4

1,2

]
.

We thus obtain that:

n∑

i=2

E
[(
aYn,i + bY ′

n,i

)2
1{|aYn,i+bY ′

n,i|>ε}
]

≤ 27(a4 + b4)

ε2n
E
[
C4

1,2

]
,

where the right-hand side tends to 0 as soon as E
[
C4

1,2

]
< +∞.

This last condition is ensured by (Aϕ,Mmt), which allows to check that assumption (ii) is also checked, and that

L
(

aMΠn
n (Xn) + bM

Π′
n

n (Xn)
)

⇒ N
(

0,
(
a2 + b2

)
σ2
hϕ,P 1⊗P 2

)

.

This ends the proof of Lemma 1.
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Recall that we aim at proving that

dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0.

From Lemma 1, we deduce that for every t in R,






P
(
MΠn

n (Xn) ≤ t
)

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(t),

P
(

MΠn
n (Xn) ≤ t,M

Π′
n

n (Xn) ≤ t
)

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(t).

Setting Mn =MΠn
n (Xn), and M ′

n =M
Π′

n
n (Xn) for the sake of simplicity, this leads to







E
[
E
[
1{Mn≤t}

∣
∣Xn

]]
−→

n→+∞
Φ0,σ2

hϕ,P1⊗P2
(t),

E
[(
E
[
1{Mn≤t}

∣
∣Xn

])2
]

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(t).

(53)

It is well-known (see [14, Th. 9.2.1] for instance), that in a separable metric space, convergence in probability is
metrizable, and therefore is equivalent to almost-sure convergence of a sub-sequence of any initial subsequence.
So, let us fix an initial extraction φ0 : N → N, which defines a sub-sequence

(
Mφ0(n)

)

n∈N
of (Mn)n∈N

.

Let us denote by (qm)m∈N a sequence such that {qm,m ∈ N} = Q. For any m in N, from (53), we derive that






E
[

E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]]

−→
n→+∞

Φ0,σ2
hϕ,P1⊗P2

(qm),

E

[(

E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]2
)]

−→
n→+∞

Φ2
0,σ2

hϕ,P1⊗P2
(qm),

which leads (by Chebychev’s inequality) to

E
[

1{Mφ0(n)≤qm}
∣
∣
∣Xφ0(n)

]
P−→

n→∞
Φ0,σ2

hϕ,P1⊗P2
(qm). (54)

Therefore, there exists an extraction φ1 and a subset Ω1 of Ω such that: P (Ω1) = 1, and for every ω ∈ Ω1,

E
[

1{Mφ1◦φ(n)≤q1}
∣
∣
∣Xφ1◦φ(n)

]

(ω) −→
n→∞

Φ0,σ2
hϕ,P1⊗P2

(q1).

Now, let m ≥ 1 for which there exists an extraction φm and a subset Ωm of Ω such that: P (Ωm) = 1, and for
every ω ∈ Ωm,

E
[

1{Mφm◦φm−1◦...◦φ0(n)≤qm}
∣
∣
∣Xφm◦φm−1◦...◦φ0(n)

]

(ω) −→
n→∞

Φ0,σ2
hϕ,P1⊗P2

(qm).

Then, from (54), there also exist an extraction φm+1 and a subset Ωm+1 of Ω such that: P (Ωm+1) = 1, and for
every ω ∈ Ωm+1,

E
[

1{Mφm+1◦φm◦φm−1◦...◦φ0(n)≤qm+1}
∣
∣
∣Xφm+1◦φm◦...◦φ0(n)

]

(ω) −→
n→∞

Φ0,σ2
hϕ,P1⊗P2

(qm+1).

Setting Ω̃ =
⋂

m∈N
Ωm and for every n in N, φ̃(n) = φn ◦ . . . ◦ φ2 ◦ φ1(n), then P

(

Ω̃
)

= 1, and for every ω in

Ω̃, and m in N,

E

[

1{

Mφ̃◦φ0(n)≤qm
}

∣
∣
∣
∣
Xφ̃◦φ0(n)

]

(ω) −→
n→∞

Φ0,σ2
hϕ,P1⊗P2

(qm).

Since Φ0,σ2
hϕ,P1⊗P2

is a continuous distribution function, this means that:

dBL

(

L
(

Mφ̃◦φ0(n)

∣
∣
∣Xφ̃◦φ0(n)

)

,N
(

0, σ2
hϕ,P 1⊗P 2

))
a.s.−→

n→∞
0.

