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REAL SUBMANIFOLDS OF MAXIMUM COMPLEX TANGENT SPACE

AT A CR SINGULAR POINT

XIANGHONG GONG AND LAURENT STOLOVITCH

Abstract. We study a germ of real analytic n-dimensional submanifold of Cn that has
a complex tangent space of maximal dimension at a CR singularity. Under the condition
that its complexification admits the maximum number of deck transformations, we study
its transformation to a normal form under the action of local (possibly formal) biholo-
morphisms at the singularity. We first conjugate formally its associated reversible map σ

to suitable normal forms and show that all these normal forms can be divergent. If the
singularity is abelian, we show, under some assumptions on the linear part of σ at the
singularity, that the real submanifold is holomorphically equivalent to an analytic normal
form. We also show that if a real submanifold is formally equivalent to a quadric, it is
actually holomorphically equivalent to it, if a small divisors condition is satisfied. Finally,
we prove that, in general, there exists a complex submanifold of positive dimension in C

n

that intersects a real submanifold along two totally and real analytic submanifolds that
intersect transversally at a CR singularity of the complex type.
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1. Introduction and main results

1.1. Introduction. We are concerned with the local holomorphic invariants of a real an-
alytic submanifold M in Cn. The tangent space of M at a point x contains a maximal
complex subspace of dimension dx. When this dimension is constant,M is called a Cauchy-
Riemann (CR) submanifold. The CR submanifolds have been extensively studied since
E. Cartan. For the analytic real hypersurfaces in Cn with a non-degenerate Levi-form,
the normal form problem has a complete theory achieved through the works of E. Car-
tan [Car32], [Car33], Tanaka [Tan62], and Chern-Moser [CM74]. In another direction,
the relations between formal and holomorphic equivalences of real analytic hypersurfaces
have been investigated by Baouendi-Ebenfelt-Rothschild [BER97], [BER00], Baouendi-Mir-
Rothschild [BMR02], Juhlin-Lamel [JL13], where positive results were obtained. In a recent
preprint, Kossovskiy and Shafikov [KS13] showed that there are real analytic real hyper-
surfaces which are formally but not holomorphically equivalent.

We say that a point x0 in a real submanifold M in Cn is a complex tangent, or a CR
singularity, if the complex tangent spaces TxM∩JxTxM do not have a constant dimension in
any neighborhood of x0. A real submanifold with a CR singularity must have codimension
at least 2. The study of real submanifolds with CR singularities was initiated by E. Bishop
in his pioneering work [Bis65], when the complex tangent space of M at a CR singularity
is minimal, that is exactly one-dimensional. The very elementary models of this kind of
manifolds are classified as certain quadrics which depend on one non-negative number, the
Bishop invariant. They are the Bishop quadrics, given by

Q ⊂ C2 : z2 = |z1|2 + γ(z21 + z21), 0 ≤ γ <∞.

The origin is a complex tangent which is said to be elliptic if 0 ≤ γ < 1/2, parabolic if
γ = 1/2, or hyperbolic if γ > 1/2.

In [MW83], Moser and Webster studied the normal form problem of a real analytic
surface M in C2 which is the higher order perturbation of Q. They showed that when
0 < γ < 1/2, M is holomorphically equivalent to a normal form which is an algebraic
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surface that depends only on γ and two discrete invariants. They also constructed a
formal normal form of M when the origin is a non-exceptional hyperbolic complex tangent
point; although the normal form is still convergent, they showed that the normalizing
transformation is divergent in general for the hyperbolic case. We mention that the Moser-
Webster normal form theory, as in Bishop’s work, actually deals with an n-dimensional
real submanifold M in Cn, of which the complex tangent space has (minimum) dimension
1 at a CR singularity.

The main purpose of this work is to investigate an n-dimensional real analytic subman-
ifold M in Cn of which the complex tangent space has the largest possible dimension at
a given CR singularity. The dimension must be p = n/2. Therefore, n = 2p is even. We
are interested in the geometry, the analytic classification, and the normal form problem of
such real analytic manifolds.

In suitable holomorphic coordinates, a 2p-dimensional real analytic submanifold M in
C2p that has a complex tangent space of maximum dimension at the origin is given by

(1.1) M : zp+j = Ej(z
′, z′), 1 ≤ j ≤ p,

where z′ = (z1, . . . , zp) and

Ej(z
′, z′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3).

Moreover, each hj(z
′, z′) is a homogeneous quadratic polynomial in z′, z′ without holomor-

phic or anti-holomorphic terms, and each qj(z
′) is a homogeneous quadratic polynomial in

z′. One of our goals is to seek suitable normal forms of perturbations of quadrics at the
CR singularity (the origin).

The study of these kind of real submanifolds, with p > 1, was initiated in [Sto07] by the
second-named author.

1.2. Basic invariants. To study M , we consider its complexification in C2p×C2p defined
by

M :

{
zp+i = Ei(z

′, w′), i = 1, . . . , p,

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

It is a complex submanifold of complex dimension 2p with coordinates (z′, w′) ∈ C2p. Let
π1, π2 be the restrictions of the projections (z, w) → z and (z, w) → w to M, respectively.
Note that π2 = ρ0π1ρ0, where ρ0 is the restriction to M of the anti-holomorphic involution
(z, w) → (w, z).

Our basic assumption is the following condition.

Condition B. q(z′) = (q1(z
′), . . . , qp(z

′)) satisfies q−1(0) = {0}.
Let us first describe the significance of condition B. When p = 1 this corresponds to

the case that the Bishop invariant γ of M at the origin does not vanish. When γ =
0, Moser [Mos85] obtained a formal normal form that is still subject to further formal
changes of coordinates. In [HY09a], Huang and Yin obtained a formal normal form with
a complete set of formal holomorphic invariants of M when γ = 0. They used their formal
normal form to show that two such real analytic surfaces are holomorphically equivalent
if and only if they have the same formal normal form. The formal normal forms for co-
dimension two real submanifolds inCn have been further studied by Huang-Yin [HY12] and
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Burcea [Bur13]. Note that by a rapid iteration method, Coffman [Cof06] showed that any
m dimensional real analytic submanifold in Cn of one-dimensional complex tangent space
at a CR singularity satisfying certain non-degeneracy conditions is locally holomorphically
equivalent to a unique algebraic submanifold, provided 2(n+ 1)/3 ≤ m < n.

When M is a quadric, i.e. each Ej in (1.1) is a quadratic polynomial, our basic condi-
tion B is equivalent to π1 being a 2p-to-1 branched covering. Since π2 = ρ0π1ρ0, then π2 is
also a 2p-to-1 branched covering. We will see that the CR singularities of the real subman-
ifolds are closely connected with these branched coverings and their deck transformations.

We now introduce our main results. Some of them are analogous to the Moser-Wester
theory. We will underline major differences which arise with p > 1.

1.2.1. Branched covering and deck transformations. In section 2, we study the existence
of deck transformations for π1. We will show that they must be involutions and they
commute pairwise. We show that they form a group of order 2k for some 0 ≤ k ≤ p. This
is a major difference between the real submanifolds with one dimensional complex tangent
space at a CR singularity and the ones with maximum complex tangent space, when p > 1.
Indeed, we recall that in the Moser-Webster theory, the branched covering π1 is 2-to-1
and consequently the group of deck transformations of π1 has order 2. The group is then
generated by a unique involution τ1.

In this paper, we will focus on the case where the group of deck transformations of π1
has the maximum order 2p. Thus, we will impose the following condition.

Condition D. M satisfies condition B and the branched covering π1 of M admits the
maximum 2p deck transformations.

Condition D gives rise to two families of commuting involutions {τi1, . . . , τi2p} intertwined
by the anti-holomorphic involution ρ0 : (z

′, w′) → (w′, z′) such that τ2j = ρ0τ1jρ0 (1 ≤
j ≤ 2p) are deck transformations of π2. We will call {τ11, . . . , τ12p , ρ0} the set of Moser-
Webster involutions. We will show that there is a unique set of p generators for the deck
transformations of π1, denoted by τ11, . . . , τ1p, which are characterized by the property that
each τ1j fixes a hypersurface in M pointwise. Then

τ1 = τ11 ◦ · · · ◦ τ1p
is the unique deck transformation of which the set of fixed-points has the smallest dimension
p. Let τ2 = ρ0τ1ρ0 and

σ = τ1τ2.

Then σ is reversible by τj and ρ0, i.e. σ
−1 = τjστ

−1
j and σ−1 = ρ0σρ0.

As in the Moser-Webster theory, the existence of such 2p deck transformations allows
us to transfer the normal form problem for the real submanifolds into the normal form
problem for the sets of involutions {τ11, . . . , τ1p, ρ0}.

In this paper we will make the following assumption.

Condition E. M satisfies condition D and M has distinct eigenvalues, while the latter
means that σ has 2p distinct eigenvalues.

Note that the condition excludes the higher dimensional analogous complex tangency
of parabolic type, i.e. of γ = 1/2. The normal form problem for the parabolic complex
tangents has been studied by Webster [Web92], and in [Gon96] where the normalization
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is divergent in general. In [AG09], Ahern and Gong constructed a moduli space for real
analytic submanifolds that are formally equivalent to the Bishop quadric with γ = 1/2.

We now introduce our main results.
Our first step is to normalize {τ1, τ2, ρ0}. When p = 1, this normalization is the main step

in order to obtain the Moser-Webster normal form; in fact a simple further normalization
allows Moser and Webster to achieve a convergent normal form under a suitable non-
resonance condition even for the non-exceptional hyperbolic complex tangent.

When p > 1, we need to carry out a further normalization for {τ11, . . . , τ1p, ρ0}; this is
our second step. Here the normalization has a large degree of freedom as shown by our
formal and convergence results.

In sections 2 through 7, we will study the formal normal forms and the relations on the
convergence of normalizations in these two steps. Let us first describe main results in these
sections.

1.2.2. Normal forms of quadrics with the maximum number of deck transformations. The
basic model for quadric manifolds with such a CR singularity is a product of 3 types of
quadrics defined by

Qγe ⊂ C2 : z2 = (z1 + 2γez1)
2;

Qγh ⊂ C2 : z2 = (z1 + 2γhz1)
2;

Qγs ⊂ C4 : z3 = (z1 + 2γsz2)
2, z4 = (z2 + 2(1− γs)z1)

2.

Here

(1.2) 0 < γe < 1/2, 1/2 < γh <∞, Re γs > 1/2, Im γs > 0.

Note that Qγe , Qγh are elliptic and hyperbolic Bishop quadrics, respectively. Realizing a
type of pairs of involutions introduced in [Sto07], we will say that the complex tangent of
Qγs at the origin is complex. We emphasize that this last type of quadric is new as we will
show that Qγs is not holomorphically equivalent to a product of two Bishop surfaces. A
real submanifold of dimension n in Cn with n = 2p that is a product of the above quadrics
will be called a product of quadrics, or a product quadric.

In section 3, we study all quadrics which admit the maximum number of deck transfor-
mations. For such quadrics, all deck transformations are linear. Under condition E, we will
first normalize σ, τ1, τ2 and ρ0 into Ŝ, T̂1, T̂2 and ρ where

T̂1 : ξ′j = λ−1
j ηj , η′j = λjξj,

T̂2 : ξ′j = λjηj , η′j = λ−1
j ξj,

Ŝ : ξ′j = µjξj, η′j = µ−1
j ηj

with
λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ

−1

s , µj = λ2j .

Here 1 ≤ j ≤ p. Throughout the paper, the indices e, h, s have the ranges: 1 ≤ e ≤ e∗,
e∗ < h ≤ e∗ + h∗, e∗ + h∗ < s ≤ p− s∗. Thus e∗ + h∗ + 2s∗ = p. We will call e∗, h∗, s∗ the
numbers of elliptic, hyperbolic and complex components of a product quadric, respectively.
As in the Moser-Webster theory, at the complex tangent (the origin) an elliptic component

of a product quadric corresponds a hyperbolic component of Ŝ, while a hyperbolic component
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of the quadric corresponds an elliptic component of Ŝ. One could identify a complex
component of the quadric with a hyperbolic (instead of complex) component of Ŝ; however,
each type of complex tangents exhibits striking differences in the formal normal forms,
the convergence of normalizations, and the existence of attached complex submanifolds, as
illustrated by the results in this section.

For the above normal form of T̂1, T̂2 and Ŝ, we always normalize the anti-holomorphic
involution ρ0 as

ρ :





ξ′e = ηe, η′e = ξe,
ξ′h = ξh, η′h = ηh,
ξ′s = ξs+s∗, η′s = ηs+s∗,
ξ′s+s∗ = ξs, η′s+s∗ = ηs.

(1.3)

With the above normal forms T̂1, T̂2, Ŝ, ρ with Ŝ = T̂1T̂2, we will then normalize the
τ11, . . . , τ1p under linear transformations that commute with T̂1, T̂2, and ρ, i.e. the lin-

ear transformations belonging to the centralizer of T̂1, T̂2 and ρ. This is a subtle step.
Instead of normalizing the involutions directly, we will use the pairwise commutativity of
τ11, . . . , τ1p to associate to these p involutions a non-singular p × p matrix B. The nor-
malization of {τ11, . . . , τ1p, ρ} is then identified with the normalization of the matrices B

under a suitable equivalence relation. The latter is easy to solve. Our normal form of
{τ11, . . . , τ1p, ρ} is then constructed from the normal forms of T1, T2, ρ, and the matrix B.
Following Moser-Webster [MW83], we will construct the normal form of the quadrics from
the normal form of involutions.

Theorem 1.1. Let M be a quadratic submanifold defined by

zp+j = hj(z
′, z′) + qj(z

′), 1 ≤ j ≤ p.

Suppose thatM satisfies condition E, i.e. the branched covering of π1 of complexificationM
has 2p deck transformations andM has 2p distinct eigenvalues. ThenM is holomorphically
equivalent to

QB,γ : zp+j = L2
j (z

′, z′), 1 ≤ j ≤ p

where (L1(z
′, z′), . . . , Lp(z

′, z′))t = B(z′ − 2γz′), B ∈ GLp(C) and

γ :=




γe∗ 0 0 0

0 γh∗
0 0

0 0 0 γs∗

0 0 Is∗ − γs∗ 0


 .

Here p = e∗ + h∗ + 2s∗, Is∗ denotes the s∗ × s∗ identity matrix, and

γe∗ = diag(γ1, . . . , γe∗), γh∗
= diag(γe∗+1, . . . , γe∗+h∗),

γs∗ = diag(γe∗+h∗+1, . . . , γp−s∗)

with γe, γh, and γs satisfying (1.2). Moreover, B is uniquely determined by an equivalence
relation B ∼ CBR for suitable non-singular matrices C,R which have exactly p non-zero
entries.
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See Theorem 3.7 for detail of the equivalence relation. The scheme of finding quadratic
normal forms turns out to be useful. It will be applied to the study of normal forms of the
general real submanifolds.

1.3. Formal normalization and divergence of normal forms.

1.3.1. Formal submanifolds, formal involutions, and formal centralizers. In section 4, we
show that the formally holomorphic classification of formal submanifolds with the maxi-
mum number of formal deck transformations and the formally holomorphic classification
of suitable families of involutions {τ11, . . . , τ1p, ρ} are equivalent. This equivalence will be
used to derive the formal normal forms of the submanifolds. As mentioned earlier, we will
first normalize σ = τ1τ2 under general formal biholomorphic transformations. The normal
forms of σ turn out to be in the centralizer of Ŝ, the normal form of the linear part of σ.
The family is subject to a second step of normalization, under mappings which again turn
out to be in the centralizer of Ŝ. Thus, before we introduce normalization, we will first
study various centralizers. We will discuss the centralizer of Ŝ as well as the centralizer of
{T̂1, T̂2} in section 4. The centralizer of {T̂11, . . . , T̂1p, ρ} is more complicated, which will
be discussed in section 10.

1.3.2. Normalization of σ. As mentioned earlier, we will divide the normalization for the
families of non-linear involutions into two steps. This division will serve two purposes:
first, it helps us to find the formal normal forms of the family of involutions {τ11, . . . , τ1p, ρ};
second, it helps us understand the convergence of normalization of the original normal form
problem for the real submanifolds. For purpose of normalization, we will assume that M
is non-resonant, i.e. σ is non-resonant, if its eigenvalues µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p satisfy

µQ 6= 1, ∀Q ∈ Zp, |Q| 6= 0.

In section 5, we obtain the normalization of σ by proving the following.

Theorem 1.2. Let σ be a holomorphic map with linear part Ŝ. Assume that µ1, . . . , µp

are non-resonant. Suppose that σ = τ1τ2 where τ1 is a holomorphic involution, ρ is an
anti-holomorphic involution, and τ2 = ρτ1ρ. Then there exists a formal map Ψ such that
ρ := Ψ−1ρΨ is given by (1.3), σ∗ = Ψ−1σΨ and τ ∗i = Ψ−1τiΨ have the form

σ∗ : ξ′j =Mj(ξη)ξj, η′j =M−1
j (ξη)ηj, 1 ≤ j ≤ p,(1.4)

τ ∗i = Λij(ξη)ηj, η′j = Λ−1
ij (ξη)ξj.

Here, ξη = (ξ1η1, . . . , ξpηp). Assume further that logM (see (5.31) for definition) is tangent
to the identity. Under a further change of coordinates that preserves ρ, σ∗ and τ ∗i are
transformed into

σ̂ : ξ′j = M̂j(ξη)ξj, η′j = M̂−1
j (ξη)ηj, 1 ≤ j ≤ p,(1.5)

τ̂i = Λ̂ij(ξη)ηj, η′j = Λ̂−1
ij (ξη)ξj, Λ̂2j = Λ̂−1

1j .

Here the jth component of log M̂(ζ)− I is independent of ζj. Moreover, M̂ is unique.

Remark 1.3. The condition that logM is tangent to identity at the origin has to be
understood as a non-degeneracy condition of which it is the simplest instance. When there
is no ambiguity, “tangent to identity” stands for “tangent to identity at the origin”.
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We will conclude section 5 with an example showing that although σ, τ1, τ2 are both
linear, {τ11, . . . , τ1p, ρ} are not necessary linear, provided p > 1.

Section 6 is devoted to the proof of the following divergence result.

Theorem 1.4. There exists a non-resonant real analytic submanifold M with pure elliptic
complex tangent in C6 such that if its corresponding σ is transformed into a map σ∗ which
commutes with the linear part of σ at the origin, then σ∗ must diverge.

Note that the theorem says that all normal forms of σ (by definition, they belong to the
centralizer of its linear part, i.e. they are in the Poincare-Dulac normal forms) are divergent.
It implies that any transformation for M that transforms σ into a Poincaré-Dulac normal
form must diverge. This is in contrast with the Moser-Webster theory: For p = 1, a
convergent normal form can always be achieved even if the associated transformation is
divergent (in the case of hyperbolic complex tangent), and furthermore in case of p = 1
and elliptic complex tangent with a non-varnishing Bishop invariant, the normal form can
be achieved by a convergent transformation. The divergent Birkhoff normal form for the
classical Hamiltonian systems was obtained in [Gon12] by the first-named author. We refer
to [SM71, Mos73] as general references concerning Hamiltonian and reversible dynamics.

1.3.3. Normalization on the family {τij, ρ}. In section 7, we will follow the scheme devel-
oped for the quadric normal forms in order to normalize {τ11, . . . , τ1p, ρ}. Let σ̂ be given
by (1.5). We define

τ̂1j : ξ
′
j = Λ̂1j(ξη)ηj, η′j = Λ̂−1

1j (ξη)ξj, ξ′k = ξk, η′k = ηk,

where k 6= j, Λ̂1j(0) = λj , and M̂j = Λ̂2
1j . We have the following formal normal form.

Theorem 1.5. Let M be a real analytic submanifold that is a higher order perturbation of
a non-resonant product quadric. Suppose that its associated σ is formally equivalent to σ̂
given by (1.5). Suppose that the formal mapping log M̂ in Theorem 1.2 is tangent to the
identity. Then the formal normal form of M is completely determined by

M̂(ζ), Φ.

Here Φ is a formal invertible mapping in Cc(τ̂11, . . . , τ̂1p). Moreover, Φ is uniquely deter-
mined up to the equivalence relation Φ ∼ RǫΦR

−1
ǫ with Rǫ : ξj = ǫjξ, η

′
j = ǫjηj (1 ≤ j ≤ p)

and R2
ǫ = I. Furthermore, if the normal form (1.4) of σ can be achieved by a convergent

transformation, so does the normal form of M .

The set Cc(τ̂11, . . . , τ̂1p) is defined by Definition 7.2.

The second part of the paper is devoted to geometric properties of M and in particular
those obtained through convergent normalization, under additional assumptions on M .

We first turn to a holomorphic normalization of a real analytic submanifold M with the
so-called abelian CR singularity. This will be achieved by studying an integrability prob-
lem on a general family of commuting biholomorphisms described below. The holomorphic
normalization will be used to construct the local hull of holomorphy of M . We will also
study the rigidity problem of a quadric under higher order analytic perturbations, i.e. the
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problem if such a perturbation remains holomorphically equivalent to the quadric if it is
formally equivalent to the quadric. The rigidity problem is reduced to a theorem of holo-
morphic linearization of one or several commuting diffeomorphisms along a suitable ideal
that was devised in [Sto13]. Finally, we will study the existence of holomorphic submani-
folds attached to the real submanifold M . These are complex submanifolds of dimension
p intersecting M along two totally real analytic submanifolds that intersect transversally
at a CR singularity. Attaching complex submanifolds has less constraints than finding a
convergent normalization. Therefore, our only assumption is that M is non-resonant and
admits the maximum number of deck transformations. A remarkable feature of attached
complex submanifolds is that their existence depends only on the existence of suitable (con-
vergent) invariant submanifolds of σ. When the real submanifold has a complex tangent
of pure complex type, the existence is ensured under a mild non-resonance condition but
without any further restriction such as small divisors condition on the eigenvalues of M .

1.4. Abelian CR singularity and analytic hull of holomorphy.

1.4.1. Normal form of commuting biholomorphisms. Let F = {F1, . . . , Fℓ} be a finite fam-
ily of germs of biholomorphisms of Cn fixing the origin. Let Dm be the linear part of Fm at
the origin. We say that the family F is (formal) completely integrable, if there is a (formal)

biholomorphic mapping Φ such that {Φ−1FmΦ: 1 ≤ m ≤ ℓ} = {F̂m : 1 ≤ m ≤ ℓ} satisfies

(i) F̂m(z) = (µm1(z)z1, . . . , µmn(z)zn) and µmj ◦ Dm′ = µmj for 1 ≤ m,m′ ≤ ℓ and

1 ≤ j ≤ n. In particular, F̂m commutes with Dm′ for all 1 ≤ m,m′ ≤ ℓ.
(ii) For each j and each Q ∈ Nn with |Q| > 1, µQ

m(0) = µmj(0) hold for all m if and
only if µQ

m(z) = µmj(z) hold for all m.

Note that a necessary condition for F to be formally completely integrable is that F1, . . . , Fℓ

commute pairwise. The main result of section 8 is the following.

Theorem 1.6. Let F be a family of finitely many germs of biholomorphisms at the origin.
Suppose that F is formally completely integrable. Then it is holomorphically completely
integrable, provided the family of linear parts D of F is of the Poincaré type. In particular,
F is holomorphically equivalent to a normal form in which each element commutes with
D1, . . . , Dℓ.

The definition of Poincaré type is in Definition 8.9. Such results for commuting germs
of vector fields were obtained in [Sto00, Sto05] under a collective Brjuno-type of small
divisors condition. For a single germ of real analytic hyperbolic area-preserving map-
ping, the result was due to Moser [Mos56], and for a single germ of reversible hyperbolic
holomorphic mapping σ = τ1τ2 of which τ1 fixes a hypersurface, this result was due to
Moser-Webster [MW83]. Our proof is inspired by these proofs.

1.4.2. Convergence of normalization for the abelian CR singularity. In sections 7 we will
obtain the convergence of normalization for an abelian CR singularity which we now define.
We characterize the abelian CR singularity as follows. We first consider a product quadric
Q which satisfies condition E. So the branched covering π1 for the complexification of Q are
generated by p involutions of which each fixes a hypersurface pointwise. We denote them by
T11, . . . , T1p. Let T2j = ρT1jρ. It turns out that each T1j commutes with all Tik except one,
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T2kj for some 1 ≤ kj ≤ p. When we formulate Sj = T1jT2kj for 1 ≤ j ≤ p, then S1, . . . , Sp

commute pairwise. Consider a general M that is a third-order perturbation of product
quadric Q and satisfies condition E. We define σj = τ1jτ2kj . In suitable coordinates, Tij
(resp. Sj) is the linear part of τij (resp. σj) at the origin. We say that the complex tangent
of a third order perturbation M of a product quadric at the origin is of abelian type, if
σ1, . . . , σp commute pairwise. If each linear part Sj of σj has exactly two eigenvalues µj, µ

−1
j

that are different from 1, then S := {S1, . . . , Sp} is of Poincaré type if and only if |µj| 6= 1
for all j. As mentioned previously, Moser and Webster actually dealt with n-dimensional
real submanifolds in Cn that have the minimal dimension of complex tangent subspace
at a CR singular point. In their situation, there is only one possible composition, that is
σ = τ1τ2. When the complex tangent has an elliptic but non-vanishing Bishop invariant, σ
has exactly two positive eigenvalues that are separated by 1, while the remaining eigenvalues
are 1 with multiplicity n− 2.

As an application of Theorem 1.6, we will prove the following convergent normalization.

Theorem 1.7. Let M be a germ of real analytic submanifold in C2p at an abelian CR
singularity. Suppose that M has distinct eigenvalues and has no hyperbolic component of
complex tangent. Then M is holomorphically equivalent to

M̂ : zp+j = Λ1j(ζ)ζj, 1 ≤ j ≤ p,

where ζ = (ζ1, . . . , ζp) are the convergent solutions to

ζe = Ae(ζ)zeze −Be(ζ)(z
2
e + z2e),

ζs = As(ζ)zszs+s∗ − Bs(ζ)(z
2
s + Λ2

1s(ζ)z
2
s+s∗),

ζs+s∗ = As+s∗(ζ)zszs+s∗ − Bs+s∗(ζ)(z
2
s+s∗ + Λ2

1(s+s∗)(ζ)z
2
s)

with

Ae(ζ) :=
1 + Λ2

1e(ζ)

(1− Λ2
1e(ζ))

2
, Aj(ζ) := Λ1j(ζ)

1 + Λ2
1j(ζ)

(1− Λ2
1j(ζ))

2
, j = s, s+ s∗,

Bj(ζ) :=
Λ1j(ζ)

(1− Λ2
1j(ζ))

2
, j = e, s, s+ s∗.

Moreover, Λ1j(0) = λj, and Λ1 = (Λ11, . . . ,Λ1p) commutes with the anti-holomorphic invo-

lution ρz : ζe → ζe, ζs → ζs+s∗ , ζs+s∗ → ζs.

We will also present a more direct proof by using a convergence theorem of Moser and
Webster [MW83] and some formal results from section 8.

In the above theorem Mj = Λ2
1j, and they are obtained by Theorem 9.3 for the Jacobian

matrix of logM to be arbitrary. When 2 log diag(Λ11, . . .Λ1p) is tangent to the identity, M
can be further uniquely normalized in suitable holomorphic coordinates to obtain a unique
normal form for M ; see Remark 9.4. When p > 1, the unique normal form shows that M
has infinitely many holomorphic invariants and M is not biholomorphic to the product of
Bishop surfaces in C2 even if the CR singularity has pure elliptic type. As an application
of Theorem 1.7, we will prove the following.

Corollary 1.8. Under the conditions in Theorem 1.7, the manifold M can be holomorphi-
cally flattened. More precisely, in suitable holomorphic coordinates, M is contained in the
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linear subspace Cp ×Rp defined by zp+e = zp+e and zp+s = zp+s+s∗ where 1 ≤ e ≤ e∗ and
e∗ < s ≤ e∗ + s∗.

One of significances of the Bishop quadrics is that their higher order analytic perturbation
at an elliptic complex tangent has a non-trivial hull of holomorphy. As another application
of the above normal form, we will construct the local hull of holomorphy of M , that is
the intersection of domains of holomorphy in Cn that contain M , via higher dimensional
non-linear analytic polydiscs.

Corollary 1.9. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Suppose thatM has distinct eigenvalues and has only elliptic component of complex tangent.
Then in suitable holomorphic coordinates, Hloc(M), the local hull of holomorphy of M , is
filled by a real analytic family of analytic polydiscs of dimension p. Moreover, Hloc(M) is
the transversal intersection of p real analytic submanifolds Hj(M) with boundary and in
suitable holomorphic coordinates all Hj(M) are contained in Rp ×Cp.

For a precise statement of the corollary, see Theorem 9.6. The hulls of holomorphy for
real submanifolds with a CR singularity have been studied extensively, starting with the
work of Bishop. In the real analytic case with minimum complex tangent space at an
elliptic complex tangent, we refer to Moser-Webster [MW83] for γ > 0, and Krantz-Huang
[HK95] for γ = 0. For the smooth case, see Kenig-Webster [KW82, KW84], Huang [Hua98].
For global results on hull of holomorphy, we refer to [BG83, BK91].

1.5. Rigidity of quadrics. In Section 10, as an application of the theorem of linearization
of holomorphic mappings on an ideal I [Sto13] (see Theorem 11.8 below), we will prove
the following theorem, which corresponds to the case I = 0 :

Theorem 1.10. Let M be a germ of real analytic submanifold at the origin of Cn. Suppose
that M is formally equivalent a product quadric that has distinct eigenvalues. Suppose that
each hyperbolic component has an eigenvalue µh which is either a root of unity or satisfies
Brjuno small divisors condition. Then M is holomorphically equivalent to the product
quadric.

Brjuno small divisors condition is defined by (11.32). When p = 1, this result is due to
the first-named author under a stronger small divisor condition, namely Siegel’s condition
[Gon94]. In the case p = 1 with a vanishing Bishop invariant, such rigidity result was
obtained by Moser [Mos85] and by Huang-Yin [HY09b] in a more general context.

1.6. Attached complex submanifolds. We now describe convergent results for attached
complex submanifolds. The convergent results are for a general M , including the one of
which the complex tangent might not be of abelian type.

We say that a formal complex submanifold K is attached toM if K∩M contains at least
two germs of totally real and formal submanifolds K1, K2 that intersect transversally at a
given CR singularity. In [Kli85], Klingenberg showed that when M is non-resonant and
p = 1, there is a unique formal holomorphic curve attached toM with a hyperbolic complex
tangent. He also proved the convergence of the attached formal holomorphic curve under
a Siegel small divisors condition. When p > 1, we will show that generically there is no
formal complex submanifold that can be attached toM ifM does not admit the maximum
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number of deck transformations or if the CR singularity has an elliptic component. When
p > 1 and M is a higher order perturbation of a product quadric of Qγh , Qγs , we will
encounter various interesting situations.

Firstly, by adapting Klingenberg’s proof for p = 1 and using a theorem of Pöschel [Pös86],
we will prove the following.

Proposition 1.11. Let M be a third order perturbation of a product of quadrics of which
each has complex type at the origin. Suppose that M admits the maximum number of deck
transformations and it is non-resonant. Then M admits an attached complex submanifold.

The proposition does not need any small divisors condition and a more detailed version in
the presence of hyperbolic components is in Theorem 11.5. Furthermore, the non resonance
condition is satisfied for γ1, . . . , γs∗ outside the union of countable algebraic hypersurfaces.

Secondly, we will show that a non-resonant product quadric has a unique attached com-
plex manifolds. However, under a perturbation of the quadric, the attached complex sub-
manifold of the quadric can split into different attached formal submanifolds which may
or may not be convergent. In fact, we will show that the coexistence of divergent and
convergent attached complex submanifolds for a complex tangent of the complex type; see
Proposition 11.6.

Finally, for the convergence of all attached formal complex submanifolds, we have the
following.

Theorem 1.12. Let M be a third order perturbation of a product quadric. Suppose that M
admits the maximum number of deck transformations and is non resonant. Suppose that
M has no elliptic component and the eigenvalues of σ satisfy a Bruno type condition, then
all attached formal submanifolds are convergent.

The above theorem for hyperbolic complex tangency was drafted in [Sto07]. For the
Bruno type of condition in the theorem, see (11.32), which was introduced in [Sto13] for
linearization on ideals.

1.6.1. Notation. We briefly introduce the notation used in the paper. The identity map is
denoted by I. We denote by LF the linear part at the origin of a mapping F : Cm → Cn

with F (0) = 0. Let F ′(0) or DF (0) denote the Jacobian matrix of the F at the origin.
Then LF (z) = F ′(0)z. We also denote by DF (z) or simply DF , the Jacobian matrix of F
at z, when there is no ambiguity. By an analytic (or holomorphic) function, we shall mean
a germ of analytic function at a point (which will be defined by the context) otherwise

stated. We shall denote by On (resp. Ôn, Mn, M̂n) the space of germs of holomorphic
functions of Cn at the origin (resp. of formal power series in Cn, holomorphic germs, and
formal germs vanishing at the origin).

Acknowledgment. This joint work was completed while the first-named author was
visiting at SRC-GAIA of POSTECH. X.G. is grateful to Kang-Tae Kim for hospitality.

2. CR singularities and deck transformations

We will consider a real submanifold M of Cn. The simplest local holomorphic invariant

of M is the dimension of its complex tangent subspace T
(1,0)
x0 M at a given point x0. Here
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T
(1,0)
x0 M is the space of tangent vectors of M at x0 of the form

∑n
j=1 aj

∂
∂zj

. Let M have

dimension n. In this paper, we assume that T
(1,0)
x0 M has the largest possible dimension

p = n/2 at a given point x0, or equivalently, that the complexified tangent space Tx0M ⊗C

is the direct sum of T
(1,0)
x0 M and its complex conjugate. We study local invariants of M

under a local holomorphic change of coordinates fixing the x0. In suitable holomorphic
affine coordinates, we have x0 = 0 and

(2.1) M : zp+j = Ej(z
′, z̄′), 1 ≤ j ≤ p.

Here we have set z′ = (z1, . . . , zp) and we will denote z′′ = (zp+1, . . . , z2p). The 1-jet at
the origin of the complex analytic functions Ej vanishes; in other words, Ej together with
their first order derivatives vanish at 0. The tangent space T0M is then the z′-subspace.
For the local theory, the only interesting case is when M is not a complex submanifold,
that is that E(z′, z′) is not holomorphic in z′, which we assume throughout the paper.

The main purpose of this section is to obtain some basic invariants and a relation between
two families of involutions and the real analytic submanifolds which we want to normalize.

2.1. CR singular set. Let M be given by (2.1). Then

X =

p∑

j=1

{
aj

∂

∂zj
+ bj

∂

∂zp+j

}

is tangent to M at (z′, z′′) if and only if

bk =

p∑

j=1

aj
∂Ek(z

′, z′)

∂zj
,

p∑

j=1

aj
∂Ek(z

′, z′)

∂zj
= 0, 1 ≤ k ≤ p.

To consider the second set of equations, we introduce

(2.2) C(z′, z′) :=

∣∣∣∣∣∣∣

∂E1

∂z1
· · · ∂E1

∂zp
...

...
...

∂Ep

∂z1
· · · ∂Ep

∂zp

∣∣∣∣∣∣∣
.

Note that M is totally real at (z′, z′′) ∈M if and only if C(z′, z′) 6= 0. We will assume that
C(z′, z′) is not identically zero in any neighborhood of the origin. Then the zero set of C
on M , denoted by MCRsing, is called CR singular set of M , or the set of complex tangents
of M . We assume that M is real analytic. Then MCRsing is a possibly singular proper real
analytic subset of M that contains the origin.

2.2. Existence of deck transformations and examples. We first derive some qua-
dratic invariants. Applying a quadratic change of holomorphic coordinates, we obtain

(2.3) Ej(z
′, z′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3).

Here we have used the convention that if x = (x1, . . . , xn), then O(|x|k) denotes a formal
power series in x without terms of order < k. A biholomorphic map f that preserves the
form of the above submanifoldsM and fixes the origin must preserve their complex tangent
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spaces at the origin, i.e. z′′ = 0. Thus if z̃ denote the old coordinates and z denote the
new coordinates then f has the form

z̃′ = Az′ +Bz′′ +O(|z|2), z̃′′ = Uz′′ +O(|z|2).
Here A and U are non-singular p× p complex matrices. Now f(M) is given by

Uz′′ = h(Az′,Az′) + q(Az′) +O(|z|3).
We multiply the both sides by U−1 and solve for z′′; the vectors of p quadratic forms
{h(z̃′, z̃′), q(z̃′)} are transformed into

(2.4) {ĥ(z′, z′), q̂(z′)} = {U−1h(Az′,Az′),U−1q(Az′)}.
This shows that ifM and M̂ are holomorphically equivalent, their corresponding quadratic
terms are equivalent via (2.4). Therefore, we obtain a holomorphic invariant

q∗ = dimC{z′ : q1(z′) = · · · = qp(z
′) = 0}.

We remark that when M, M̂ are quadratic (i.e. when their corresponding E, Ê are ho-

mogeneous quadratic polynomials), the equivalence relation (2.4) implies that M, M̂ are
linearly equivalent, Therefore, the above transformation of h and q via A and U deter-
mines the classifications of the quadrics under local biholomorphisms as wells as under
linear biholomorphisms. We have shown that the two classifications for the quadrics are
identical.

