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Abstract 

 Chalcogenide glasses from Ge-Sb-Se ternary system with different antimony content were fabricated and 

basic physico-chemical properties (chemical composition, thermal characteristics, density) were evaluated 

considering the glassy network connectivity. Optical properties of the glasses were heavily studied 

employing transmission spectroscopy, prism coupling technique, and particularly spectroscopic 

ellipsometry covering broad spectral range (0.3-20 m). Refractive indices data show very good 

agreement between ellipsometry and prism coupling techniques in near-infrared range. Moreover, the 

reliability of infrared spectroscopic ellipsometry was demonstrated for precise determination of refractive 

index of chalcogenide glasses in near- as well as middle-infrared spectral regions.  
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1. Introduction 

Chalcogenide glasses, based on S, Se or Te elements in combination with suitable elements from 

14. or 15. group of the periodical system (Ge, As, Sb, etc.), are known to present photosensitivity to light 

exposure [1-4] and to be highly nonlinear [5, 6]. Indeed, they present large Kerr nonlinearities at 

femtosecond time scale and Their high third order susceptibility χ
(3)

 can reach values several orders of 

magnitude larger than that of silica glass [7]. For these reasons, chalcogenide glasses have been studied 

for ultrafast switching in telecommunication systems [8]. Further, chalcogenide glasses can also be used 

for optical sensing applications from visible to near mid-IR [9-12]. For mentioned applications, 

chalcogenide thin films are needed; therefore a key prerequisite is an identification of appropriate bulk 

glass composition.  

The Ge-Sb-Se glassy system is of interest due to its large glass forming region [13] giving a 

possibility of tailoring glass properties in broad ranges. In comparison with chalcogenide glasses 

compositions based on arsenic, the use of antimony is beneficial regarding the limitation of arsenic in the 

glass composition in accordance with the recommendations of the current regulation. Moreover, the 

substitution of As with Sb may increase the (non)linear refractive of the corresponding amorphous 

chalcogenides due to enlargement of (hyper)polarisability. Further, presence of antimony in amorphous 

chalcogenides is known to reduce photosensitivity of the material and this property could be tailored by 

changing the proportion of Sb. 

For applications in photonics, one of the most important optical characteristics of chalcogenide 

glasses is refractive index. In visible and near-infrared (NIR) spectral region, refractive index is often 

evaluated by modeling of spectroscopic data (transmission and/or reflection), prism coupling method, 

ellipsometry or it can be calculated by quantum mechanics, etc. [14]. In this paper, beyond the description 

of basic physico-chemical properties, we are focused on linear optical properties of selected bulk 

chalcogenide glasses from Ge-Sb-Se system. This is a required step in order to perfectly master the 

optical properties of the pseudo-binary (GeSe2)100-x(Sb2Se3)x system for applications whether in the field 

of optical sensors or in non-linear optics. Special attention was paid to the use of spectroscopic 

ellipsometry in broad spectral range with the aim to determine linear refractive index from ultraviolet to 

middle-infrared (MIR).  

 

2. Material and methods 
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Bulk samples from pseudo-binary (GeSe2)100-x(Sb2Se3)x system (5 x 70) were synthesized 

from elements (Ge, Sb, and Se) of high purity (5N) using the conventional melting and quenching 

technique. After the quenching, glass rods were annealed (20 °C below their glass transition temperature 

(Tg), 6 hours) and slowly cooled down to room temperature. For optical characterization, resulting glass 

rods (25 mm diameter) were sliced and polished. A scanning electron microscope with an energy-

dispersive X-ray analyzer (EDS, JSM 6400-OXFORD Link INCA) was used for the determination of Ge-

Sb-Se glasses chemical composition and its uniformity. Transmission spectra were recorded in VIS-NIR 

spectral range with 1 mm thick samples (Perkin Elmer Lambda 1050 spectrophotometer). After 

calculation of absorption coefficients, cut-off wavelengths were determined for an absorption coefficient 

of 10 cm
-1

. Linear refractive indices of fabricated glasses were measured using the prism coupling 

technique (Metricon 2010) at 1311 and 1551 nm. Silicon prism was used for these measurements. Linear 

refractive indices spectral dependencies as well as optical band gap values of (GeSe2)100-x(Sb2Se3)x glasses 

were obtained from the analysis of variable angle spectroscopic ellipsometry (VASE) data measured 