To conclude, we actually proved that

dBL

(

L
(
MΠn

n (Xn)
∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0,

which, combined with (46), leads to:

dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0.
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Third step: convergence of conditional second order moments.

Recall that from (42), Un,hϕ

(
XΠn

n

)
= 1

n−1U
Πn
n , where

UΠn
n =

n∑

i=1

ϕ
(

X1
i , X

2
Πn(i)

)

− 1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)

=
n∑

i,j=1

(

1{Πn(i)=j} −
1

n

)

ϕ
(
X1

i , X
2
j

)
.

Therefore,

E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]

=
n2

(n− 1)2

(
1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

])

. (55)

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]

=
1

n

n∑

i,j=1

n∑

k,l=1

E

[(

1{Πn(i)=j} −
1

n

)(

1{Πn(k)=l} −
1

n

)]

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)

=
1

n

n∑

i,j=1

n∑

k,l=1

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
.

Firstly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
=

(n− 2)(n− 3)

n2
Un,1,

where

Un,1 =
(n− 4)!

n!

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
,

is clearly a U -statistic of order 4. From the strong law of large numbers of Hœffding [32], we thus have that

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=4

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

) a.s.−→
n→∞

(
E
[
ϕ
(
X1

1 , X
2
2

)])2
.

Secondly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3

i=j,i=l,j=k, or k=l

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
=

2(n− 2)

n2
Un,2,

where

Un,2 =
(n− 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

k , X
2
l

)
+ ϕ

(
X1

i , X
2
l

)
ϕ
(
X1

k , X
2
i

))
,

is a U -statistic of order 3, so 2(n−2)
n2 Un,2

a.s.−→
n→∞

0.

Thirdly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=3
i=k, or j=l

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
= −n(n− 1)(n− 2)

n3
Un,3,

where

Un,3 =
(n− 3)!

n!

∑

i,k,l∈{1,...,n}
#{i,k,l}=3

(
ϕ
(
X1

i , X
2
k

)
ϕ
(
X1

i , X
2
l

)
+ ϕ

(
X1

i , X
2
l

)
ϕ
(
X1

k , X
2
l

))
,
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is a U -statistic of order 3. So,

−n(n− 1)(n− 2)

n3
Un,3

a.s.−→
n→∞

−E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X2

])2
]

.

Fourthly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=j=k,i=j=l,

i=k=l, or j=k=l

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
= −2(n− 1)

n2
Un,4,

where

Un,4 =
1

n(n− 1)

∑

1≤i6=j≤n

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

i , X
2
j

)
+ ϕ

(
X1

i , X
2
i

)
ϕ
(
X1

j , X
2
i

))
,

is a U -statistic of order 2, so − 2(n−1)
n2 Un,4

a.s.−→
n→∞

0.

Fifthly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2

i=j 6=k=l, or i=l 6=j=k

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
=

1

n2
Un,5,

where

Un,5 =
1

n(n− 1)

∑

1≤i6=j≤n

(
ϕ
(
X1

i , X
2
i

)
ϕ
(
X1

j , X
2
j

)
+ ϕ

(
X1

i , X
2
j

)
ϕ
(
X1

j , X
2
i

))
,

is a U -statistic of order 2, so 1
n2Un,5

a.s.−→
n→∞

0.

Sixthly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=2
i=k 6=j=l

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
=

(n− 1)2

n2
Un,6,

where

Un,6 =
1

n(n− 1)

∑

1≤i6=j≤n

ϕ2
(
X1

i , X
2
j

)
,

is a U -statistic of order 2, so (n−1)2

n2 Un,6
a.s.−→

n→∞
E
[
ϕ2
(
X1

i , X
2
j

)]
.

Seventhly,

1

n

∑

i,j,k,l∈{1,...,n}
#{i,j,k,l}=1

(

E
[
1{Πn(i)=j}1{Πn(k)=l}

]
− 1

n2

)

ϕ
(
X1

i , X
2
j

)
ϕ
(
X1

k , X
2
l

)
=
n− 1

n3

n∑

i=1

ϕ
(
X1

i , X
2
i

)
,

which almost-surely tends to 0 thanks to the strong law of large numbers.
By combining all these results, we finally obtain that:

1

n
E
[(
UΠn
n

)2
∣
∣
∣Xn

]
a.s.−→

n→∞

(
E
[
ϕ
(
X1

1 , X
2
2

)])2−E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X1

])2
]

−E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X2

])2
]

+E
[
ϕ2
(
X1

i , X
2
j

)]
.