Recall thatM is real analytic. Let us complexify such a real submanifoldM by replacing
z̄′ by w′ to obtain a complex n-submanifold of C2n, defined by

M :

{
zp+i = Ei(z

′, w′),

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

We use (z′, w′) as holomorphic coordinates ofM and define the anti-holomorphic involution
ρ on it by

(2.5) ρ(z′, w′) = (w̄′, z̄′).

Occasionally we will also denote the above ρ by ρ0 for clarity. We will identify M with
a totally real and real analytic submanifold of M via embedding z → (z, z). We have
M = M∩ Fix(ρ) where Fix(ρ) denotes the set of fixed points of ρ. Let π1 : M 7→ Cn be
the restriction of the projection (z, w) → z and let π2 be the restriction of (z, w) → w. It
is clear that π2 = π1ρ on M. Throughout the paper, π1, π2, ρ are restricted on M unless
stated otherwise.

Our first basic assumption on M is the following condition.

Condition B. q∗ = 0.

Note that a necessary condition for q∗ = 0 is that functions q1(z
′), q2(z

′), . . . , qp(z
′) are

linearly independent, since the intersection of k germs of holomorphic hypersurfaces at 0
in Cp has dimension at least p− k. (See [Chi89], p. 35; [Gun90][Corollary 8, p. 81].)

When π1 : M → C2p is a branched covering, we define a deck transformation on M for
π1 to be a germ of biholomorphic mapping F defined at 0 ∈ M that satisfies π1 ◦ F = π1.
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In other words, F (z′, w′) = (z′, f(z′, w′)) and

Ei(z
′, w′) = Ei(z

′, f(z′, w′)), i = 1, . . . , p.

Lemma 2.1. Suppose that q∗ = 0. Then MCRsing is a proper real analytic subset of M and
M is totally real away from MCRsing, i.e. the CR dimension of M is zero. Furthermore,
π1 is a 2p-to-1 branched covering. The group of deck transformations of π1 consists of 2ℓ

commuting involutions with 0 ≤ ℓ ≤ p.

Proof. Since q−1(0) = {0}, then z′ → q(0, z′) is a finite holomorphic map. Hence its
Jacobian determinant is not identically zero. In particular, C(z′, z′), defined by (2.2), is
not identically zero. This shows that M has CR dimension 0.

Since w′ → q(w′) is a homogeneous quadratic mapping of the same space which vanishes
only at the origin, then

|q(w′)| ≥ c|w′|2.
We want to verify that π1 is a 2p–to–1 branched covering. Let ∆r = {z ∈ C : |z| < r}. We
choose C > 0 such that π1(z, w) = (z′, E(z′, w′)) defines a proper and onto mapping

(2.6) π1 : M1 := M∩ ((∆p
δ ×∆p

δ2)× (∆p
Cδ ×∆p

Cδ2)) 7→ ∆p
δ ×∆p

δ2 .

By Sard’s theorem, the regular values of π1 have the full measure. For each regular value
z, π−1

1 (z) has exactly 2p distinct points (see [Chi89], p. 105 and p. 112). It is obvious that
M1 is smooth and connected. We fix a fiber Fz of 2p points. Then the group of deck
transformations of π1 acts on Fz in such a way that if a deck transformation fixes a point
in Fz, then it must be the identity. Therefore, the number of deck transformations divides
2p and each deck transformation has period 2ℓ with 0 ≤ ℓ ≤ p.

We first show that each deck transformation f of π1 is an involution. We know that f is
periodic and has the form

z′ → z′, w′ → Aw′ +Bz′ +O(2),

where A,B are matrices. Assume that f has period m. Then f̂(z′, w′) = (z′,Aw′ +Bz′)

satisfies f̂m = I and f is locally equivalent to f̂ ; indeed f̂ gf−1 = g for

g =

m∑

i=1

(f̂ i)−1 ◦ f i.

Therefore, it suffices to show that f̂ is an involution.
We have

f̂m(z′, w′) = (z′,Amw′ + (Am−1 + · · ·+A+ I)Bz′).

Since f is a deck transformation, then E(z′, w′) is invariant under f . Recall from (2.3) that
E(z′, z′) starts with quadratic terms of the form h(z′, z′) + q(z′). Comparing quadratic

terms in E(z′, w′) = E ◦ f̂(z′, w′), we see that the linear map f̂ has invariant functions

z′′ = h(z′, w′) + q(w′).

We know that Am = I. By the Jordan normal form, we choose a linear transformation
w̃′ = Sw′ such that SAS−1 is the diagonal matrix diag a with a = (a1, . . . , ap). In (z′, w̃′)

coordinates, the mapping f̂ has the form (z′, w̃′) → (z′, (diag a)w̃′ + SBz′). Now

h̃j(z
′, w̃′) + q̃j(w̃

′) := hj(z
′,S−1w̃) + qj(S

−1w̃′)
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are invariant under f̂ . Hence q̃j(w̃
′) are invariant under w̃′ 7→ (diag a)w̃′. Since the common

zero set of q1(w
′), . . . , qp(w

′) is the origin, then

V = {w̃′ ∈ Cp : q̃(w̃′) = 0} = {0}.
We conclude that q̃(w̃1, 0, . . . , 0) is not identically zero; otherwise V would contain the
w̃1-axis. Now q̃((diag a)w̃′) = q̃(w̃′), restricted to w̃′ = (w̃1, 0, . . . , 0), implies that a1 = ±1.
By the same argument, we get aj = ±1 for all j. This shows that A2 = I. Let us combine
it with

Am = I, (Am−1 + · · ·+A+ I)B = 0.

If m = 1, it is obvious that f̂ = I. If m = 2ℓ > 1, then (A + I)B = 0. Thus f̂ 2(z′, w′) =
(z′,A2w′ + (A + I)Bz′) = (z′, w′). This shows that every deck transformation of π1 is an
involution.

For any two deck transformations f and g, fg is still a deck transformation. Hence
(fg)2 = I implies that fg = gf . �

Next, we want to introduce types of complex tangents. When p = 1, the types give the
classification for quadratic parts of the real submanifolds. For higher dimensions, the types
serves a crude classification, but they are significant to characterize our results.

Let us first recall types of complex tangents for surfaces. The Moser-Webster theory
deals with the case p = 1 for a real analytic surface

z2 = |z1|2 + γ1(z
2
1 + z21) +O(|z1|3).

Here γ1 ≥ 0 is the Bishop invariant of M . The complex tangent of M is said to be elliptic,
parabolic, or hyperbolic according to 0 ≤ γ1 < 1/2, γ1 = 1/2 or γ1 > 1/2, respectively.
One of most important properties of the Moser-Webster theory is the existence of the
above mentioned deck transformations. When γ1 6= 0, there is a pair of Moser-Webster
involutions τ1, τ2 with τ2 = ρτ1ρ such that τ1 generates the deck transformations of π1.
In fact, τ1 is the only possible non-trivial deck transformation of π1. When γ1 6= 1/2, in
suitable coordinates their composition σ = τ1τ2 is of the form

τ : ξ′ = µξ +O(|(ξ, η)|2), η′ = µ−1η +O(|(ξ, η)|2).
Here ρ(ξ, η) = (η, ξ) when 0 < γ < 1/2, and ρ(ξ, η) = (ξ, η) when γ > 1/2. When
the complex tangent is elliptic, σ is hyperbolic with µ > 1; when the complex tangent is
hyperbolic, then σ is elliptic with |µ| = 1. When the complex tangent is parabolic, the
linear part of σ is not diagonalizable and 1 is the eigenvalue. We also remark that the
Moser-Webster theory deals with a more general case where n-dimensional submanifolds
M in Cn have the form

z2 = |z1|2 + γ1(z
2
1 + z21) +O(3), yj = O(2), 2 ≤ j ≤ n

with the Bishop invariant 0 < γ1 < ∞. Here n > 1 is not necessarily even. The origin
is then a complex tangent of M of which the complex tangent space at the origin has the
minimum dimension 1.

Our basic model is the product of the above-mentioned Bishop quadrics

Qγ : zp+j = |zj |2 + γj(z
2
j + z2j ), 1 ≤ j ≤ p.
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Here 0 < γj <∞, γj 6= 1/2, γ = (γ1, . . . , γp) and Qγ := Qγ1 × · · · ×Qγp . We will see later
that with p ≥ 2, there is yet another simple model that is not in the product. This is the
quadric in C4 defined by

(2.7) Qγs : z3 = z1z2 + γsz
2
2 + (1− γs)z

2
1 , z4 = z3.

Here γs is a complex number. We will, however, exclude γs = 0 or equivalently γs = 1
by condition B. We also exclude γs = 1/2 by condition E. Note that γs = 1/2 does not
correspond to a product Bishop quadrics either, by examining the CR singular sets. Under
these mild non degeneracy conditions, we will show that γs is an invariant when it is
normalized to the range

(2.8) γs ∈ (1/2,∞) + i(0,∞).

In this case, the complex tangent is said of complex type. Notice that Qγj is contained in
a real hyperplane when γj ≥ 0, while Qγs is contained in C2 ×R2.

We have introduced the types of the complex tangent at the origin. Of course a product
of quadrics, or a product quadric, can exhibit a combination of the above basic 4 types. We
will see soon that quadrics have other invariants when p > 1. Nevertheless, in our results,
the above invariants that describe the types of the complex tangent will play a major role
in the convergence or divergence of normalizations.

Before we proceed to discussing the deck transformations, we give some examples. The
first example turns out to be a holomorphic equivalent form of a real submanifold that
admits the maximum number of deck transformations and satisfies other mild conditions.

Example 2.2. Let B = (bjk) be a non-singular p× p matrix. Let M be defined by

(2.9) zp+j =

(∑

k

bjkzk +Rj(z
′, z′)

)2

, 1 ≤ j ≤ p,

where each Rj(0, z
′) starts with terms of order at least 2. Then M admits 2p deck transfor-

mations for π1. Indeed, let E1, . . . ,E2p be the set of diagonal p× p matrices with E2
j = I,

and let R is the column vector (R1, . . . , Rp)
t. Any deck transformation (z′, w′) → (z′, w̃′)

must satisfy

(2.10) Bw̃′ +R(z′, w̃′) = Ej(Bw
′ +R(z′, w′)),

for some Ej. Since B is invertible, it has a unique solution

w̃ = B−1EjBw
′ +O(|z′|) +O(|w′|2).

Finally, (z′, w′) → (z′, w̃′) is an involution, as if (z′, w′, w̃′) = (z′, w′, f(z′, w′)) satisfy (2.10)
if and only if (z′, f(z′, w′), w′), substituting for (z′, w′, w̃′) in (2.10), satisfy (2.10).

Example 2.3. Let M be defined by

zp+j = zjzj + bjz
2
j + Ej(z

′, zj), 1 ≤ j ≤ p− 2s∗,

zs = zszs+s∗ + bs+s∗z
2
s + Es(z

′, zs),

zs∗+s = zs+s∗zs + bsz
2
s+s∗ + Es+s∗(z

′, zs+s∗), p− 2s∗ ≤ s ≤ p− s∗.

Here bj 6= 0 and Ej = O(3) for 1 ≤ j ≤ p. Then M admits 2p deck transformations for π1.
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We now present two examples to show that the deck transformations can be destroyed
by perturbations when p > 1. This is the major difference between real submanifolds with
p > 1 and the ones with p = 1.

The first example shows that a small perturbation can reduce the number of deck trans-
formations to any number 2ℓ.

Example 2.4. Let Mγ,ǫ be defined by

zp+j = zjzj + γjz
2
j + ǫj−1z

2
j−1, 1 ≤ j ≤ p

with z0 = zp. Suppose that ǫj 6= 0 and

(2.11) γ1 · · · γp + (−1)p−1ǫ0 · · · ǫp−1 6= 0.

We want to show that Mγ,ǫ admits the identity deck transformation only. Let τ(z′, w′) =
(z′, A(z′, w′)) be a deck transformation. Then

(2.12) zjAj(z
′, w′) + γjA

2
j (z

′, w′) + ǫj−1A
2
j−1(z

′, w′) = zjwj + γjw
2
j + ǫj−1w

2
j−1.

Let aj(w
′) = Aj(0, w

′). Set z′ = 0. By (2.11), we can solve for a2j to get unique solutions

a2j(w
′) = w2

j .

This shows that aj(w
′) = ±wj. Since ǫj−1 6= 0, setting wj = 0 and comparing the coeffi-

cients of ziwj−1 in (2.12) yield Aj−1(z
′, 0) = O(|z′|2). Comparing the coefficients of zjwj in

(2.12), we conclude that Aj(z
′, w′) = wj +O(|(z′, w′)|2). This shows that Lτ = I. Since τ

is periodic, then τ = I.

The next example shows that the number of deck transformations can be reduced to any
number 2ℓ by a higher order perturbation, too.

Example 2.5. Let Nγ,ǫ be a perturbation of Qγ defined by

zp+j = zjzj + γjz
2
j + ǫj−1z

3
j−1, 1 ≤ j ≤ p.

Here ǫj 6= 0 for all j. Let τ be a deck transformation of Nγ,ǫ for π1. We know that τ has
the form

z′j = zj , w′
j = Aj(z

′, w′) +Bj(z
′, w′) +O(|(z′, w′)|3).

Here Aj are linear and Bj are homogeneous quadratic polynomials. We then have

zjAj(z
′, w′) + γjA

2
j (z

′, w′) + A2
j−1(z

′, w′) = zjwj + γjw
2
j ,(2.13)

zjBj(z
′, w′) + 2γj(AjBj)(z

′, w′) + A3
j−1(z

′, w′) = w3
j−1.(2.14)

We know that Lτ is a deck transformation for Qγ . Thus aj(w
′) = Aj(0, w

′) = ±wj. Set
zj = 0 in (2.13)-(2.14) to get aj(w

′)|ǫj−1(w
3
j−1 − a3j−1(w

′)). Thus aj−1(w
′) = wj−1. Hence,

the matrix of Lτ is triangular and its diagonal entries are 1. Since Lτ is periodic then
Lτ = I. Since τ is periodic, then τ = I.

Based the above two examples, we impose the second basic assumption.

Condition D. M satisfies condition B and the branched covering π1 of M admits the
maximum 2p deck transformations.

Let us first derive some significant properties for real submanifolds that satisfy conditions
B and D.
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2.3. Real submanifolds and Moser-Webster involutions. The main result of this
subsection is to show the equivalence of classification of the real submanifolds with that
of families of involutions {τ11, . . . , τ1p, ρ}. The relation between two classifications plays
an important role in the Moser-Webster theory for p = 1. This will be the base of our
approach to the normal form problems.

Let F be a family of holomorphic maps in Cn with coordinates z. Let LF denote the
set of linear maps z → f ′(0)z with f ∈ F . Let OF

n denote the set of germs of holomorphic
functions h at 0 ∈ Cn so that h ◦ f = h for each f ∈ F . Let [Mn]

LF
1 be the subset of linear

functions of MLF
n .

Lemma 2.6. Let G be an abelian group of holomorphic (resp. formal) involutions fixing
0 ∈ Cn. Then G has 2ℓ elements which are simultaneously diagonalizable by a holomorphic
(resp. formal) transformation. If k = dimC[Mn]

LG
1 then ℓ ≤ n − k. Assume further-

more that ℓ = n− k then, in suitable holomorphic (z1, . . . , zn) coordinates, the group G is
generated by Zk+1, . . . , Zn with

(2.15) Zj : z
′
j = −zj , z′i = zi, i 6= j, 1 ≤ i ≤ n.

In the z coordinates, the set of convergent (resp. formal) power series in z1, . . . , zk,

z2k+1, . . . , z
2
n is equal to OG

n (resp. ÔG
n ), and with Z = Zn−k · · ·Zn,

(2.16) [Mn]
G
1 = [Mn]

Z
1 , Fix(Z) =

n⋂

j=k+1

Fix(Zj).

Proof. We first want to show that G has 2ℓ elements. Suppose that it has more than one
element and we have already found a subgroup of G that has 2i elements f1, . . . , f2i . Let
g be an element in G that is different from the 2i elements. Since g is an involution and
commutes with each fj , then

f1, . . . , f2i, gf1, . . . , gf2i

form a group of 2i+1 elements. We have proved that every finite subgroup of G has exactly
2ℓ elements. Moreover, if G is infinite then it contains a subgroup of 2ℓ elements for every
ℓ ≥ 0. Let {f1, . . . , f2ℓ} be such a subgroup of G. It suffices to show that ℓ ≤ n−k. We first
linearize all fj simultaneously. We know that Lf1, . . . , Lf2ℓ commute pairwise. Note that
I+f ′

1(0)
−1f1 linearizes f1. Assume that f1 is linear. Then f1 = Lf1 and Lf2 commute, and

I+f ′
2(0)

−1f2 commutes with f1 and linearizes f2. Thus fj can be simultaneously linearized
by a holomorphic (resp. formal) change of coordinates. Without loss of generality, we may
assume that each fj is linear. We want to diagonalize all fj simultaneously. Let E 1

i and
E−1

i be the eigenspaces of fi with eigenvalues 1 and −1, respectively. Since fi = f−1
j fifj ,

each eigenspace of fi is invariant under fj. Then we can decompose

(2.17) Cn =
⊕

(i1,...,is)

Ei1
1 ∩ · · · ∩ Eis

s .

Here (i1, . . . , is) runs over {−1, 1}s with subspaces E(i1,...,is) := Ei1
1 ∩ · · · ∩ Eis

s 6= {0}. On
each of these subspaces, fj = I or −I. We are ready to choose a new basis for Cn whose
elements are in the subspaces. Under the new basis, all fj are diagonal.
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Let us rewrite (2.17) as

Cn = V1 ⊕ V2 ⊕ · · · ⊕ Vℓ.

Here Vj = EIj and I1 = (1, . . . , 1). Also, Ij 6= (1, . . . , 1) and dimVj > 0 for j > 1. We have
dimC Fix(G) = dimC V1 = dimC[Mn]

LG
1 = k. Therefore, ℓ ≤ n − dimC V1 ≤ n − k. We

have proved that in suitable coordinates G is generated by Zk+1, . . . , Zn. The remaining
assertions follow easily. �

We will need an elementary result about invariant functions.

Lemma 2.7. Let Zk+1, . . . , Zn be defined by (2.15). Let F = {fk+1, . . . , fn} be a family
of germs of holomorphic mappings at the origin 0 ∈ Cn. Suppose that the family F is
holomorphically equivalent to {Zk+1, . . . , Zn}. Let b1(z), . . . , bn(z) be germs of holomorphic
functions that are invariant under F . Suppose that for 1 ≤ j ≤ k, bj(0) = 0 and the linear

part of bj at the origin is b̃j. Suppose that for i > k, bi(z) = O(|z|2) and the quadratic part

of bi at the origin is b∗i . Suppose that b̃1, . . . , b̃k are linear independent, and that b∗k+1, . . . , b
∗
n

are linearly independent modulo b̃1, . . . , b̃k, i.e.
∑

cib
∗
i (z) =

∑
dj(z)b̃j(z) +O(|z|3)

holds for some constants ci and formal power series dj, if and only if all ci are zero.
Then invariant functions of F are power series in b1, . . . , bn. Furthermore, F is uniquely
determined by b1, . . . , bn. The same conclusion holds if F and bj are given by formal power
series.

Proof. Without loss of generality, we may assume that F is {Zk+1, . . . , Zn}. Hence, for all
j, there is a formal power series aj such that bj(z) = aj(z1, . . . , zk, z

2
k+1, . . . , z

2
n). Let us

show that the map w → a(w) = (a1(w), . . . , an(w)) is invertible.

By Lemma 2.6, b̃1(z), . . . , b̃k(z) are linear combinations of z1, . . . , zk, and vice versa. By
Lemma 2.6 again, b∗k+1, . . . , b

∗
n are linear combinations of z2k+1, . . . , z

2
n modulo z1, . . . , zk.

This shows that

b∗i (z) =
∑

j>k

cijz
2
j +

∑

ℓ≤k

diℓ(z)b̃ℓ(z), i > k.

Since b∗k+1, . . . , b
∗
n are linearly independent modulo b̃1, . . . , b̃k. Then (cij) is invertible; so is

the linear part of a.
To show that F is uniquely determined by its invariant functions, let F̃ be another such

family that is equivalent to {Zk+1, . . . , Zn}. Assume that F and F̃ have the same invariant

functions. Without loss of generality, assume that F̃ is {Zk+1, . . . , Zn}. Then z1, . . . , zk
are invariant by each Fj , i.e. the ith component of Fj(z) is zi for i ≤ k. Also F 2

j,ℓ(z) = z2ℓ
for ℓ > k. We get Fj,ℓ = ±zℓ. Since zℓ is not invariant by F̃ , then it is not invariant by
F either. Then Fjℓ,ℓ(z) = −zℓ for some ℓj > k. Since Fjℓ is equivalent to some Zi, the
set of fixed points of Fjℓ is a hypersurface. This shows that Fjℓ = Zℓ. So the family F is
{Zk+1, . . . , Zn}. �

We now want to find a special set of generators for the deck transformations and its basic
properties, which will be important to our study of the normal form problems.
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Lemma 2.8. Let M be defined by (2.1) and (2.3) with q∗ = 0. Suppose that Ti, the group
of deck transformations of πi : M → Cp, has exactly 2p elements. Then the followings hold.

(i) T1 is generated by p distinct involutions τ1j such that Fix(τ11), . . . , Fix(τ1p) are
hypersurfaces intersecting transversally at 0. And τ1 = τ11 · · · τ1p is the unique
deck transformation of which the set of fixed points has dimension p. Moreover,
Fix(τ1) =

⋂
Fix(τ1j).

(ii) OT1
n (resp. ÔT1

n ) is precisely the set of convergent (resp. formal) power series in z′

and E(z′, w′). OT2
n (resp. ÔT2

n ) is the set of convergent (resp. formal) power series
in w′ and E(w′, z′). In particular, in (z′, w′) coordinates of M, T1 and T2 satisfy

[Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0},(2.18)

dimFix(τi) = p, Fix(τ1) ∩ Fix(τ2) = {0}.
Here [Mn]1 is the set of linear functions in z′, w′ without constant terms.

Proof. (i). Since z1, . . . , zp are invariant under deck transformations of π1, we have p′ =

dimC[On]
LT1
1 ≥ p. By Lemma 2.6, π1 has at most 22p−p′ deck transformations. Therefore,

p′ = p. By Lemma 2.6 again, we may assume that in suitable (ξ, η) coordinates, the deck
transformations are generated by

(2.19) Zj : (ξ, η) → (ξ, η1, . . . , ηj−1,−ηj , ηj+1, . . . , ηp), 1 ≤ j ≤ p.

It follows that Z = Z1 · · ·Zp is the unique deck transformation of π1, of which the set of
fixed points has dimension p.

(ii). We have proved that in (ξ, η) coordinates the deck transformations are generated
by the above Z1, . . . , Zp. Thus, the invariant holomorphic functions of Z1, . . . , Zp are pre-
cisely the holomorphic functions in ξ1, . . . , ξp, η

2
1, . . . , η

2
p. Since z1, . . . , zp and Ei(z

′, w′) are
invariant under deck transformations, then on M
(2.20) z′ = f(ξ, η21, . . . , η

2
p), E(z′, w′) = g(ξ, η21, . . . , η

2
p).

Since (z′, w′) are local coordinates of M, the differentials of z1, . . . , zp under any coordinate
system of M are linearly independent. Computing the differentials of z′ in variables ξ, η by
using (2.20), we see that the mapping ξ → f(ξ, 0) is a local biholomorphism. Expressing
both sides of the second identity in (2.20) as power series in ξ, η, we obtain

E(f(ξ, 0), w′) = g(ξ, η21, . . . , η
2
p) +O(|(ξ, η)|3).

We set ξ = 0, compute the left-hand side, and rewrite the identity as

g(0, η21, . . . , η
2
p) = q(w′) +O(|(ξ, η)|3).(2.21)

As coordinate systems, (z′, w′) and (ξ, η) vanish at 0 ∈ M. We now use (z′, w′) =
O(|(ξ, η)|). By (2.20), f(0) = g(0) = 0 and g(ξ, 0) = O(|ξ|2). Let us verify that the lin-
ear parts of g1(0, η), . . . , gp(0, η) are linearly independent. Suppose that

∑p
j=1 cjgj(0, η) =

O(|η|2). Replacing ξ, η by O(|(z′, w′)|) in (2.21) and setting z′ = 0, we obtain

p∑

j=1

cjqj(w
′) = O(|w′|3), i.e.

p∑

j=1

cjqj(w
′) = 0.
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As remarked after condition B was introduced, q∗ = 0 implies that q1(w
′), . . . , qp(w

′) are
linearly independent. Thus all cj are 0. We have verified that ξ → f(ξ, 0) is biholomorphic
near ξ = 0. Also η → g(0, η) is biholomorphic near η = 0 and g(ξ, 0) = O(|ξ|2). Therefore,
(ξ, η) → (f, g)(ξ, η) is invertible near 0. By solving (2.20), the functions ξ, η21, . . . , η

2
p are

expressed as power series in z′ and E(z′, w′).
It is clear that z1, . . . , zp are invariant under τ1j . From linearization of T1, we know that

the space of invariant linear functions of LT1 is the same as the space of linear invariant
functions of Lτ1, which has dimension p. This shows that z1, . . . , zp span the space of linear
invariant functions of Lτ1. Also w1, . . . , wp span the space of linear invariant functions of

Lτ2. We obtain [Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}. We have verified (2.18).

In view of the linearization of T1 in (i), we obtain dimFix(τ1) = dimFix(T1) = p.
Moreover, Fix(τi) is a smooth submanifold of which the tangent space at the origin is
Fix(Lτi). We choose a basis u1, . . . , up for Fix(Lτ1). Let v1, . . . , vp be any p vectors such
that u1, . . . , up, v1, . . . , vp form a basis ofCn. In new coordinates defined by

∑
ξiui+ηivi, we

know that linear invariant functions of Lτ1 are spanned by ξ1, . . . , ξp. The linear invariant
functions in (ξ, η) that are invariant by Lτ2 are spanned by fj(ξ, η) =

∑
k(ajkξk + bjkηk)

for 1 ≤ j ≤ p. Since [Mn]
Lτ1 ∩ [Mn]

Lτ2 = {0}, then ξ1, . . . , ξp, f1, . . ., fp are linearly
independent. Equivalently, (bjk) is non-singular. Now Fix(Lτ2) is spanned by vectors∑

k(ajkuk+bjkvk). This shows that Fix(Lτ1)∩Fix(Lτ2) = {0}. Therefore, Fix(τ1) intersects
Fix(τ2) transversally at the origin and the intersection must be the origin. �

We remark that the proof of the above lemma actually gives us a more general result.

Corollary 2.9. Let 0 ≤ p ≤ n. Let I be a group of commuting holomorphic (formal)
involutions on Cn.

(i) Fix(LI) = {0} if and only if [Mn]
LI
1 has dimension 0.

(ii) Let Ĩ be another family of commuting holomorphic (resp. formal) involutions such

that [Mn]
LI ∩ [Mn]

LĨ = {0}. Then Fix(LI) ∩ Fix(LĨ) = {0}. Moreover, Fix(I) ∩
Fix(Ĩ) = {0} if I and Ĩ consist of convergent involutions.

In view of Lemma 2.8, we will refer to

{τ1j , τ2j , ρ; 1 ≤ j ≤ p}
as the Moser-Webster involutions, while the two groups of the 2p involutions intertwined by
ρ will be called the extended family of Moser-Webster involutions. Recall that τ2j = ρτ1jρ.
Let us denote

T1 := {τ11, . . . , τ1p}, T2 := {τ21, . . . , τ2p}.
Thus the sets of involutions are uniquely determined by

{T1, ρ} = {τ11, . . . , τ1p, ρ}.
The significance of the two sets of involutions is the following proposition that transforms

the normalization of the real manifolds into that of two families of commuting involutions.
For clarity, recall the anti-holomorphic involution ρ0 : (z

′, w′) → (w′, z′).

Proposition 2.10. Let M and M̃ be two real analytic submanifolds of the form (2.1) and

(2.3) that admit Moser-Webster involutions {T1, ρ0} and {T̃1, ρ0}, respectively. ThenM and
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M̃ are holomorphically equivalent if and only if {T1, ρ0} and {T̃1, ρ0} are holomorphically

equivalent, i.e. if there is a biholomorphic map f commuting with ρ0 such that fT1f
−1 = T̃1,

that is that fτ1jf
−1 = τ̃1ij for 1 ≤ j ≤ p. Here {i1, . . . , ip} = {1, . . . , p}.

Let T1 = {τ11, . . . , τ1p} be a family of p distinct commuting holomorphic involutions.
Suppose that Fix(τ11), . . . ,Fix(τ1p) are hypersurfaces intersecting transversely at the origin.
Let ρ be an anti-holomorphic involutions and let T2 be the family of involutions τ2j = ρτ1jρ
with 1 ≤ j ≤ p. Suppose that

(2.22) [Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}.

There exists a real analytic real n-submanifold

(2.23) M ⊂ C2p : zp+j = A2
j(z

′, z̄′), 1 ≤ j ≤ p

such that the set of Moser-Webster involutions {T̃1, ρ0} of M is holomorphically equivalent
to {T1, ρ}.
Proof. We recall from (2.6) the branched covering

π1 : M1 := M∩ ((∆p
δ ×∆p

δ2)× (∆p
Cδ ×∆p

Cδ2)) −→ ∆p
δ ×∆p

δ2 .

Here C ≥ 1. Let π1 be restricted to M1. Then π2 = π1 ◦ ρ is defined on ρ(M1). Note that

π2 : ρ(M1) −→ ∆p
δ ×∆p

δ2 .

We have π−1
1 (z)∩Fix(ρ) = {(z, z)} for z ∈M and π1(Fix(ρ)) =M . Let B0 ⊂ ∆p

δ ×∆p
δ2 be

the branched locus. Take B = π−1
1 (B0). We will denote by M̃1, B̃ and B̃0 the corresponding

data for M̃ . Here M̃1 is an analogous branched covering over π1(M̃1). We assume that

the latter contains f(π1(M1)) if M̃ is equivalent to M via f .

Assume that f is a biholomorphic map sending M into M̃ . Let f c be the restriction of
biholomorphic map f c(z, w) = (f(z), f(w)) to M. Let M be defined by z′′ = E(z′, z′) and

M̃ be defined by z′′ = Ẽ(z′, z′). By f(M) ⊂ M̃ , f = (f ′, f ′′) satisfies

f ′′(z′, E(z′, z′)) = Ẽ(f ′(z′, E(z′, z′)), f ′(z′, E(z′, z′))).

Using the defining equations for M, we get f c(M) ⊂ M̃ and ρf c = f cρ on M ∩ ρ(M).

We will also assume that f c(M1) is contained in M̃1. It is clear that f c sends a fiber
π−1
1 (z) onto the fiber π−1

1 (f(z)) for z ∈ Ω = π1(M1) \ (B0 ∪ f−1(B̃0)), since the two fibers
have the same number of points and f is injective. Thus f cτ1j = τ̃1ijf

c on π−1
1 (Ω). Here ij

is of course locally determined on π−1
1 (Ω). Since B has positive codimension in M1 then

M1 \ B is connected. Hence ij is well-defined on π−1
1 (Ω). Then f cτ1j = τ̃1ijf

c on M1 \ B.
This shows that f c conjugates simultaneously the deck transformations of M to the deck

transformations of M̃ for π1. The same conclusion holds for π2.
Conversely, assume that there is a biholomorphic map g : M → M̃ such that ρg = gρ and

gτ1i = τ̃1jig. Since τ11, . . . , τ12p are distinct and M1 \ B is connected, then
⋃

j 6=i{x ∈ M1 \
B : τ1i(x) = τ1j(x)} is a complex subvariety of positive codimension in M1 \ B. Its image
under the proper projection π1 is a subvariety of positive codimension in ∆p

δ×∆p
δ2 \B0. This

shows that the latter contains a non-empty open subset ω such that {τ11(x), . . . , τ12p(x)} =
π−1
1 π1(x) has 2p distinct points for each π1(x) ∈ ω. Therefore, τ11, . . . , τ12p are all deck
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transformations of π1 over ω. Hence they are all deck transformations of π1 : M1 \ B →
∆p

δ × ∆p
δ2 \ B0, too. This shows that π−1

1 (π1(x)) = {τ1j(x) : 1 ≤ j ≤ 2p} for x ∈ M1 \ B.
Now, g sends τ1j(x) to τ̃1ij (g(x)) for each j. Hence f(z) = π1gπ

−1
1 (z) is well-defined and

holomorphic for z ∈ ∆p
δ ×∆p

δ2 \ B0. By the Riemann extension for bounded holomorphic
functions, f extends to a holomorphic mapping, still denoted by f , which is defined near the
origin. We know that f is invertible and in fact the inverse can be obtained by extending
the mapping z → π1g

−1π1(z). If z = (z′, E(z′, w′)) ∈ M , then w′ = z′ and f(z) =
π1gπ

−1
1 (z) = π1g(z, z) with (z, z) ∈ Fix(ρ). Since ρg = gρ, then g(z, z) ∈ Fix(ρ). Thus

f(z) = π1g(z, z) ∈ M̃ .
Assume that {τ1j} and ρ are germs of involutions defined at the origin of Cn. As-

sume that they satisfy the conditions in the proposition. From Lemma 2.6 it follows that
τ11, . . . , τ1p generate a group of 2p involutions, while the p generators are the only elements
of which each fixes a hypersurface pointwise. To realize them as deck transformations of the
complexification of a real analytic submanifold, we apply Lemma 2.6 to find a coordinate
map (ξ, η) → φ(ξ, η) = (A,B)(ξ, η) such that invariant holomorphic functions of {τ1j} are
precisely holomorphic functions in

z′ = (A1(ξ, η), . . . , Ap(ξ, η)), z′′ = (B2
1(ξ, η), . . . , B

2
p(ξ, η)).

Note that Bj is skew-invariant under τ1j and is invariant under τ1i for i 6= j and A is
invariant under all τ1j . Set

w′
j = Aj ◦ ρ(ξ, η), w′′

j = B2
j ◦ ρ(ξ, η).

Since τ2j = ρτ1jρ, the holomorphic functions invariant under all τ2j are precisely the holo-
morphic functions in the above w′, w′′. We now draw conclusions for the linear parts of
invariant functions and involutions. Since φ is biholomorphic, then LA1, . . . , LAp are lin-
early independent. They are also invariant under Lτ1j . Since τ2j = ρτ1jρ, the p functions
LAi ◦ ρ are linearly independent and invariant under Lτ2j . Thus

LA1, . . . , LAp, LA1 ◦ ρ, . . . , LAp ◦ ρ
are linearly independent, since [Mn]

LT1
1 ∩ [Mn]

LT2
1 = {0}. This shows that the map (ξ, η) →

(z′, w′) = (A(ξ, η), A ◦ ρ(ξ, η)) has an inverse (ξ, η) = ψ(z′, w′). Define

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, z′).

The complexification of M is given by

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, w′), w′′ = (B

2

1, . . . , B
2

p) ◦ ψ(w′, z′).

Note that φ ◦ ψ(z′, w′) = (z′, B ◦ ψ(z′, w′)) is biholomorphic. In particular, we can write

B2
j ◦ ψ(z′, z′) = hj(z

′, z′) + qj(z
′) + bj(z

′) +O(|(z′, z′)|3).
Here qj(z

′) = q̃2j (z
′), and q̃(w′) is the linear part of w′ → B ◦ψ(0, w′). Therefore, |q(w′)| ≥

c|w′|2 and q∗ = 0. By Lemma 2.1, π1 : M → Cp is a 2p-to-1 branched covering defined near
0 ∈ M. Since B2 is invariant by τ1j , then z

′′ = B2◦ψ(z′, w′) is invariant by ψ−1τ1jψ(z
′, w′).

Also A is invariant under τ1j . Then z
′ = A ◦ ψ(z′, w′) is invariant by ψ−1τ1jψ(z

′, w′). This
show that {ψ−1τ1jψ} has the same invariant functions as of the deck transformations of π1.
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By Lemma 2.7, {ψ−1τ1jψ} agrees with the set of deck transformations of π1. For ρ0(z
′, w′) =

(w′, z′) we have ρ0ψ
−1 = ψ−1ρ. This shows that M is a realization for {τ11, . . . , τ1p, ρ}. �

Remark 2.11. (i) We choose the realization in such a way that zp+j are square functions.
Of course, the choice is not unique. In fact, we can replace z′′ by f(z) = (fp+1(z), . . . , f2p(z))
as long as the mapping z → (z′, f(z)) is biholomorphic. However, this particular holomor-
phic equivalent form of M will be crucial to study the asymptotic manifolds in section 11.
In fact, by Example 2.4, (2.9) provides a general equation forM to admit 2p deck transfor-
mations. (ii) An interesting case is when f(z) can be so chosen that M is holomorphically
flattened, i.e, M is contained in Im z′′ = 0. In [MW83], such a choice is always possible at
least at the formal level. We will discuss the holomorphic flatness in Theorem 9.5.

Next we want to compute the deck transformations for a product quadric. We will first
recall the Moser-Webster involutions for elliptic and hyperbolic complex tangents. We will
then compute the deck transformations for complex tangents of complex type.