using an ellipsometer with automatic rotating analyzer (J. A. Woollam Co., Inc.). The measurement 

parameters are as follows: spectral region 300-2300 nm (UV-NIR) with wavelengths steps of 20 nm, 

angles of incidence 50°, 60°, and 70°. For the analysis of VASE data, we used Cody-Lorentz model 

which includes both the correct band edge function and weak Urbach absorption tail [15]; this model is 

appropriate for the description of amorphous chalcogenides optical functions [4, 16]. Linear refractive 

indices were extracted also from spectroscopic ellipsometry data measured in NIR-MIR spectral region 

with IR-VASE ellipsometer (J. A. Woollam Co., Inc.) exploiting rotating compensator. NIR-MIR 

ellipsometric data were measured within 1700-20000 nm range using wavelength steps and angles of 

incidence as above. To derive refractive indices in NIR-MIR spectral range, Cauchy like dispersion 

relation was exploited, setting extinction coefficient in first approximation to zero. 

 

3. Results and discussion 

The bulk (GeSe2)100-x(Sb2Se3)x samples were amorphous as confirmed by X-ray diffraction data, 

excluding (GeSe2)30(Sb2Se3)70 material, which was (at least partly) crystalline and was not used for further 

optical characterization. As determined using EDS, chemical composition of fabricated glasses is in good 

agreement with nominal one; the differences are about 1 at. % which correspond to the EDS 

measurements uncertainty.  
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No crystallization peaks were observed in DSC curves except for glass with x=70 which is close 

to glassy domain edge. Tg decreases monotonously when antimony concentration increases (from ~360 

°C for (GeSe2)95(Sb2Se3)5 glass to ~230 °C for (GeSe2)40(Sb2Se3)60 composition). This trend follows 

changes of vitreous network connectivity occurring when antimony is incorporated in chalcogenide 

glasses. We note that antimony coordination is 3 (supposing [SbSe3/2] pyramids as basic structural motifs 

containing antimony atoms), whereas germanium is known to be in a tetrahedral environment ([GeSe4/2] 

tetrahedra) [17-19]. On the other hand, density of (GeSe2)100-x(Sb2Se3)x glasses clearly increases with 

rising x (from ~4.35 g.cm
-3

 for (GeSe2)95(Sb2Se3)5 to ~5.24 g.cm
-3

 for (GeSe2)40(Sb2Se3)60). Considering 

atomic masses of elements (Ar(Ge) = 72.64, Ar(Sb) = 121.76, Ar(Se) = 78.96), the density of glasses 

increases coherently with Sb2Se3 introduction [20]. This also tends to prove that the substitution of GeSe2 

by Sb2Se3 (leading to a lower degree of connectivity) does not increase drastically the free volume of the 

glassy network which should have an antagonistic effect on the density. 

Optical transmission of studied glasses reaches ~64% in the NIR region; this limit comes from 

Fresnel reflections at air/glass interface. Fig. 1 gives spectral dependences of absorption coefficient 

calculated from measured transmission spectra. One can see the shift of the fundamental absorption edge 

to lower energies with increasing content of antimony in the glasses. The influence of atomic orbitals 

originated from antimony selenide in the band structure of the selenide glass can be easily felt on the 

optical band-gap. Cut-off wavelengths (described above) of all the glassy samples are given in Table 1 

showing similar tendency. 

Linear refractive indices of (GeSe2)100-x(Sb2Se3)x glasses measured at 1311 and 1551 nm by the 

prism coupling technique are listed in Table 1. As anticipated, the refractive index rises particularly by 

increasing the proportion of antimony (from 2.41 for (GeSe2)95(Sb2Se3)5 glass to 3.01 for 

(GeSe2)40(Sb2Se3)60 composition, at 1550 nm). Consequently, one can expect a similar trend for nonlinear 

refractive index [21]. Spectroscopic ellipsometry data analysis with Cody-Lorentz model provides a 

determination of refractive indices dispersion over broad spectral range (300-2300 nm) including 

absorption onset and fundamental absorption of studied chalcogenide glasses, with an uncertainty of 

±1.10
-2

. The Cody-Lorentz model refractive indices results, illustrated in Fig. 2 and Table 1, are in pretty 

good agreement with the results obtained by the prism coupling technique even thought that absolute 

precision is higher for prism coupling (±1.10
-3

). Optical band gap values, extracted from VASE data 

again employing Cody-Lorentz model, are listed in Table 1 confirming the compositional tendency of 
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cut-off wavelengths even if absolute values of cut-off energies differ from VASE band gap energies due 

to different method of calculation.  