Noticing that
(
E
[
ϕ
(
X1

1 , X
2
2

)])2 − E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X1

])2
]

− E
[(
E
[
ϕ(X1

1 , X
2
2 )
∣
∣X2

])2
]

+ E
[
ϕ2
(
X1

i , X
2
j

)]
= σ2

hϕ,P 1⊗P 2 ,

from (55), we deduce that

E
[(√

nUn,hϕ

(
XΠn

n

))2
∣
∣
∣Xn

]
a.s.−→

n→∞
σ2
hϕ,P 1⊗P 2 .

Since
dBL

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0,

this allows to conclude that:

d2

(

L
(√
nUn,hϕ

(
XΠn

n

)∣
∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→∞
0.
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5.10 Proof of Corollary 2

Let us fix η in (0, 1), and recall that we aim at proving that, under the same assumptions as in Theorem 3,

q⋆n,ϕ,η (Xn)
P−→

n→+∞
Φ−1

0,σ2
h,P 1⊗P2

(η),

where q⋆n,ϕ,η (Xn) denotes the η-quantile of
√
nUn,hϕ

(
XΠn

n

)
given Xn.

Here, unlikely for the bootstrap approach, we only have in Theorem 3 a consistency result in probability. Thus,
we use the same argument of sub-sequences as in the proof of the Theorem itself, in order to come down to an
almost-sure convergence.
So let us consider an extraction φ0 : N → N which defines a sub-sequence.
Then, by Theorem 3, there exists an extraction φ1 such that

dBL

(

L
(√

φ1 ◦ φ0(n)Uφ1◦φ0(n),hϕ

(

X
Πφ1◦φ0(n)

φ1◦φ0(n)

)∣
∣
∣Xφ1◦φ0(n)

)

,N
(

0, σ2
hϕ,P 1⊗P 2

))
a.s.−→

n→∞
0. (56)

In particular, applying [59, Lemma 21.2] on the event where the convergence above is true, we directly obtain
that

q⋆φ1◦φ0(n),ϕ,η

(
Xφ1◦φ0(n)

) a.s.−→
n→+∞

Φ−1
0,σ2

hϕ,P1⊗P2
(η),

which ends the proof.

5.11 Proof of Theorem 4

As for the bootstrap approach, we focus on the case ∆⋆ = ∆⋆+
ϕ,α (Xn), the proof in the other cases being similar.

Given α in (0, 1), we deduce from Corollary 2 that

q⋆n,ϕ,1−α (Xn)
P−→

n→+∞
Φ−1

0,σ2
hϕ,P1⊗P2

(1− α) (57)

Then, from Proposition 4 and Slutsky’s lemma, under (H0),
(√
nUn,h(Xn), q

⋆
n,ϕ,1−α (Xn)

)
converges in distri-

bution towards (Z,Φ−1
0,σ2

hϕ,P1⊗P2
(1 − α)), where Z ∼ N (0, σ2

hϕ,P 1⊗P 2). Therefore, under (H0),

P
(√
nUn,hϕ

(Xn) > q⋆n,ϕ,1−α (Xn)
)

−→
n→+∞

α.

As for the consistency under (H1), we can argue exactly in the same way as for the bootstrap, to end the proof.

5.12 Proof of Proposition 8

In order to obtain the asymptotic results in Proposition 8, it is sufficient to prove that

√
nU⋆(⌈(1−α)(Bn+1)⌉) P−→

n→∞
Φ−1

0,σ2
h,P1⊗P2

(1− α). (58)

Then, we conclude using exactly the same arguments as in the proof of Theorem 4.
To obtain (58), we follow the proof of [59, Lemma 21.2].
Let us introduce some more notations.