Let us first recall involutions in [MW83] where the complex tangents are elliptic (with
non-vanishing Bishop invariant) or hyperbolic. When γ1 6= 0, the non-trivial deck trans-
formations of

z2 = |z1|2 + γ1(z
2
1 + z21)

for π1, π2 are τ1, τ2, respectively. They are

τ1 : z
′
1 = z1, w′

1 = −w1 − γ−1
1 z1; τ2 = ρτ1ρ

with ρ being defined by (2.5). Note that τ1 and τ2 do not commute and σ = τ1τ2 satisfies

σ−1 = τiστi = ρσρ, τ 2i = I, ρ2 = I.

When the complex tangent is not parabolic, the eigenvalues of σ are µ, µ−1 with µ = λ2

and
γλ2 − λ+ γ = 0.

For the elliptic complex tangent, we can choose a solution λ > 1, and in suitable coordinates
we obtain

τ1 : ξ
′ = λη +O(|(ξ, η)|2), η′ = λ−1ξ +O(|(ξ, η)|2),(2.24)

τ2 = ρτ1ρ, ρ(ξ, η) = (η, ξ),

σ : ξ′ = µξ +O(|(ξ, η)|2), η′ = µ−1η +O(|(ξ, η)|2), µ = λ2.

When the complex tangent is hyperbolic, i.e. 1/2 < γ < ∞, τi and σ still have the above
form, while |µ| = 1 = |λ| and

ρ(ξ, η) = (ξ, η).

When the complex tangent is parabolic, i.e. γ = 1/2, the pair of involutions still exists.
However, Lσ is not diagonalizable and 1 is its only eigenvalue.

For the complex type, new situations arise. Recall that such a quadric has the form

(2.25) Qγs : z3 = z1z2 + γsz
2
2 + (1− γs)z

2
1 , z4 = z3.

Here γs is a complex number. Let us first check that such a quadric is not the product of
two Bishop quadrics : Its CR singular set is defined by

(z1 + 2γsz2)(z2 + 2(1− γs)z1) = 0.
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It is the union of a complex line and a totally real plane, or two totally real planes. The
CR singular set of a quadric defined by z3 = |z1|2 + γ1(z

2
1 + z21) and z4 = |z2|2+ γ2(z

2
2 + z22)

is given by

(z1 + 2γ1z1)(z2 + 2γ2z2) = 0.

It is the union of two complex lines, or one complex line and a 3 dimensional plane.
By condition B, we know that γs 6= 0, 1. Let us compute the deck transformations of

the complexification of (2.25). According to Lemma 2.8 (i), the deck transformations for
π1 are generated by two involutions

τ11 :





z′1 = z1,

z′2 = z2,

w′
1 = −w1 − γ−1

s z2,

w′
2 = w2;

τ12 :





z′1 = z1,

z′2 = z2,

w′
1 = w1,

w′
2 = −w2 − (1− γs)

−1z1.

We still have ρ defined by (2.5). Let τ2j = ρτ1jρ. Then τ21, τ22 generate the deck transfor-
mations of π2. Note that

τ21 :





z′1 = −z1 − γ−1
s w2,

z′2 = z2,

w′
1 = w1,

w′
2 = w2;

τ22 :





z′1 = z1,

z′2 = −z2 − (1− γs)
−1w1,

w′
1 = w1,

w′
2 = w2.

Recall that τi = τi1τi2 is the unique deck transformation of πi that has the smallest dimen-
sion of the set of fixed-points among all deck transformations. They are

τ1 :





z′1 = z1,

z′2 = z2,

w′
1 = −w1 − γ−1

s z2,

w′
2 = −w2 − (1− γs)

−1z1;

τ2 :





z′1 = −z1 − γ−1
s w2,

z′2 = −z2 − (1− γs)
−1w1,

w′
1 = w1,

w′
2 = w2.

And τ1τ2 is given by

σs :





z′1 = −z1 − γ−1
s w2,

z′2 = −z2 − (1− γs)
−1w1,

w′
1 = γ−1

s z2 + ((γs − γ2s )
−1 − 1)w1,

w′
2 = (1− γs)

−1z1 + ((γs − γ2s)
−1 − 1)w2.

In contrast to the elliptic and hyperbolic cases, τ11 and ρτ11ρ commute; in other words,
τ11ρτ11ρ is actually an involution. And τ12 and ρτ12ρ commute, too. However, τ11 and τ22
do not commute, and τ12, τ21 do not commute either. Thus, we form compositions

σs1 = τ11τ22, σs2 = τ12τ21, σ−1
s2 = ρσs1ρ.
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By a simple computation, we have

σs1 :





z′1 = z1,

z′2 = −z2 − (1− γs)
−1w1,

w′
1 = γ−1

s z2 + ((γs − γ2s )
−1 − 1)w1,

w′
2 = w2;

σs2 :





z′1 = −z1 − γ−1
s w2,

z′2 = z2,

w′
1 = w1,

w′
2 = (1− γs)

−1z1 + ((γs − γ2s)
−1 − 1)w2.

We verify that

σs1σs2 = σs = τ1τ2.

This allows us to compute the eigenvalues of σs1σs2 easily:

µs, µ−1
s , µ−1

s , µs,(2.26)

µs = (γ−1
s − 1)−1.

In fact we compute them by observing that the first two in (2.26) and 1 with multiplicity
are eigenvalues of σs1, while the last two in (2.26) and 1 with multiplicity are eigenvalues
of σs2. Therefore, for γs 6= 1/2, i.e. µs 6= 1, we can find a linear transformation of the form

ψ : (z1, w2) → (ξ2, η2) = φ(z1, w2), (z2, w1) → (ξ1, η1) = φ(w1, z2)

such that σs1, σs2, σs = σs1σs2 are simultaneously diagonalized as

(2.27)
σs1 : ξ′1 = µsξ1, η′1 = µ−1

s η1, ξ′2 = ξ2, η′2 = η2,
σs2 : ξ′1 = ξ1, η′1 = η1, ξ′2 = µ−1

s ξ2, η′2 = µsη2,
σs : ξ′1 = µsξ1, η′1 = µ−1

s η1, ξ′2 = µ−1
s ξ2, η′2 = µsη2.

Under the transformation ψ, the involution ρ, defined by (2.5), takes the form

(2.28) ρ(ξ1, ξ2, η1, η2) = (ξ2, ξ1, η2, η1).

Moreover, for i, j = 1, 2, we have

τij : ξ
′
j = λjηj , η′j = λ−1

j ξj; ξ′i = ξi, η′i = ηi, i 6= j;(2.29)

λ1 = λs, λ2 = λ
−1

s , µs = λ2s.

When γs = 1/2, the only eigenvalue of σs1 is 1. We can choose a suitable φ such that ψ
transforms σs1, σs2, σs into

(2.30)
σs1 : ξ′1 = ξ1, η′1 = η1 + ξ1, ξ′2 = ξ2, η′2 = η2
σs2 : ξ′1 = ξ1, η′1 = η1, ξ′2 = ξ2, η′2 = −ξ2 + η2,
σs : ξ′1 = ξ1, η′1 = ξ1 + η1, ξ′2 = ξ2, η′2 = −ξ2 + η2.

Note that eigenvalues formulae (2.26) and the Jordan normal form (2.30) tell us that τ1
and τ2 do not commute, while σs1, σs2 commute as mentioned earlier.
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Remark 2.12. The mappings σs1, σs2 behave like a hyperbolic mapping when |µs| > 1,
an elliptic mapping when |µs| = 1, or a parabolic mapping when µs = 1. Recall that σ
has 4 distinct eigenvalues for the first case, 2 distinct eigenvalues with multiplicity for the
second case, and only eigenvalue of 1 for the last case. The σ is diagonalizable for the first
two cases, but it has a Jordan bock with multiplicity for the last case. In this paper, we
will only study the first case of complex type, i.e.

|µs| > 1,

which follows from condition E.

For later purpose, we summarize some facts for complex type in the following.

Proposition 2.13. Let Qγs ⊂ C4 be the quadric defined by (2.7) and (2.8). Then π1 admits
two deck transformations τ11, τ12 such that the set of fixed points of each τ1j has dimension
3. Also, τ2j = ρτ1jρ are the deck transformations of π2 and

τ11τ21 = τ21τ11, τ12τ22 = τ22τ12.

Let σs1 = τ11τ22, σs2 = τ12τ21, τi = τi1τi2, and σs = τ1τ2. Then

σ = σs1σs2 = σs2σs1, σ−1
s2 = ρσs1ρ, σ−1

s = ρσsρ.

In suitable coordinates σs1, σs2, σ, ρs are given by (2.27)-(2.28) when γs 6= 1/2; when γs =
1/2, they are given by (2.28) and (2.30). If

γs ∈ {z ∈ C : Re z > 1/2, Im z > 0},
then σs admits 4 distinct eigenvalues (γ−1

s − 1)−1, γ−1
s − 1, γ−1

s − 1, and (γ−1
s − 1)−1.

The commutativity of σh, σe, σs1, σs2 will be important to understand the convergence of
normalization for the abelian CR singularity to be introduced in section 9.

Let us summarize some facts in this section.
Let τi = τi1 · · · τip for i = 1, 2. Note that they are intertwined by the anti-holomorphic

involution via τ2 = ρτ1ρ. Each τi is the unique deck transformation for πi whose set of fixed
points has minimum dimension p. Then σ = τ1τ2 is reversible by τi and ρ in the sense that

τiστi = σ−1, ρσρ = σ−1, τ 2i = I, ρ2 = I.

The reversible map σ will play a central role to the study of the submanifolds M , as we
will demonstrate this in the classification of quadratic manifolds. In particular, they carry
some geometry and dynamics associated to the real manifolds; for instance the attached
complex submanifolds are closely related the invariant submanifolds of σ, which is discussed
in section 11. We will also call τ11, . . . , τ1p the generators of the deck transformations, which
are unique as each Fix(τ1j) has codimension 1.

For various reversible mappings and their relations with general mappings, the reader is
referred to [OZ11] for recent results and references therein.

To derive our normal forms, we shall transform {τ1, τ2, ρ} into a normal form first. We
will further normalize {τ1j , ρ} by using the group of biholomorphic maps that preserve the
normal form of {τ1, τ2, ρ}, i.e. the centralizer of the normal form of {τ1, τ2, ρ}.
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3. Quadrics with the maximum number of deck transformations

In section 2, we establish the basic relation between the classification of real manifolds
and that of two families of involutions intertwined by an antiholomorphic involution; see
Proposition 2.10. As a first application, we obtain in this section a normal form for two
families of linear involutions and use it to construct the normal form for their associated
quadrics. This section also serves an introduction to our approach to find the normal forms
of the real submanifolds at least at the formal level.

3.1. Normal form of two families of linear involutions. To formulate our results, we
first discuss the normal forms which we are seeking for the involutions. We are given two
families of commuting linear involutions T1 = {T11, . . . , T1p} and T2 = {T21, . . . , T2p} with
T2j = ρT1jρ. Here ρ is a linear anti-holomorphic involution. We set

T1 = T11 · · ·T1p, T2 = ρT1ρ.

Recall that our involutions satisfy the additional (2.16) and (2.22). Thus

dim[Mn]
Ti
1 = p, [Mn]

Ti
1 = [Mn]

Ti
1 ,(3.1)

[Mn]
T1
1 ∩ [Mn]

T2
1 = {0}.(3.2)

Recall that [Mn]1 denotes the linear functions without constant terms. We would like to
find a change of coordinates ϕ such that ϕ−1T1jϕ and ϕ−1ρϕ have a simpler form. We would

like to show that two such families of involutions {T1, ρ} and {T̃1, ρ̃} are holomorphically
equivalent, if there are normal forms are equivalent under a much smaller set of changes of
coordinates, or if they are identical in the ideal situation.

Next, we describe our plans to derive the normal forms for linear involutions. The scheme
to derive the linear normal forms turns out to be essential to understand the derivation of
normal forms for non-linear involutions and the perturbed quadrics. We define

S = T1T2.

Besides conditions (3.1)-(3.2), we will soon impose condition E below that S has 2p distinct
eigenvalues.

We first use a linear map ψ to diagonalize S to its normal form

Ŝ : ξ′j = µjξ, η′j = µ−1
j ηj , 1 ≤ j ≤ p.

The choice of ψ is not unique. We further normalize T1, T2, ρ under linear transformations
commuting with Ŝ, i.e. the invertible mappings in the linear centralizer of Ŝ. We use a
linear map that commutes with Ŝ to transform ρ into a normal form too, which is still
denoted by ρ. We then use a transformation ψ0 in the linear centralizer of Ŝ and ρ to
normalize the T1, T2 into the normal form

T̂i : ξ
′
j = λijηj , η′j = λ−1

ij ξj, 1 ≤ j ≤ p.

Here we require λ2j = λ−1
1j . Thus µj = λ21j for 1 ≤ j ≤ p, and λ11, . . . , λ1p form a complete

set of invariants of T1, T2, ρ, provided they are normalized into the regions

λ1e > 1, Imλ1h > 0, arg λ1s ∈ (0, π/2), |λs| > 1.
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Next we normalize the family T1 of linear involutions under mappings in the linear
centralizer of T̂1, ρ. Let us assume that T1, ρ are in the normal forms T̂1, ρ. To normalize
the families {T1, ρ}, we use the crucial property that T11, . . . , T1p commute pairwise and
each T1j fixes a hyperplane. This allows us to express the family of involutions via a single
linear mapping φ1:

T1j = ϕ1φ1Zjφ
−1
1 ϕ−1

1 .

Here the linear mapping ϕ1 depends only on λ1, . . . , λp and

Zj : ξ
′ = ξ, η′i = ηi (i 6= j), η′j = −ηj .

Expressing φ1 in a non-singular p×p constant matrixB, the normal form for {T11, . . . , T1p, ρ}
consists of invariants λ1, . . . , λp and a normal form of B. After we obtain the normal form
for B, we will construct the normal form of the quadrics by using the realization procedure
in the proof of Proposition 2.10.

We now carry out the details.
Let T1 = T11 · · ·T1p, T2 = ρT1ρ and S = T1T2. Since Ti and ρ are involutions, then S is

reversible with respect to Ti and ρ, i.e.

S−1 = T−1
i STi, S−1 = ρ−1Sρ, T 2

i = I, ρ2 = I.

Therefore, if κ is an eigenvalue of S with a (non-zero) eigenvector u, then

Su = κu, S(Tiu) = κ−1Tiu, S(ρu) = κ−1ρu, S(ρTiu) = κρTiu.

Following [MW83] and [St07], we will divide eigenvalues into 4 types: µ is elliptic if µ 6= ±1
and µ is real, µ is hyperbolic if |µ| = 1 and µ 6= 1, µ is parabolic if µ = 1, and µ is complex
otherwise. The classification of σ into the types corresponds to the classification of the
types of complex tangents described in section 2; namely, an elliptic (resp. hyperbolic)
complex tangent is tied to a hyperbolic (resp. elliptic) mapping σ. A complex tangent of
parabolic (reps. complex) type is tied to a mapping of parabolic (resp. complex) type.

To classify the families of linear involutions, we need a mild assumption to exclude
multiplicity in γ1, . . . , γp and also parabolic complex tangent at the origin. We therefore
impose the following condition on quadrics.

Condition E. The composition S has 2p distinct eigenvalues.

Lemma 3.1. Under conditions E and (3.2), neither 1 nor −1 is an eigenvalue of S.

Proof. Assume for the sake of contradiction that 1 is an eigenvalue. We have seen that
eigenvalues arrive in pairs µ, µ−1 if µ 6= ±1. Since there are n = 2p eigenvalues by condition
E, both −1 and 1 are eigenvalues. Let u, v be eigenvectors such that

Su = u, T1u = ǫ1u, T2u = ǫ1u, ǫ1 = ±1;

Sv = −v, T1v = ǫ2v, T2v = −ǫ2v, ǫ2 = ±1.

Since Fix(T1) ∩ Fix(T2) = {0}, then ǫ1 = −1. Without loss of generality, we may assume
that ǫ2 = −1. Let V be the span of eigenvectors of S with eigenvalues other than ±1.
Thus Ti preserves V , dim V = 2p− 2, dimFix(T1|V ) = p, and dimFix(T2|V ) = p− 1. Since
p+(p−1) > 2p−2, then Fix(T1)∩Fix(T2) has dimension at least one, a contradiction. �
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We now assume conditions E and (3.1)-(3.2) for the rest of the section to derive a normal
form for T1j and ρ.

We need to choose the eigenvectors of S and their eigenvalues in such a way that T1, T2
and ρ are in a normal form. We will first choose eigenvectors to put ρ into a normal form.
After normalizing ρ, we will then choose eigenvectors to normalize T1 and T2.

First, let us consider an elliptic eigenvalue µe. Let u be an eigenvector of µe. Then u
and v = ρ(u) satisfy

(3.3) S(v) = µ−1
e v, Tj(u) = λ−1

j v, µe = λ1λ
−1
2 .

Now T2(u) = ρT1ρ(u) implies that

λ2 = λ
−1

1 , µe = |λ1|2.
Replacing (u, v) by (cu, cv), we may assume that λ1 > 0 and λ2 = λ−1

1 . Replacing (u, v)
by (v, u) if necessary, we may further achieve

ρ(u) = v, λ1 = λe > 1, µe = λ2e > 1.

We still have the freedom to replace (u, v) by (ru, rv) for r ∈ R∗, while preserving the
above conditions.

Next, let µh be a hyperbolic eigenvalue of S and S(u) = µhu. Then u and v = T1(u)
satisfy

ρ(u) = au, ρ(v) = bv, |a| = |b| = 1.

Replacing (u, v) by (cu, v), we may assume that a = 1. Now T2(v) = ρT1ρ(v) = bu. To

obtain b = 1, we replace (u, v) by (u,
√
b
−1
v). This give us (3.3) with |λj| = 1. Replacing

(u, v) by (v, u) if necessary, we may further achieve

ρ(u) = u, ρ(v) = v, λ1 = λh, µh = λ2h, arg λh ∈ (0, π/2).

Again, we have the freedom to replace (u, v) by (ru, rv) for r ∈ R∗, while preserving the
above conditions.

Finally, we consider a complex eigenvalue µs. Let S(u) = µsu. Then ũ = ρ(u) satisfies
S(ũ) = µ−1

s ũ. Let u∗ = T1(u) and ũ
∗ = ρ(u∗). Then S(u∗) = µ−1

s u∗ and S(ũ∗) = µsũ
∗. We

change eigenvectors by

(u, ũ, u∗, ũ∗) → (u, ũ, cu∗, cũ∗)

so that

ρ(u) = ũ, ρ(u∗) = ũ∗,

Tj(u) = λ−1
j u∗, Tj(ũ) = λj ũ

∗, λ2 = λ−1
1 .

Note that S(u) = λ21u, S(u
∗) = λ−2

1 u∗, S(ũ) = λ
−2

1 ũ, and S(ũ∗) = λ
2

1ũ
∗. Replacing

(u, ũ, u∗, ũ∗) by (u∗, ũ∗, u, ũ) changes the argument and the modulus of λ1 as λ−1
1 becomes

λ1. Replacing them by (ũ, u, ũ∗, u∗) changes only the modulus as λ1 becomes λ̄−1
1 and then

replacing them by (u∗, ũ∗,−u,−ũ) changes the sign of λ1. Therefore, we may achieve

µs = λ2s, λ1 = λs, arg γs ∈ (0, π/2), |λs| > 1.

We still have the freedom to replace (u, u∗, ũ, ũ∗) by (cu, cu∗, cũ, cũ∗).
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We summarize the above choice of eigenvectors and their corresponding coordinates.
First, S has distinct eigenvalues

λ2e = λ
2

e, λ−2
e ; λ2h, λ

2

h = λ−2
h ; λ2s, λ−2

s , λ
−2

s , λ
2

s.

Also, S has linearly independent eigenvectors satisfying

Sue = λ2eue, Su∗e = λ−2
e u∗e,

Svh = λ2hvh, Sv∗h = λ−2
h v∗h,

Sws = λ2sws, Sw∗
s = λ−2

s w∗
s , Sw̃s = λ

−2

s w̃s, Sw̃∗
s = λ

2

sw̃
∗
s .

Furthermore, the ρ, T1, and the chosen eigenvectors of S satisfy

ρue = u∗e, T1ue = λ−1
e u∗e;

ρvh = vh, ρv∗h = v∗h, T1vh = λ−1
h v∗h;

ρws = w̃s, ρw∗
s = w̃∗

s , T1ws = λ−1
s w∗

s , T1w̃s = λsw̃
∗
s .

For normalization, we collect elliptic eigenvalues µe and µ−1
e , hyperbolic eigenvalues µh

and µ−1
h , and complex eigenvalues in µs, µ

−1
s , µ−1

s and µs. We put them in the order

µe = µe, µp+e = µ−1
e ,

µh, µp+h∗+h = µh,

µs, µs+s∗ = µ−1
s , µp+s = µ−1

s , µp+s∗+s = µs.

Here and throughout the paper the ranges of subscripts e, h, s are restricted to

1 ≤ e ≤ e∗, e∗ < h ≤ e∗ + h∗, e∗ + h∗ < s ≤ p− s∗.

Thus e∗ + h∗ + 2s∗ = p. Using the new coordinates
∑

(ξeue + ηeu
∗
e) +

∑
(ξhvh + ηhv

∗
h) +

∑
(ξsws + ξs+s∗w̃s + ηsw

∗
s + ηs+s∗w̃

∗
s),

we have normalized σ, T1, T2 and ρ. In summary, we have the following normal form.

Lemma 3.2. Let T1, T2 be linear holomorphic involutions on Cn that satisfy (3.2). Then
n = 2p and dim[Mn]

Ti
1 = p. Suppose that T2 = ρ0T1ρ0 for some anti-holomorphic linear

involution ρ0. Assume that S = T1T2 has n distinct eigenvalues. There exists a lin-
ear change of holomorphic coordinates that transforms T1, T2, S, ρ0 simultaneously into the
normal forms T̂1, T̂2, Ŝ, ρ :

T̂1 : ξ
′
j = λjηj, η′j = λ−1

j ξ, 1 ≤ j ≤ p;(3.4)

T̂2 : ξ
′
j = λ−1

j ηj, η′j = λjξj, 1 ≤ j ≤ p;(3.5)

Ŝ : ξ′j = µjξj , η′j = µ−1
j ηj, 1 ≤ j ≤ p;(3.6)

ρ :





ξ′e = ηe, η′e = ξe,

ξ′h = ξh, η′h = ηh,
ξ′s = ξs+s∗, ξ′s+s∗ = ξs,
η′s = ηs+s∗, η′s+s∗ = ηs.

(3.7)
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Moreover, the eigenvalues µ1, . . . , µp satisfy

µj = λ2j , 1 ≤ j ≤ p;(3.8)

λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ
−1

s ;(3.9)

arg λh ∈ (0, π/2), arg λs ∈ (0, π/2);(3.10)

λe′ < λe′+1, 0 < arg λh′ < arg λh′+1 < π/2;(3.11)

arg λs′ < arg λs′+1, or arg λs′ = arg λs′+1 and |λs′| < |λs′+1|.(3.12)

Here 1 ≤ e′ < e∗, e∗ < h′ < e∗ + h∗, and e∗ + h∗ < s′ < p − s∗. And 1 ≤ e ≤ e∗,
e∗ < h ≤ e∗ + h∗, and e∗ + h∗ < s ≤ p − s∗. If S̃ is also in the normal form (3.6) for

possible different eigenvalues µ̃1, . . . , µ̃p satisfying (3.8)-(3.12), then S and S̃ are equivalent
if and only if their eigenvalues are identical.

The above normal form of ρ will be fixed for the rest of paper. Note that in case of non-
linear involutions {τ11, . . . , τ1p, ρ} of which the linear part are given by {T11, . . . , T1p, ρ}
we can always linearize ρ first under a holomorphic map of which the linear part at the
origin is described in above normalization for the linear part of {τ11, . . . , τ1p, ρ}. Indeed, we
may assume that the linear part of the latter family is already in the normal form. Then
ψ = 1

2
(I + (Lρ) ◦ ρ) is tangent to the identity and (Lρ) ◦ ψ ◦ ρ = ψ, i.e. ψ transforms ρ

into Lρ while preserving the linear parts of τ11, . . . , τ1p. Therefore in the non-linear case,
we can assume that ρ is given by the above normal form. The above lemma tells us the
ranges of eigenvalues µe, µh and µs that can be realized by quadrics that satisfy conditions
E and (3.1)-(3.2).

Having normalized T1 and ρ, we want to further normalize {T11, . . . , T1p} under linear

maps that preserve the normal forms of T̂1 and ρ. We know that the composition of T1j is
in the normal form, i.e.

(3.13) T11 · · ·T1p = T̂1

is given in Lemma 3.2. We first need to find an expression for all T1j that commute pairwise

and satisfy (3.13), by using invariant and skew-invariant functions of T̂1. Let

(ξ, η) = ϕ1(z
+, z−)

be defined by

z+e = ξe + λeηe, z−e = ηe − λ−1
e ξe,(3.14)

z+h = ξh + λhηh, z−h = ηh − λhξh,(3.15)

z+s = ξs + λsηs, z−s = ηs − λ−1
s ξs,(3.16)

z+s+s∗ = ξs+s∗ + λ
−1

s ηs+s∗, z−s+s∗ = ηs+s∗ − λsξs+s∗.(3.17)

In (z+, z−) coordinates, ϕ−1
1 T̂1ϕ1 becomes

Z : z+ → z+, z− → −z−.
We decompose Z = Z1 · · ·Zp by using

Zj : (z
+, z−) → (z+, z−1 , . . . , z

−
j−1,−z−j , z−j+1, . . . , z

−
p ).
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To keep simple notation, let us use the same notions x, y for a linear transformation
y = A(x) and its matrix representation:

A : x → Ax.

The following lemma, which can be verified immediately, shows the advantages of coordi-
nates z+, z−.

Lemma 3.3. The linear centralizer of Z is the set of mappings of the form

(3.18) φ : (z+, z−) → (Az+,Bz−),

whereA,B are constant and possibly singular matrices. Let ν be a permutation of {1, . . . , p}.
Then Zjφ = φZν(j) for all j if and only if φ has the above form with B = diagν d. Here

(3.19) diagν(d1, . . . , dp) := (bij)p×p, bjν(j) = dj , bjk = 0 if k 6= ν(j).

In particular, the linear centralizer of {Z1, . . . , Zp} is the set of mappings (3.18) in which
B are diagonal.

To continue our normalization for the family {T1j}, we note that ϕ−1
1 T11ϕ1, . . ., ϕ

−1
1 T1pϕ1

generate an abelian group of 2p involutions and each of these p generators fixes a hyperplane.
By Lemma 2.6 there is a linear transformation φ1 such that

φ−1
1 ϕ−1

1 T1jϕ1φ1 = Zj, 1 ≤ j ≤ p.

Computing two compositions on both sides, we see that φ1 must be in the linear centralizer
of Z. Thus, it is in the form (3.18). Of course, φ1 is not unique; φ̃1 is another such linear

map for the same T1j if and only if φ̃1 = φ1ψ1 with ψ1 ∈ C(Z1, . . . , Zp). By (3.18), we may
restrict ourselves to φ1 given by

(3.20) φ1 : (z
+, z−) → (z+,Bz−).

Then φ̃1 yields the same T1j if and only if its corresponding matrix B̃ = BD for a diagonal
matrix D.

In the above we have expressed all T11, . . . , T1p via equivalence classes of matrices. It
will be convenient to restate them via matrices.

For simplicity, Ti and S denote T̂i, Ŝ, respectively. In matrices, we write

T1 :

(
ξ
η

)
→ T1

(
ξ
η

)
, ρ :

(
ξ
η

)
→ ρ

(
ξ
η

)
, S :

(
ξ
η

)
→ S

(
ξ
η

)
.

Recall that the bold faced A represents a linear map A. Then

T1 =

(
0 Λ1

Λ−1
1 0

)

2p×2p

, S =

(
Λ2

1 0

0 Λ−2
1

)

2p×2p

.

We will abbreviate

ξe∗ = (ξ1, . . . , ξe∗), ξh∗
= (ξe∗+1, . . . , ξe∗+h∗), ξ2s∗ = (ξe∗+h∗+1, . . . , ξp).

We use the same abbreviation for η. Then (ξe∗ ,ηe∗), (ξh∗
,ηh∗

), and (ξ2s∗ ,η2s∗) subspaces

are invariant under T1j , T1, and ρ. We also denote by T e∗
1 , T

h∗
1 , T s∗

1 the restrictions of T1 to
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these subspaces. Define analogously for the restrictions of ρ, S to these subspaces. Define
diagonal matrices Λ1e∗ ,Λ1h∗ ,Λ1s∗ , of size e∗ × e∗, h∗ × h∗ and s∗ × s∗ respectively, by

Λ1 =




Λ1e∗ 0 0 0

0 Λ1h∗ 0 0

0 0 Λ1s∗ 0

0 0 0 Λ
−1

1s∗


 , Λ1 =




Λ1e∗ 0 0 0

0 Λ−1
1h∗

0 0

0 0 Λ1s∗ 0

0 0 0 Λ−1
1s∗


 .

Thus, we can express T s∗
1 and Ss∗ in (2s∗)× (2s∗) matrices

Ts∗
1 =




0 0 Λ1s∗ 0

0 0 0 Λ
−1

1s∗

Λ−1
1s∗ 0 0 0

0 Λ1s∗ 0 0


 , Ss∗ =




Λ2
1s∗ 0 0 0

0 Λ
−2

1s∗ 0 0

0 0 Λ−2
1s∗ 0

0 0 0 Λ
2

1s∗


 .

Let Ik denote the k × k identity matrix. With the abbreviation, we can express ρ as

ρe∗ =

(
0 Ie∗
Ie∗ 0

)
, ρh∗ = I2h∗ ,

ρs∗ =




0 Is∗ 0 0

Is∗ 0 0 0

0 0 0 Is∗
0 0 Is∗ 0


 .

Note that ρ is anti-holomorphic linear transformation. If A is a complex linear transfor-
mation, in (ξ, η) coordinates the matrix of ρA is ρA, i.e.

ρA :

(
ξ
η

)
→ ρA

(
ξ
η

)

with

ρ =




0 0 0 0 Ie∗ 0 0 0

0 Ih∗ 0 0 0 0 0 0

0 0 0 Is∗ 0 0 0 0

0 0 Is∗ 0 0 0 0 0

Ie∗ 0 0 0 0 0 0 0

0 0 0 0 0 Ih∗ 0 0

0 0 0 0 0 0 0 Is∗
0 0 0 0 0 0 Is∗ 0




.

For an invertible p× p matrix A, let us define an n× n matrix EA by

(3.21) EA :=
1

2

(
Ip −A

A−1 Ip

)
, E−1

A
=

(
Ip A

−A−1 Ip

)
.

For a p× p matrix B, we define

(3.22) B∗ :=

(
Ip 0

0 B

)
.
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Therefore, we can express

T1j = EΛ1B∗ZjB
−1
∗ E−1

Λ1
, T2j = ρT1jρ,(3.23)

Zj = diag(1, . . . , 1,−1, 1, . . . , 1).(3.24)

Here −1 is at the (p + j)-th place. Moreover, B is uniquely determined up to equivalence
relation via diagonal matrices D:

(3.25) B ∼ BD.

We have expressed all {T11, . . . , T1p, ρ} for which T̂1 = T11 · · ·T1p and ρ are in the normal
forms in Lemma 3.2 and we have found an equivalence relation to classify the involutions.
Let us summarize the results in a lemma.

Lemma 3.4. Let {T11, . . . , T1p, ρ} be the involutions of a quadric manifoldM . Assume that
S = T1ρT1ρ has distinct eigenvalues. Then in suitable linear (ξ, η) coordinates, T11, . . . , T1p
are given by (3.23), while T11 · · ·T1p = T̂1 and ρ are given by (3.4) and (3.7), respectively.
Moreover, B in (3.23) is uniquely determined by the equivalence relation (3.25) for diagonal
matrices D.

We remind the reader that we divide the classification for {T11, . . . , T1p, ρ} into two

steps. We have obtained the classification for the composition T11 · · ·T1p = T̂1 and ρ in
Lemma 3.2. Having found all {T11, . . . , T1p, ρ} and an equivalence relation, we are ready
to reduce their classification to an equivalence problem that involves two dilatations and a
coordinate permutation.

Lemma 3.5. Let {Ti1, . . . , Tip, ρ} be given by (3.23). Suppose that T̂1 = T11 · · ·T1p, ρ,
T̂2 = ρT̂1ρ, and Ŝ = T̂1T̂2 have the form in Lemma 3.2. Suppose that Ŝ has distinct
eigenvalues. Let {T̂11, . . . , T̂1p, ρ} be given by (3.23) where λj are unchanged and B is

replaced by B̂. Suppose that R−1T1jR = T̂1ν(j) for all j and Rρ = ρR. Then the matrix of
R is R = diag(a, a) with a = (ae∗ , ah∗ , as∗ , a

′
s∗), while a satisfies the reality condition

ae∗ ∈ (R∗)e∗ , ah∗ ∈ (R∗)h∗ , as∗ = a′
s∗ ∈ (C∗)s∗ .(3.26)

Moreover, there exists d ∈ (C∗)p such that

B̂ = (diag a)−1B(diagν d), i.e., a−1
i biν−1(j)dν−1(j) = b̂ij , 1 ≤ i, j ≤ p.(3.27)

Conversely, if a,d satisfy (3.26) and (3.27), then R−1T1jR = T̂1ν(j) and Rρ = ρR.

Proof. Suppose that R−1T1jR = T̂1ν(j) and Rρ = ρR. Then R−1T̂1R = T̂1 and R
−1ŜR = Ŝ.

The latter implies that the matrix of R is diagonal. The former implies that

R : ξ′j = ajξj, η′j = ajηj

with aj ∈ C∗. Now Rρ = ρR implies (3.26). We express R−1T1jR = T̂1ν(j) via matrices:

(3.28) EΛ1B̂∗Zν(j)B̂
−1
∗ E−1

Λ1
= R−1EΛ1B∗ZjB

−1
∗ E−1

Λ1
R.

In view of formula (3.21), we see that EΛ1 commutes with R = diag(a, a). The above

is equivalent to that ψ := B−1
∗ RB̂∗ satisfies Zν(j) = ψ−1Zjψ. By Lemma 3.3 we obtain
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ψ = diag(A, diagν d). This shows that(
A 0

0 diagν d

)
=

(
I 0

0 B

)−1(
diag a 0

0 diag a

)(
I 0

0 B̂

)
.

The matrices on diagonal yield A = diag a and (3.27). The lemma is proved. �

Lemma 3.5 does not give us an explicit description of the normal form for the families
of involutions {T11, . . . , T1p, ρ}. Nevertheless by the lemma, we can always choose a ν and

diagd such that the diagonal elements of B̃, corresponding to {T̃1ν(1), . . . , T̃1ν(p), ρ}, are 1.

Remark 3.6. In what follows, we will fix a B and its associated {T1, ρ} to further study
our normal form problems.

3.2. Normal form of the quadrics. We now use the matrices B to express the normal
form for the quadratic submanifolds. Here we follow the realization procedure in the proof
of Proposition 2.10. We will use the coordinates z+, z− again to express invariant functions
of T1j and use them to construct the corresponding quadric. We will then pull back the
quadric to the (ξ, η) coordinates and then to the z, z coordinates to achieve the final normal
form of the quadrics.

We return to the construction of invariant and skew-invariant functions z+, z− in (3.14)-
(3.17). when B is the identity matrix. For a general B, we define Φ1 and the matrix Φ−1

1

by

Φ1(Z
+, Z−) = (ξ, η), Φ−1

1 := B−1
∗ E−1

Λ1
=

(
I Λ1

−B−1Λ−1
1 B−1

)
.

Note that Z+ = z+ and Φ−1
1 T1jΦ1 = Zj. The Z

+, Z−
i with i 6= j are invariant functions of

T1j , while Z
−
j is a skew-invariant function of T1j . They can be written as

Z+ = ξ +Λ1η, Z− = B−1(−Λ−1
1 ξ + η).

Therefore, the invariant functions of T1 are generated by

Z+
j = ξj + λjηj , (Z−

j )
2 = (B̃j(−Λ−1

1 ξ + η))2, 1 ≤ j ≤ p.

Here B̃j is the jth row of B−1. The invariant (holomorphic) functions of T2 are generated
by

(3.29) W+
j = Z+

j ◦ ρ, (W−
j )2 = (Z−

j ◦ ρ)2, 1 ≤ j ≤ p.

Here W−
j = Z−

j ◦ ρ. We will soon verify that

m : (ξ, η) → (z′, w′) = (Z+(ξ, η),W+(ξ, η))

is biholomorphic. A straightforward computation shows that mρm−1 equals

ρ0 : (z
′, w′) → (w′, z′).

We define

M : z′′p+j = (Z−
j ◦m−1(z′, z′))2.

We want to find a simpler expression for M . We first separate B from Z− by writing

Ẑ− := (−Λ−1
1 I), Z− = B−1Ẑ−.(3.30)
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Note that m does not depend on B. To compute Ẑ− ◦m−1, we will use matrix expressions
for (ξe∗,ηe∗), (ξh∗

,ηh∗
) and (ξ2s∗ ,η2s∗) subspaces. Let me∗ , mh∗ , ms∗ be the restrictions m

to these subspaces. In the matrix form, we have by (3.29)

W+ = Z+ρ, W− = Z−ρ.