To date, published refractive index data of chalcogenide glasses/thin films in MIR spectral 

region are infrequent [22]. This can easily be explained by the fact that apart from traditional glasses, 

these measurements require specific manufacturing of chalcogenide prism involving perfect homogeneity 

and appropriate size as well as access to an accurate optical metrology set-up. Also, the fabrication of 

optical components for MIR is often empirical because their dispersion of refractive indices in MIR have 

not necessarily been characterized enough accurately. Our data show applicability of spectroscopic 

ellipsometry for the determination of refractive indices of chalcogenide glasses covering 1700-20000 nm 

region with simple model used (Fig. 2) for a series of (GeSe2)100-x(Sb2Se3)x chalcogenide glasses.  

For a comparison, we employed IR VASE for a determination of refractive index of 

commercially available As2Se3 glass (AMTIR-2, Amorphous Materials Inc.). The results obtained are 

given in Fig. 3 showing very good agreement between our data and data provided by producer. We point 

out also excellent consistency of As2Se3 glass refractive index data (taking into account absolute precision 

of the methods) between IR VASE and prism coupling technique [22] showing maximal Δn of 0.004 at 

3390 nm. Finally, Fig. 3 shows matching of refractive index determined by VASE and producer data for 

Ge28Sb12Se60 bulk glass (IG5, Schott AG); the data again agree very well (Δn=0.005 at maximum in 

MIR). Although VASE does not allow reaching the accuracy obtained in the case of the prism method, 

the data analysis realized for two commercial selenide glasses validates the measurement method of 

refractive index by mean of infrared ellipsometry.  

 

4. Conclusions 

Bulk (GeSe2)100-x(Sb2Se3)x chalcogenide glasses (x = 5-60) were synthesized in high purity.  

Glass transition temperatures decrease with increasing antimony content, while densities show opposite 

tendency. This behavior is connected with the changes of glassy matrix connectivity. The fundamental 

absorption edge of the glasses shifts to lower energies with increasing content of antimony selenide. On 

the other hand, linear refractive index is strongly rising at the same moment (from 2.41 for 

(GeSe2)95(Sb2Se3)5 glass to 3.01 for (GeSe2)40(Sb2Se3)60 composition, at 1550 nm). We point out good 

accordance between refractive indices data extracted from spectroscopic ellipsometry and prism coupling 

technique. The main finding of this work is the applicability of infrared spectroscopic ellipsometry for 
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precise determination of refractive index of chalcogenide glasses (as demonstrated for As2Se3 and 

Ge28Sb12Se60 glasses) in broad spectral range covering NIR and MIR regions. 

 

Acknowledgements 

The Czech Science Foundation (Project No. 13-05082S) and Ministry of Education, Youth, and Sports of 

the Czech Republic (Project CZ.1.07/2.3.00/30.0058) and the CNRS PICS (Projet International de 

Cooperation Scientifique) program financially supported this work. 

 

 References 

[1] C. Meneghini, A. Villeneuve, Journal of the Optical Society of America B-Optical Physics, 15 (1998) 

2946-2950. 

[2] K. Shimakawa, A. Kolobov, S.R. Elliott, Adv. Phys., 44 (1995) 475-588. 

[3] N. Ho, J.M. Laniel, R. Vallee, A. Villeneuve, Opt. Lett., 28 (2003) 965-967. 

[4] P. Nemec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, X.-H. Zhang, 

Opt. Express, 18 (2010) 22944-22957. 

[5] G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spalter, R.E. Slusher, S.W. 

Cheong, J.S. Sanghera, I.D.o.n. Aggarwal, Opt. Lett., 25 (2000) 254-256. 

[6] A. Zakery, S.R. Elliott, J. Non-Cryst. Solids, 330 (2003) 1-12. 

[7] J.S. Sanghera, C.M. Florea, L.B. Shaw, P. Pureza, V.Q. Nguyen, M. Bashkansky, Z. Dutton, I.D. 

Aggarwal, J. Non-Cryst. Solids, 354 (2008) 462-467. 

[8] B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics, 5 (2011) 141-148. 