• Let F ⋆
n,Xn

be the conditional cumulative distribution function (c.d.f) of L
(√
nUn,hϕ

, P ⋆
n |Xn

)
, and let us

first show that
sup
z∈R

∣
∣
∣F ⋆

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣

P−→
n→∞

0. (59)

As Theorem 3 provides only a convergence in probability, similar arguments of subsequences as in the
proof of Corollary 2, have to be used. Let φ0 be an initial extraction and φ1 be the extraction such that
(56) is satisfied. As convergence in the dBL metric is equivalent to a weak convergence, and as the limit is

continuous, by [59, Lemma 2.11] we obtain that supz∈R

∣
∣
∣F ⋆

φ1◦φ0(n),Xφ1◦φ0(n)
(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣

a.s.−→
n→∞

0.

This being true for any initial subsequence φ0, we obtain (59).
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• Let F ⋆Bn

n,Xn
denote the empirical c.d.f of L

(√
nUn,hϕ

, P ⋆
n |Xn

)
associated to the sample

(
Π1

n, . . . ,Π
Bn
n

)
, that

is

∀z ∈ R, F ⋆Bn

n,Xn
(z) =

1

Bn

Bn∑

b=1

1{√
nUn,hϕ

(

X
Πb
n

n

)

≤z

}.

Then, by the DKW inequality (see [59] p.268 for instance), we obtain as in the proof of Proposition 5,

sup
z∈R

∣
∣
∣F

⋆,Bn

n,Xn
(z)− F ⋆

n,Xn
(z)
∣
∣
∣

P−→
n→∞

0. (60)

• Finally, let

G⋆Bn

n,Xn
(z) =

1

Bn + 1

Bn+1∑

b=1

1{√nU⋆b≤z}.

Since G⋆Bn

n,Xn
(z) = 1

Bn+1

(

1{√nUn,hϕ (Xn)≤z} +BnF
⋆Bn

n,Xn
(z)
)

,

sup
z∈R

∣
∣
∣G⋆Bn

n,Xn
(z)− F ⋆,Bn

n,Xn
(z)
∣
∣
∣ ≤ 2

Bn + 1

a.s.−→
n→∞

0 (61)

Finally, combining (59), (60) and (61), we obtain that

sup
z∈R

∣
∣
∣G⋆Bn

n,Xn
(z)− Φ0,σ2

h,P1⊗P2
(z)
∣
∣
∣

P−→
n→∞

0. (62)

Since √
nU⋆(⌈(1−α)(Bn+1)⌉) =

(

G⋆Bn

n,Xn

)−1

(1 − α),

we conclude in the same way as in the proof of Proposition 5.

5.13 Proof of Proposition 9

Under (H0), from Proposition 6, we deduce that X
Π1

n
n , . . . ,X

ΠB
n

n ,Xn, and hence also U⋆1, . . . , U⋆(B+1), are
exchangeable real-valued random variables. Then,

P
(

U⋆(B+1) > U⋆(⌈(1−α)(B+1)⌉)
)

= P

(
B+1∑

b=1

1{U⋆b<U⋆(B+1)} ≥ (B + 1)− ⌊α(B + 1)⌋
)

= P

(
B+1∑

b=1

1{U⋆b≥U⋆(B+1)} ≤ ⌊α(B + 1)⌋
)

= P

(
B+1∑

b=1

1{U⋆b≥U⋆(B+1)} ≤ α(B + 1)

)

By exchangeability of U⋆1, . . . , U⋆(B+1), applying Lemma 1 in [51], whose proof is given in [2], we finally obtain
that:

P
(

U⋆(B+1) > U⋆(⌈(1−α)(B+1)⌉)
)

≤ α.

5.14 Proof of Proposition 1

Let us prove that h = hϕc
δ
oinc is continuous for the topology induced by d in any (x0, y0) ∈ Cδ satisfying

({
x10
}
∪
{
y10
})

∩
({
x20 ± δ

}
∪
{
y20 ± δ

})
= ∅

Consider a sequence {(xn, yn)}n∈N
of elements of X 2 × X 2, where xn =

(
x1n, x

2
n

)
and yn =

(
y1n, y

2
n

)
such that

d ((xn, yn) , (x0, y0)) −→
n→∞

0 and (x0, y0) belongs to Cδ.
We want to show that |h (xn, yn)− h (x0, y0)| −→

n→∞
0.
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For an element z in X , we denote by Nz the count function defined by:

Nz(t) =

∫

1{u≤t}dNz(u).

Since (x0, y0) is in Cδ, for any t0 in
{
x20 ± δ

}
∪
{
y20 ± δ

}
, t0 /∈ x10, which means that Nx1

0
is continuous in t0:

∃ηt0 > 0 / ∀t ∈ [0, 1], |t− t0| ≤ ηt0 ⇒ Nx1
0
(t) = Nx1

0
(t0).