Recall that Λ1 = diag(Λe∗ ,Λh∗ ,Λ1s∗ ,Λ
−1

1s∗). Thus

me∗ =

[
I Λ1e∗

Λ1e∗ I

]
, m−1

e∗ =

[
I −Λ1e∗

−Λ1e∗ I

] [
(I−Λ2

1e∗)
−1 0

0 (I−Λ2
1e∗)

−1

]
,

mh∗ =

[
I Λ1h∗

I Λ−1
1h∗

]
, m−1

h∗
=

[
I −Λ2

1h∗

−Λ1h∗ Λ1h∗

] [
(I−Λ2

1h∗
)−1 0

0 (I−Λ2
1h∗

)−1

]
,

ms∗ =




I 0 Λ1s∗ 0

0 I 0 Λ
−1

1s∗

0 I 0 Λ1s∗

I 0 Λ−1
1s∗ 0


 ,

m−1
s∗ =




Λ−1
1s∗ 0 0 −Λ1s∗

0 Λ1s∗ −Λ
−1

1s∗ 0

−I 0 0 I

0 −I I 0



[
Ls∗ 0

0 −Ls∗

]
,

Ls∗ =

[
(Λ−1

1s∗ −Λ1s∗)
−1 0

0 (Λ1s∗ −Λ
−1

1s∗)
−1

]
.

Note that I−Λ2
1 is diagonal. Using (3.30) and the above formulae, the matrices of Ẑ−1

e∗ ◦m−1,

Ẑ−
h∗

◦m−1, and Ẑ−1
s∗ ◦m−1 are respectively given by

Ẑ−
e∗m

−1
e∗ = Le∗

[
I −2(Λ1e∗ +Λ−1

1e∗)
−1
]
,

Le∗ = (I−Λ2
1e∗)

−1(−Λ1e∗ −Λ−1
1e∗),

Ẑ−
h∗
m−1

h∗
= Lh∗

[
I −2Λ1h∗(Λ1h∗ +Λ−1

1h∗
)−1
]
,

Lh∗ = (I−Λ2
1h∗

)−1(−Λ1h∗ −Λ−1
1h∗

),

Ẑ−
s∗m

−1
s∗ =

[−I−Λ−2
1s∗ 0 0 2I

0 −I −Λ
2

1s∗ 2I 0

] [
Ls∗ 0

0 −Ls∗

]

= L̃s∗

[
I 0 0 −2(I+Λ−2

1s∗)
−1

0 I −2(I+Λ
2

1s∗)
−1 0

]
,

L̃s∗ =

[
(I+Λ−2

1s∗)(Λ1s∗ −Λ−1
1s∗)

−1 0

0 (I+Λ
2

1s∗)(Λ
−1

1s∗ −Λ1s∗)
−1

]
.

Combining the above identities, we obtain

Ẑ−1m−1 = diag(Le∗ ,Lh∗, L̃s∗)

(
Ip,−2 diag

(
Γe∗,Λ1h∗Γh∗ ,

[
0 Γs∗

Γ̃s∗ 0

]))
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with Γ̃s∗ = I− Γ1s∗ and

Γe∗ = (Λ1e∗ +Λ−1
1e∗)

−1, Γh∗ = (Λ1h∗ +Λ−1
1h∗

)−1, Γs∗ = (I+Λ−2
1s∗)

−1.(3.31)

We define B̃j to be the j-th row of

(3.32) B̃ := B−1 diag(Le∗ ,Lh∗ , L̃s∗).

With z′s∗ = (zp−s∗+1, . . . , zp), the defining equations of M are given by

z′′p+j =
{
B̃j diag(ze∗ − 2Γe∗ze∗ , zh∗ − 2Γh∗Λ1h∗zh∗ , zs∗ − 2Γs∗z

′
s∗ , z

′
s∗ − 2(I− Γs∗)zs∗)

}2

.

Let us replace zj with j 6= h, zh by izj and i
√
λh

−1
zh, respectively. We also multiply the

h-th column of B̃ by −i√λh and its j-th column, j 6= h, by −i. In the new coordinates,
M is given by

z′′p+j =
{
B̂j diag(ze∗ + 2Γe∗ze∗, zh∗ + 2Γh∗zh∗, zs∗ + 2Γs∗z

′
s∗ , z

′
s∗ + 2(I− Γs∗)zs∗)

}2

.

Explicitly, we have

QB,γ : zp+j =
(e∗+h∗∑

ℓ=1

b̂jℓ(zℓ + 2γℓzℓ)(3.33)

+

p−s∗∑

s=e∗+h∗+1

b̂js(zs + 2γszs+s∗) + b̂j(s+s∗)(zs+s∗ + 2γs+s∗zs)
)2

for 1 ≤ j ≤ p. Here

(3.34) γs+s∗ = 1− γs.

By (3.32), we also obtain the following identity

B̂ = −iB−1 diag(Le∗ ,Lh∗ , L̃s∗) diag(Ie∗ ,Λ
1/2
1h∗
, I2s∗)

The equivalence relation (3.27) on the set of non-singular matrices B now takes the form

(3.35) ̂̃
B = (diagν d)

−1B̂ diag a,

where a satisfies (3.26) and diagν d is defined in (3.19).
Therefore, by Proposition 2.10 we obtain the following classification for the quadrics.

Theorem 3.7. Let M be a quadratic submanifold defined by (2.1) and (2.3) with q∗ = 0.
Assume that the branched covering π1 has 2

p deck transformations. Let T1, T2 be the pair of
Moser-Webster involutions of M . Suppose that S = T1T2 has 2p distinct eigenvalues. Then
M is holomorphically equivalent to (3.33) with B̂ ∈ GL(p,C) being uniquely determined by
the equivalence relation (3.35).

When B̂ is the identity, we obtain the product of 3 types of quadrics

Qγe : zp+e = (ze + 2γeze)
2;

Qγh : zp+h = (zh + 2γhzh)
2;

Qγs : zp+s = (zs + 2γszs+s∗)
2, zp+s+s∗ = (zs+s∗ + 2(1− γs)zs)

2
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with

(3.36) γe =
1

λe + λ−1
e

, γh =
1

λh + λh
, γs =

1

1 + λ−2
s

.

Note that arg λs ∈ (0, π/2) and |λs| > 1. Thus

0 < γe < 1/2, γh > 1/2, γs ∈ {z ∈ C : Re z > 1/2, Im z > 0}.
We define the following invariants.

Definition 3.8. We call Γ = diag(Γe∗ ,Γh∗ ,Γs∗ , Is∗ − Γ̄s∗), given by formulae (3.31), the

Bishop invariants of the quadrics. The equivalence classes B̂ of non-singular matrices
B under the equivalence relation (3.27) are called the extended Bishop invariants for the
quadrics.

Note that Γe∗ has diagonal elements in (0, 1/2), and Γh∗ has diagonal elements in
(1/2,∞), and Γs∗ has diagonal elements in (1/2,∞) + i(0,∞).

We remark that Z−
j is skew-invariant by T1i for i 6= j and invariant by τ1j . Therefore,

the square of a linear combination of Z−
1 , . . . , Z

−
p might not be invariant by all T1j . This

explains the presence of B as invariants in the normal form.
It is worthy stating the following normal form for two families of linear holomorphic

involutions which may not satisfy the reality condition.

Proposition 3.9. Let Ti = {Ti1, . . . , Tip}, i = 1, 2 be two families of distinct and commut-
ing linear holomorphic involutions on Cn. Let Ti = Ti1 · · ·Tip. Suppose that for each i,
Fix(Ti1), . . ., Fix(Tip) are hyperplanes intersecting transversally. Suppose that T1, T2 satisfy
(3.2) and S = T1T2 has 2p distinct eigenvalues. In suitable linear coordinates, the matrices
of Ti, S are

Ti =

(
0 Λi

Λ−1
i 0

)
, S =

(
Λ2

1 0

0 Λ−2
1

)

with Λ2 = Λ−1
1 being diagonal matrix whose entries do not contain ±1,±i. The Λ2

1 is
uniquely determined up to a permutation in diagonal entries. Moreover, the matrices of Tij
are

(3.37) Tij = EΛi
(Bi)∗Zj(Bi)

−1
∗ E−1

Λi

for some non-singular complex matrices B1,B2 uniquely determined by the equivalence
relation

(3.38) (B1,B2) ∼ (B̃1, B̃2) := (R−1B1 diagν1 d1,R
−1B2 diagν2 d2),

where diagν1 d1, diagν2 d2 are defined as in (3.19), and R is a non-singular diagonal complex
matrix representing the linear transformation ϕ such that

ϕ−1Tijϕ = T̃iνi(j), i = 1, 2, j = 1, . . . , p.

Here T̃i is the family of the involutions associated to the matrices B̃i, and EΛi
and B∗ are

defined by (3.21) and (3.22).
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Proof. Let κ be an eigenvalue of S with (non-zero) eigenvector u. Since TiSTi = S−1. Then
S(Ti(u)) = κ−1Ti(u). This shows that κ

−1 is also an eigenvalue of S. By Lemma 3.1, 1 and
−1 are not eigenvalues of S. Thus, we can list the eigenvalues of S as µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p .

Let uj be an eigenvector of S with eigenvalue µj. Fix λj such that λ2j = µj. Then

vj := λjT1(uj) is an eigenvector of S with eigenvalue µ−1
j . The

∑
ξjuj + ηjvj defines a

coordinate system on Cn such that Ti, S have the above matrices Λi and S, respectively.
By (3.20) and (3.23), Tij can be expressed in (3.37), where each Bi is uniquely determined

up to Bi diagdi. Suppose that {T̃1j}, {T̃2j} are another pair of families of linear involutions

of which the corresponding matrices are B̃1, B̃2. If there is a linear change of coordinates
ϕ such that ϕ−1Tijϕ = T̃iνi(j), then in the matrix R of ϕ, we obtain (3.38); see a similar
computation for (3.27) by using (3.28). Conversely, (3.28) implies that the corresponding
pairs of families of involutions are equivalent. �

4. Formal deck transformations and centralizers

In section 2 we show the equivalence of the classification of real analytic submanifolds M
that admit the maximum number of deck transformations and the classification of the fam-
ilies of involutions {τ11, . . . , τ1p, ρ} that satisfy some mild conditions (see Proposition 2.10).
To classify the families of involutions and to find their normal forms, we will first study
normal forms at the formal level. The main purpose of this section is to show that at the
formal level, the classification of the formal submanifolds of the desired CR singularity and
the classification of {τ11, . . . , τ1p, ρ} are equivalent under these mild conditions.

We will also study the centralizers of various linear maps to deal with resonance. This
is relevant as the normal form of σ will belong to the centralizer of its linear part and any
further normalization will also be performed by transformations that are in the centralizer.

4.1. Formal submanifolds and formal deck transformations. We first need some
notation. Let I be an ideal of the ring R[[x]] of formal power series in x = (x1, . . . , xN ).

Since R[[x]] is noetherian, then I and its radical
√
I are finitely generated. We say that I

defines a formal submanifold M of dimension N − k if
√
I is generated by r1, . . . , rk such

that at the origin all rj vanish and dr1, . . . , drk are linearly independent. For such anM , let

I(M) denote
√
I and let T0M be defined by dr1(0) = · · · = drk(0) = 0. If F = (f1, . . . , fN)

is a formal mapping with fj ∈ R[[x]], we say that its set of (formal) fixed points is a
submanifold if the ideal generated by f1(x) − x1, . . . , fN(x) − xN defines a submanifold.

Let I, Ĩ be ideals of R[[x]],R[[y]] and let
√
I,
√
Ĩ define two formal submanifolds M, M̃ ,

respectively. We say that a formal map y = G(x) maps M into M̃ if Ĩ ◦G ⊂
√
I. If M, M̃

are in the same space, we write M ⊂ M̃ if Ĩ ⊂
√
I. We say that a formal map F fixes M

pointwise if I(M) contain each component of the mapping F − I.
We now consider a formal p-submanifold in C2p defined by

(4.1) M : zp+j = Ej(z
′, z̄′), 1 ≤ j ≤ p.

Here Ej are formal power series in z′, z′. We assume that

(4.2) Ej(z
′, z̄′) = hj(z

′, z′) + qj(z
′) +O((|(z′, z′)|3)
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and hj, qj are homogeneous quadratic polynomials. The formal complexification of M is
defined by {

zp+i = Ei(z
′, w′), i = 1, . . . , p,

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

We define a formal deck transformation of π1 to be a formal biholomorphic map

τ : (z′, w′) → (z′, f(z′, w′)), τ(0) = 0

such that π1τ = π1, i.e. E ◦ τ = E. Recall that condition B says that q∗ = dim{z′ ∈
Cn : q(z′) = 0} is zero, i.e. q vanishes only at the origin in Cp.

Lemma 4.1. Let M be a formal submanifold defined by (4.1)-(4.2). Suppose that M
satisfies condition B. Then formal deck transformations of π1 are commutative involutions.
Each formal deck transformation τ of π1 : M → Cp is uniquely determined by its linear part
Lτ in the (z′, w′) coordinates, while Lτ is a deck transformation for the complexification
for π1 : Q → Cp, where Q is the complexification of the quadratic part Q of M . If M is
real analytic, all formal deck transformations of π1 are convergent.

Proof. Let us recall some results about the quadric Q. We already know that q∗ = 0
implies that π1 for the complexification of Q is a branched covering. As used in the proof
of Lemma 2.1, π1 is an open mapping near the origin and its regular values are dense. In
particular, we have

(4.3) det ∂w′{h(z′, w′) + q(w′)} 6≡ 0.

Let τ be a formal deck transformation for M . To show that τ is an involution, we
note that its linear part at the origin, Lτ , is a deck transformation of Q. Hence Lτ is an
involution. Replacing τ by the deck transformation τ 2, we may assume that τ is tangent
to the identity. Write

τ(z′, w′) = (z′, w′ + u(z′, w′)).

We want to show that u = 0. Assume that u(z′, w′) = O(|(z′, w′)|k) and let uk be homoge-
neous and of degree k such that u(z′, w′) = uk(z

′, w′) +O(|(z′, w′)|k+1). We have

E(z′, w′ + u(z′, w′)) = E(z′, w′).

Comparing terms of order k + 1, we get

∂w′{h(z′, w′) + q(w′)}uk(z′, w′) = 0.

By (4.3), uk = 0. This shows that each formal deck transformation τ of π1 for M is an
involution. As mentioned above, Lτ is a deck transformation of π1 for Q. Also if τ, τ̃ are
commuting formal involutions then τ−1τ̃ is an involution and τ = τ̃ if and only if Lτ = Lτ̃ .

Assume now that M is real analytic. We want to show that each formal deck transfor-
mation τ is convergent. By a theorem of Artin [Art68], there is a convergent τ̃ (z′, w′) =
τ(z′, w′) +O(|(z′, w′)|2) such that E ◦ τ̃ = E, i.e. τ̃ is a deck transformation. Then τ̃−1τ is
a deck transformation tangent to the identity. Since it is a formal involution by the above
argument, then it must be identity. Therefore, τ = τ̃ converges. �
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Analogous to real analytic submanifolds, we say that a formal manifold defined by (4.1)-
(4.2) satisfies condition D if its formal branched covering π1 admits 2p formal deck trans-
formations.

Recall from section 2 that it is crucial to distinguish a special set of generators for the
deck transformations in order to relate the classification of real analytic manifolds to the
classification of certain {τ11, . . . , τ1p, ρ}. The set of generators is uniquely determined by
the dimension of fixed-point sets. We want to extend these results at the formal level.

Proposition 4.2. Let M, M̃ be formal p-submanifolds in Cn of the form (4.1)-(4.2). Sup-
pose that M, M̃ satisfy condition D. Then the following hold :

(i) M and M̃ are formally equivalent if and only if their associated families of involu-
tions {τ11, . . . , τ1p, ρ} and {τ̃11, . . . , τ̃1p, ρ} are formally equivalent.

(ii) Let T1 = {τ11, . . . , τ1p} be a family of formal holomorphic involutions which com-
mute pairwise. Suppose that the tangent spaces of Fix(τ11), . . . ,Fix(τ1p) are hyper-
planes intersecting transversally at the origin. Let ρ be an anti-holomorphic formal
involution and let T2 = {τ21, . . . , τ2p} with τ2j = ρτ1jρ. Suppose that σ = τ1τ2 has
distinct eigenvalues for τi = τi1 · · · τip, and

[Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}.

There exists a formal submanifold defined by

(4.4) z′′ = (B2
1 , . . . , B

2
p)(z

′, z′)

for some formal power series B1, . . . , Bp such that M satisfies condition D. The set
of involutions {τ̃11, . . . , τ̃1p, ρ0} of M is formally equivalent to {τ11, . . . , τ1p, ρ}.

Proof. (i) LetM and M̃ be given by z′′ = E(z′, z′) and z̃′′ = Ẽ(z̃′, z̃′), respectively. Suppose

that f is a formal holomorphic transformation sending M into M̃ . We have

(4.5) f ′′(z′, E(z′, w′)) = Ẽ(f ′(z′, E(z′, w′)), f
′
(w′, E(w′, z′))).

Here f = (f ′, f ′′). Recall that ρ0(z
′, w′) = (w′, z′). Define a formal mapping (z′, w′) →

(z̃′, w̃′) = F (z′, w′) by

(4.6) F (z′, w′) := (f ′(z′, E(z′, w′)), f ′(w′, E(w′, z′))).

It is clear that Fρ0 = ρ0F . By Lemma 2.7, we know that z̃′ and z̃′′ = Ẽ(z̃′, w̃′) generate
invariant formal power series of {τ̃1j}. Thus, z̃′◦F (z′, w′) = f ′(z′, E(z′, w′)) and Ẽ◦F (z′, w′)
are invariant by F−1 ◦ τ̃1j ◦ F . By (4.5) and the definition of F ,

Ẽ ◦ F (z′, w′) = f ′′(z′, E(z′, w′)).

This shows that f(z′, E(z′, w′)) is invariant under F−1 ◦ τ̃1j ◦ F . Since f is invertible, then
z′ and E(z′, w′) are invariant under F−1 ◦ τ̃1j ◦ F . Therefore, {τ1j} and {F−1 ◦ τ̃1i ◦ F} are
the same by Lemma 2.7 as they have the same invariant functions.

Assume now that {τ1j} = {F−1 ◦ τ̃1i ◦ F} for some formal biholomorphic map F com-

muting with ρ0. Recall that z̃
′, z̃′′ are invariant by τ̃1j . Then z̃

′ ◦F and Ẽ ◦F are invariant
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by {τ1j}. By Lemma 2.7, invariant power series of τ1j are generated by z′, E(z′, w′). Thus
we can write

z̃′ ◦ F (z′, w′) = f ′(z′, E(z′, w′)),

Ẽ ◦ F (z′, w′) = f ′′(z′, E(z′, w′))(4.7)

for some formal power series map f = (f ′, f ′′). Since ρ0F = Fρ0, then by (4.6)

F (z′, w′) = (f ′(z′, 0), f
′
(w′, 0)) +O(|(z′, w′)|2).

Since F is (formal) biholomorphic then z′ → f ′(z′, 0) is biholomorphic. Then

f ′′(0, E(0, w′)) = Ẽ(0, f
′
(w′, 0)) +O(|w′|3).

We have E(0, w′) = q(w′) + O(|w′|3) and Ẽ(0, w′) = q̃(w′) + O(|w′|3). Here q(w′), q̃(w′)
are quadratic. By condition q∗ = 0, we know that q̃1, . . . , q̃p and hence q̃1 ◦ L, . . . , q̃p ◦ L
are linearly independent. Here L is the linear part of the mapping w′ → f

′
(w′, 0), which

is invertible. This shows that the linear part of w′ → f ′′(0, w′) is biholomorphic. By (4.7),
f ′′(z′, 0) = O(|z′|2). Hence f = (f ′, f ′′) is biholomorphic. By a simple computation, we
have f(M) = M̃ , i.e.

Ẽ(f ′(z), f ′(z)) = f ′′(z)

for z′′ = E(z′, z′).
(ii) Assume that {τ1j} and ρ are given in the (ξ, η) space. We want to show that a formal

holomorphic equivalence class of {τ1j , ρ} can be realized by a formal submanifold satisfying
condition D. The proof is almost identical to the realization proof of Proposition 2.10 and
we will be brief. Using a formal, instead of convergent, change of coordinates, we know
that invariant formal power series of {τ1j} are generated by

z′ = (A1(ξ, η), . . . , Ap(ξ, η)), z′′ = (B2
1(ξ, η), . . . , B

2
p(ξ, η)),

where Bj is skew-invariant by τ1j , and A,Bi are invariant under τ1j for i 6= j. Moreover,
φ(ξ, η) = (A,B)(ξ, η) is formal biholomorphic. Set

w′
j = Aj ◦ ρ(ξ, η), w′′

j = B2
j ◦ ρ(ξ, η).

Then (ξ, η) → (A(ξ, η), A ◦ ρ(ξ, η)) has an inverse ψ. Define

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, z′).

The complexification of M is given by

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, w′), w′′ = (B

2

1, . . . , B
2

p) ◦ ψ(w′, z′).

Note that φ ◦ ψ(z′, w′) = (z′, B ◦ ψ(z′, w′)). Since φψ is invertible, the linear part D of
B ◦ ψ satisfies

|D(0, w′)| ≥ |w′|/C.
This shows that q∗ = 0. As in the proof of Proposition 2.10, we can verify that M is a
realization for {τ1j , ρ}. �
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4.2. Centralizers and normalized transformations. In this subsection, we describe
several centralizers regarding Ŝ, T̂1 and T̂1. We will also describe the complement sets of
the centralizers, i.e. the sets of mappings which satisfy suitable normalizing conditions.
Roughly speaking, our normal forms are in the centralizers and coordinate transformations
that achieve the normal forms are normalized, while an arbitrary formal transformation
admits a unique decomposition of a mapping in a centralizer and a mapping in the comple-
ment of the centralizer. The description of the centralizer of {T1, ρ} is more complicated and
it will be given in section 11. We will also deal with the convergence for the decomposition.

Recall that

Ŝ : ξ′j = µjξj, η′j = µ−1
j ηj, 1 ≤ j ≤ p,(4.8)

T̂i : ξ
′
j = λijηj, η′j = λ−1

ij ξ, 1 ≤ j ≤ p(4.9)

with µj = λ21j and λ
−1
2j = λ1j = λj .

Definition 4.3. Let F be a family of formal mappings on Cn fixing the origin. Let C(F)
be the centralizer of F , i.e. the set of formal holomorphic mappings g that fix the origin
and commute with each element f of F , i.e., f ◦ g = g ◦ f .

Note that we do not require that elements in C(F) be invertible or convergent.
We first compute the centralizers.

Lemma 4.4. Let Ŝ be given by (4.8) with µ1, . . . , µp being non-resonant. Then C(Ŝ)
consists of mappings of the form

(4.10) ψ : ξ′j = aj(ξη)ξj, η′j = bj(ξη)ηj, 1 ≤ j ≤ p.

Let τ1, τ2 be formal holomorphic involutions such that Ŝ = τ1τ2. Then

τi : ξ
′
j = Λij(ξη)ηj, η′j = Λ−1

ij (ξη)ξj, 1 ≤ j ≤ p

with Λ1jΛ
−1
2j = µj. The centralizer of {T̂1, T̂2} consists of the above transformations satis-

fying

(4.11) bj = aj , 1 ≤ j ≤ p.

Proof. Let ej = (0, . . . , 1, . . . , 0) ∈ Np, where 1 is at the jth place. Let ψ be given by

ξ′j =
∑

aj,PQξ
PηQ, η′j =

∑
bj,PQξ

PηQ.

By the non-resonance condition, it is straightforward that if ψŜ = Ŝψ, then aj,PQ = bj,QP =

0 if P −Q 6= ej . Note that Ŝ−1 = T0ŜT0 for T0 : (ξ, η) → (η, ξ). Thus τ1T0 commutes with

Ŝ. So τ1T0 has the form (4.10) in which we rename aj , bj by Λ1j , Λ̃1j, respectively. Now
τ 21 = I implies that

Λ1j((Λ11Λ̃11)(ζ)ζ1, . . . , (Λ1pΛ̃1p)(ζ)ζp)Λ̃1j(ζ) = 1, 1 ≤ j ≤ p.

Then Λ1j(0)Λ̃1j(0) = 1. Applying induction on d, we verify that for all j

Λ1j(ζ)Λ̃1j(ζ) = 1 +O(|ζ |d), d > 1.

Having found the formula for τ1T0, we obtain the desired formula of τ1 via composition
(τ1T0)T0. �
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LetD1 := diag(µ11, . . . , µ1n), . . . ,Dℓ := diag(µℓ1, . . . , µℓn) be diagonal invertible matrices
of Cn. Let us set D := {Diz}i=1,...ℓ.

Definition 4.5. Let F be a formal mapping of Cn that is tangent to the identity.

(i) Let n = 2p. F is normalized with respect to Ŝ, if F = (f, g) is tangent to the
identity and F contains no resonant terms, i.e.

fj,(A+ej)A = 0 = gj,A(A+ej), |A| > 1.

(ii) Let n = 2p. F is normalized with respect to {T̂1, T̂2}, if F = (f, g) is tangent to
the identity and

fj,(A+ej)A = −gj,A(A+ej), |A| > 1.

(iii) F is normalized with respect to D if it does not have components along the
centralizer of D, i.e. for each Q with |Q| ≥ 2,

fj,Q = 0, if µQ
i = µij for all i.

Let Cc(Ŝ) (resp. Cc(T̂1, T̂2), Cc(D)) denote the set of formal mappings normalized with

respect to Ŝ (resp. {T̂1, T̂2}, the family D).

For convenience, we let Cc

2(Ŝ) (resp. Cc

2(T̂1, T̂2), Cc

2(D)) denote the set of formal mappings

F − I with F ∈ Cc(Ŝ) (resp. Cc(T̂1, T̂2), Cc(D)).

Remark 4.6. Note that if f ∈ Cc(Ŝ) (resp. Cc(T̂1, T̂2)), then ρfρ is in Cc(Ŝ) (resp.

Cc(T̂1, T̂2)).

We now deal with the following decomposition problem: Let C be a set of analytic
mappings. We shall decompose an arbitrary invertible mapping into the composition of an
element of a centralizer of C and an element which is normalized with respect to C. We
shall also deal with the convergence issue. The following lemma, which deals with a general
situation, will be used several times.

Definition 4.7. Let A be a group of permutations of {1, . . . , n}. Then A acts on the

right (resp. on the left) on Ôn
n by permutation of variables z = (z1, . . . , zn) as follows: Let

F (z) =
∑

|Q|>0 FQz
Q be a formal mapping from Cn to Cn, and let ν, µ ∈ A; set

ν ◦ F ◦ µ(z) :=
∑

Q∈Nn

Fν(i),µ−1(Q)z
Q.

Define the components (AF )i, (FA)i, and consequently (AFA)i by

(AF )i(z) :=
∑

Q∈Nn

max
ν∈A

|Fν(i),Q|zQ,

(FA)i(z) :=
∑

Q∈Nn

max
µ∈A

|Fi,µ−1(Q)|zQ,

(AFA)i(z) =
∑

Q∈Nn

max
(ν,µ)∈A2

|Fν(i),µ−1(Q)|zQ.
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We see that FA is the smallest (w.r.t. ≺) power series mapping that majorizes F and
is right-invariant under A, while AF is the smallest power series mapping that majorizes
F and is left-invariant under A. In particular, if F,G are mappings without constant or
linear terms, then

A(F ◦ (I +G))A ≺ (AFA)(AIA+AGA),(4.12)

where the last relation holds if the composition is well-defined.
To simply our notation, we will take A to be the full permutation group of {1, . . . , n}.

We will denote
Fsym = AFA.

Lemma 4.8. Let Ĥ be a real subspace of (M̂2
n)

n. Let π : (M̂2
n)

n → Ĥ be a R linear pro-

jection (i.e. π2 = π) that preserves the degrees of the mappings and let Ĝ := (I−π)(M̂2
n)

n.
Suppose that there is a positive constant C such that

(4.13) π(E) ≺ CEsym

for any E ∈ (M̂2
n)

n. Let F be a formal map tangent to the identity. There exists a unique
decomposition

(4.14) F = HG−1

with G− I ∈ Ĝ and H − I ∈ Ĥ. If F is convergent, then G and H are also convergent.

Proof. If f is a formal mapping, we define the k-jet:

Jkf(z) =
∑

|Q|≤k

fQz
Q.

Write F = I + f , G = I + g and H = I + h. We need to solve FG = H , i.e to solve

h− g = f(I + g).

Since f ′(0) = 0, then for any k ≥ 2, the k-jet of f(I + g) depends only on the (k− 1)-jet of
g. Since π is linear and preserves degrees, (4.13) implies that Jk commutes with π. Hence
we can define, for all k ≥ 2,

−Jk(g) := π
(
Jk(f(I + g)

)
, Jk(h) := (I − π)

(
Jk(f(I + g)

)
.

This solves the formal decomposition uniquely. Assume that F is a germ of holomorphic
mapping. Hence, we have

g ≺ C(f(I + g))sym ≺ Cfsym(Isym + gsym).

Since gsym is the smallest left and right A invariant power series that dominates g, we have

gsym ≺ Cfsym(Isym + gsym).

Therefore, gsym is dominated by the solution u to

u = Cfsym(Isym + u), u(0) = 0.

Notice that u is real analytic near the origin by the implicit function theorem. So, gsym
is convergent, and both g and h = g + f(I + g) are convergent in a neighborhood of the
origin. �
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Corollary 4.9. The previous decomposition (4.14) is valid with Ĝ := C2(Ŝ) and Ĥ := Cc

2(Ŝ)

(resp. Ĝ := C2(T̂1, T̂2) and Ĥ := Cc

2(T̂1, T̂2); Ĝ := C2(D) and Ĥ := Cc

2(D)).

Proof. We apply the previous lemma by finding π. The first case is obvious since K is in
C2(Ŝ) (resp. Cc

2(Ŝ)) if and only if KQz
Q ∈ C2(Ŝ) (resp. Cc

2(Ŝ)) for all Q. So we take

(I − π)(K) =

n∑

j=1

∑

ejzQ∈Ĝ

Kj,Qz
Qej.

Next, we consider the case where Ĝ = C2(T̂1, T̂2) and Ĥ = Cc

2(T̂1, T̂2). We need to find

a projection such that Ĥ = π(M̂2
n)

n and Ĝ = (I−π)(M̂2
n)

n. Note that g ∈ C2(T̂1, T̂2) and

h ∈ Cc

2(T̂1, T̂2) are determined by conditions

gj,(γ+ej)γ = g(j+p),γ(γ+ej), hj,(γ+ej)γ = −h(j+p),γ(γ+ej), 1 ≤ j ≤ p,

gj,PQ = g(j+p),QP = 0, P −Q 6= ej.

Thus, if h− g = K, we determine g uniquely by combining the above identities with

gj,(γ+ej)γ =
−1

2

{
Kj,(γ+ej)γ +K(j+p),γ(γ+ej)

}
,

hj,(γ+ej)γ =
1

2

{
Kj,(γ+ej)γ −K(j+p),γ(γ+ej)

}

for 1 ≤ j ≤ p. For the remaining coefficients of h, set hi,PQ = Ki,PQ. Therefore, π(K) :=
h ≺ Ksym and the proof is complete. �

Remark 4.10. Let A,B be two subgroups of permutations. Instead of using the full
permutations group, we could have used Gsym := AGB. We have

G ≺ AGB ≺ CA(F ◦ (I +G))B ≺ (AFA)(AIB+AGB).
Remark 4.11. We do not know if there are convergent G ∈ C(Ŝ) and H ∈ Cc(Ŝ) such
that F = GH when F is convergent. Note that the formal decomposition exists.

Recall that for j = 1, . . . , p, we define

Zj : ξ
′ = ξ, η′k = ηk, k 6= j, η′j = −ηj .

We have seen in section 3 how invariant functions of Zj play a role in constructing nor-
mal form of quadrics. In section 7, we will also need a centralizer for non linear maps
(see Lemma 7.2) to obtain normal forms for two families of involutions. Therefore, let us
first record here the following description of centralizer of Z1, . . . , Zp.

Lemma 4.12. The centralizer, C(Z1, . . . , Zp), consists of formal mappings

(ξ, η) → (U(ξ, η), . . . , η1V1(ξ, η), . . . , ηpVp(ξ, η))

such that U(ξ, η), V (ξ, η) are even in each ηj. Let Cc(Z1, . . . , Zp) denote the set of mappings
I + (U, V ) which are tangent to the identity such that

(4.15) Uj,PQ = Vj,P (ej+Q′) = 0, Q,Q′ ∈ 2Np, |P |+ |Q| > 1, |P |+ |Q′| > 1.

Let ψ ∈ C(Z) be tangent to the identity. There exist unique ψ0 ∈ C(Z1, . . . , Zp) and
ψ1 ∈ Cc(Z1, . . . , Zp) such that ψ = ψ1ψ

−1
0 . Moreover, if ψ is convergent, then ψ0 and ψ1

are convergent.
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Proof. The lemma follows immediately from Lemma 4.8 in which Ĥ is the R linear space of
mappings (U, V ) without constant or linear terms, which satisfy (4.15). The projection π is

the unique projection onto Ĥ (i.e. π2 = π, and π is the identity on Ĥ) such that π is linear
and preserves degrees, and π(E) = 0 if E(ξ, η) = O(|(ξ, η)|2) and E ∈ C2(Z1, . . . , Zp). �

5. Formal normal forms of the reversible map σ

Let us first describe our plans to derive the normal forms of M . We would like to show
that two families of involutions {τ1j , τ2j , ρ} and {τ̃1j , τ̃2j , ρ̃} are holomorphically equivalent,
if their corresponding normal forms are equivalent under a much smaller set of changes
of coordinates. Ideally, we would like to conclude that {τ̃1j , τ̃2j , ρ̃} are holomorphically
equivalent if and only if their corresponding normal forms are the same, or if they are
the same under a change of coordinates with finitely many parameters. For instance the
Moser-Webster normal form for real analytic surfaces (p = 1) with non-vanishing elliptic
Bishop invariant falls into the former situation, while the Chern-Moser theory [CM74] for
real analytic hypersurfaces with non-degenerate Levi-form is an example for the latter.
Such a normal form will tell us if the real manifolds have infinitely many invariants or
not. One of our goals is to understand if the normal form so achieved can be realized
by a convergent normalizing transformation. We will see soon that we can achieve our
last goal under some assumptions on the family of involutions. Alternatively and perhaps
for simplicity of the normal form theory, we would like to seek normal forms which are
dynamically or geometrically significant.

Recall that for each real analytic manifold that has 2p, the maximum number of, com-
muting deck transformations {τ1j}, we have found a unique set of generators τ11, . . . , τ1p
so that each Fix(τ1j) has codimension 1. More importantly τ1 = τ11 · · · τ1p is the unique
deck transformation of which the set of fixed points has dimension p. Let τ2 = ρτ1ρ and
σ = τ1τ2. To normalize {τ1j , τ2j, ρ}, we will choose ρ to be the standard anti-holomorphic
involution determined by the linear parts of σ. Then we normalize σ = τ1τ2 under formal
mapping commuting with ρ. This will determine a normal form for {τ ∗1 , τ ∗2 , ρ}. This part
of normalization is analogous to the Moser-Webster normalization. When p = 1, Moser
and Webster obtained a unique normal form by a simple argument. However, this last step
of simple normalization is not available when p > 1. By assuming log M̂ associated to σ̂
is tangent to the identity, we will obtain a unique formal normal form σ̂, τ̂1, τ̂2 for σ, τ1, τ2.
Next, we need to construct the normal form for the families of involutions. We first ignore
the reality condition, by finding Φ which transforms {τ1j} into a set of involutions {τ̂1j}
which is decomposed canonically according to τ̂1. This allows us to express {τ11, . . . , τ1p, ρ}
via {τ̂1, τ̂2,Φ, ρ}, as in the classification of the families of linear involutions. Finally, we
further normalize {τ̂1, τ̂2,Φ, ρ} to get our normal form.

Definition 5.1. Throughout this section and next, we denote {h}d the set of coefficients
of hP with |P | ≤ d if h(x) is a map or function in x as power series. We denote by
AP (t),A(y; t), etc., a universal polynomial whose coefficients and degree depend on a mul-
tiindex. The variables in these polynomials will involve a collection of Taylor coefficients
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of various mappings. The collection will also depend on |P |. As such dependency (or in-
dependency to coefficients of higher degrees) is crucial to our computation, we will remind
the reader the dependency when emphasis is necessary.