[9] A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, C.G. Pantano, J. Non-Cryst. Solids, 354 (2008) 2757-2762. 

[10] M.L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. 

Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compere, B. Bureau, Sensors, 9 (2009) 7398-

7411. 

[11] M.A. Schmidt, D.Y. Lei, L. Wondraczek, V. Nazabal, S.A. Maier, Nat Commun, 3 (2012) 1108. 

[12] J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson, Optics Express, 15 

(2007) 2307-2314. 

[13] M.A. Popescu, Non-Crystalline Chalcogenides, Kluwer Academic Publishers, Dordrecht, (2000). 



 7   
 

[14] E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego CA, USA, 1997. 

[15] G.D. Cody, in: J.I. Pankove (Ed.) Semiconductors and semimetals, Academic, Orlando, FL, 1984, 

pp. 11. 

[16] P. Nemec, V. Nazabal, M. Frumar, J. Appl. Phys., 106 (2009) 023509. 

[17] V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, 

J.-P. Guin, A. Moreac, Int. J. Appl. Ceram. Technol., 8 (2011) 990–1000. 

[18] L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, S.o.n. Martin, J. 

Phys. Chem. Solids, 66 (2005) 1788-1794. 

[19] K. Jackson, A. Briley, S. Grossman, D.V. Porezag, M.R. Pederson, C. system, Physical Review B, 

60 (1999) R14985-R14989. 

[20] A. Giridhar, P.S.L. Narasimham, S. Mahadevan, J. Non-Cryst. Solids, 43 (1981) 29-35. 

[21] E.M. Vogel, M.J. Weber, D.M.o.n. Krol, Phys. Chem. Glasses, 32 (1991) 231-254. 

[22] N. Carlie, N.C. Anheier, H.A. Qiao, B. Bernacki, M.C. Phillips, L. Petit, J.D. Musgraves, K. 

Richardson, Review of Scientific Instruments, 82 (2011) 053103. 

 
 

 

 

 

 

 

 

 

 

 

 

 



 8   
 

Figure captions 

 

Fig. 1. Spectral dependences of absorption coefficient of (GeSe2)100-x(Sb2Se3)x glasses. 

 

Fig. 2. Refractive index dispersion of bulk (GeSe2)100-x(Sb2Se3)x glasses obtained by ellipsometry 

covering UV-VIS-NIR-MIR spectral range: 300-2300 nm (full curves) and 1700-20000 nm (dashed 

curves). Note that full and dashed curves are overlapped in the region of 1700-2300 nm. 

 

Fig. 3. Refractive index dispersion of bulk As2Se3 (full curves) and Ge28Sb12Se60 (dashed curves) glasses 

determined by ellipsometry covering UV-VIS-NIR-MIR spectral range (300-20000 nm). For a 

comparison, data published by producer of commercial As2Se3 (AMTIR-2) and Ge28Sb12Se60 (IG5) glass 

are given. Inset shows 900-14000 nm spectral range in more detail. 
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Table captions 

 

Table 1. Theoretical chemical composition of fabricated (GeSe2)100-x(Sb2Se3)x glasses, their cut-off 

wavelengths (at 10 cm
-1

), refractive indices determined by prism coupling technique (at 1311 and 1551 

nm, ±1.10
-3

) and VASE (1550 nm, ±1.10
-2

), and optical band-gap values extracted from VASE data by 

Cody-Lorentz model (±0.01 eV). 
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Table 1. 

 

Sample 
Theoretical 

composition 

Cut-off wavelength 

(nm) 

n Prism coupling 

1311 nm        1551 nm 

n VASE 

1550 nm 

Eg 

(eV) 

x=5 Ge30.6Sb3.2Se66.1 678 2.423 2.414 2.42 2.17 

x=10 Ge28.1Sb6.3Se65.6 689 2.483 2.471 2.47 2.11 

x=20 Ge23.5Sb11.8Se64.7 749 2.579 2.563 2.56 2.02 

x=30 Ge19.4Sb16.7Se63.9 792 2.688 2.672 2.67 1.86 

x=40 Ge15.8Sb21.1Se63.2 843 2.801 2.780 2.78 1.78 

x=50 Ge12.5Sb25Se62.5 885 2.931 2.904 2.89 1.70 

x=60 Ge9.5Sb28.6Se61.9 934 3.042 3.012 3.01 1.49 
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