As
{
x20 ± δ

}
∪
{
y20 ± δ

}
is finite, ηx1

0
= mint0∈{x2

0±δ}∪{y2
0±δ} ηt0 > 0 is well defined, and satisfies

∀u ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− u| ≤ ηx1

0
⇒ Nx1

0
(t) = Nx1

0
(u).

By the same argument using continuity of Ny1
0

over
{
x20 ± δ

}
∪
{
y20 ± δ

}
, we can find ηy1

0
> 0 such that

∀u ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− u| ≤ ηy1

0
⇒ Ny1

0
(t) = Ny1

0
(u).

Since saying that (x0, y0) belongs to Cδ is equivalent to saying that
({
x20
}
∪
{
y20
})

∩
({
x10 ± δ

}
∪
{
y10 ± δ

})
= ∅,

we can construct ηx2
0

and ηy2
0

satisfying

∀u ∈
{
x10 ± δ

}
∪
{
y10 ± δ

}
, ∀t ∈ [0, 1],

{ |t− u| ≤ ηx2
0

⇒ Nx2
0
(t) = Nx2

0
(u),

|t− u| ≤ ηy2
0

⇒ Ny2
0
(t) = Ny2

0
(u).

Finally, if η = min
{

ηx1
0
, ηy1

0
, ηx2

0
, ηy2

0

}

> 0,

∀s ∈
{
x20 ± δ

}
∪
{
y20 ± δ

}
, ∀t ∈ [0, 1], |t− s| ≤ η ⇒

{
Nx1

0
(t) = Nx1

0
(s),

Ny1
0
(t) = Ny1

0
(s),

(63)

and

∀s ∈
{
x10 ± δ

}
∪
{
y10 ± δ

}
, ∀t ∈ [0, 1], |t− s| ≤ η ⇒

{
Nx2

0
(t) = Nx2

0
(s),

Ny2
0
(t) = Ny2

0
(s).

(64)

As d ((xn, yn) , (x0, y0)) −→
n→∞

0, there exists some n0 ≥ 0 such that for any n exceeding n0,

d ((xn, yn) , (x0, y0)) ≤
η

4
.

From the definition of d, we deduce that:

∃λ1n ∈ Λ /

{
supt∈[0,1]

∣
∣λ1n(t)− t

∣
∣ ≤ η

4 , (1-i)

supt∈[0,1]

∣
∣
∣Nx1

n
(t)−Nx1

0

(
λ1n(t)

)
∣
∣
∣ ≤ η

4 , (1-ii)

and

∃λ2n ∈ Λ /

{
supt∈[0,1]

∣
∣λ2n(t)− t

∣
∣ ≤ η

4 , (2-i)

supt∈[0,1]

∣
∣
∣Nx2

n
(t)−Nx2

0

(
λ2n(t)

)
∣
∣
∣ ≤ η

4 . (2-ii)

Notice that similar results occur for yn and y0, but there are not detailed here since we will not use them
explicitly.

By definition of h,

h (xn, yn)− h (x0, y0) =
1

2

∫∫

1{|u−v|≤δ}
{
dNx1

n
dNx2

n
+ dNy1

n
dNy2

n
− dNx1

n
dNy2

n
− dNy1

n
dNx2

n

}
(u, v)

− 1

2

∫∫

1{|u−v|≤δ}
{

dNx1
0
dNx2

0
+ dNy1

0
dNy2

0
− dNx1

0
dNy2

0
− dNy1

0
dNx2

0

}

(u, v).
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Then,

h (xn, yn)− h (x0, y0) =
1

2

∫∫

1{|u−v|≤δ}

(

dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v) + dNy1
n
(u)
(

dNy2
n
− dNy2

0

)

(v)

− dNx1
n
(u)
(

dNy2
n
− dNy2

0

)

(v)− dNy1
n
(u)
(

dNx2
n
− dNx2

0

)

(v)

+
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v) +

(

dNy1
n
− dNy1

0

)

(u) dNy2
0
(v)

−
(

dNx1
n
− dNx1

0

)

(u) dNy2
0
(v) +

(

dNy1
n
− dNy1

0

)

(u) dNx2
0
(v)

)

. (65)

By symmetry of the problem, we just need to study the terms An :=
∫∫

1{|u−v|≤δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v),

and Bn :=
∫∫

1{|u−v|≤δ}dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

Study of An.