For instance, let us take two formal mappings F,G from Cn into itself. Suppose that
F = I+f with f(x) = O(|x|2) and G = LG + g with g(x) = O(|x|2) and LG being linear.
For P ∈ Nn with |P | > 1, we can express

(F−1)P = −fP + FP ({f}|P |−1),(5.1)

(G ◦ F )P = gP + ((LG) ◦ f)P + GP (LG; {f, g}|P |−1),(5.2)

(F−1 ◦G ◦ F )P = gP − (f ◦ (LG))P + ((LG) ◦ f)P +HP (LG; {f, g}|P |−1).(5.3)

5.1. Formal normal forms of pair of involutions {τ1, τ2}. We first find a normal form
for σ in C(S).
Proposition 5.2. Let σ be a holomorphic map. Suppose that σ has the linear part

Ŝ : ξ′j = µjξj, ηj = µ−1
j ηj , 1 ≤ j ≤ p

and µ1, . . . , µp are non-resonant. Then there exists a unique normalized formal map Ψ ∈
Cc(Ŝ) such that σ∗ = Ψ−1σΨ ∈ C(Ŝ). Moreover, σ̃ = ψ−1

0 σ∗ψ0 ∈ C(Ŝ), if and only if

ψ0 ∈ C(Ŝ) and it is invertible. Let

σ∗ : ξ′j =Mj(ξη)ξj, η′j = Nj(ξη)ηj,

σ̃ : ξ′j = M̃j(ξη)ξj, η′j = Ñj(ξη)ηj,

ψ0 : ξ
′
j = aj(ξη)ξj, η′j = bj(ξη)ηj.

(i) Assume that τ1, τ2 are holomorphic involutions and σ = τ1τ2. Then σ
∗ = τ ∗1 τ

∗
2 with

τ ∗i = Ψ−1τiΨ: ξ′j = Λij(ξη)ηj, η′j = Λ−1
ij (ξη)ξj;(5.4)

Nj =M−1
j , Mj = Λ1jΛ

−1
2j .

Let the linear part of τi be given by

T̂i : ξ
′
j = λijηj, η′j = λ−1

ij ξj.

Suppose that λ−1
2j = λ1j. There exists a unique ψ0 ∈ Cc(T̂1, T̂2) such that

τ̃i = ψ−1
0 τ ∗i ψ0 : ξ

′
j = Λ̃ij(ξη)ηj, η′j = Λ̃−1

ij (ξη)ξj;

M̃j = Λ̃2
1j = Ñ−1

j , Λ̃2j = Λ̃−1
1j .(5.5)

Let ψ1 be a formal biholomorphic map. Then {ψ−1
1 τ̃1ψ1, ψ

−1
1 τ̃2ψ} has the same

form as of {τ̃1, τ̃2} if and only if ψ1 ∈ C(T̂1, T̂2); moreover, Λ̃ij(ξη), M̃j(ξη) are
transformed into

(5.6) Λ̃ij ◦ ψ̃1, M̃j ◦ ψ̃1.

Here ψ̃1(ζ) = (diag c(ζ))2ζ and ψ1(ξ, η) = ((diag c(ξη))ξ, (diag c(ξη))η).
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(ii) Assume further that τ2 = ρτ1ρ, where ρ is defined by (3.7). Let

ρz : ζj → ζj , 1 ≤ j ≤ e∗ + h∗; ζs → ζs+s∗ , e∗ + h∗ < s ≤ p− s∗.

Then ρΨ = Ψρ, τ ∗2 = ρτ ∗1 ρ, and (σ∗)−1 = ρσ∗ρ. The last two identities are equiva-
lent to

Λ−1
2e = Λ1e ◦ ρz, Me ◦ ρz =Me, 1 ≤ e ≤ e∗;(5.7)

Λ2h = Λ1h ◦ ρz, Mh ◦ ρz =M−1
h , e∗ < h ≤ h∗ + e∗;(5.8)

Λ2(s) = Λ1(s∗+s) ◦ ρz ,(5.9)

Λ2(s∗+s) = Λ1s ◦ ρz, M−1
s ◦ ρz =Ms∗+s, h∗ + e∗ < s ≤ p− s∗.(5.10)

Let ψ0 and τ̃i = ψ−1
0 τ ∗i ψ0 be as in (i). Then ρψ0 = ψ0ρ, and τ̂1, τ̂2 satisfy

Λ̃ie = Λ̃ie ◦ ρz, Λ̃−1
ih = Λ̃ih ◦ ρz, Λ̃is+s∗ = Λ̃−1

is ◦ ρz.(5.11)

Proof. We will use the Taylor formula

f(x+ y) = f(x) +
m∑

k=1

1

k!
Dkf(x; y) +Rm+1f(x; y)

with Dkf(x; y) = {∂kt f(x+ ty)}|t=0 and

(5.12) Rm+1f(x; y) = (m+ 1)

∫ 1

0

(1− t)m
∑

|α|=m+1

1

α!
∂αf(x+ ty)yα dt.

Set D = D1. Let σ be given by

ξ′j =M0
j (ξη)ξj + fj(ξ, η), η′j = N0

j (ξη)ηj + gj(ξ, η)

with

(5.13) (f, g) ∈ Cc

2(Ŝ).

We need to find Φ ∈ Cc(S) such that Ψ−1σΨ = σ∗ is given by

ξ′j =Mj(ξη)ξj, η′j = Nj(ξη)ηj.

By definition, Ψ has the form

ξ′j = ξj + Uj(ξ, η), η′j = ηj + Vj(ξ, η), Uj,(P+ej)P = Vj,P (P+ej) = 0.

The components of Ψσ∗ are

ξ′j =Mj(ξη)ξj + Uj(M(ξη)ξ, N(ξη)η),(5.14)

η′j = Nj(ξη)ηj + Vj(M(ξη)ξ, N(ξη)η).(5.15)

To derive the normal form, we only need Taylor theorem in order one. This can also
demonstrate small divisors in the normalizing transformation; however, one cannot see the
small divisors in the normal forms. Later we will show the existence of divergent normal
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forms. This requires us to use Taylor formula whose remainder has order two. By the
Taylor theorem, we write the components of σΨ as

ξ′j = (M0
j (ξη) +DM0

j (ξη)(ηU + ξV + UV ))(ξj + Uj)(5.16)

+ fj(ξ, η) +Dfj(ξ, η)(U, V ) + Aj(ξ, η),

η′j = (N0
j (ξη) +DN0

j (ξη)(ηU + ξV + UV ))(ηj + Vj)(5.17)

+ gj(ξ, η) +Dgj(ξ, η)(U, V ) +Bj(ξ, η).

Recall our notation that UV = (U1(ξ, η)V1(ξ, η), . . . , Up(ξ, η)Vp(ξ, η)). The second order
remainders are

Aj(ξ, η) = R2M
0
j (ξη; ξU + ηV + UV )(ξj + Uj) +R2fj(ξ, η;U, V ),(5.18)

Bj(ξ, η) = R2N
0
j (ξη; ξU + ηV + UV )(ηj + Vj) +R2gj(ξ, η;U, V ).(5.19)

Note that the remainder R2M
0 is independent of the linear part of M0. Thus

R2M
0
j = R2(M

0
j − LM0

j ), R2N
0
j = R2(N

0
j − LN0

j ).

Let us calculate the largest degrees of coefficients of M0−LM0, (U, V, f, g) on which Aj,PQ

depend. We denote the two degrees by w, d, respectively. Since ord(f, g, U, V ) ≥ 2, we
have

2(w − 2) + (d+ 4) + 1 ≤ |P |+ |Q|, or (d− 2) + 2d ≤ |P |+ |Q|,
where the first inequality is obtain from the first term on the right-hand side of (5.18) and
the second term yields the second inequality. Since M0 − LM0, (U, V ), and (f, g) do not
have linear terms, we have w ≥ 2 and d ≥ 2. Thus, we have crude bounds

d ≤ |P |+ |Q| − 1, w ≤ |P |+ |Q| − 1

2
.

Analogously, we can estimate the degrees of coefficients of N0. We obtain

Aj,PQ = Aj,PQ({M0 − LM0} |P |+|Q|−1
2

; {f, U, V }|P |+|Q|−1),

Bj,QP = Bj,QP ({N0 − LN0} |P |+|Q|−1
2

; {g, U, V }|P |+|Q|−1).

Recall our notation that {f, U, V }d is the set of coefficients of fPQ, UPQ, VPQ with |P |+|Q| ≤
d. Here Aj,PQ(t

′; t′′),Bj,QP (t
′; t′′) are polynomials of which each has coefficients that depend

only on j, P,Q and they vanish at t′′ = 0.
To finish the proof of the proposition, we will not need the explicit expressions involving

DM0
j , DN

0
j , Dfj, Dgj. We will use these derivatives in the proof of Lemma 6.1. So we

derive derive these expression in this proof too.
We apply the projection (5.14)-(5.15) and (5.16)-(5.17) onto Cc

2(S), via monomials in
each component of both sides of the identities. The images of the mappings

(ξ, η) 7→ (U(M(ξη)ξ, N(ξη)η), V (M(ξη)ξ, N(ξη)η)),

(ξ, η) 7→ (M0(ξη)U(ξ, η), N0(ξ, η)V (ξ, η))
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under the projection are 0. We obtain from (5.14)-(5.17) and (5.18)-(5.19)

(µP−Q − µj)Uj,PQ = fj,PQ + Uj,PQ({M0} |P |+|Q|−1
2

; {f, U, V }|P |+|Q|−1),(5.20)

(µQ−P − µ−1
j )Vj,QP = gj,QP + Vj,QP ({N0} |P |+|Q|−1

2

; {g, U, V }|P |+|Q|−1)(5.21)

for µP−Q 6= µj, which is always solvable. Next, we project (5.14)-(5.15) and (5.16)-(5.17)

onto C2(Ŝ), via monomials in each component of both sides of the identities. Using (5.13)
we obtain

MP =M0
P +MP ({M0}|P |−1; {f, U, V }2|P |−1),(5.22)

NP = N0
P +NP ({N0}|P |−1; {f, U, V }2|P |−1).(5.23)

Here MP ,NP are polynomials of which each has coefficients that depend only on P , and
{M0}d stands for the set of coefficients M0

P with |P | ≤ d. Note that Uj,PQ = Vj,QP = 0
when |P |+ |Q| = 2, or ord(f, g) > |P | + |Q|. And MP = NP = 0 when ord(f, g) > 2|P |,
by (5.13). Inductively, by using (5.20)-(5.21) and (5.22)-(5.23), we obtain unique solutions
U, V,M,N . Moreover, the solutions and their dependence on the coefficients of f, g and
small divisors have the form

Uj,PQ = (µP−Q − µj)
−1
{
fj,PQ + U∗

j,PQ(δd−1, {M0, N0}[ d−1
2

]; {f, g}d−1)
}
,(5.24)

Vj,QP = (µQ−P − µ−1
j )−1

{
gj,QP + V∗

j,QP (δd−1, {M0, N0}[ d−1
2

]; {f, g}d−1)
}
,(5.25)

where d = |P |+ |Q| and µP−Q 6= µj, and δd−1 is the union of {µ1, µ
−1
1 , . . . , µp, µ

−1
p } and

{
1

µA−B − µj
: |A|+ |B| ≤ d− 1, A, B ∈ Np

}
.

This shows that for any M0, N0 there exists a unique mapping Ψ transforms σ into σ∗.
Furthermore, U∗

j,PQ(t
′; t′′),V∗

j,QP (t
′; t′′) are polynomials of which each has coefficients that

depend only on j, P,Q, and they vanish at t′′ = 0.
For later purpose, let us express M,N in terms of f, g. We substitute expressions (5.24)-

(5.25) for U, V in (5.22)-(5.23) to obtain

MP =M0
P +M∗

P (δ2|P |−1, {M0, N0}|P |−1; {f, g}2|P |−1),(5.26)

NP = N0
P +N ∗

P (δ2|P |−1, {M0, N0}|P |−1; {f, g}2|P |−1)(5.27)

with f, g satisfying (5.13).

Assume that σ̃ = ψ−1
0 σ∗ψ0 commutes with Ŝ. By Corollary 4.9, we can decompose

ψ0 = HG−1 with G ∈ C(Ŝ) and H ∈ Cc(Ŝ). Furthermore, G−1σ̃G commutes with Ŝ and
H−1σ∗H . By the uniqueness conclusion for the above ψ0, H must be the identity. This
shows that ψ0 ∈ C(Ŝ).

(i). Assume that we have normalized σ. We now use it to normalize the pair of in-
volutions. Assume that σ = τ1τ2 and τ 2j = I. Then σ∗ = τ ∗1 τ

∗
2 . Let T0(ξ, η) := (η, ξ).

We have T0(σ
∗)−1T0 = T0τ

∗
1σ

∗τ ∗1T0. By the above normalization, T0(σ
∗)−1T0 commutes

with Ŝ. Therefore, τ ∗1T0 belongs to the centralizer of Ŝ and it must be of the form
(ξ, η) → (ξΛ1(ξη), ηΛ

∗
1(ξη)). Then (τ ∗1 )

2 = I implies that

Λ1(ξη(Λ1Λ
∗
1)(ξη))Λ

∗
1(ξη) = 1.
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The latter implies, by induction on d > 1, that Λ1Λ
∗
1 = 1+O(d) for all d > 1, i.e. Λ1Λ

∗
1 = 1.

Let τ ∗i be given by (5.4). We want to achieve Λ̃1jΛ̃2j = 1 for τ̃i = ψ−1
0 τ ∗i ψ0 by applying a

transformation ψ0 in Cc(T̂1, T̂2) that commutes with Ŝ. According to Definition 4.5, it has
the form

ψ0 : ξj = ξ̃j(1 + aj(ζ̃)), ηj = η̃j(1− aj(ζ̃))

with aj(0) = 0. Here ζ̃j := ξ̃j η̃j and ζ̃ := (ζ̃1, . . . , ζ̃p). Computing the products ζ in ζ̃ and

solving ζ̃ in ζ , we obtain

ψ−1
0 : ξ̃j = ξj(1 + bj(ζ))

−1, η̃j = ηj(1− bj(ζ))
−1.

Note that (a2j )P = Aj,P ({a}|P |−1), and

ξjηj = ξ̃j η̃j(1− a2j (ζ̃)), ξ̃j η̃j = ξjηj(1− b2j (ζ))
−1.

¿From ψ−1
0 ψ0 = I, we get

bj(ζ) = aj(ζ̃), bj,P = aj,P + Bj,P ({a}|P |−1).(5.28)

By a simple computation we see that τ̃i = ψ−1
0 τ ∗i ψ0 is given by

ξ̃′j = η̃jΛ̃ij(ζ̃), η̃′j = ξ̃jΛ̃
−1
ij (ζ̃)

with
Λ̃1jΛ̃2j(ζ̃) = (Λ1jΛ2j)(ζ)(1 + bj(ζ

′))−2(1− aj(ζ̃))
2.

Here ζ ′j = ζj(1 − a2j (ζ̃)). Using (5.28) and the implicit function theorem, we determine aj
uniquely to achieve Λ̃1jΛ̃2j = 1.

To identify the transformations that preserve the form of τ̃1, τ̃2, we first verify that each
element ψ1 ∈ C(T̂1, T̂2) preserves that form. According to (4.11), we have

ψ1 : ξj = ξ̃jãj(ζ̃), ηj = η̃jãj(ζ̃),

ψ−1
1 : ξ̃j = ξj b̃j(ζ), η̃j = ηj b̃j(ζ),

b̃j(ζ)ãj(ζ̃) = 1.

This shows that ψ−1
1 τ̃i is given by

ξ̃′j = Λ̃ij(ζ)b̃j(ζ)ηj, η̃′j = Λ̃−1
ij (ζ)b̃j(ζ)ξj.

Then ψ−1
1 τ̃iψ1 is given by

ξ̃′j = Λ̃ij(ζ)η̃j, η̃′j = Λ̃−1
ij (ζ)ξ̃j.

Since ζj = ζ̃jã
2
j(ζ̃), then ψ

−1
1 τ̃iψ1 still satisfy (5.5). Conversely, suppose that ψ1 preserves

the forms of τ̃1, τ̃2. We apply Corollary 4.9 to decompose ψ1 = φ1φ
−1
0 with φ0 ∈ C(T̂1, T̂2)

and φ1 ∈ Cc(T̂1, T̂2). Since we just proved that each element in C(T̂1, T̂2) preserves the form
of τ̃i, then φ1 = ψ1φ0 also preserves the forms of τ̃1, τ̃2. On the other hand, we have shown
that there exists a unique mapping in Cc(T̂1, T̂2) which transforms {τ ∗1 , τ ∗2 } into {τ̃1, τ̃2}.
This shows that φ0 = I. We have verified all assertions in (i).

(ii). According to Remark 4.6, Cc(Ŝ) and Cc(T̂1, T̂2) are invariant under conjugacy by

ρ. We have Ψ−1σΨ = σ∗ and Ψ ∈ Cc(Ŝ). Note that ρσρ = σ−1 and ρσ∗ρ have the

same form as of (σ∗)−1, i.e. they are in C(Ŝ) and have the same linear part. We have



55

ρΨρσρΨ−1ρ = ρ(σ∗)−1ρ. The uniqueness of Ψ implies that ρΨρ = Ψ and τ ∗2 = ρτ ∗1 ρ. Thus,

we obtain relations (5.7)-(5.10). Analogously, ρψ0ρ is still in Cc(T̂1, T̂2), and ρφ0ρ preserves
the form of τ̃1, τ̃2. Thus ρψ0ρ = ψ0 and τ̃2 = ρτ̃1ρ, which gives us (5.11). �

We will also need the following uniqueness result.

Corollary 5.3. Suppose that σ has linear part Ŝ with nonresonant µ1, . . . , µp. Let Ψ be the

unique formal mapping in Cc(Ŝ) such that Ψ−1σΨ ∈ C(Ŝ). If Ψ̃ ∈ Cc(Ŝ) is a polynomial

map of degree at most d such that Ψ̃−1σΨ̃(ξ, η) = σ̃(ξ, η) + O(|(ξ, η)|d+1) and σ̃ ∈ C(Ŝ),
then Ψ̃ is unique. In fact, Ψ− Ψ̃ = O(d+ 1).

Proof. The proof is contained in the proof of Proposition 5.2. Let us recap it by using
(5.24)-(5.25) and the proposition. We take a unique normalized mapping Φ such that

Φ−1Ψ̃−1σΨ̃Φ ∈ C(Ŝ). By (5.24)-(5.25), Φ = I + O(d+ 1). From Proposition 5.2 it follows

that ψ0 := Ψ̃ΦΨ−1 ∈ C(Ŝ). We obtain Ψ̃Φ = ψ0Ψ. Thus ψ0Ψ = Ψ̃ + O(d + 1). Since

ψ0 ∈ C(Ŝ), and Ψ, Ψ̃ are in Cc(Ŝ), we conclude that Ψ = Ψ̃ + O(d+ 1). �

When p = 1, Proposition 5.2 is due to Moser and Webster. In fact, they achieved

M̃1(ζ1) = eδ(ξ1η1)
s

.

Here δ = 0,±1 for the elliptic case and δ = 0,±i for the hyperbolic case when µ1 is not a
root of unity, i.e. γ is non-exceptional. In particular the normal form is always convergent,
although the normalizing transformations are generally divergent for the hyperbolic case.

Let us find out further normalization that can be performed to preserve the form of
σ∗. In Proposition 5.2, we have proved that if σ is tangent to Ŝ, there exists a unique
Ψ ∈ Cc(Ŝ) such that Ψ−1σΨ is an element σ∗ in the centralizer of Ŝ. Suppose now that

σ = τ1τ2 while τi is tangent to T̂i. Let τ ∗i = Ψ−1τiΨ. We have also proved that there is a

unique ψ0 ∈ Cc(T̂1, T̂2) such that τ̃i = ψ−1
0 τ ∗i ψ0, i = 1, 2, are of the form (5.5), i.e.

τ̃i : ξ
′
j = Λ̃ij(ζ)ηj, η′j = Λ̃−1

ij (ζ)ξj;

σ̃ : ξ′j = M̃j(ζ)ξj, η′j = M̃−1
j (ζ)ηj.

Here ζ = (ξ1η1, . . . , ξpηp), Λ̃2j = Λ̃−1
1j and M̃j = Λ̃2

1j . We still have freedom to further
normalize τ̃1, τ̃2 and to preserve their forms. However, any new coordinate transformation
must be in C(T̂1, T̂2), i.e. it must have the form

ψ1 : ξj → aj(ξη)ξj, ηj → aj(ξη)ηj.

When τ2j = ρτ1jρ, we require that ψ1 commutes with ρ, i.e.

ae = ae, ah = ah, as = as+s∗.

In ζ coordinates, the transformation ψ1 has the form

(5.29) ϕ : ζj → bj(ζ)ζj, 1 ≤ j ≤ p

with bj = a2j . Therefore, the mapping ϕ needs to satisfy

be > 0, bh > 0, bs = bs+s∗ .



56

Recall from (5.7)-(5.10) the reality conditions on M̃j

M̃e ◦ ρz = M̃e, 1 ≤ e ≤ e∗;

M̃h ◦ ρz = M̃−1
h , e∗ < h ≤ h∗ + e∗;

M̃s∗+s = M̃−1
s ◦ ρz, h∗ + e∗ < s ≤ p− s∗.

Here

(5.30) ρz : ζj → ζj, ζs → ζs+s∗, ζs+s∗ → ζs

for 1 ≤ j ≤ e∗ + h∗ and e∗ + h∗ < s ≤ p− s∗.
Therefore, our normal form problem leads to another normal form problem which is

interesting in its own right. To formulate a new normalization problem, let us define

(log M̃)j(ζ) :=

{
log(M̃j(ζ)/M̃j(0)), 1 ≤ j ≤ e∗,

−i log(M̃j(ζ)/M̃j(0)), e∗ < j ≤ p.
(5.31)

Let F = log M̃ := ((log M̃)1, . . . , (log M̃)p). Then the reality conditions on M̃ become

F = ρzFρz.(5.32)

The transformations (5.29) will then satisfy

(5.33) ρzϕρz = ϕ, bj(0) > 0, 1 ≤ j ≤ e∗ + h∗.

Therefore, when F ′(0) is furthermore diagonal and invertible and its jth diagonal entry
is positive for j = e, h, we apply a dilation ϕ satisfying the above condition so that F
is tangent to the identity. Then any further change of coordinates must be tangent to
the identity too. Thus, we need to normalize the formal holomorphic mapping F by
composition F ◦ ϕ, for which we study in next subsection.

5.2. A normal form for maps tangent to the identity. Let us consider a germ of
holomorphic mapping F (ζ) in Cp with an invertible linear part Aζ at the origin. According
to the inverse function theorem, there exists a holomorphic mapping Ψ with Ψ(0) = 0,
Ψ′(0) = I such that F ◦Ψ(ζ) = Aζ . On the other hand, if we impose some restrictions on
Ψ, we can no longer linearize F in general.

To focus on applications to CR singularity and to limit the scope of our investigation,
we now deliberately restrict our analysis to the simplest case : F is tangent to the identity.
We shall apply our result to F = log M̃ as defined in the previous subsection. In what
follows, we shall devise a normal form of such an F under right composition by Ψ that
preserve all coordinate hyperplanes, i.e. Ψj(ζ) = ζjψj(ζ), j = 1, . . . , p.

Lemma 5.4. Let F be a formal holomorphic map of Cp that is tangent to the identity at
the origin.

(i) There exists a unique formal biholomorphic map ψ which preserves all ζj = 0 such

that F̂ := F ◦ ψ has the form

F̂ = I + f̂ , f̂(ζ) = O(|ζ |2); ∂ζj f̂j = 0, 1 ≤ j ≤ p.(5.34)

(ii) If F is convergent, the ψ in (i) is convergent. If F commutes with ρz, so does the
ψ.
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(iii) The formal normal form in (i) has the form

(5.35) f̂j,Q = fj,Q + Fj,Q({f}|Q|−1), qj = 0, |Q| > 1.

Here Fj,Q are universal polynomials depending only on F ′(0) and they vanish at 0.

Proof. (i) Write F = I + f and

ψ : ζ ′j = ζj + ζjgj(ζ), gj(0) = 0.

For F̂ = F ◦ ψ, we need to solve for f̂ , g from

f̂j(ζ) = ζjgj(ζ) + fj ◦ ψ(ζ).
Fix Q = (q1, . . . , qp) ∈ Np with |Q| > 1. We obtain unique solutions

gj,Q−ej = −{fj(ψ(ζ))}Q, qj > 0,(5.36)

f̂j,Q := {fj(ψ(ζ))}Q, qj = 0.(5.37)

(ii) Assume that F is convergent. Define h(ζ) =
∑ |hQ|ζQ. We obtain for every multi-

index Q = (q1, . . . , qp) and for every j satisfying qj ≥ 1

gj,Q−ej
≤
{
fj(ζ1 + ζ1g1(ζ), . . . , ζp + ζpgp(ζ))

}
Q
.

Set w(ζ) =
∑
ζkgk(ζ). We obtain

w(ζ) ≺
∑

fj(ζ1 + w(ζ), . . . , ζp + w(ζ)).

Note that fj(ζ) = O(|ζ |2) and w(0) = 0. By the Cauchy majorization and the implicit

function theorem, w and hence g, ψ, f̂ are convergent.
Assume that ρzFρz = F . Then ρzLFρz is normalized, ρzψρz is tangent to the identity,

and the jth component of ρzF̂ ρz(ζ)− LF (ζ) is independent of ζj. Thus ρzψρz normalizes
F too. By the uniqueness of ψ, we obtain ρzψρz = ψ.

(iii) By rewriting (5.37), we obtain

(5.38) f̂j,Q = fj,Q + {fj(ψ)− fj}Q = fj,Q + F ′
j,Q({f}|Q|−1, {g}|Q|−2).

From (5.36), it follows that

gk,Q−ek = −fk,Q + Gk,Q−ek({f}|Q|−1, {g}|Q|−2), |Q| > 1.

Note that {g}0 = 0 and {f}1 = 0. Using the identity repeatedly, we obtain gk,Q−ek =
−fk,Q + G∗

k,Q−ek
({f}|Q|−1). Therefore, we can rewrite (5.38) as (5.35). �

5.3. A unique formal normal form of a reversible map σ. We now state a normal
form for {τ1, τ2, ρ} under a condition on the third-order invariants of σ.

Theorem 5.5. Let τ1, τ2 be a pair of holomorphic involutions with linear parts T̂i. Let
σ = τ1τ2. Assume that the linear part of σ is

Ŝ : ξ′j = µjξj, ηj = µ−1
j ηj , 1 ≤ j ≤ p
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and µ1, . . . , µp are non-resonant. Let Ψ ∈ Cc(Ŝ) be the unique formal mapping such that

τ ∗i = Ψ−1τiΨ: ξ′j = Λij(ξη)ηj, η′j = Λij(ξη)
−1ξj ;

σ∗ = Ψ−1σΨ: ξ′j =Mj(ξη)ξj, η′j =Mj(ξη)
−1ηj

with Mj = Λ1jΛ
−1
2j . Suppose that σ satisfies the condition that logM is tangent to the

identity.

(i) Then there exists an invertible formal map ψ1 ∈ C(Ŝ) such that

τ̂i = ψ−1
1 τ ∗i ψ1 : ξ

′
j = Λ̂ij(ξη)ηj, η′j = Λ̂ij(ξη)

−1ξj;(5.39)

σ̂ = ψ−1
1 σ∗ψ1 : ξ

′
j = M̂j(ξη)ξj, η′j = M̂j(ξη)

−1ηj.(5.40)

Here Λ̂2j = Λ̂−1
1j , and T̂i is the linear part of τ̂i. Moreover, log M̂ is tangent to the

identity at the origin.
(ii) The centralizer of {τ̂1, τ̂2} consists of 2p dilations (ξ, η) → (aξ, aη) with aj = ±1.

And Λ̂ij are unique. If Λij are convergent, then ψ1 is convergent too.

(iii) Suppose that σ̂ is divergent. If σ is formally equivalent to a mapping σ̃ ∈ C(Ŝ)
then σ̃ must be divergent too.

(iv) Let ρ be given by (3.7) and let τ2 = ρτ1ρ. Then the above Ψ and ψ1 commute with
ρ. Moreover, τ̂i, σ̂ are unique.

Proof. Assertions in (i) and (ii) are direct consequences of Proposition 5.2 and Lemma 5.4

in which F is the M̃ in Proposition 5.2. The assertion on the centralizer of {τ̂1, τ̂2} is

obtained from (5.6) of Proposition 5.2 in which Λ̃ij = Λ̂ij. Now (iii) follows from (ii) too.
Indeed, suppose σ is formally equivalent to some convergent

σ̃ : ξj = M̃j(ξη)ξj, η′j = M̃j(ξη)
−1ηj.

Then by the assumption on the linear part of logM , we can apply a dilation to achieve
that (log M̃)′(0) is tangent to the identity. By Lemma 5.4, there exists a unique convergent
mapping ϕ : ζ ′j = bj(ζ)ζj (1 ≤ j ≤ p) with bj(0) = 1 such that log M̃ ◦ ϕ is in the normal
form logM∗. Then

(ξ′j, η
′
j) = (b

1/2
j (ξη)ξj, b

1/2
j (ξη)ηj), 1 ≤ j ≤ p

transforms σ̃ into a convergent mapping σ∗. Since the normal form for logM is unique,
then σ̂ = σ∗. In particular, σ̂ is convergent.

(iv). Note that ρσρ = σ−1. Also ρ(σ∗)−1ρ has the same form as σ∗. By (ρΨ−1ρ)σ(ρΨρ) =
(ρσ∗ρ)−1, we conclude that ρΨρ = Ψ. The rest of assertions can be verified easily. �

Under the condition that logM is tangent to the identity, the above theorem completely
settles the formal classification of {τ1, τ2, ρ}. It also says that the normal form τ̂1, τ̂2 can

be achieved by a convergent transformation, if and only if σ∗ can be achieved

by some convergent transformation, i.e. the Ψ in the theorem is convergent.
However, we would like state clear that our results do not rule out the case where a

refined normal form for {τ ∗1 , τ ∗2 , ρ} is achieved by convergent transformation, while Ψ is
divergent, when logM is tangent to the identity.
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5.4. An algebraic manifold with linear σ. We conclude the section showing that when
τ1, τ2 are normalized as in this section, {τij}might still be very general; in particular {τ1j , ρ}
cannot always be simultaneously linearized even at the formal level. This is one of main
differences between p = 1 and p > 1.

Example 5.6. Let p = 2. Let φ be a holomorphic mapping of the form

φ : ξ′i = ξi + qi(ξ, η), η′i = ηi + λ−1
i qi(T1(ξ, η)), i = 1, 2.

Here qi is a homogeneous quadratic polynomial map and

T1(ξ, η) = (λ1η1, λ2η2, λ
−1
1 ξ1, λ

−1
2 ξ2).

Let τ1j = φT1jφ
−1 and τ2j = ρτ1jρ. Then φ commutes with T1 and τ1 = T1. In particular

τ2 = ρT1ρ and σ = τ1τ2 are in linear normal forms. However, τ11 is given by

ξ′1 = λ1η1 − q1(λη, λ
−1ξ) + q1(λ1η1, ξ2, λ

−1
1 ξ1, η2) +O(3),

ξ′2 = ξ2 − q2(ξ, η) + q2(λ1η1, ξ2, λ
−1
1 ξ1, η2) +O(3),

η′1 = λ−1
1 ξ1 − λ−1

1 q1(ξ, η) + λ−1
1 q1(ξ1, λ2η2, η1, λ

−1
2 ξ2) + O(3),

η′2 = η2 − λ−1
2 q2(λη, λ

−1ξ) + λ−1
2 q2(ξ1, λ2η2, η1, λ

−1
2 ξ2) +O(3).

Notice that the common zero set V of ξ1η1 and ξ2η2 is invariant under τ1, τ2, σ and ρ. In
fact, they are linear on V . However, for (ξ′, η′) = τ11(ξ, η), we have

ξ′1η
′
1 = −η1q1(0, ξ2, η) + η1q1(0, λ2η2, η1, λ

−1
2 ξ2)− λ−1

1 ξ1q1(0, λ2η2, λ
−1ξ)

+ λ−1
1 ξ1q1(0, ξ2, λ

−1
1 ξ1, η2) mod (ξ1η1, ξ2η2, O(4)).

For a generic q, τ11 does not preserve V .

By a simple computation, we can verify that σj = τ1jτ2j for j = 1, 2 do not commute
with each other. In fact, we will prove in section 9 that if the µ1, . . . , µp are nonresonant,
σj commute pairwise, and σ is linear as above, then τ1j must be linear.

6. Divergence of all normal forms of a reversible map σ

Unlike the Birkhoff normal form for a Hamiltonian system, the Poincaré-Dulac normal
form is not unique for a general σ; it just belongs to the centralizer of the linear part S of σ.
One can obtain a divergent normal form easily from any non-linear Poincaré-Dulac normal
form of σ = τ1τ2 by conjugating with a divergent transformation in the centralizer of S;
see (5.6). We have seen how the small divisors enter in the computation of the normalizing
transformations via (5.24)-(5.25), but they have not yet appeared in (5.22)-(5.23) in the
computation of the normal forms. To see the effect of small divisors on normal forms,
we first assume a condition, to be achieved later, on the third order invariants of σ and
then we shall need to modify the normalization procedure. We will use two sequences of
normalizing mappings to normalize σ. The composition of normalized mappings might not
be normalized. Therefore, the new normal form σ̃ might not be the σ∗ in Proposition 5.2.
We will show that this σ̃, after it is transformed into the normal form σ̂ in Theorem 5.5 (i),
is divergent. Using the divergence of σ̂, we will then show that any other normal forms of σ
that are in the centralizer of S must be divergent too. This last step requires a convergent
solution given by Lemma 5.4.
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Our goal is to see a small divisor in a normal form σ̃; however they appear as a product.
This is more complicated than the situation for the normalizing transformations, where a
small divisor appears in a much simple way. In essence, a small divisor problem occurs
naturally when one applies a Newton iteration scheme for a convergence proof. For a small
divisor to show up in the normal form, we have to go beyond the Newton iteration scheme,
measured in the degree or order of approximation in power series. Therefore, we first refine
the formulae (5.22).

Lemma 6.1. Let σ be a holomorphic mapping, given by

ξ′j =M0
j (ξη)ξj + fj(ξ, η), η′j = N0

j (ξη)ηj + gj(ξ, η), 1 ≤ j ≤ p.

Here M0
j (0) = µj = N0

j (0)
−1. Suppose that ord(f, g) ≥ d, d ≥ 4, and I + (f, g) ∈ Cc(S).

Assume that µ1, . . . , µp are non-resonant. Assume that

(M0)′(0) = diag(µ1, . . . , µp).

There exist unique polynomials U, V of degree at most 2d − 1 such that Ψ = I + (U, V ) ∈
Cc(S) transforms σ into

σ∗ : ξ′ =M(ξη)ξ + f̃(ξ, η), η′ = N(ξη)η + g̃(ξ, η)

with I + (f̃ , g̃) ∈ Cc(S) and ord(f̃ , g̃) ≥ 2d. Moreover,

Uj,PQ = (µP−Q − µj)
−1
{
fj,PQ + U∗

j,PQ(δℓ−1, {M0, N0}[ ℓ−1
2

]; {f, g}ℓ−1)
}
,(6.1)

Vj,QP = (µQ−P − µ−1
j )−1

{
gj,QP + V∗

j,QP (δℓ−1, {M0, N0}[ ℓ−1
2

]; {f, g}ℓ−1)
}
,(6.2)

for 2 ≤ |P |+ |Q| = ℓ ≤ 2d− 1 and µP−Q 6= µj. In particular, ord(U, V ) ≥ d. For |P | = d
and |P ′| < d,

Mj,P ′ =M0
j,P ′,(6.3)

Mj,P =M0
j,P + µj

{
2(UjVj)PP + (U2

j )(P+ej)(P−ej)

}
+ {Dfj(ξ, η)(U, V )}(P+ej)P .(6.4)

Remark 6.2. Formula (6.4) gives us an effective way to compute the Poincaré-Dulac
normal form. It tells us that under the above conditions, the coefficients of MjP (ξη)ξj of
degree 2|P |+1 do not depend on coefficients of f(ξ, η), g(ξ, η) of degree ≥ 2|P |, if 2|P | > 3.

Proof. Identities (6.1)-(6.3) follow directly from (5.24)-(5.26), where by notation in Defini-
tion 5.1

U∗
j,PQ(·; 0) = V∗

j,QP (·; 0) = M∗
P (·; 0) = 0.

Let Di denote ∂ζi . Let Du(ξ, η) and Dv(ζ) denote the gradients of two functions. The
right-hand sides of (5.14) and (5.16) give us

Mj(ξη)ξj + Uj(M(ξη)ξ, N(ξη)η) = fj(ξ, η) +Dfj(ξ, η)(U, V ) + Aj(ξ, η)(6.5)

+ (M0
j (ξη) +DM0

j (ξη)(ηU + ξV + UV ))(ξj + Uj).

We recall from (5.18) the remainders

Aj(ξ, η) = R2M
0
j (ξη; ξU + ηV + UV )(ξj + Uj) +R2fj(ξ, η;U, V ).
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Here by (5.12), we have the Taylor remainder formula

R2f(x; y) = 2

∫ 1

0

(1− t)
∑

|α|=2

1

α!
∂αf(x+ ty)yα dt.

Since ord(U, V ) ≥ d, ord(f, g) ≥ d, and d ≥ 4, then Aj , defined by (5.18), satisfies

Aj(ξ, η) = O(|(ξ, η)|2d+2).