An =

∫∫

1{|u−v|≤δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

=

∫∫
(
1{u≤v+δ} − 1{u<v−δ}

) (

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

=

∫∫

1{u≤v+δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)−

∫∫

1{u<v−δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

We have that:
∣
∣
∣
∣

∫∫

1{u≤v+δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ (

Nx1
n
(v + δ)−Nx1

0
(v + δ)

)

dNx2
0
(v)

∣
∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0
(T + δ)

∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣

+
∑

T∈x2
0

∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ .

Now, using the notation N−
x1
i

(t) =
∫
1{u<t}dNx1

i
(u),

∣
∣
∣
∣

∫∫

1{u<v−δ}
(

dNx1
n
− dNx1

0

)

(u) dNx2
0
(v)

∣
∣
∣
∣

≤
∑

T∈x2
0

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ .

Therefore,

|An| ≤
∑

T∈x2
0

(
∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣+
∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣

+
∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣

)

. (66)

Let us study individually each term in the sum.
Fix T in x20. By (1-ii),

∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n(T + δ)

)
∣
∣
∣ ≤ η

4
≤ ε. (67)

From (1-i), we derive that |λ1n(T + δ)− (T + δ)| ≤ η
2 ≤ η which, with (63), implies that

∣
∣
∣Nx1

0

(
λ1n(T + δ)

)
−Nx1

0
(T + δ)

∣
∣
∣ = 0. (68)
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As N−
x1
n
(T − δ) = lim

u→T−δ
u<T−δ

Nx1
n
(u), there exists uT ∈ [T − δ − η/4, T − δ[ such that

∣
∣
∣N−

x1
n
(T − δ)−Nx1

n
(uT )

∣
∣
∣ ≤ ε,

so ∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1n(uT )

)
∣
∣
∣+
∣
∣
∣Nx1

0

(
λ1n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ . (69)

From (1-ii), one has
∣
∣
∣Nx1

n
(uT )−Nx1

0

(
λ1n(uT )

)
∣
∣
∣ ≤ η

4 ≤ ε.

Then, by continuity of Nx1
0

in T − δ, first remark that N−
x1
0
(T − δ) = Nx1

0
(T − δ). Moreover, by (1-i) and

construction of uT ,

∣
∣λ1n(uT )− (T − δ)

∣
∣ ≤

∣
∣λ1n(uT )− uT

∣
∣+ |uT − (T − δ)| ≤ η

4
+
η

4
< η,

hence, using (63),
∣
∣
∣Nx1

0

(
λ1n(uT )

)
−N−

x1
0
(T − δ)

∣
∣
∣ = 0.

So finally, (69) gives
∣
∣
∣N−

x1
n
(T − δ)−N−

x1
0
(T − δ)

∣
∣
∣ ≤ 2ε. (70)

Combining (66), (67), (68), and (70), we obtain that:

|An| ≤ 3ε#x20, (71)

for any n ≥ n0.

Study of Bn. Recall that Bn =
∫∫

1{|u−v|≤δ}dNx1
n
(u)
(

dNx2
n
− dNx2

0

)

(v).

As for An, we can upper bound Bn by a sum of several terms, that can be studied separately.

Bn =

∫∫

1{u≤v+δ}dNx1
n
(u)

(

dNx2
n
− dNx2

0

)

(v)−
∫∫

1{u<v−δ}dNx1
n
(u)

(

dNx2
n
− dNx2

0

)

(v)

=
∑

T∈x1
n

(

Nx2
n
(T + δ)−Nx2

0
(T + δ)

)

−
∑

T∈x1
n

(

N−
x2
n
(T − δ)−N−

x2
0
(T − δ)

)

.

So
Bn ≤ |Bn,1|+ |Bn,2|+ |Bn,3|+ |Bn,4|, (72)

with:

Bn,1 =
∑

T∈x1
n

(

Nx2
n
(T + δ)−Nx2

0

(
λ2n (T + δ)

))

,

Bn,2 =
∑

T∈x1
n

(

Nx2
0

(
λ2n (T + δ)

)
−Nx2

0
(T + δ)

)

,

Bn,3 =
∑

T∈x1
n

(

N−
x2
n
(T − δ)−N−

x2
0

(
λ2n (T − δ)

))

,

Bn,4 =
∑

T∈x1
n

(

N−
x2
0

(
λ2n (T − δ)

)
+N−

x2
0
(T − δ)

)

.

The control of Bn is quite similar as the one of An except that the sums are over T ∈ x1n instead of T ∈ x10,
which prevents us to use (64) and (63) directly.

Control of Bn,1.

From (2-ii), we first deduce that
∣
∣
∣Nx2

n
(T + δ)−Nx2

0

(
λ2n (T + δ)

)
∣
∣
∣ ≤ ε, so

|Bn,1| ≤ ε#x1n. (73)
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Control of Bn,2.

One can easily see that:

Bn,2 =

∫∫

1{v≤λ2
n(u+δ)} − 1{v≤u+δ}dNx2

0
(v) dNx1

n
(u)

=

∫∫ (

1− 1{u<(λ2
n)−1(v)−δ}

)

−
(
1− 1{u<v−δ}

)
dNx2

0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

N−
x1
n
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
)

.

Fix now T in x20.

∣
∣
∣N−

x1
n
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤

∣
∣
∣N−

x1
n
(T − δ)−Nx1

0
(T − δ)

∣
∣
∣+
∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ .

As shown in (69),
∣
∣
∣N−

x1
n
(T − δ)−Nx1

0
(T − δ)

∣
∣
∣ ≤ 2ε.

Furthermore, take vT ∈
[(
λ2n
)−1

(T )− δ − η/4,
(
λ2n
)−1

(T )− δ
[

such that

∣
∣
∣N−

x1
n
(
(
λ2n
)−1

(T )− δ)−Nx1
n
(vT )

∣
∣
∣ ≤ ε.

So,

∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ ε+

∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1n(vT )

)
∣
∣
∣+
∣
∣
∣Nx1

0

(
λ1n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ .

By construction of vT and λ1n (see (1-ii)),
∣
∣
∣Nx1

n
(vT )−Nx1

0

(
λ1n(vT )

)
∣
∣
∣ ≤ ε.

Because of (63) which is feasible as
∣
∣λ1n(vT )− (T − δ)

∣
∣ ≤ |λ1n(vT ) − vT | + |vT − (T − δ)| ≤ η

4 + η
4 < η by (1-i)

and the construction of vT ,
∣
∣
∣Nx1

0

(
λ1n(vT )

)
−Nx1

0
(T − δ)

∣
∣
∣ = 0.

Hence,
∣
∣
∣Nx1

0
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ 2ε.

Finally, ∣
∣
∣N−

x1
n
(T − δ)−N−

x1
n
(
(
λ2n
)−1

(T )− δ)
∣
∣
∣ ≤ 4ε

and
|Bn,2| ≤ 4ε#x20. (74)

Control of Bn,3.

First, for all T in x1n, we find some νn,T ∈]0, η/4] such that

∀u ∈ [T − δ − νn,T , T − δ[,
∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(u)
∣
∣
∣ ≤ ε.

Setting νn = minT∈x1
n
νn,T ,

|Bn,3| ≤
∑

T∈x1
n

∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(T − δ − νn)

∣
∣
∣+

∑

T∈x1
n

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2n (T − δ − νn)

)
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2n (T − δ − νn)

)
−N−

x2
0

(
λ2n (T − δ)

))

∣
∣
∣
∣
∣
∣

.

For each T ,
∣
∣
∣N−

x2
n
(T − δ)−Nx2

n
(T − δ − νn)

∣
∣
∣ ≤ ε and

∣
∣
∣Nx2

n
(T − δ − νn)−Nx2

0

(
λ2n (T − δ − νn)

)
∣
∣
∣ ≤ ε by (2-ii).

Therefore,

|Bn,3| ≤ 2ε#x1n +

∣
∣
∣
∣
∣
∣

∑

T∈x1
n

(

Nx2
0

(
λ2n (T − δ − νn)

)
−N−

x2
0

(
λ2n (T − δ)

))

∣
∣
∣
∣
∣
∣

.
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Now,

∑

T∈x1
n

(

Nx2
0

(

λ2n (T − δ − νn)
)

−N−
x2
0

(
λ2n (T − δ)

)

)

=

∫∫

1{v≤λ2
n(u−δ−νn)} − 1{v<λ2

n(u−δ)}dNX1
n
(u) dNX2

0
(v)

=
∑

T∈x2
0

(

Nx1
n

((
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

))

.