Recall that fj(ξ, η) and Uj(ξ, η) do not contain terms of the form ξjξ
PηP , while gj(ξ, η) and

Vj(ξ, η) do not contain terms of the form ηjξ
PηP . Assume that i 6= j. Then DiM

0
j (ξη) =

O(|ξη|). We see that DiM
0
j (ξη)ηiUi(ξ, η) and DiM

0
j (ξη)ξiVi(ξ, η) do not contain terms of

ξPηP , and

DiM
0
j (ξη)ξiUi(ξ, η)Vi(ξ, η) = O(2d+ 3).

Comparing both sides of (6.5) for coefficients of ξjξ
PηP , we get (6.4). �

Set |δN(µ)| := max {|ν| : ν ∈ δN(µ)} for

(6.6) δN (µ) =

p⋃

j=1

{
µi, µ

−1
i ,

1

µP − µj

: P ∈ Zp, P 6= ej , |P | ≤ N

}
.

Definition 6.3. We say that µP−Q − µj and µ
Q−P − µ−1

j are small divisors of height N , if
there exists a partition

⋃

j

{
|µP−Q − µj| : P,Q ∈ Np, |P |+ |Q| ≤ N, µP−Q 6= µj

}
= S0

N ∪ S1
N

with |µP−Q − µj| ∈ S0
N and S1

N 6= ∅ such that

maxS0
N < CminS0

N ,

maxS0
N < (minS1

N)
LN < 1.

Here C depends only on an upper bound of |µ| and |µ|−1 and

LN ≥ N.

If |µP−Q − µj| is in S0
N and if P,Q ∈ Np, we call |P − Q| the degree of the small divisors

µP−Q − µj and µ
Q−P − µ−1

j .

To avoid confusion, let us call µP−Q−µj that appear in S
0
N the exceptional small divisors.

These small divisors have played important roles in Siegel’s works [Sie54, Sie41]. Siegel’s
small divisors technic was extended to a construction of divergent Birkhoff normal form in
[Gon12] (see also [PM03] for related problems). The degree and height play different roles
in computation. The height serves as the maximum degree of all small divisors that need
to be considered in computation.

Roughly speaking, the quantities in S0
N are comparable but they are much smaller than

the ones in S1
N . We will construct µ for any prescribed sequence of positive integers LN so

that

maxS0
N < (minS1

N )
LN < 1
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for a subsequence N = Nk tending to ∞. Furthermore, to use the small divisors we will
identify all exceptional small divisors of height 2Nk + 1 and all degrees of the exceptional
small divisors with Nk being the smallest.

We start with the following lemma which gives us small divisors that decay as rapidly
as we wish.

Lemma 6.4. Let Lk be an increasing sequence of positive integers such that Lk tends to
∞ as k → ∞. There exist a real number ν ∈ (0, 1/2) and a sequence (pk, qk) ∈ N2 such
that e, 1, ν are linearly independent over Q, and

|qkν − pk − e| ≤ ∆(pk, qk)
(pk+qk)Lk ,(6.7)

∆(pk, qk) = min
{1
2
, |qν − p− re| : 0 < |r|+ |q| < 3(qk + 1),(6.8)

(p, q, r) 6= 0,±(pk, qk, 1),±2(pk, qk, 1)
}
.

Proof. We consider two increasing sequences {mk}∞k=1, {nk}∞k=1 of positive integers, which
are to be chosen. For k = 1, 2, . . ., we set

ν = νk + ν ′k, νk =
k∑

ℓ=1

1

mℓ!

nℓ∑

j=0

1

j!
, ν ′k =

∑

ℓ>k

1

mℓ!

nℓ∑

j=0

1

j!
,

qk = mk!.

We choose mk > (mℓ)!(nℓ!) for ℓ < k and decompose

qkν = pk + ek + e′k,

pk = mk!νk−1 ∈ N, ek =

nk∑

ℓ=0

1

k!
, e′k = mk!ν

′
k.

We have e′k < mk!
∑

ℓ>k
e

mℓ!
and

qkν = pk + e+ e′k −
∞∑

ℓ=nk+1

1

ℓ!
,

|qkν − pk − e| ≤ mk!ν
′
k +

∞∑

ℓ=nk+1

1

ℓ!
<
{
12(3(qk + 1)3)!

}−(pk+qk)Lk .(6.9)

Here (6.9)k is achieved by choosing (m2, n1), . . . , (mk+1, nk) successively. Clearly we can
get 0 < ν < 1/2 if m1 is sufficiently large.

Next, we want to show that re+p+ qν 6= 0 for all integers p, q, r with (p, q, r) 6= (0, 0, 0).
Otherwise, we rewrite −mk!p = mk!(qν + re) as

−mk!p = qpk + r

mk∑

j=0

mk!

j!
+ qe+ q

(
e′k −

∞∑

ℓ=nk+1

1

ℓ!

)
+ r

∑

j>mk

mk!

j!
.

The left-hand side is an integer. On the right-hand side, the first two terms are integers, qe
is a fixed irrational number, and the rest terms tend to 0 as k → ∞. We get a contradiction.
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To verify (6.7), we need to show that for each tuple (p, q, r) satisfying (6.8),

(6.10) |qν − p− re| ≥ |qkν − pk − e|
1

(pk+qk)Lk .

We first note the following elementary inequality

(6.11) |p+ qe| ≥ 1

(q − 1)!
min

{
3− e,

1

q + 1

}
, p, q ∈ Z, q ≥ 1.

Indeed, the inequality holds for q = 1. For q ≥ 2 we have q!e = m+ ǫ with m ∈ N and

ǫ :=

∞∑

k=q+1

q!

k!
>

1

q + 1
.

Furthermore, 1− ǫ > 1− 2
q+1

= q−1
q+1

as

ǫ <
1

q + 1
+
∑

k≥q+2

1

k(k + 1)
=

2

q + 1
.

We may assume that q ≥ 0. If q = 0, then |r| < 3qk + 3 and hence |p+ re| ≥ 1
(3qk+4)!

. Now

(6.10) follows from (6.9). Assume that q > 0. We have

| − qν + p+ re| ≥ | − q
pk + e

qk
+ p+ re| − q

|e+ pk − qkν|
qk

(6.12)

=

∣∣∣∣
qkp− qpk

qk
+
rqk − q

qk
e

∣∣∣∣− q
|e+ pk − qkν|

qk
.

We first verify that qkp− qpk and q− rqk do not vanish simultaneously. Assume that both
are zero. Then (p, q, r) = r(pk, qk, 1). Thus |r| 6= 1, 2, and |r| ≥ 3 by conditions in (6.8);
we obtain |r| + |q| ≥ 3(|qk| + 1), a contradiction. Therefore, either qkp− qpk or rqk − q is
not zero. By (6.11) and (6.12),

| − qν + p+ re| ≥ 1

qk
· 1
3
· 1

(|rqk − q|+ 1)!
− q

|e+ pk − qkν|
qk

≥ 1

(3qk + 4)2!
− 4|e+ pk − qkν|.

Using (6.9) twice, we obtain the next two inequalities:

| − qν + p+ re| ≥ 1

2

{
(3qk + 4)2!

}−1 ≥ |pk + e− qkν|
1

(pk+qk)Lk .

The two ends give us (6.10). �

We now reformulate the above lemma as follows.

Lemma 6.5. Let Lk be an increasing sequence of positive integers such that Lk tends to
+∞ as k → ∞. Let ν ∈ (0, 1/2), and let pk and qk be positive integers as in Lemma 6.4.
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Set (µ1, µ2, µ3) := (e−1, eν , ee). Then

|µPk − µ3| ≤ (C∆∗(Pk))
|Pk|Lk , Pk = (pk, qk, 0),(6.13)

∆∗(Pk) = min
j

{
|µR − µj | : R ∈ Z3, |R| ≤ 2(qk + pk) + 1,(6.14)

R− ej 6= 0,±(pk, qk,−1),±2(pk, qk,−1)
}
.

Here C does not depend on k. Moreover, all exceptional small divisors of height 2|Pk|+ 1
have degree at least |Pk|. Moreover, µPk −µ3 is the only exceptional small divisor of degree
|Pk| and height 2|Pk|+ 1.

In the definition of ∆∗(Pk), equivalently we require that

R 6= Pk, R
1
k, R

2
k, R

3
k

with R1
k := −Pk + 2e3, R

2
k := 2Pk − e3, and R3

k := −2Pk + 3e3. Note that |R1
k| = |Pk| +

2, |R2
k| = 2|Pk| + 1, and |R3

k| = 2|Pk| + 3 are bigger than |Pk|, i.e. the degree of the

exceptional small divisor µPk − µ3. Each µRi
k − µ3 is a small divisor comparable with

µPk − µ3. Finally, ∆
∗(Pk) tends to zero as |Pk| → ∞. Let us set N := 2|Pk|+ 1, and

S0
N : =

{
|µPk − µ3|, |µR1

k − µ3|, |µR2
k − µ3|, |µR3

k − µ3|
}
,

S1
N : =

⋃

j

{
|µR − µj| : R ∈ Z3, |R| ≤ 2(qk + pk) + 1,

R− ej 6= 0, ±(pk, qk,−1), ±2(pk, qk,−1)
}
.

This implies that the last paragraph of Lemma 6.5 holds when the LN in Definition 6.3,
denoted it by L′

N , takes the value L′
N = 1

2
|Pk|Lk and k is sufficiently large, while Lk is

given in Lemma 6.5.

Proof. By Lemma 6.4, we find a real number ν ∈ (0, 1/2) and positive integers pk, qk such
that e, 1, ν are linearly independent over Q and

|qkν − e− pk| ≤ ∆(pk, qk)
|Pk|Lk ,(6.15)

∆(pk, qk) = min {|qν − re− p| : 0 < |r|+ |q| < 3(qk + 1),

(p, q, r) 6= 0,±(pk, qk, 1),±2(pk, qk, 1)} .
Note that µ1, µ2, µ3 are positive and non-resonant. We have

|µPk − µ3| = |µ3| · |eqkν−pk−e − 1|.
Let ν∗ := (−1, ν, e). If |R · ν∗ − ν∗j | < 2, then by the intermediate value theorem

e−2|µj||R · ν∗ − ν∗j | ≤ |µR − µj | ≤ e2|µj||R · ν∗ − ν∗j |.
If R · ν∗ − ν∗j > 2 or R · ν∗ − ν∗j < −2, we have

|µR − µj | ≥ e−2|µj|.
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Thus, we can restate the properties of ν∗ as follows:

|µ−(pk,qk,0) − µ3| ≤ C ′(C ′∆̃(pk, qk))
|Pk|Lk ,

∆̃(pk, qk) = min
{
|µ(p,q,r) − 1| : 0 < |r|+ |q| < 3(qk + 1),

(p, q, r) 6= 0,±(pk, qk,−1),±2(pk, qk,−1)} .
Recall that 0 < ν < 1/2. By (6.15), we have |qkν − e − pk| < 1. Since pk, qk are positive,
then pk < νqk < qk/2. Assume that |µR − µj | = ∆∗(Pk), |R| ≤ 2(pk + qk) + 1, and

R− ej 6= 0,±(pk, qk,−1),±2(pk, qk,−1).

Set R′ := R − ej and (p, q, r) := R′. Then ∆∗(Pk) = |µj||µR′ − 1|. Also, |r|+ |q| ≤ |R′| ≤
|R|+ 1 ≤ 2(pk + qk) + 2 ≤ qk + 2qk + 2 < 3(qk + 1). This shows that |µQ′ − 1| ≥ ∆̃(pk, qk).
We obtain ∆∗(Pk) ≥ µj∆(p,qk). We have verified (6.13). For the remaining assertions, see
the remark following the lemma. �

In the above we have retained µj > 0 which are sufficient to realize µ1, µ2, µ3, µ
−1
1 , µ−1

2 , µ−1
3

as eigenvalues of σ for an elliptic complex tangent. Indeed, with 0 < µ1 < 1, interchanging
ξ1 and η1 preserves ρ and changes the (ξ1, η1) components of σ into (µ−1

1 ξ1, µ1η1).
We are ready to prove Theorem 1.4, which is restated here:

Theorem 6.6. There exists a non-resonant elliptic real analytic 3-submanifold M in C6

such that M admits the maximum number of deck transformations and all Poincaré-Dulac
normal forms of the σ associated to M are divergent.

Proof. We will not construct the real analytic submanifold M directly. Instead, we will
construct a family of involutions {τ11, . . . , τ1p, ρ} so that all Poincaré-Dulac normal forms
of σ are divergent. By the realization in Proposition 2.10, we get the desired submanifold.

We first give an outline of the proof. To prove the theorem, we first deal with the
associated σ and its normal form σ̃, which belongs to the centralizer of S, the linear part
of σ at the origin. Thus σ∗ has the form

σ∗ : ξ′ =M(ξη)ξ, η′ = N(ξη)η.

We assume that logM is tangent to identity at the origin. We then normalize σ∗ into
the normal form σ̂ stated in Theorem 5.5 (i). (In Lemma 6.1 we take F = logM and

F̂ = log M̂ .) We will show that σ̂ is divergent if σ is well chosen. By Theorem 5.5 (iii), all
normal forms of σ in the centralizer of S are divergent. To get σ∗, we use the normalization
of Proposition 5.2 (i). To get σ̂, we normalize further using Lemma 5.4. To find a divergent
σ̂, we need to tie the normalizations of two formal normal forms together, by keeping track
of the small divisors in the two normalizations.

We will start with our initial pair of involutions {τ 01 , τ 02 } satisfying τ 02 = ρτ 01 ρ such that σ0

is a third order perturbation of S. We require that τ 01 be the composition of τ 011, . . . , τ
0
1p. The

latter can be realized by a real analytic submanifold by using Proposition 2.10. We will then
perform a sequence of holomorphic changes of coordinates ϕk such that τk1 = ϕ−1

k τk−1
1 ϕk,

τk2 = ρτk1 ρ, and σ
k = τk1 τ

k
2 . Each ϕk is tangent to the identity to order dk. For a suitable

choice of ϕk, we want to show that the coefficients of order dk of the normal form of σk

increase rapidly to the effect that the coefficients of the normal form of the limit mapping
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σ∞ increase rapidly too. Here we will use the exceptional small divisors to achieve the
rapid growth of the coefficients of the normal forms.

We now present the proof. Let σ0 = τ 01 τ
0
2 , τ

0
2 = ρτ 01 ρ, and

τ 01 : ξ
′
j = Λ0

1j(ξη)ηj, η′j = (Λ0
1j(ξη))

−1ξj,

σ0 : ξ′j = (Λ0
1j(ξη))

2ξj , η′j = (Λ0
1j(ξη))

−2(ξη)ηj.

Since we consider the elliptic case, we require that (Λ0
1j(ξη))

2 = µje
ξjηj . So ζ → (Λ0

1)
2(ζ)

is biholomorphic. Recall that σ0 can be realized by {τ 011, . . . , τ 01p, ρ}. We will take

ϕk : ξ
′
j = (ξ + h(k)(ξ), η), ord h(k) = dk > 3,(6.16)

dk ≥ 2dk−1, |h(k)P | ≤ 1.(6.17)

We will also choose each h
(k)
j (ξ) to have one monomial only. Let ∆r := ∆3

r denote the

polydisc of radius r. Let ‖ · ‖ be the sup norm on C3. Let H(k)(ξ) = ξ+h(k)(ξ) and we first
verify that Hk = H(k) ◦ · · · ◦H(1) converges to a holomorphic function on the polydisc ∆r1

for r1 > 0 sufficiently small; consequently, ϕk ◦ · · · ◦ϕ1 converges to a germ of holomorphic
map at the origin. Note that H(k) sends ∆rk into ∆rk+1

for rk+1 = rk + rdkk . We want to
show that when r1 is sufficiently small,

(6.18) rk ≤ sk := (2− 1

k
)r1.

It holds for k = 1. Let us show that rk+1/rk − 1 ≤ θk := sk+1/sk − 1, i.e.

rdk−1
k ≤ θk =

1

(k + 1)(2k − 1)
.

We have (2r1)
dk−1 ≤ (2r1)

k when 0 < r1 < 1/2. Fix r1 sufficiently small such that
(2r1)

k < 1
(k+1)(2k−1)

for all k. By induction, we obtain (6.18) for all k. In particular, we

have ‖h(k)(ξ)‖ ≤ ‖ξ‖ + ‖H(k)(ξ)‖ ≤ 2rk+1 for ‖ξ‖ < rk. To show the convergence of Hk,
we write Hk −Hk−1(ξ) = h(k) ◦Hk−1. By the Schwarz lemma, we obtain

‖h(k) ◦Hk−1(ξ)‖ ≤ 2rk+1

rdk1
‖ξ‖dk , ‖ξ‖ < r1.

Therefore, Hk converges to a holomorphic function on ‖ξ‖ < r1.
Throughout the proof, we make initial assumptions that dk and h

(k) satisfy (6.16)-(6.17),
e−1 ≤ µj ≤ ee, and µQ 6= 1 for Q ∈ Z3 with Q 6= 0. Set σk = τk1 τ

k
2 , τ

k
2 = ρτk1 ρ, and

τk1 = ϕ−1
k τk−1

1 ϕk.

We want σk not to be holomorphically equivalent to σ(k−1). Thus we have chosen a ϕk

that does not commute with ρ in general. Note that σk is still generated by a real analytic

submanifold; indeed, when τk−1
i = τ

(k−1)
i1 · · · τ (k−1)

ip and τk−1
2j = ρτk−1

1j ρ, we still have the

same identities if the superscript (k− 1) is replaced by k and τ
(k)
1j equals ϕ−1

k τ
(k−1)
1j ϕk. It is

clear that σk = σk−1 +O(dk). As power series, we have

σℓ = σk−1 +O(dk), k ≤ ℓ ≤ ∞.
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We know that σ∞ does not have a unique normal form in the centralizer S. Therefore,
we will choose a procedure that arrives at a unique formal normal form in S. We show that
this unique normal form is divergent; and hence by Theorem 5.5 (iii) any normal form of
σ that is in the centralizer of S must diverge.

We now describe the procedure. For a formal mapping F , we have a unique decomposi-
tion

F = NF +N cF, NF ∈ C(S), N cF ∈ Cc(S).

Set σ̂∞
0 = σ∞. For k = 0, 1, . . . , we take a normalized polynomial map Φk ∈ Cc

2(S) of degree
less than dk such that σ∞

k := Φ−1
k σ̂∞

k Φk is normalized up to degree dk − 1. Specifically, we
require that

deg Φk ≤ dk − 1, Φk ∈ Cc(S); N cσ∞
k (ξ, η) = O(dk).

Take a normalized polynomial map Ψk+1 such that Ψk+1 and σ̂∞
k+1 := Ψ−1

k+1σ
∞
k Ψk+1 satisfy

degΨk+1 ≤ 2dk − 1; Ψk+1 ∈ Cc

2(S), N cσ̂∞
k+1 = O(2dk).

We can repeat this for k = 0, 1, . . .. Thus we apply two sequences of normalization as
follows

σ̂∞
k+1 = Ψ−1

k+1 ◦ Φ−1
k · · ·Ψ−1

1 ◦ Φ−1
0 ◦ σ∞ ◦ Φ0 ◦Ψ1 · · ·Φk ◦Ψk+1.

We will show that Ψk+1 = I+O(dk) and Φk = I+O(2dk−1). This shows that the sequence
Φ0Ψ1 · · ·ΦkΨk+1 defines a formal biholomorphic mapping Φ so that

(6.19) σ̂∞ := Φ−1σ∞Φ

is in a normal form. Finally, we need to combine the above normalization with the normal-
ization for the unique normal form in Lemma 5.4. We will show that the unique normal
form diverges.

Let us recall previous results to show that Φk,Ψk+1 are uniquely determined. Set

σ̂∞
k :

{
ξ′ = M̂ (k)(ξη)ξ + f̂ (k)(ξ, η),

η′ = N̂ (k)(ξη)η + ĝ(k)(ξ, η),
(6.20)

(f̂ (k), ĝ(k)) ∈ Cc

2(S).(6.21)

Recall that σ̂0 = σ∞. Assume that we have achieved

(6.22) (f̂ (k), ĝ(k)) = O(2dk−1).

Here we take d−1 = 2 so that (6.20)-(6.22) hold for k = 0. By Proposition 5.2, there is
a unique normalized polynomial mapping Φ̃k that transforms σ̂∞

k into a normal form. We

denote by Φk the truncated polynomial mapping of Φ̃k of degree dk − 1. We write

Φk : ξ
′ = ξ + U (k)(ξ, η), η′ = η + V (k)(ξ, η),

(U (k), V (k)) = O(2), deg(U (k), V (k)) ≤ dk − 1.

By Corollary 5.3, Φk satisfies

σ∞
k = Φ−1

k σ̂∞
k Φk :

{
ξ′ =M (k)(ξη)ξ + f (k)(ξ, η),

η′ = N (k)(ξη)η + g(k)(ξ, η),

(f (k), g(k)) ∈ Cc

2(S), ord(f (k), g(k)) ≥ dk.(6.23)
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In fact, by (5.24)-(5.25) (or (5.20)-(5.21)), we have

U
(k)
j,PQ = (µP−Q − µj)

−1
{
f̂
(k)
j,PQ + Uj,PQ(δd−1, {M̂ (k), N̂ (k)}[ d−1

2
]; {f̂ (k), ĝ(k)}d−1)

}
,(6.24)

V
(k)
j,QP = (µQ−P − µ−1

j )−1
{
ĝ
(k)
j,QP + Vj,QP (δd−1, {M̂ (k), N̂ (k)}[ d−1

2
]; {f̂ (k), ĝ(k)}d−1)

}
,(6.25)

for |P |+ |Q| = d < dk and µP−Q 6= µj . By (5.26)-(5.27) (or (5.22)-(5.23)), we have

M
(k)
P = M̂

(k)
P +MP (δ2|P |−1, {M̂ (k), N̂ (k)}|P |−1; {f̂ (k), ĝ(k)}2|P |−1),(6.26)

N
(k)
P = N̂

(k)
P +NP (δ2|P |−1, {M̂ (k), N̂ (k)}|P |−1; {f̂ (k), ĝ(k)}2|P |−1)(6.27)

for 2|P | − 1 < dk. Recall that Uj,PQ,Vj,QP ,Mj,P , and Nj,P are universal polynomials in
their variables. In notation defined by Definition 5.1,

Uj,PQ(·; 0) = Vj,QP (·; 0) = 0, MP (·; 0) = NP (·; 0) = 0.

Since dk ≥ 2dk−1, we apply (6.24)-(6.25) for d < 2dk−1 ≤ dk and (6.26)-(6.27) for 2|P |−1 <
2dk−1 ≤ dk to obtain

Φk − I = (U (k), V (k)) = O(2dk−1),(6.28)

M
(k)
P = M̂

(k)
P , N

(k)
P = N̂

(k)
P , |P | ≤ dk−1.(6.29)

By Lemma 6.1, there is a unique normalized polynomial mapping

Ψk+1(ξ, η) = (ξ + Û (k+1)(ξ, η), η + V̂ (k+1)(ξ, η)),

(Û (k+1), V̂ (k+1)) ∈ Cc

2(S),

(Û (k+1), V̂ (k+1)) = O(2), deg(Û (k+1), V̂ (k+1)) ≤ 2dk − 1

such that σ̂∞
k+1 = Ψ−1

k+1Φ
−1
k σ∞

k ΦkΨk+1 satisfies the following:

σ̂∞
k+1 : ξ

′ = M̂ (k+1)(ξη)ξ + f̂ (k+1), η′ = N̂ (k+1)(ξη)η + ĝ(k+1),

(f̂ (k+1), ĝ(k+1)) ∈ Cc

2(S), ord(f̂ (k+1), ĝ(k+1)) ≥ 2dk.

By (6.1)-(6.2), we know that

Û
(k+1)
j,PQ = (µP−Q − µj)

−1
{
f
(k)
j,PQ + U∗

j,PQ(δℓ−1, {M (k), N (k)}[ ℓ−1
2

]; {f (k), g(k)}ℓ−1)
}
,(6.30)

V̂
(k+1)
j,QP = (µQ−P − µ−1

j )−1
{
g
(k)
j,QP + V∗

j,QP (δℓ−1, {M (k), N (k)}[ ℓ−1
2

]; {f (k), g(k)}ℓ−1)
}
,(6.31)

for dk ≤ |P | + |Q| = ℓ ≤ 2dk − 1 and µP−Q 6= µj. Recall that U∗
j,PQ and V∗

j,QP are
universal polynomials in their variables. In notation defined by Definition 5.1, U∗

j,PQ(·; 0) =
V∗
j,QP (·; 0) = 0. Thus

Ψk+1 − I = (Û (k+1), V̂ (k+1)) = O(dk),(6.32)

Û
(k+1)
j,PQ =

f
(k)
j,PQ

µP−Q − µj
, V̂

(k+1)
j,QP =

g
(k)
j,QP

µQ−P − µ−1
j

, |P |+ |Q| = dk.(6.33)
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Here µP−Q 6= µj . By (6.3)-(6.4), we have

M̂
(k+1)
j,P ′ =M

(k)
j,P ′, |P ′| < dk,(6.34)

M̂
(k+1)
j,P =M

(k)
j,P + µj

{
2(Û

(k+1)
j V̂

(k+1)
j )PP + ((Û

(k+1)
j )2)(P+ej)(P−ej )

}
(6.35)

+
{
Df

(k)
j (ξ, η)(Û (k+1), V̂ (k+1))

}
(P+ej)P

, |P | = dk.

As mentioned in Remark 6.2, one of consequence of the above formula is that the coefficients

of M̂
(k+1)
j (ξη)ξj of degree 2dk + 1 do not depend on the coefficients of f (k), g(k) of degree

≥ 2dk, provided (f (k), g(k)) = O(dk) is in Cc

2(S) as we assume.
Next, we need to estimate the size of coefficients of M (k) that appear in (6.34)-(6.35).

Recall that we apply two sequences of normalization. We have

σ̂∞
k+1 = Ψ−1

k+1 ◦ Φ−1
k · · ·Ψ−1

1 ◦ Φ−1
0 ◦ σ∞ ◦ Φ0 ◦Ψ1 · · ·Φk ◦Ψk+1.

Thus, M (k), N (k) depend only on σ∞, Φ0,Ψ1,Φ1, . . . ,Ψk−1,Φk.
Recall that if u1, . . . , um are power seres, then {u1, . . . , um}d denotes the set of their

coefficients of degree at most m, and |{u1, . . . , um}d| denotes the sup norm. We choose σ∞

in such a way that its coefficients of degree m satisfy

|{σk}m|+ |{σ∞}m| ≤ Cm.

Here C does not dependent on k, µ1, µ2, µ3, dk, and h
(k). We also need some crude estimates

on the growth of Taylor coefficients. If F = I + f and f = O(2) is a map in formal power
series, then (5.1)-(5.3) imply

|(F−1)P | ≤ |FP |+ (2 + |{f}m−1|)ℓm,(6.36)

|(G ◦ F )P | ≤ |((LG) ◦ F,G)P |+ (2 + |{f,G}m−1|)ℓm,(6.37)

|(F−1 ◦G ◦ F )P | ≤ |(G, (LG) ◦ F, F ◦ LG)P |+ (2 + |{f,G}m−1|)ℓm,(6.38)

for m = |P | > 1 and some positive integer ℓm. Inductively, let us show that for k =
0, 1, 2, . . .,

|{M̂ (k), N̂ (k)}P | ≤ δLm
dk−1−1, m = 2|P |+ 1 < 2dk−1,(6.39)

|{σ̂∞
k }PQ| ≤ δLm

2dk−1−1, m = |P |+ |Q| ≥ 2dk−1.(6.40)

We emphasize that here and in what follows Lm does not depend on the choices of µj, dk, h
(k)

which satisfy the initial conditions but are arbitrary otherwise. The above estimates hold
trivially for k = 0 and d−1 = 2, since σ̂∞

0 = σ∞ is convergent. For induction, we assume
that (6.39)-(6.40) hold. We need to find possibly larger Lm for m ≥ 2dk−1 in order to verify

|{M̂ (k+1), N̂ (k+1)}P | ≤ δLm
dk−1, m = 2|P |+ 1 < 2dk,(6.41)

|{σ̂∞
k+1}PQ| ≤ δLm

2dk−1, m = |P |+ |Q| ≥ 2dk.(6.42)

The Φk = I + (U (k), V (k)) is a polynomial mapping. Its degree is at most dk − 1 and its
coefficients are polynomials in {σ̂k}dk−1 and δdk−1; see (6.24)-(6.25). Hence

|U (k)
j,PQ|+ |V (k)

j,QP | ≤ δLm
dk−1, m = |P |+ |Q|.(6.43)
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Note that the inequality holds trivially for m < 2dk−1, in which case the left-hand side is
zero and we do not change the value of Lm. For m ≥ 2dk−1, we might have to increase Lm

if necessary to obtain (6.43). Applying (6.38) to σ∞
k = Φ−1

k σ̂∞
k Φk, we obtain from (6.40)

and (6.43) that

|M (k)
j,P |+ |N (k)

j,P | ≤ δLm
dk−1, m = 2|P |+ 1,(6.44)

|f (k)
j,PQ|+ |g(k)j,QP | ≤ δLm

dk−1, m = |P |+ |Q|.(6.45)

Here we use that fact that since dk ≥ 2dk−1, the small divisors in δ2dk−1−1 appear in δdk−1

too. Furthermore, (6.45) holds trivially when m < 2dk−1, as in this case its left-hand side
is 0. If |P | < dk−1 (i.e. m = 2|P |+ 1 < 2dk−1 + 1), from (6.29) and (6.39) it follows (6.44)
for the same Lm in (6.39). For (6.45) with m ≥ 2dk−1 and for (6.44) with m ≥ 2dk−1 + 1,
we might have to increase the value of Lm so that they are valid. We further remark that
for possibly increased Lm, (6.39)-(6.40) remain valid. To obtain (6.41)-(6.42), we note that
Ψk+1 is a polynomial map that has degree at most 2dk − 1 and the coefficients of degree m
bounded by δLm

2dk−1; see (6.30)-(6.31). This shows that

(6.46) |Û (k+1)
j,PQ |+ |V̂ (k+1)

j,QP | ≤ δLm
2dk−1, |P |+ |Q| = m.

The argument to obtain (6.41)-(6.42) for σ̂∞
k+1 = Ψ−1

k+1σ
∞
k Ψk+1 is similar to the one to

obtain (6.44)-(6.45) for σ∞
k = Φ−1

k σ̂∞
k Φk. Of course, we still use (6.38), while replacing

(6.28), (6.29), (6.39), and (6.40) by (6.32), (6.34), (6.44), and (6.45), respectively. We
emphasize that the sequence Lm can be chosen consistently, as for dk → ∞, we only
increase each Lm for finitely many times.

Let us summarize the above computation for σ̂∞ defined by (6.19). We know that σ̂∞ is
the unique power series such that σ̂∞ − σ̂∞

k = O(dk) for all k, and σ̂
∞ is a formal formal

form of σ∞. Let us write

σ̂∞ :

{
ξ′ = M̂∞(ξη)ξ,

η′ = N̂∞(ξη)η.

Let |P | ≤ dk. By (6.29), we get M̂
(k+1)
P =M

(k+1)
P ; by (6.34) in which k is replaced by k+1,

we get M̂
(k+2)
P =M

(k+1)
P as |P | ≤ dk < dk+1. Therefore,

(6.47) M̂∞
P = M̂

(k+1)
P , |P | ≤ dk.

For |P | < dk, (6.34) says that M̂
(k+1)
j,P =M

(k)
P ; by (6.44) that holds for any P , we obtain

(6.48) |M̂∞
P | = |M̂ (k+1)

j,P | ≤ δLm

dk−1, |P | < dk, m = 2|P |+ 1.

To obtain rapid increase of coefficients of M̂
(k+1)
j,P , we want to use both small divisors

hidden in Û
(k)
j,PQ and V̂

(k)
j,QP in (6.35). Therefore, if M

(k)
j,P is already sufficiently large for

|P | = dk that will be specified later, we take ϕk to be the identity, i.e. τk1 = τk−1
1 .

Otherwise, we need to achieve it by choosing

τk1 = ϕ−1
k τk−1

1 ϕk.

Therefore, we examine the effect of a coordinate change by ϕk on these coefficients.
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Recall that we are in the elliptic case. We have ρ(ξ, η) = (η, ξ) and τk2 = ρτk1 ρ. Recall
that

ϕk : ξ
′
j = (ξ + h(k)(ξ), η), ord h(k) = dk > 3.

By a simple computation, we obtain

τk1 (ξ, η) = τk−1
1 (ξ, η) + (−h(k)(λη), λ−1h(k)(ξ)) +O(|(ξ, η)|dk+1),

τk2 (ξ, η) = τk−1
2 (ξ, η) + (λ−1h(k)(η),−h(k)(λξ)) +O(|(ξ, η)|dk+1).

Then we have

σk = σk−1 + (r(k), s(k)) +O(dk + 1);(6.49)

r(k)(ξ, η) = −λh(k)(λξ)− h(k)(λ2ξ),

s(k)(ξ, η) = λ−2h(k)(η) + λ−1h(k)(λ−1η).

Since σk converges to σ∞, from (6.49) it follows that

(6.50) σ∞ = σk−1 + (r(k), s(k)) +O(dk + 1).

For |P |+ |Q| = dk, we have

r
(k)
j,PQ =

{
−λjh(k)j (λξ)− h

(k)
j (λ2ξ)

}
PQ

,

s
(k)
j,QP =

{
λ−2
j h

(k)
j (η) + λ−1

j h
(k)
j (λ−1η)

}
QP

.

We obtain

r
(k)
j,P0 = −λP+ejh

(k)
j,P − λ2Ph

(k)
j,P ,(6.51)

s
(k)
j,0P = λ−2

j h
(k)
j,P + λ−P−ejh

(k)
j,P , |P | = dk,(6.52)

r
(k)
j,PQ = s

(k)
j,QP = 0, |P |+ |Q| = dk, Q 6= 0.(6.53)

The above computation is actually sufficient to construct a divergent normal form σ̃ ∈
C(S). To show that all normal forms of σ in C(S) are divergent, We need to related it to
the normal form σ̂ in Theorem 5.5, which is unique. This requires us to keep track of the
small divisors in the normalization procedure in the proof of Lemma 5.4.

Recall that F (k+1) = log M̂ (k+1) is defined by

(6.54) F
(k+1)
j (ζ) = log(µ−1

j M̂
(k+1)
j (ζ)) = ζj + a

(k+1)
j (ζ), 1 ≤ j ≤ 3.

We also have F∞ = log M̂∞ with F∞
j (ζ) = ζj + a∞j (ζ). Then by (6.47),

(6.55) a∞j,P = a
(k+1)
j,P , |P | ≤ dk.

By (5.2) and (6.54), we have

a
(k+1)
j,P (ζ) = µ−1

j M̂
(k+1)
j,P +Aj,P ({M̂ (k+1)

j }|P |−1), |P | > 1.

By (6.48), we have

(6.56) |Aj,P ({M̂ (k+1)
j }|P |−1)| ≤ δLm

dk−1, |P | = dk, m = 2|P |+ 1.



72

Recall from the formula (5.35) that F (k+1), F∞ have the normal forms F̂ (k+1) = I + â(k+1)

and F̂∞ = I+ â∞, respectively. The coefficients of â
(k+1)
j,Q and â∞j,Q are zero, except the ones

given by

â
(k+1)
j,Q = a

(k+1)
j,Q + Bj,Q({a(k+1)}|Q|−1),

â
(∞)
j,Q = a

(∞)
j,Q + Bj,Q({a(∞)}|Q|−1),

for Q = (q1, . . . , qp), qj = 0, and |Q| > 1. Derived from the same normalization, the Bj,Q

in both formulae stands for the same polynomial. Hence â
(∞)
j,P = â

(k+1)
P for |P | ≤ dk, by

(6.55). Combining (6.35) and (6.47) yields

â∞3,Pk
= â

(k+1)
3,Pk

= 2(Û
(k+1)
3 V̂

(k+1)
3 )PkPk

+ ((Û
(k+1)
3 )2)(Pk+e3)(Pk−e3) + µ−1

3 M
(k)
3,Pk

(6.57)

+ {Df (k)
3 (ξ, η)(Û (k+1), V̂ (k+1))}(Pk+e3)Pk

+Ak,Pk
({M̂ (k+1)}|Pk|−1).

We regard â∞3,Pk
as polynomials in (µP−Q−µj)

−1. The above formula holds for any Pk with
|Pk| = dk.

To examine the effect of small divisors, we assume that Pk = (pk, qk, 0) are given by
Lemma 6.5, so are µ1, µ2, and µ3. Then the second term in (6.57) is 0 as the third component
of Pk − e3 is negative. We apply the above computation to

|Pk| = dk.

Taking a subsequence of Pk if necessary, we may assume that dk ≥ 2dk−1 and dk−1 > 3 for
all k ≥ 1. The 4 exceptional small divisors of height 2|Pk|+ 1 in (6.14) are

µPk − µ3, µ−Pk − µ−1
3 , µ2Pk−e3 − µ3, µ−2Pk+e3 − µ−1

3 .

The last two cannot show up in â∞3,Pk
, since their degree, 2dk +1, is larger than the degrees

of Taylor coefficients in â3,Pk
. We have 3 products of the two exceptional small divisors of

height 2|Pk|+ 1 and degree |Pk|, which are

(µPk − µ3)(µ
−Pk − µ−1

3 ), (µPk − µ3)(µ
Pk − µ3), (µ−Pk − µ−1

3 )(µ−Pk − µ−1
3 ).

The first product, but none of the other two, appears in (Û
(k+1)
3 V̂

(k+1)
3 )PkPk

. The third term

and f
(k)
3 in â∞3,Pk

do not contain exceptional small divisors of degree |Pk| = dk > 2dk−1 − 1.

Since f
(k)
3 = O(dk) by (6.23), the exceptional small divisors of height 2|Pk| + 1 can show

up at most once in the fourth term of â∞3,Pk
. Therefore, we arrive at

â∞3,Pk
= 2Û

(k+1)
3,Pk0

V̂
(k+1)
3,0Pk

+ Â1
k(δdk−1,

1

µPk − µ3

; {f (k), g(k)}dk)

+ Â2
k(δdk−1; {f (k), g(k)}dk) + µ−1

3 M
(k)
3,Pk

+Ak,Pk
({M̂ (k+1)}|Pk|−1),

Â1
k(δdk−1,

1

µPk − µ3

; {f (k), g(k)}dk) = (Û
(k+1)
3,Pk0

, V̂
(k+1)
3,0Pk

) · Â3
k(δdk−1; {f (k), g(k)}dk).

By (6.44) and (6.56), we obtain |M (k)
3,Pk

|+ |Ak,Pk
({M̂ (k+1)}|Pk|−1)| ≤ δLm

dk−1 for m = 2dk + 1.
Omitting the arguments in the polynomial functions, we obtain from (6.43)-(6.46), and
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(6.47) that

|Â1
k|+ |Â2

k|+ |M (k)
3,Pk

|+ |Ak,Pk
| ≤ |δdk−1(µ)|Lm

|µPk − µ3|
, m = 2|Pk|+ 1,

for a possibly larger Lm. We remark that although each term in the inequality depends on
the choices of the sequences µi, dj, h

(ℓ), the Lm does not depend on the choices, provided
that µj, dk, h

(i) satisfy our initial conditions. Therefore, we have

|â∞3,Pk
| ≥ 2|Û (k+1)

3,Pk0
V̂

(k+1)
3,0Pk

| − |δdk−1(µ)|L2|Pk|+1|µPk − µ3|−1.

Recall that σ∞
k = Φ−1

k Ψ−1
k−1 · · ·Φ−1

0 σ∞Φ0Ψ1 · · ·Φk. Set

σ̃∞
k := Φ−1

k Ψ−1
k−1 · · ·Φ−1

0 σk−1Φ0Ψ1 · · ·Φk.

By (6.50), we get

(6.58) σ∞
k = σ̃∞

k + (r(k), s(k)) +O(dk + 1).

Recall that Φk depends only on coefficients of σ̂∞
k−1 = Ψ−1

k−1σ
∞
k−2Ψk−1 of degree less than dk,

while Ψk−1 depends only on coefficients of σ∞
k−1 = Φ−1

k−1σ̂k−1Φk−1 of degree at most 2dk−1−1
which is less than dk too. Therefore, Φk,Ψk−1, . . . ,Φ0 depend only on coefficients of σ∞ of
degree less than dk. On the other hand, σ∞ = σk−1 +O(dk). Therefore, σ̃

∞
k depends only

on σk−1, and hence it depends only on h(ℓ) for ℓ < k. By (6.58), we can express

(6.59) f
(k)
j,PQ = f̃

(k)
j,PQ + r

(k)
j,PQ, g

(k)
j,QP = g̃

(k)
j,QP + s

(k)
j,QP ,

where |P | + |Q| = dk and f̃
(k)
j,PQ, g̃

(k)
j,QP depend only on h(ℓ) for ℓ < k. Collecting (6.33),

(6.59), and (6.51)-(6.53), we obtain

|â∞3,Pk
| ≥ 2

|Tk|
|µPk − µ3||µ−Pk − µ−1

3 | −
|δdk−1(µ)|L2dk+1

|µPk − µ3|
with

Tk = (−λPk+e3h
(k)
3,Pk

− λ2Pkh
(k)
3,Pk

+ f̃
(k−1)
3,Pk0

)(λ−2
3 h

(k)
3,Pk

+ λ−Pk−e3h
(k)
3,Pk

+ g̃
(k−1)
3,0Pk

)

= −λ2Pk−2e3(λe3−Pkh
(k)
3,Pk

+ h
(k)
3,Pk

− λ−2Pk f̃
(k−1)
3,Pk0

)(λe3−Pkh
(k)
3,Pk

+ h
(k)
3,Pk

+ λ23g̃
(k−1)
3,0Pk

).

Set T̃k(h
(k)
3,Pk

) := −λ2e3−2PkTk. We are ready to choose h
(k)
3,Pk

to get a divergent normal form.

We have either |λPk−e3 + 1| ≥ 1 or |λPk−e3 − 1| ≥ 1. When the first case occurs, one of
|T̃k(0)|, |T̃k(1)|, |T̃k(−1)| is at least 1/4; otherwise, we would have

2|λPk−e3 + 1|2 = |T̃k(1) + T̃k(−1)− 2T̃k(0)| < 1,

which is a contradiction. Here the first identity follows from the fact that f̃
(k)
j,PQ, g̃

(k)
j,QP

depend only on h(ℓ) for ℓ < k. When the second case occurs, we conclude that one of

|T̃k(0)|, |T̃k(i)|, |T̃k(−i)| is at least 1/4. This shows that by taking h
(k)
3,Pk

to be one of
0, 1,−1, i, −i, we can achieve

|Tk| ≥
1

4
µ2Pk−2e3 .
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Therefore,

|â∞3,Pk
| ≥ µ2Pk−2e3

2|µPk − µ3||µ−Pk − µ−1
3 | −

|δdk−1(µ)|L2dk+1

|µPk − µ3|
.

Recall that µ3 = ee. If |µPk −µ3| < 1 then 1/2 < µPk−e3 < 2. The above inequality implies

(6.60) |â∞3,Pk
| ≥ µ3Pk−3e3

4|µPk − µ3|2
,

provided

|µPk − µ3| ≤
1

32
|δdk−1(µ)|−L2dk+1, |Pk| = dk.

For the last inequality to hold, it suffices have

(6.61) |µPk − µ3| ≤ |δdk−1(µ)|−L2dk+1−1, |δdk−1(µ)|−1 < 1/4.

Note that the sequence Lm does not depend on the choice of λ. The existence of µ1, µ2, µ3

is ensured by Lemma 6.5 as follows: We choose the sequence Lm in Lemma 6.5, denoted
by L′

m now, so that |Pk|L′
k > 2L2dk+1 + 2. Then (6.61) follows from (6.13), the definitions

of δdk−1(µ) by (6.6) and of ∆∗(Pk) by (6.14); indeed

|µPk − µ3| ≤ (C∆∗(Pk))
|Pk|L′

k ≤ (∆∗(Pk)
1/2)|Pk|L′

k

≤ (δdk−1(µ))
−|Pk|L′

k/2 ≤ |δdk−1(µ)|−L2dk+1−1.

Here the second inequality follows from C(∆∗(Pk))
1/2 < 1 when k is sufficiently large. The

third inequality is obtained as follows. The definition of ∆∗(Pk) and |Pk| = dk imply that
any small divisor in δdk−1(µ) is contained in ∆∗(Pk). Also, ∆∗(Pk) < µ−1

i for i = 1, 2, 3
and k sufficiently large. Hence, ∆∗(Pk) ≤ δ−1

dk−1(µ), which gives us the third inequality.
Without loss of generality, we may assume that Lk > k. From (6.60) and (6.61) it follows
that

|â∞3,Pk
| > δdk+1

dk−1
(µ) = δ

|Pk|+1
dk−1

(µ),

for k sufficiently large. As δdk(µ) → +∞, this shows that the divergence of F̂3 and the
divergence of the normal form σ̂.

As mentioned earlier, Theorem 5.5 (iii) implies that any normal form of σ that is in the

centralizer of Ŝ must diverge. �

7. A unique formal normal form of a real submanifold

Recall that we consider submanifolds of which the complexifications admit the max-
imum number of deck transformations. The deck transformations of π1 are generated
by {τi1, . . . , τ1p}. We also set τ2j = ρτ1jρ. Each of τi1, . . . , τip fixes a hypersurface and
τi = τ11 · · · τ1p is the unique deck transformation whose set of fixed points has the smallest
dimension. We first normalize the composition σ = τ1τ2. This normalization is reduced to
two normal form problems. In Proposition 5.2 we obtain a transformation Ψ to transform
τ1, τ2, and σ into

τ ∗i : ξ
′
j = Λij(ξη)ηj, η′j = Λ−1

ij (ξη)ξj,

σ∗ : ξ′j =Mj(ξη)ξj, η′j =M−1
j (ξη)ηj, 1 ≤ j ≤ p.
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Here Λ2j = Λ−1
1j and Mj = Λ2

1j are power series in the product ζ = (ξ1η1, . . . , ξpηp).
We also normalize the map M : ζ → M(ζ) by a transformation ϕ which preserves all
coordinate hyperplanes. This is the second normal form problem, which is solved formally
in Theorem 5.5 under the condition on the normal form of σ, namely, that log M̂ is tangent
to the identity. This gives us a map Ψ1 which transforms τ1, τ2, and σ into τ̂1, τ̂2, σ̂ of the
above form where Λij and Mj become Λ̂ij, M̂j .

In this section, we derive a unique formal normal form for {τ11, . . . , τ1p, ρ} under

the above condition on log M̂ . In this case, we know from Theorem 5.5 that C(σ̂)
consists of only 2p dilatations

(7.1) Rǫ : (ξj, ηj) → (ǫjξj , ǫjηj), ǫj = ±1, 1 ≤ j ≤ p.

We will consider two cases. In the first case, we impose no restriction on the linear parts of
{τij} but the coordinate changes are restricted to mappings that are tangent to the identity.
The second is for the family {τij} that arises from a higher order perturbation of a product
quadric, while no restriction is imposed on the changes of coordinates. We will show that
in both cases, if the normal form of σ can be achieved by a convergent transformation, the
normal form of {τ11, . . . , τ1p, ρ} can be achieved by a convergent transformation too.

We now restrict our real submanifolds to some classes. First, we assume that σ and τ1, τ2
are already in the normal form σ̂ and τ̂1, τ̂2 such that

τ̂i : ξ
′ = Λ̂i(ξη)η, η′ = Λ̂i(ξη)

−1ξ, Λ̂2 = Λ̂−1
1 ,(7.2)

σ̂ : ξ′ = M̂(ξη)ξ, η′ = M̂(ξη)−1η, M̂ = Λ̂2
1.(7.3)

Let us start with the general situation without imposing the restriction on the lin-
ear part of logM . Assume that σ̂ and τ̂i are in the above forms. Recall that Zj =
diag(1, . . . ,−1, . . . , 1) with −1 at the (p + j)-th place, and Z := Z1 · · ·Zp. Let Zj (resp.
Z) be the linear transformation with the matrix Zj (resp. Z). We also use notation

B∗ =

(
I 0

0 B

)
, E

Λ̂i
=

(
I Λ̂i

−Λ̂−1
i I

)
.(7.4)

Here B, as well as Λ̂i given by (7.2), is a non-singular complex (p× p) matrix. Define two
transformations

(7.5) (Bi)∗ :

(
ξ
η

)
→ (Bi)∗

(
ξ
η

)
, E

Λ̂i
:

(
ξ
η

)
→
(

I Λ̂i(ξη)

−Λ̂−1
i (ξη) I

)(
ξ
η

)
.

Let us assume that in suitable linear coordinates, the linear parts of two families of invo-
lutions {τi1, . . . , τip} for i = 1, 2 are given by

(7.6) Lτij = Tij, Tij = EΛi
(Bi)∗Zj(Bi)

−1
∗ E−1

Λi
, Λi = Λ̂i(0).

Here Tij are in the normal forms described in Lemma 3.5 or in Proposition 3.9.
Note that (Bi)∗ commutes with Z. Also, E

Λ̂i
◦ τ̂i = Z ◦E

Λ̂i
. Let us set

τ̂ij := E
Λ̂i

◦ (Bi)∗ ◦ Zj ◦ (Bi)
−1
∗ ◦ E−1

Λ̂i
(7.7)

and we have τ̂1 = τ̂11 · · · τ̂1p. The following lemma is analogous to the scheme used to
classify the quadrics with the maximum number of deck transformations. The lemma
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provides a way to represent all involutions {τ11, . . . , τ12p , ρ} provided that we already have
a normal form for σ.

Lemma 7.1. Let {τ1j} and {τ2j} be two families of formal holomorphic commuting invo-
lutions. Let τi = τi1 · · · τip and σ = τ1τ2. Suppose that

τi = τ̂i : ξ
′
j = Λ̂ij(ξη)ηj, η′j = Λ̂ij(ξη)

−1ξj;

σ = σ̂ : ξ′j = M̂j(ξη)ξj, η′j = M̂j(ξη)
−1ηj

with M̂j = Λ̂2
1j. Assume further that the linear parts Tij of τij, given by (7.6) are in normal

forms in Lemma 3.5 or Proposition 3.9. Then we have the following :

(i) For i = 1, 2 there exists Φi ∈ C(τ̂i), which is tangent to the identity, such that
Φ−1

i τijΦi = τ̂ij for 1 ≤ j ≤ p.
(ii) Let {τ̃1j} and {τ̃2j} be two families of formal holomorphic commuting involutions.

Suppose that τ̃i = τ̂i and σ̃ = σ̂ and Φ̃−1
i τ̃ijΦ̃i = ̂̃τ ij with Φ̃i ∈ C(τ̂i) being tangent to

the identity and

̂̃τ ij = E
Λ̂i

◦ (B̃i)∗ ◦ Zj ◦ (B̃i)
−1
∗ ◦E−1

Λ̂i
.

Here for i = 1, 2, the matrix B̃i of B̃i is non-singular. Then

Υ−1τijΥ = τ̃iνi(j),

if and only if there exist Υ ∈ C(τ̂1, τ̂2) and Υi ∈ C(τ̂i) such that

Φ̃i = Υ−1 ◦ Φi ◦Υi, i = 1, 2,(7.8)

Υ−1
i τ̂ijΥi = ̂̃τ iνi(j), 1 ≤ j ≤ p.

Here each νi is a permutation of {1, . . . , p}.
(iii) Assume further that τ2j = ρτ1jρ with ρ being defined by (3.7). Define τ̂1j by (7.7)

and let

τ̂2j := ρτ̂1jρ.

Then we can choose Φ2 = ρΦ1ρ for (i). Suppose that Φ̃2 = ρΦ̃1ρ where Φ̃1 is as
in (ii). Then {τ̃1j , ρ} is equivalent to {τ1j , ρ} if and only if there exist Υi, νi with
ν2 = ν1, and Υ satisfying the conditions in (ii) and Υ2 = ρΥ1ρ. The latter implies
that Υρ = ρΥ.

Proof. (i) Note that τ̂ij is conjugate to Zj via the map E
Λ̂i

◦ (Bi)∗. Fix i. Each τ̂ij is an
involution and its set of fixed-point is a hypersurface. Furthermore, Fix(τ11), . . . ,Fix(τ1p)
intersect transversally at the origin. By Lemma 2.6 there exists a formal mapping ψi such
that ψ−1

i τijψi = Lτij . Now Lψi commutes with Lτij , Replacing ψi by ψi(Lψi)
−1, we may

assume that ψi is tangent to the identity. We also find a formal mapping ψ̂i, which is
tangent to the identity, such that ψ̂−1

i τ̂ijψ̂i = Lτ̂ij = Lτij . Then Φi = ψiψ̂
−1
i fulfills the

requirements.
(ii) Suppose that

τij = Φiτ̂ijΦ
−1
i , τ̃ij = Φ̃i

̂̃τ ijΦ̃−1
i .
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Assume that there is a formal biholomorphic mapping Υ that transforms {τij} into {τij}
for i = 1, 2. Then

(7.9) Υ−1τijΥ = τ̃iνi(j), j = 1, . . . , p, i = 1, 2.

Here νi is a permutation of {1, . . . , p}. Then
(7.10) Υτ̂i = τ̂iΥ, Υσ̂ = σ̂Υ.

Set Υi := Φ−1
i ΥΦ̃i. We obtain

Υ−1
i τ̂ijΥi = ̂̃τ iνi(j), 1 ≤ j ≤ p,(7.11)

Φ̃i = Υ−1ΦiΥi, i = 1, 2.(7.12)

Conversely, assume that (7.10)-(7.12) are valid. Then (7.9) holds as

Υ−1τijΥ = Υ−1Φiτ̂ijΦ
−1
i Υ = Φ̃iΥ

−1
i τ̂ijΥiΦ̃

−1
i = τ̃νi(j).

(iii) Assume that we have the reality assumption τ2j = ρτ1jρ and τ̃2j = ρτ̃1jρ. As
before, we take Φ1, tangent to the identity, such that τ1j = Φ1τ̂1jΦ

−1
1 . Let Φ2 = ρΦ1ρ.

By τ̂2j = ρτ̂1jρ, we get τ2j = ρτ1jρ = Φ2τ̂2jΦ
−1
2 for ν2 = ν1. Suppose that Φ̃i satisfy the

analogous properties for τ̃1j and ρ. Suppose that Υ−1τijΥ = τ̃iνi(j), ν2 = ν1, and Υρ = ρΥ.

Letting Υi = Φ−1
i ΥΦ̃i we get Υ2 = ρΥ1ρ. Conversely, if Υ1 and Υ2 satisfy Υ2 = ρΥ1ρ,

then
ρΥρ = ρΦ1Υ1Φ̃

−1
1 ρ = Φ2Υ2Φ̃

−1
2 = Υ.

This shows that Υ satisfies the reality condition. �

Now we assume that F̂ = log M̂ is tangent to the identity and is in the normal form
(5.34). Recall the latter means that the jth component of F̂ − I is independent of the
j variable. We assume that the linear part Tij of τij are given by (7.6), where the non-
singular matrix B is arbitrary. As mentioned earlier in this section, the group of formal
biholomorphisms that preserve the form of σ̂ consists of only linear involutions Rǫ defined
by (7.1). This restricts the holomorphic equivalence classes of the quadratic parts of M .
By Proposition 3.9, such quadrics are classified by a more restricted equivalence relation,
namely, (B̃1, B̃2) ∼ (B1,B2), if and only if

B̃i = R−1
ǫ Bi diagνi d, i = 1, 2.

For simplicity, we will now fix a representative B1,B2 for its equivalence class.
Using the normal form {τ̂1, τ̂2} and the matricesB1,B2, we first decompose τ̂i = τ̂11 · · · τ̂1p.

By Lemma 7.1 (i), we then find Φi such that

τij = Φiτ̂ijΦ
−1
i , 1 ≤ j ≤ p.

For each i, Φi commutes with τ̂i. It is within this family of Φi ∈ C(τ̂i) for i = 1, 2 that we
will find a normal form for {τij}. When restricted to τ2j = ρτ1jρ, the classification of the
real submanifolds is within the family of {{τ1j}, {τ2j}} as described above and such that

Φ2 = ρΦ1ρ.

From Lemma 7.1 (ii), the equivalence relation on C(τ̂i) is given by

Φ̃i = Υ−1ΦiΥi, i = 1, 2.
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Here Υi and Υ satisfy

Υ−1
i τ̂ijΥi = τ̂iνi(j), 1 ≤ j ≤ p; Υτ̂iΥ

−1 = τ̂i, i = 1, 2.

We now construct a normal form for {τij} within the above family. Let us first use the
centralizer of Cc(Z1, . . . , Zp), described in Lemma 4.12, to define the complement of the
centralizer of the family of non-linear commuting involutions {τ̂11, . . . , τ̂1p}. Recall that
the mappings E

Λ̂i
and (Bi)∗ are defined by (7.5). According to Lemma 4.12, we have the

following.

Lemma 7.2. Let i = 1, 2. Let {τ̂i1, . . . , τ̂ip} be given by (7.7). Set

Ei := E
Λ̂i

◦ (Bi)∗.

Then C(τ̂i1, . . . , τ̂ip) =
{
Eiφ0E−1

i : φ0 ∈ C(Z1, . . . , Zp)
}
. Set

Cc(τ̂i1, . . . , τ̂ip) :=
{
Eiψ1E−1

i : ψ1 ∈ Cc(Z1, . . . , Zp)
}
.

Each formal biholomorphic mapping ψ admits a unique decomposition ψ1ψ
−1
0 with

ψ1 ∈ Cc(τ̂i1, . . . , τ̂ip), ψ0 ∈ C(τ̂i1, . . . , τ̂ip).
If τ̂ij and ψ are convergent, then ψ0, ψ1 are convergent. Assume further that τ2j = ρτ1jρ
with ρ being given by (3.7). Then ρφ1ρ ∈ Cc(τ̂11, . . . , τ̂1p) for φ1 ∈ Cc(τ̂21, . . . , τ̂2p).

Proposition 7.3. Let τ̂i, σ̂ be given by (7.2)-(7.3) in which log M̂ is in the formal normal
form (5.34). Let {τ̂ij} be given by (7.7). Assume further that the linear parts Tij of τ̂ij are
in normal forms in Lemma 3.5 or Proposition 3.9. Suppose that

τij = Φiτ̂ijΦ
−1
i , τ̃ij = Φ̃iτ̂ijΦ̃

−1
i 1 ≤ j ≤ p,(7.13)

Φi ∈ C(τ̂i), Φ̃ ∈ C(τ̂i), Φ̃′
i(0) = Φ′

i(0) = I, i = 1, 2.(7.14)

Then {Υ−1τijΥ} = {τ̃ij} for i = 1, 2 and for some Υ ∈ C(τ̂1, τ̂2), if and only if there exist
formal biholomorphisms Υ,Υ∗

1,Υ
∗
2 such that

Υ−1 ◦ ((Bi)∗ ◦ Zj ◦ (Bi)
−1
∗ ) ◦Υ−1 = (Bi)∗ ◦ Zνi(j) ◦ (Bi)

−1
∗ ,(7.15)

Φ̃i = Υ−1ΦiΥ
∗
iΥ, Υ∗

i ∈ C(τ̂i1, . . . , τ̂ip), i = 1, 2,(7.16)

Υσ̂Υ−1 = σ̂,(7.17)

where each νi is a permutation of {1, . . . , p}. Assume further that τ̂2j = ρτ̂1jρ and Φ2 =

ρΦ1ρ and Φ̃2 = ρΦ̃1ρ. If Υ commutes with ρ, one can take Υ∗
2 = ρΥ∗

1ρ and ν2 = ν1.

Proof. Recall that

τij = Φiτ̂ijΦ
−1
i , Φi ∈ C(τ̂i); τ̃ij = Φ̃iτ̂ijΦ̃

−1
i , Φ̃i ∈ C(τ̂i).

Suppose that

(7.18) Υ−1τijΥ = τ̃iνi(j), j = 1, . . . , p, i = 1, 2.

By Lemma 7.1, there are invertible Υi such that

Υ−1
i τ̂ijΥi = τ̂iνi(j), 1 ≤ j ≤ p,(7.19)

Φ̃i = Υ−1 ◦ Φi ◦Υi, i = 1, 2.
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Let us simplify the equivalence relation. By Theorem 5.5, C(τ̂1, τ̂2) consists of 2p dilations

Υ of the form (ξ, η) → (aξ, aη) with aj = ±1. Since Φi, Φ̃i are tangent to the identity, then
DΥi(0) is diagonal too. In fact the linear part of Υ at the origin is

LΥi = Υ.

Clearly, Υ commutes with each non-linear transformation E
Λ̂i
. Simplifying the linear parts

of both sides of (7.19), we get

(7.20) Υ−1 ◦ ((Bi)∗ ◦ Zj ◦ (Bi)
−1
∗ ) ◦Υ−1 = (B̃i)∗ ◦ Zνi(j) ◦ (B̃i)

−1
∗ .

From the commutativity of Υ and EΛ̂i
again and the above identity, it follows that

(7.21) Υ−1 ◦ τ̂ij ◦Υ = τ̂νi(j), j = 1, . . . , p, i = 1, 2.

Using (7.13) and (7.21), we can rewrite (7.18) as

Υ−1Φiτ̂ijΦ
−1
i Υ = Φ̃iΥ

−1τ̂ijΥΦ̃−1
i .

It is equivalent to Υ∗
i τ̂ij = τ̂ijΥ

∗
i , where

Υ∗
i := Φ−1

i ΥΦ̃iΥ
−1.

Therefore, by (7.8), in C(τ̂i), Φ̃i and Φi are equivalent, if and only if

Φ̃i = Υ−1ΦiΥ
∗
iΥ, Υ∗

i ∈ C(τ̂i1, . . . , τ̂ip), i = 1, 2.

Conversely, if Υ∗
i satisfy the above identities, we take Υi = Υ∗

iΥ. Note that (7.17) ensures
that Υ commutes with τ̂i and EΛ̂i

. Then (7.21), or equivalently (7.20) as Υ commutes with
E

Λ̂i
, gives us (7.19). �

Proposition 7.4. Let {τij}, {τ̃ij}, Φi, and Φ̃i be as in Proposition 7.3. Decompose Φi =

Φi1◦Φ−1
i0 with Φi1 ∈ Cc(τ̂i1, . . . , τ̂1p) and Φi0 ∈ C(τ̂i1, . . . , τ̂1p), and decompose Φ̃i analogously.

Then {{τ1j}, {τ2j}} and {{τ̃1j}, {τ̃2j}} are equivalent under a mapping that is tangent to

the identity if and only if Φi1 = Φ̃i1 for i = 1, 2. Assume further that τ2j = ρτ1jρ and
τ̃2j = ρτ̃1jρ. Then two families are equivalent under a mapping that is tangent to the

identity and commutes with ρ if and only if Φi1 = Φ̃i1.

Proof. When restricting to changes of coordinates that are tangent to the identity, we have
Υ = I in (7.18). Also (7.15) is the same as νi being the identity. By the uniqueness of the
decomposition Φi = Φi1Φ

−1
i0 , (7.16) becomes Φi1 = Φ̃i1. �

We consider the following special case without restriction on coordinate changes. We
will assume that M is a higher order perturbation of non-resonant product quadric. Let
us recall σ̂ be given by (7.3) and define τ̂ij as follows:

σ̂ :

{
ξ′j = M̂j(ξη)ξi
η′j = M̂−1

j (ξη)ηj,
τ̂ij :





ξ′i = Λ̂ij(ξη)ηj

η′j = Λ̂−1
ij (ξη)ξj

ξ′k = ξk

η′k = ηk, k 6= j

(7.22)
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with Λ̂2j = Λ̂−1
1j and M̂j = Λ̂2

1j . Let τ̂i = τ̂i1 · · · τ̂1p. Recall that EΛ̂i
in (7.5). Set

(7.23) Cc(τ̂11, . . . , τ̂1p) :=
{
E

Λ̂1
ψE−1

Λ̂1
: ψ ∈ Cc(Z1, . . . , Zp)

}
.

Proposition 7.5. Let {τ11, . . . , τ1p, ρ} be the family of involutions associated with a real an-
alytic submanifoldM that is a higher order perturbation of a non-resonant product quadric.
Assume further that the linear parts Tij of τij are in normal forms in Lemma 3.5. Let σ̂ be

the formal normal form σ̂ of the σ associated to M that is given by (7.3) in which log M̂ is
in the formal normal form (5.34). In suitable formal coordinates the involutions τij of M
have the form

(7.24) τ1j = Ψτ̂ijΨ
−1, τ2j = ρτ1jρ, Ψ ∈ C(τ̂1) ∩ Cc(τ̂11, . . . , τ̂1p).

Moreover, if τ̃11, . . . , τ̃1p have the form (7.24) in which Φ is replaced by Φ̃. Then there
exists a formal mapping R commuting with ρ and transforms the family {τ̃11, . . . , τ̃1p} into
{τ11, . . . , τ1p} if and only if R is an Rǫ defined by (7.1) and

(7.25) Ψ̃ = R−1
ǫ ΨRǫ.

In particular, {τ11, . . . , τ1p, ρ} is formally equivalent to {τ̂11, . . . , τ̂1p, ρ} if and only if Ψ in
(7.24) is the identity map.

Proof. We apply Proposition 7.3 with B1 = B2 = I. We need to refine the equivalence
relation (7.15)-(7.17). First we know that (7.17) means that Υ is some Rǫ. Since Rǫ is
diagonal, then (7.15) is always true for ν1 = ν2 = I. It remains to refine (7.16). We have
Φ2 = ρΦ1ρ. We know that Υ is a dilation of the form

ξj → ǫjξj, ηj → ǫjηj , 1 ≤ j ≤ p, ǫj = ±1.

Since B1 = I, then Φ1 ∈ Cc(τ̂11, . . . , τ̂1p) implies that Υ−1Φ1Υ ∈ Cc(τ̂11, . . . , τ̂1p); and Υ
commutes with each τ̂1j . By the uniqueness of decomposition, (7.16) becomes

Φ̃11 = Υ−1Φ11Υ, Φ̃−1
10 = Υ−1Φ−1

10 Υ
∗Υ.

The second equation defines Υ∗
1 that is in C(τ̂11, . . . , τ̂1p) as Υ,Φi0, Φ̃i0 are in the centralizer.

Rename Φ11, Φ̃11 by Ψ, Ψ̃. This shows that the equivalence relation is reduced to (7.25). �

We now derive the following formal normal form.

Theorem 7.6. Let M be a real analytic submanifold that is a higher order perturbation of
a non-resonant product quadric. Assume that the formal normal form σ̂ of the σ associated
to M is given by (7.3) in which log M̂ is tangent to the identity and in the formal normal
form (5.34). Let E

Λ̂1
be defined by (7.4). Then M is formally equivalent to a formal

submanifold in the (z1, . . . , z2p)-space defined by

M̃ : zp+j = (λ−1
j Uj(ξ, η)− Vj(ξ, η))

2, 1 ≤ j ≤ p,

where (U, V ) = E
Λ̂1(0)

E−1

Λ̂1
Ψ−1, Ψ is in C(τ̂1) and Cc(τ̂11, . . . , τ̂1p), defined by (7.23), and

ξ, η are solutions to

zj = Uj(ξ, η) + λjVj(ξ, η), zj = Uj ◦ ρ(ξ, η) + λjVj ◦ ρ(ξ, η), 1 ≤ j ≤ p.
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Furthermore, the Ψ is uniquely determined up to conjugacy RǫΨR
−1
ǫ by an involution

Rǫ : ξj → ǫjξj, ηj → ǫjηj for 1 ≤ j ≤ p. The formal holomorphic automorphism group

of M̂ consists of involutions of the form

Lǫ : zj → ǫjzj , zp+j → zp+j , 1 ≤ j ≤ p

with ǫ satisfying RǫΨ = ΨRǫ. If the σ associated to M is holomorphically equivalent to
a Poincaré-Dulac normal form, then M̃ can be achieved by a holomorphic transformation
too.

Proof. We fist choose linear coordinates so that the linear parts of {τ11, . . . , τ1p, ρ} are in
the normal form in Lemma 3.2. We apply Proposition 7.5 and assume that τij are already
in the normal form. The rest of proof is essentially in Proposition 4.2 and we will be brief.
Write T1j = E

Λ̂1(0)
◦Zj ◦E−1

Λ̂1(0)
. Let ψ = (U, V ) with U, V being given in the theorem. We

obtain
τ1j = ψT1jψ

−1, 1 ≤ j ≤ p.

Let fj = ξj + λjηj and hj = (λjξj − ηj)
2. The invariant functions of {T11, . . . , T1p} are

generated by f1, . . . , fp, h1, . . . , hp. This shows that the invariant functions of {τ11, . . . , τ1p}
are generated by f1 ◦ψ, . . . , fp ◦ψ, h1 ◦ψ, . . . , hp ◦ψ. Set g := f ◦ ψ ◦ ρ. We can verify that

φ = (f, g) is biholomorphic. Now φρφ−1 = ρ0. Then M̃ is defined by

zp+j = Ej(z
′, z′), 1 ≤ j ≤ p,

where Ej = hj ◦ φ−1. Then Ej ◦ φ and zj ◦ φ = fj are invariant by {τ1k}. This shows that
{φτijφ−1} has the same invariant functions as deck transformations of π1 of the complexifi-

cation of M̃ . By Lemma 2.7, φτ1jφ
−1 agrees with the unique set of generators for the deck

transformations of π1. Then M̂ is a realization of {τ11, . . . , τ1p, ρ}. �

8. Normal forms of completely integrable commuting biholomorphisms

In this section, we shall consider a family of commuting germs of holomorphic diffeo-
morphisms at a common fixed point, say 0 ∈ Cn. We shall give conditions that ensure
that the family can be transformed simultaneously and holomorphically to a normal form.
This means that there exists a germ of biholomorphism at the origin which conjugates each
germ of biholomorphism in the family to a mapping that commutes with the linear part of
every mapping of the family. We can achieve this under two conditions:

a) The family is “formally completely integrable”. This means that the the normal
form of the family has the “same resonances” as the normal form of the family of
the linear parts.

b) The family of linear parts is of “Poincaré type”. In general, individually, each
linear part might not satisfy these conditions. They are satisfied, collectively, by
the family.

For our convergence proof, both conditions will be essential. To be more specific, let
D1 := diag(µ11, . . . , µ1n), . . . ,Dℓ := diag(µℓ1, . . . , µℓn) be diagonal invertible matrices of
Cn. Let us consider a family F := {Fi}ℓi=1 of germs of holomorphic diffeomorphisms of
(Cn, 0) of which the linear of Fi(x) at the origin is

Di : x→ Dix.
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Let us set D := {Di}i=1,...ℓ. Thus

Fi(x) = Dix+ fi(x), fi(0) = 0, Dfi(0) = 0.

The group of germs of (resp. formal) biholomorphisms tangent to identity acts on the
family F by Φ∗F := {Φ−1 ◦ Fi ◦ Φ: 1 ≤ i ≤ ℓ}.

Let us denote On (resp. Ôn) the ring of germs of holomorphic functions at the origin
(resp. ring of formal power series) of Cn. Let Q = (q1, . . . , qn) ∈ Nn and x = (x1, . . . , xn) ∈
Cn, we shall write

|Q| := q1 + · · ·+ qn, xQ := xq11 · · ·xqnn .
Let us specialize to a family {Fi}i=1,...ℓ of commuting germs of holomorphic dif-

feomorphisms, that is that Fi ◦ Fj = Fj ◦ Fi for all 1 ≤ i, j ≤ ℓ. Since it generates an
abelian group, such a family is said to be abelian. We emphasize that the family does not
necessarily form a group and

ℓ <∞.

Let us recall a result by M. Chaperon (see theorem 4 in [Cha86], page 132):

Proposition 8.1. If the family of diffeomorphisms is abelian then there exists a formal
diffeomorphism Φ, which is tangent to the identity, such that

F̂i(Djx) = DjF̂i(x), 1 ≤ i, j ≤ ℓ

where F̂i := Φ∗Fi, for 1 ≤ i ≤ ℓ. We call the family {F̂i} a formal normal form of the
family F with respect to the family D of linear maps.

As mentioned above, for convenience, we have restricted ourselves to changes of holo-
morphic coordinates that are tangent to the identity. Also Φ∗{Fi}ℓi=1 = {F̃i}ℓi=1 means
that

Φ∗Fi = F̃i, 1 ≤ i ≤ ℓ.

These restrictions will be removed by mild changes. For instance, if Φ transforms a family
F into a family F̂ that commutes with LF , the family of the linear part of the F , then
(LΦ)−1(LFi)LΦ = LF̂i. Therefore, Φ(LΦ)−1 is tangent to the identity and transforms F

into (LΦ)F̂ (LΦ)−1 which commutes with LF .

Let ÔD
n be the ring of formal invariants of the family D, that is

ÔD
n := {f ∈ Ôn | f(Dix) = f(x), i = 1, . . . , ℓ}.

As defined in Definition 4.5, C2(D) is the “non-linear formal centralizer” of D, that is

C2(D) = {H ∈ (M̂2
n)

n | H(Dix) = DiH(x), i = 1, . . . , ℓ}.
Here M̂n denotes the maximal ideal of the ring Ôn of formal power series, that is the set
of formal power series vanishing at the origin of Cn. Let ej = (0, . . . , 0, 1, 0, . . . , 0) denote

the jth unit vector of Cn. If Q ∈ Nn with |Q| > 0, then xQ ∈ ÔD
n if and only if

µQ
i = 1, ∀ 1 ≤ i ≤ ℓ.

Here µQ
i := µq1

i1 · · ·µqn
in . If |Q| > 1, then xQej ∈ C2(D) if and only if

µQ
i = µij, ∀ 1 ≤ i ≤ ℓ.
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It can be shown (as in proposition 5.3.2 of [Sto00, GW05]) that M̂D
n is a ring generated

by a finite number of monomials xR1 , . . . , xRp (Ri ∈ Nn) and that the non-linear centralizer

C2(D) of D is a module over M̂D
n of finite type.

Definition 8.2. A formal normal form {F̂i}i=1,...,ℓ is said to be completely integrable if

(1) each F̂i has the form

x′j = µ̂ij(x)xj , j = 1, . . . , n

where µ̂ij are invariant by D (i.e. µ̂ij(x) ∈ ÔD
n ) and satisfy µ̂ij(0) = µij;

(2) for each (j, Q) ∈ {1, . . . , n} ×Nn with |Q| ≥ 2,

µ̂i(x)
Q ≡ µ̂ij(x) for all i = 1, . . . , ℓ, if and only if µQ

i = µij for all i = 1, . . . , ℓ.