For each T in x20,

∣
∣
∣Nx1

n

( (
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

) ∣
∣
∣

≤
∣
∣
∣Nx1

n

((
λ2n
)−1

(T ) + δ
)

−Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

−Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣

≤ 2ε+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣ ,

where the last line comes from (1-ii), and (63).

We now find some wT ∈
[(
λ2n
)−1

(T ) + δ + νn − η/4 ,
(
λ2n
)−1

(T ) + δ + νn

[

such that

∣
∣
∣N−

x1
n

((
λ2n
)−1

(T ) + δ + νn

)

−Nx1
n
(wT )

∣
∣
∣ ≤ ε,

so

∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

)∣
∣
∣

≤
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−Nx1
0

(
λ1n (wT )

)
∣
∣
∣+
∣
∣
∣Nx1

0

(
λ1n (wT )

)
−Nx1

n
(wT )

∣
∣
∣+ ε.

From (1-ii), we deduce that
∣
∣
∣Nx1

0

(
λ1n (wT )

)
−Nx1

n
(wT )

∣
∣
∣ ≤ ε.

Due to (63), (1-i), and the construction of wT ,

∣
∣
∣

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

− (T − δ)
∣
∣
∣ ≤ 3η

4
< η,

and

∣
∣
(
λ1n (wT )

)
− (T − δ)

∣
∣ ≤

∣
∣
(
λ1n (wT )− wT

)∣
∣+ |wT − (T − δ)|

≤ η

4
+
η

4
< η,

so ∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ + νn

))

−Nx1
0

(
λ1n (wT )

)
∣
∣
∣ = 0.

As a consequence, ∣
∣
∣Nx1

n

( (
λ2n
)−1

(T ) + δ
)

−N−
x1
n

((
λ2n
)−1

(T ) + δ + νn

) ∣
∣
∣ ≤ 4ε,

and

|Bn,3| ≤ 2ε#x1n + 4ε#x20. (75)
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Control of Bn,4.

Bn,4 =

∫∫
(
1{v<λ2

n(u−δ)} − 1{v<u−δ}
)
dNx2

0
(v) dNx1

n
(u)

=
∑

T∈x2
0

(

Nx1
n
(T + δ)−Nx1

n

((
λ2n
)−1

(T ) + δ
))

Let us fix T in x20. We have

∣
∣
∣Nx1

n
(T + δ)−Nx1

n

((
λ2n
)−1

(T ) + δ
)∣
∣
∣ ≤

∣
∣
∣Nx1

n
(T + δ)−Nx1

0

(
λ1n (T + δ)

)
∣
∣
∣

+
∣
∣
∣Nx1

0

(
λ1n (T + δ)

)
−Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣

+
∣
∣
∣Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

−Nx1
n

((
λ2n
)−1

(T ) + δ
)∣
∣
∣ .

The first and the last terms are upper bounded by ε due to (1-ii).
Furthermore, since

Nx1
0

(

λ1n

((
λ2n
)−1

(T ) + δ
))

= Nx1
0
(T + δ) = Nx1

0

(
λ1n (T + δ)

)
,

by applying (63) and using (1-i) and (2-i).

∣
∣
∣Nx1

0

(
λ1n (T + δ)

)
−Nx1

0

(

λ1n

((
λ2n
)−1

(T ) + δ
))∣
∣
∣ = 0.

So finally,
|Bn,4| ≤ 2ε#x20. (76)

Combining (72), (73), (74), (75), and (76), we can conclude that:

|Bn| ≤ 3ε#x1n + 10ε#x20. (77)

We now just need to remark that
(
#x1n

)

n≥n0
is bounded because it converges to #x10. Indeed, since #x1n =

Nx1
n
(1), #x10 = Nx1

0
(1) and for every n, λ1n(1) = 1,

∣
∣#x1n −#x10

∣
∣ =

∣
∣
∣Nx1

n
(1)−Nx1

0
(1)
∣
∣
∣

=
∣
∣
∣Nx1

n
(1)−Nx1

0

(
λ1n(1)

)
∣
∣
∣

−→
n→∞

0.

With (65), (71), and (77), this concludes the proof of Proposition 1.
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