Definition 8.3. A commutative family of germs of diffeomorphisms F is said to be formally
(resp. holomorphically) completely integrable if it is formally (resp. holomorphically)
conjugated to a completely integrable normal form.

Remark 8.4. For a completely integrable normal form, we have that for each Q ∈ Nn,
µQ
i = 1 for all 1 ≤ i ≤ ℓ, if and only if µ̂i(x)

Q = 1 for all i = 1, . . . , ℓ. Indeed, if µ̂i(x)
Q = 1

for all i = 1, . . . , ℓ, then evaluation at zero give the result. On the other hand, if µQ
i = 1

for all 1 ≤ i ≤ ℓ, then µijµ
Q
i = µij for all 1 ≤ i ≤ ℓ. Hence, according to the definition,

µ̂ij(x)µ̂
Q
i (x) = µ̂ij(x) for all 1 ≤ i ≤ ℓ, which gives µ̂Q

i (x) = 1 for all 1 ≤ i ≤ ℓ.

We recall from Definition 4.5 (iii) that a formal diffeomorphism Φ, tangent to identity,
is normalized (w.r.t. D) if it does not have components along the centralizer of D, i.e.

Φj,Q = 0 if µQ
i = µij for all i, Q ∈ Nn with |Q| ≥ 2. Let Cc(D) denote the set of the

normalized mappings, and let Cc

2(D) denote the set of mappings Φ− I with Φ ∈ Cc(D).

Lemma 8.5. Any formal diffeomorphism Φ of (Cn, 0), tangent to identity, can be written
uniquely as Φ = Φ1 ◦ Φ−1

0 with Φ1 ∈ Cc(D) and Φ0 ∈ C(D). Furthermore, Φ0,Φ1 are
convergent when Φ is convergent.

Proof. This follows from Lemma 4.8, where Ĥ is replaced by C2(D) and π is defined by

π
(∑

fj,Qx
Qej

)
=
∑

j

∑

xQej∈C2(D)

fj,Qx
Qej . �

Lemma 8.6. Let F̂ := {F̂i} be a formal normal form of the abelian family of diffeomor-
phisms F := {Fi}. Let F̃ := {F̃i} be another formal normal form of F . Then, there exists
a formal diffeomorphism Φ, tangent to identity at the origin, such that Φ ∈ C(D) and

Φ ◦ F̃i = F̂i ◦ Φ. Furthermore, there is a unique Φ ∈ Cc(D) that transforms the family F
into a normal form.

Proof. Since both F̂ and F̃ are normal forms of F , there exists a formal diffeomorphism
Φ, tangent to identity at the origin, such that F̃i ◦ Φ = Φ ◦ F̂i. According to Lemma 8.5,
we can decompose Φ = Φ1 ◦ Φ−1

0 where Φ0 ∈ C(D) and Φ1 ∈ Cc(D). Hence, we have

Φ−1
1 ◦ F̃i ◦ Φ1 = Φ−1

0 ◦ F̂i ◦ Φ0. Let us set Gi := Φ−1
0 ◦ F̂i ◦ Φ0. Then Gi is a formal

diffeomorphism satisfying Gi(x)−Dix ∈ C(D). Let us show by induction on N ≥ 2 that if
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Φ1 = I +ΦN
1 +O(N + 1) with ΦN

1 being homogeneous of degree N , then ΦN
1 = 0. Indeed,

a computation shows that

{Gi}N = {F̂i}N +Di ◦ ΦN
1 − ΦN

1 ◦Di.

Express ΦN
1 as sum of monomial mappings. The monomial mappings are not in C(D),

while those of Fi and Gi are. We obtain ΦN
1 = 0.

To verify the last assertion, assume that Ψ∗F = F̂ and Ψ̃∗F = F̃ are in the normal
form. Suppose that Ψ, Ψ̃ are normalized. Then (Ψ−1Ψ̃)∗F̂ = Ψ̃∗(Ψ

−1)∗F̂ is in the normal

form. Write Ψ−1Ψ̃ = ψ1ψ
−1
0 with ψ1 ∈ Cc(D) and ψ0 ∈ C(D). Then (ψ1)∗F̂ is in a normal

form. From the above proof, we know that ψ1 = I. Now Ψ = Ψ̃ψ0, which implies that
Ψ = Ψ̃. �

Lemma 8.7. If a formal normal form of F is completely integrable so are all other normal
forms of F ; in particular, the unique Φ in Lemma 8.6 transforms F into a completely
integrable normal form.

Proof. By Lemma 8.6, we transform a normal form {F̂i} into another one {F̃i} by applying

a transformation Φ that commutes with each Dj . Hence, we have F̃i := Φ−1 ◦ F̂i ◦ Φ, for
all i = 1, . . . , ℓ. Let us write Φ(x) =

∑
Q∈Nn, 1≤j≤n φj,Qx

Qej . Then

Φ ◦ F̂i(x) =
∑

Q∈Nn

φj,Qµi(x)
QxQej.

Suppose that {F̂i} is completely integrable and Φ commutes with each Dj. Then

Φ ◦ F̂i(x) = diag(µi1(x), . . . , µin(x)) · Φ(x).
The conjugacy equation leads to

diag(µi1(x), . . . , µin(x)) · Φ(x) =



F̃i1(Φ(x))

...

F̃in(Φ(x))


 .

As a consequence, we have

F̃i(x) = diag((µ̃i1(x), . . . , µ̃in(x)) · x
with

(µ̃ij ◦ Φ(x)) · Φj(x) = µij(x) · Φj(x), i.e. µ̃ij = µij ◦ Φ−1.

Each function µ̃ij is an invariant function of D since

µ̃ij(Dkx) = µij ◦ Φ−1(Dkx) = µij ◦Dk(Φ
−1(x)) = µij ◦ Φ−1(x).

The second and third conditions of the definition of the complete integrability is obviously
satisfied by {F̃i} since µ̃ij = µij ◦ Φ−1. �

Lemma 8.8. If a formal normal form of F is linear so are all other normal forms of F .
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Proof. According to Lemma 8.6, we transform a linear normal form {F̂i} into another one

{F̃i} by applying a transformation Φ that commutes with each Dj . Since F̂i(x) = Dix, we

have F̃i = Φ−1(DiΦ(x)), for all i = 1, . . . , ℓ. Since Φ commutes with each map x 7→ Dix,
then

F̃i = Φ−1(DiΦ(x)) = Φ−1(Φ(Dix)) = Dix. �

Definition 8.9. We say that the family D is of Poincaré type if there exist constants d > 1
and c > 0 such that, for each (j, Q) ∈ {1, . . . , n}×Nn that satisfies µQ

m−µmj 6= 0 for some

m, there exists (i, Q′) ∈ {1, . . . , n}×Nn such that µQ′

k = µQ
k for all 1 ≤ k ≤ ℓ, µQ′

i −µij 6= 0,
and

max
(
|µQ′

i |, |µ−Q′

i |
)
> c−1d|Q

′|, Q′ −Q ∈ Nn ∪ (−Nn).

Such a condition has appeared in the definition of the good set in [BHV10].

Definition 8.10. Let f =
∑

Q∈Nn fQx
Q and g =

∑
Q∈Nn gQx

Q be two formal power series.

We say that g majorizes f , written as f ≺ g, if gQ ≥ 0 and |fQ| ≤ gQ for all Q ∈ Nn. Set

f̄ :=
∑

Q∈Nn

|fQ|xQ.

Theorem 8.11. Let F be an abelian family of germs of holomorphic diffeomorphisms at
the origin of Cn. Assume that it is formally completely integrable and that its linear part
at the origin is of Poincaré type. Then F is holomorphically conjugated to a normal form
F̂ = {F̂1, . . . , F̂ℓ} so that each F̂i is defined by

x′j = µij(x)xj , j = 1, . . . , n

where µij(x) are germs of holomorphic functions invariant under D and µij(0) = µij. In
fact, the unique normalized mapping Φ in Lemma 8.6 is convergent.

The last assertion follows from Lemma 8.5 and Lemma 8.7. Such a result for commuting
germs of vector fields is known [Sto00] under a Brjuno-type of small divisor conditions.
Such an integrability result for a single germ of two-dimensional hyperbolic real analytic
area-preserving mapping was proved by Moser [Mos56]. For a single germ of reversible bi-
holomorphism of very special type, this result was due to Moser-Webster [MW83]; indeed,
as shown by Moser-Webster [MW83][lemma 3.2], a germ of (hyperbolic reversible) map-
ping of the form φ = τ1τ2 where the τ1, τ2 are germs holomorphic involutions, is formally
completely integrable under some condition on the linear parts at the origin of τ1, τ2. Our
proof is inspired from these proofs. However, in Moser-Webster situation, there is only two
eigenvalues µ and µ−1 and the remaining eigenvalues are 1 with multiplicity. The Poincaré
type condition in the above theorem, that is |µ| 6= 1, is necessary to obtain the convergence
as demonstrated by Moser-Webster. We shall use our result in the next section in order to
normalize a special kind of CR-singularities.

Proof. Let us conjugate, simultaneously, each Fi = Dix+ fi to F̂i := D̂i(x)x by the action

of Φ(x) = x + φ(x) where φ(0) = 0 and φ′(0) = 0. Here, D̂i(x) denotes the matrix
diag(µ̂i1(x), . . . , µ̂in(x)) and each µ̂ij(x) is a formal power series invariant under D, i.e.

µ̂ij(x) ∈ ÔD
n . We can assume that Φ does not have a non-zero component along the
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centralizer of D; indeed, by Lemma 8.7, we can assume that Φ is normalized w.r.t D.
Then, for each i = 1, . . . , ℓ, we have

Fi ◦ Φ(x) = Dix+ fi(Φ)(x) +Diφ(x), Φ ◦ F̂i(x) = D̂i(x)x+ φ(F̂i)(x).

Equation Fi ◦ Φ = Φ ◦ F̂i reads

(8.1)
(
φ(D̂i(x)x)−Diφ(x)

)
+
(
D̂i(x)−Di

)
x = fi(Φ)(x) i = 1, . . . , ℓ.

Our convergence proof is based on two conditions: the existence of a formal φ ∈ Cc(D) that
satisfies the above equation, and the Poincaré type condition on the linear part D. We
already know that φ is unique. We shall project equation (8.1) along the “non-resonant”
space (i.e. the space Cc(D) of normalized mappings w.r.t. D). The mapping φ also solves
this last equation and we shall majorize it using that projected equation.

Let us first decompose these equations along the “resonant” and “non-resonant” parts,
i.e. C2(D) and Cc

2(D). Since φ =
∑

Q∈Nn,|Q|≥2 φj,Qx
Qej is normalized then φj,Q = 0 for

some Q ∈ Nn, |Q| ≥ 2 and 1 ≤ j ≤ n, if we have µQ
m = µmj for all m. We recall that,

since each Di is a diagonal matrix, then a map belongs to the centralizer of D if and only
if each monomial map of its Taylor expansion at the origin belongs to this centralizer as
well. Since the µ̂ij is a formal invariant function then

φ(D̂i(x)x) =
∑

Q∈Nn,|Q|≥2

φj,Qµ̂
Q
i (x)x

Qej =:
∑

Q′∈Nn,|Q′|≥2

ψj,Q′xQej.

The latter contains only non-resonant terms, that is that if µQ′

i = µij for all i, then ψj,Q′ = 0.

Indeed, µ̂Q
i (x) contains monomials of the form xP with µP

i = 1 for all 1 ≤ i ≤ ℓ. Hence,
ψj,Q′ is a linear combination of φj,Q such that Q′ = Q+P with µP

i = 1 for all i. Therefore,

if µQ′

i = µij for all i, then for all these Q’s, we have µQ
i = µQ′

i = µij for all i so that φj,Q = 0;
that is ψj,Q′ = 0.

Hence, the projection on the resonant mappings in C2(D) leads to

(8.2)
(
D̂i(x)−Di

)
x = {fi(Φ)(x)}res, i = 1, . . . , ℓ.

Here for any formal mapping g(x) = O(|x|2) on Cn, we define the projection on C2(D) by

(8.3) (g(x))res =
∑

j

∑

∀i,µQ
i =µij

gj,Qx
Qej.

The projection g onto Cc

2(D) is defined as g(x)− (g(x))res, i.e. it is the projection of g on
the non-resonant mappings.

Let us consider the projection on the non-resonant mappings. We first need to decompose
power series according to a non-homogeneous equivalence relation on their coefficients. Let
us define the equivalence relation on {1, . . . , n} ×Nn by

(j, Q) ∼ (j̃, Q̃), if µij − µ̂Q
i (x) = µij̃ − µ̂Q̃

i (x) for all 1 ≤ i ≤ ℓ.

Here the identities hold as formal power series. Let ∆ be the set of the equivalent classes
on the non-resonant multiindex set{

(j, Q) ∈ {1, . . . , n} ×Nn : (µQ
1 − µ1j, . . . , µ

Q
ℓ − µℓj) 6= 0, |Q| > 1

}
.
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If µQ
k − µkj 6= 0 for some k, clearly µ̂Q

k − µkj is not identically zero. We can decompose
any formal power series map f along these equivalent classes and the resonant part of the
mapping. Let δ ∈ ∆ and f =

∑
Q=∈Nn,1≤j≤n fj,Qx

Qej with f = O(2). We can write

(8.4) fδ(x) :=
∑

(j,Q)∈δ
fj,Qx

Qej ,
∑

δ∈∆
fδ(x) ≺ f(x).

We denote by M̂
n
n,δ the vector space of such maps. To a given equivalent class δ, we

now associate a representative (jδ, Qδ), and later we shall identify an equation among n
equations in (8.1) for estimation.

Since φ contains no resonant mappings, then

(8.5) φ =
∑

δ∈∆
φδ.

Let us decompose the projection onto non-resonant mappings in Cc

2(D) of equation (8.1)
along each equivalent class δ as follows. Using the definition of the equivalence class ∆, we
obtain

(8.6)
[
µ̂Qδ
i (x)− µijδ

]
φδ(x) = {fi(Φ)}δ (x), ∀i = 1, . . . , ℓ

where {f}δ denotes the projection of f on M̂
n
n,δ, defined by (8.4).

For each (jδ, Qδ) ∈ ∆, we know that µQδ

k − µkjδ 6= 0 for some k. By the Poincaré type
condition, there exist i and Q′

δ ∈ Nn such that

(8.7) µ
Q′

δ
i − µijδ 6= 0; µ

Q′
δ

m = µQδ
m , ∀1 ≤ m ≤ ℓ; Q′

δ −Qδ ∈ Nn ∪ (−Nn)

and, furthermore, one of the following holds:

|µQ′
δ

i | ≤ cd−|Q′
δ|,(8.8)

|µ−Q′
δ

i | ≤ cd−|Q′
δ|.(8.9)

Here, d > 1 does not depend on Qδ. So, let us use the ith equation of (8.6) to estimate φδ.
We have, for that i,

(8.10) φδ =
[
µ̂Qδ
i − µijδ

]−1

{fi(Φ)}δ .

Therefore, we have established the uniqueness of φ under (8.5) and (8.10), and under the
condition that φ satisfies the equation when (8.1) is projected onto Cc(D). The existence
of φ is ensured by assumption. We now consider the convergence of φ. By (8.7) and

Remark 8.4, we obtain µ̂
Q′

δ−Qδ

i = 1. This allows us to rewrite (8.10) as

(8.11) φδ =
[
µ̂
Q′

δ
i − µijδ

]−1

{fi(Φ)}δ .

We majorize this power series.
Recall that µ̂ij(0) = µij . Let us set

Mij(x) := µ−1
ij µ̂ij(x).



88

We have Mij(0) = 1 and we decompose

Mij(x) =
∑

Q∈Nn

Mij,Qx
Q.

Let us set µ∗ := maxij{|µij|, |µ−1
ij |}, and

mi =
∑

Q∈Nn

max
1≤j≤n

|Mij,Q|xQ, m =
∑

Q∈Nn

max
1≤i≤ℓ, 1≤j≤n

|Mij,Q|xQ.

Note that m(0) = 1. Then Mij ≺ m and

M−1
ij =

1

1 + (Mi − 1)
≺ 1

1− (m− 1)
=

1

2−m
.

Here and in what follows, if f(x) is a formal power series with f(0) = 0, then for any
number a 6= 0, 1

a−f(x)
stands for the formal power series in x for

1

a

{
1 +

∞∑

n=1

(a−1f(x))n

}
.

To simplify notation in (8.11), let us write Q for Q′
δ and j for jδ. Fix d1 with 1 < d1 < d.

We consider the first case that µ∗cd−|Q| > d
−|Q|
1 . Since d > d1, we have only finitely

many such Q′s (recall that each Q has the form Q′
δ). The function Mi 7→ µij − µQ

i M
Q
i is

holomorphic in Mi ∈ Cp at Mi = (1, . . . , 1) and does not vanish at this point. Hence, the
function

(µij − µ̂Q
i )

−1 = (µij − µQ
i M

Q
i )

−1

is also holomorphic at Mi = (1, . . . , 1). For all Q′s in the first case, we have

(µij − µ̂Q
i )

−1 ≺ C

1− C(M i1 − 1 + · · ·+M in − 1)
≺ C

1− nC(m− 1)
.

We now consider the second case that µ∗cd−|Q| ≤ d
−|Q|
1 . In case (8.8), we obtain

(µ̂Q
i − µij)

−1 = −µ−1
ij (1− µ−1

ij µ
Q
i M

Q
i )

−1

≺ µ∗ [1− µ∗cd−|Q|m|Q|]−1

≺ µ∗
[
1− d

−|Q|
1 m|Q|

]−1

≺ µ∗ [1− d−1
1 m

]−1
.

In case (8.9), we have

(µ̂Q
i − µij)

−1 = −µ−Q
i M−Q

i

[
1− µijµ̂

−Q
i M−Q

i

]−1

≺ cd−|Q|(2−m)−|Q| [1− µ∗cd−|Q|(2−m)−|Q|]−1

≺ (µ∗)−1d
−|Q|
1 (2−m)−|Q|

[
1− d

−|Q|
1 (2−m)−|Q|

]−1

≺ (µ∗)−1
[
1− d−1

1 (2−m)−1
]−1

.



89

We have obtained the estimates for the second case. Therefore, we have shown that for
any Q = Q′

δ and 1 ≤ j ≤ ℓ,

(8.12) (µ̂Q
i − µij)

−1 ≺ S(m− 1).

Here S(t) is a convergent power series in t that is independent of all Q′s of the form Q′
δ.

Let us set

f ∗ :=
∑

Q∈Nn

max
1≤i≤ℓ, 1≤j≤n

|fij,Q|xQej .

By the definition of the equivalence relation on multiindices, we have

(8.13)
∑

δ∈∆
f ∗
δ ≺ f ∗.

According to (8.11) and (8.12), we have

φδ ≺ S(m− 1)
{
f ∗(Φ̄)

}
δ
.

Now (8.4) and (8.13) imply

(8.14) φ ≺ S(m− 1)f ∗(Φ̄).

Let us project (8.2) onto the kth components of C2(D) as follows. For a power series
map g, we define

gres,k(x) =
∑

µQ=µk

gk,Qx
Q.

By the definition of gres in (8.3), gres = (gres,1, . . . , gres,n). We have

µik (Mi,k(x)− 1) xk = (µ̂ik(x)− µik)xk = {fik(Φ)}res,k(x).
Therefore, for all 1 ≤ k ≤ n,

(8.15) (m− 1)xk ≺ 1

mini,j |µi,j|
f ∗(Φ̄).

Let us set µ∗ :=
1

mini,j |µij | . We set x1 = t, . . . , xn = t in Φ(x) and m(x). Let φ(t), Φ(t), and

m(t) still denote φ(t, . . . , t), Φ(t, . . . , t), and m(t, . . . , t), respectively. Let

tW (t) := φ(t) + (m(t)− 1)t.

We have W (0) = 0, φ(t) ≺ tW (t), and (m(t) − 1) ≺ W (t). From estimates (8.14) and
(8.15), we obtain

(8.16) tW (t) ≺ µ∗f
∗(Φ̄(t)) + S(m(t)− 1)f ∗(Φ̄(t)).

Since fij(x) = O(|x|2), there exists a constant c1 such that

f ∗(x) ≺
c1(
∑

j xj)
2

1− c1(
∑

j xj)
.
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Hence, estimate (8.16) reads

tW (t) ≺ (µ∗ + S(m(t)− 1))
c1(n(t+ φ))2

1− c1n(t+ φ)
(8.17)

≺ (µ∗ + S(W (t)))
c1t

2(n(1 +W (t)))2

1− c1nt(1 +W (t))
.

Let us consider the equation in the unknown U with U(0) = 0 :

(8.18) U(t)(1 − c1nt(1 + U(t))) = (µ∗ + S(W (t))) c1t(n(1 + U(t)))2.

According to the implicit function theorem, there exists a unique germ of holomorphic
function U(t), solution to (8.18) with U(0) = 0. According to inequality (8.17), the function
W is dominated by U : W (t) ≺ U(t). This can be seen by induction on the degree of the
Taylor polynomials at the origin. Therefore, W converges at the the origin. The theorem
is proved. �

9. Real manifolds with an abelian CR-singularity

Let us consider a real analytic manifold M with a CR-singularity at the origin, as in
section 2. We assume that its complexification M has the maximum number of deck
transformations with respect to each projection π1 and π2. The deck transformations are
then generated by germs of holomorphic involutions of (C2p, 0), which are denoted by

{τ11, . . . , τ1p}, {τ21, . . . , τ2p}.
Recall that both families are abelian, that is that

τij ◦ τik = τik ◦ τij .
They are intertwined by the antiholomorphic involution ρ:

τ2j = ρ ◦ τ1j ◦ ρ.
Let us consider the following germs of holomorphic diffeomorphisms :

σi := τ1i ◦ τ2i, 1 ≤ i ≤ e∗ + h∗,(9.1)

σs := τ1s ◦ τ2(s∗+s), σs+s∗ = τ1(s+s∗) ◦ τ2s, e∗ + h∗ < s ≤ p− s∗.(9.2)

Notice that the above property holds for quadrics of the complex case by Proposition 2.13.
The family {σi} is reversible with respect to ρ. More precisely, we have the following
relations

σ−1
i = ρσiρ, 1 ≤ i ≤ e∗ + h∗; σ−1

s+s∗ = ρσsρ, e∗ + h∗ < s ≤ p− s∗.

Definition 9.1. We say that the manifold M has an abelian CR-singularity at the
origin if its complexification M has the maximum number of deck transformation and if
the family {σ1, . . . , σp} of germs of biholomorphisms at the origin of C2p is abelian, i.e.

σiσj = σjσi.
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Definition 9.2. A product quadric is a submanifold in C2p defined by

zp+e = (ze + 2γeze)
2, 1 ≤ e ≤ e∗

zp+h = (zh + 2γhzh)
2, e∗ + 1 ≤ h ≤ e∗ + h∗

zp+s = (zs + 2γszs+s∗)
2,

zp+s+s∗ = (zs+s∗ + 2(1− γs)zs)
2, e∗ + h∗ < s ≤ p− s∗

with 0 < γe < 1/2, γh > 1/2, and γs ∈ (1/2,∞)× i(0,∞).

In what follows, we assume that M has an abelian CR-singularity at the origin and that
M is a higher order perturbation of a product quadric.

The aim of this section is to show that such an analytic perturbation with an abelian
CR-singularity and no hyperbolic component is holomorphically conjugate to a normal
form. We shall give two proofs of this result. The first one rests on Moser-Webster result
[MW83][theorem 4.1] applied successively to each σi. The other one is based on the fact
that the family {σi} is formally completely integrable and their linear part is of Poincaré
type. We then apply Theorem 8.11.

9.1. Normal forms for real submanifolds with an abelian CR singularity.

Theorem 9.3. Let M be a germ of real analytic submanifold in Cn at an abelian CR-
singularity at the origin. Suppose thatM is a higher order perturbation of a product quadric
of which γ1, . . . , γp satisfy (1.2). Assume that the associated σ ofM has distinct eigenvalues.
Suppose that M does not have a hyperbolic component (i.e. e∗ ≥ 0, s∗ ≥ 0, h∗ = 0). Then
there exists a germ of biholomorphism ψ that commutes with ρ and such that, for 1 ≤ i ≤ p
and k = 1, 2

ψ−1 ◦ σi ◦ ψ :





ξ′i =Mi(ξη)ξi
η′i =M−1

i (ξη)ηi

ξ′j = ξj
η′j = ηj , j 6= i,

ψ−1 ◦ τki ◦ ψ :





ξ′i = Λki(ξη)ηi
η′i = Λ−1

ki (ξη)ξi

ξ′j = ξj
η′j = ηj , j 6= i.

(9.3)

Moreover, we have

Λ1e = Λ1e ◦ ρz, 1 ≤ e ≤ e∗(9.4)

Λ1s = Λ−1
1(s+s∗)

◦ ρz, e∗ < s ≤ p− s∗(9.5)

Λ2j = Λ−1
1j , 1 ≤ j ≤ p.(9.6)

Proof. We will present two convergence proofs: one is based on a convergent theorem of
Moser and Webster and another is based on Theorem 8.11. We first use some formal results
obtained by Moser and Webster [MW83] and some results in section 8.
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Since M is a higher order perturbation of a product quadric, there are linear coordinates
such that, for 1 ≤ i ≤ p and k = 1, 2, τk,i and σi are higher order perturbations of

Si :





ξ′i = µiξi
η′i = µ−1

i ηi

ξ′j = ξj
η′j = ηj , j 6= i,

Tki :





ξ′i = λkiηi
η′i = λ−1

ki ξi

ξ′j = ξj
η′j = ηj , j 6= i.

For elliptic coordinates, this was computed in [MW83] and recalled in (2.24). For complex
coordinates, this is computed in (2.27),(2.29). Recall that

σm = τ1m ◦ τ2m, 1 ≤ m ≤ p.

Since |µ1| 6= 1, then by theorem 4.1 of Moser-Webster ([MW83]), there is a unique
convergent transformation ψ1 normalized w.r.t. S1 such that σ∗

1 := ψ−1
1 ◦ σ1 ◦ ψ1 and

τ ∗i1 := ψ−1
1 ◦ τi1 ◦ ψ1 are given by

σ∗
1 :





x′1 =M1(ξ, η)ξ1
η′1 =M−1

1 (ξ, η)η1
ξ′j = ξj

η′j = ηj , j 6= 1,

τ ∗k1 :





ξ′1 = Λk1(ξ, η)η1
η′1 = Λ−1

k1 (ξ, η)ξ1
ξ′j = ξj

η′j = ηj , j 6= 1.

(9.7)

Here k = 1, 2. It is a simple fact (e.g. see Lemma 8.7, D = {S1}) that there is a unique
φ1 ∈ Cc(S1) such that φ−1σ1φ is in the centralizer of S1. Therefore, φ1 = ψ1 is also
convergent.

Furthermore, we have M1(ξ, η) = Λ11(ξ, η)Λ
−1
21 (ξ, η); and Λ11,Λ21,M1 are invariant by

S1. In the new coordinates, let us denote τim, σm by the same symbols for m > 1. However,
σ1 = σ∗

1 and τk1 = τ ∗k1. Since each σm commutes with σ1, then σm is in the centralizer
of S1. Indeed, according to [MW83][Lemma 3.1](or Lemma 8.5 with D = {S1}), we can
decompose σm = σ1

mσ
0
m where σ1

m is normalized w.r.t S1 and σ0
m is in the centralizer of S1.

Write σ1σm = σmσ1 as

(σ1
m)

−1σ1σ
1
m = σ0

mσ1(σ
0
m)

−1.

Since σ0
mσ1(σ

0
m)

−1 belongs to C(S1), so does (σ1
m)

−1σ1σ
1
m. Then applying the uniqueness of

ψ1 stated earlier to σ1
m, we conclude that σ1

m = I and σm = σ0
m is in the centralizer of S1.

Let us verify that σ0
m or in general each (formal) transformation ϕ in C(S1) preserves

the form of σ∗
1 and τ ∗i1. Indeed, ϕ

−1 commutes with S1 too. Thus ϕ−1σ∗
1ϕ commutes with

S1 and its linear part is S1. The linear part of ϕ1 must preserve the eigenspaces of S1 and
hence it is given by

ξ1 → aξ1, η1 → bη1, (ξ∗, η∗) → φ(ξ∗, η∗)

for ξ∗ = (ξ2, . . . , ξn) and η∗ = (η2, . . . , ηn). By a simple computation, the linear part of
ϕ−1τ ∗k1ϕ still has the form (9.7). According to [MW83][lemma 3.2], there a unique normal-
ized mapping Ψ that normalizes ϕ−1σ∗

1ϕ and the ϕ−1τ ∗k1ϕ’s. According to the uniqueness
property of Lemma 8.6, Ψ = Id. Therefore, ϕ preserves the forms of τ ∗i1 and σ∗

1.
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Let ψ2 be the unique biholomorphic map normalized w.r.t. S2 such that ψ−1
2 σ2ψ2 = σ∗

2

and ψ−1
2 τk2ψ2 = τ ∗k2 are in the normal form :

σ∗
2 :





ξ′2 =M2(ξ, η)ξ2
η′2 =M−1

2 (ξ, η)η2

ξ′j = ξj
η′j = ηj , j 6= 2,

τ ∗k2 :





ξ′2 = Λk2(ξ, η)η2
η′2 = Λ−1

k2 (ξ, η)ξ2

ξ′j = ξj
η′j = ηj , j 6= 2.

(9.8)

Here k = 1, 2, and M2 and Λk2 are invariant by S2. Since σ2 commutes with S1, we have

(S−1
1 ψ2S1)

−1 ◦ σ2 ◦ (S−1
1 ψ2S1) = S−1

1 σ∗
2S1.

Note that S−1
1 σ∗

2S1 (resp. S
−1
1 τ ∗k2S1) has the form (9.8) in which M2 (resp. Λk2) is replaced

by M2 ◦ S1 (resp. Λk2 ◦ S1). In other words S−1
1 σ∗

2S1 and S−1
1 τ ∗k2S1 are still of the form

(9.8). Since S1 is diagonal, then S
−1
1 ψ2S1 remains normalized w.r.t. S2. Applying the above

uniqueness on ψ2 for σ2, we conclude that ψ2 = S−1
1 ψ2S1. This shows that ψ2 preserves

the forms of τ ∗k1 and σ∗
1. By the same argument as above, we have σ∗

m ∈ C(S1, S2).
In summary, we have found holomorphic coordinates so that τij = τ ∗im and σm = σ∗

m

for m = 1, 2. As mentioned previously, we know that σ∗
1, σ

∗
2, σ3, . . . , σm commute with S1

and S2. In particular, M1,M2 are invariant by S1, S2. Repeating this procedure, we find
a holomorphic map φ so that all φ−1σjφ = σ∗

j and φ−1τkjφ = τ ∗kj are in the normal forms.
Furthermore, Mi and Λk,i are invariant by {S1, . . . , Sp}.

By Lemma 8.5, we decompose φ = φ1φ
−1
0 where φ1 is normalized w.r.t. {S1, . . . , Sp} and

φ0 is in the centralizer of {S1, . . . , Sp}. Then φ−1
1 σjφ1 = σ∗

j and φ−1
1 τijφ1 = τ ∗ij are in the

normal forms, since φ0 commutes with Sj . We want to show that φ1 commutes with ρ.
Note that σ−1

e = ρσeρ and σ−1
s+s∗ = ρσsρ. Thus (ρφ1ρ)

−1σj(ρφ1ρ) = σ̃∗
j where σ̃∗

e :=

ρ(σ∗
e)

−1ρ and σ̃∗
s := ρ(σ∗

s+s∗)
−1ρ. According to (3.7), we see that ρφ1ρ is still normalized

w.r.t. {S1, . . . , Sp}. By Lemma 8.6, we know that there is a unique normalized formal
mapping φ1 such that φ−1

1 σjφ1 are in the centralizer of {S1, . . . , Sp}. Since σ̃∗
j belongs to

the centralizer of {S1, . . . , Sp}, then we have ρφ1ρ = φ1.
Now, τ ∗2j = ρτ ∗1jρ follows from τ2j = ρτ1jρ. This shows that

Λ2e = Λ−1
1e ◦ ρ, 1 ≤ e ≤ e∗,

Λ2s = Λ1(s+s∗) ◦ ρ,
Λ2(s+s∗) = Λ1s ◦ ρ, e∗ + h∗ < s ≤ p− s∗.

Let φ2 be defined by

ξ′j = (Λ
1/2
1j M

1/4
j )(ξη)ξj, η′j = (Λ

−1/2
1j M

−1/4
j )(ξη)ηj, 1 ≤ j ≤ p.

For a suitable choice of the roots, we have φ2ρ = ρφ2. Furthermore, φ2 preserves all
invariant functions of {S1, . . . , Sp}. Hence, each φ−1

2 ◦ φ−1
1 ◦ τki ◦ φ1 ◦ φ2 has the form τ ∗kj

stated in Theorem 9.3.

We now present another proof by using the more general Theorem 8.11.
Note that the above proof is valid at the formal level without using the convergence

result of Moser and Webster. More specifically, if τij are given by formal power series with
σ1, . . . , σp commuting pairwise, there exists a formal map ψ that is tangent to the identity
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and commutes with ρ such that (9.3) holds. Since each µj is not a root of unity, then (9.3)
implies that the conjugate family {σ∗

m} is a completely integrable normal form.
Let σi be defined as above. Let Si be its linear part at the origin of Cn. The eigenvalues

{µij}1≤j≤n of Si are either µi, µ
−1
i or 1. More precisely, if Q ∈ Nn, |Q| ≥ 2 then

(9.9) µQ
m − µmj = µqm−qm+p

m −





µm if j = m

µ−1
m if j = m+ p

1 otherwise.

We need to verify the condition that the family of linear part {S1, . . . , Sp} is of the Poincaré
type. So we can apply Theorem 8.11.

Suppose that (j, Q) ∈ {1, . . . , 2p} ×N2p satisfies

µQ
l − µlj 6= 0

for some 1 ≤ l ≤ 2p. Set d = {mini max(|µi|, |µ−1
i |)}1/(2p). We define

Q′ = Q−
p∑

i=1

min(qi, qi+p)(ei + ei+p) := (q′1, . . . , q
′
2p).

Then µQ
i = µQ′

i for all i. Take i = l if |Q′| ≤ 2p. In this case, we easily get

(9.10) µQ′

i − µij 6= 0, |µQ′

i | > c−1d|Q
′|

by choosing a sufficiently large c. Assume that |Q′| > 2p. Take i such that

qi + qi+p = max
k

(qk + qk+p).

Then qi + qi+p ≥ |Q′|/p > 1. By (9.9), we get the first inequality in (9.10). We note that
(q′i, q

′
i+p) = (qi, 0) or (0, qi+p). Thus

max(|µQ′

i |, |µ−Q′

i |) = (max(|µi|, |µi|−1))qi+qi+p ≥ d|Q
′|.

This shows that {Dσ1(0), . . . , Dσp(0)} is of the Poincaré type.
We now apply Theorem 8.11 as follows. We decompose ψ = ψ1ψ

−1
0 such that ψ1 ∈

Cc(S1, . . . , Sp) and ψ0 ∈ C(S1, . . . , Sp). Then each σ∗
i = ψ−1

1 σiψ1 still has the form in (9.3);
in particular, {σ∗

1 , . . . , σ
∗
p} is a completely integrable formal normal form. By Theorem 8.11,

ψ1 is convergent. Now, ψ−1
1 τkjψ1 = ψ−1

0 (ψ−1τkjψ)ψ0 are still of the form (9.3); however
(9.4)-(9.6) might not hold. As in the first proof, we can verify that ψ1ρ = ρψ1. Applying
another change of coordinates that commutes with ρ and each Sj as before, we achieve
(9.3)-(9.6). The proof of the theorem is complete. �

Remark 9.4. When M is non-resonant and log M̂ is tangent to the identity, we apply
Theorem 5.5 to obtain a further holomorphic change of coordinates so that (M1, . . . ,Mp)
are uniquely determined by the real analytic submanifold. Then by Proposition 7.5,
{τ̂i1, . . . , τip}, i = 1, 2, are formally equivalent to {τ̂i1, . . . , τ̂ip}, i = 1, 2, defined by (7.22),
if and only if the formal map Ψ in Proposition 7.5 is the identity. In other words, M has
an abelian CR singularity at the origin if and only if Φ− I vanishes.
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As a corollary of Theorem 9.3, we have the following normal form for real submanifolds.
In order to study the holomorphic flatness and hull of holomorphy, we choose a realization
similar to the case of Moser-Webster for p = 1.

Theorem 9.5. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that M is a higher order perturbation of a product quadric of which γ1, . . . , γp
satisfy (1.2). Suppose thatM has no hyperbolic component of complex tangent at the origin.
Suppose that the associated σ of M has distinct eigenvalues µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p . Then
M is holomorphically equivalent to

M̂ : zp+j = Λ1j(ζ)ζj, 1 ≤ j ≤ p,(9.11)

where ζ = (ζ1, . . . , ζp) are the convergent solutions to

ζe =
1 + Λ2

1e(ζ)

(1− Λ2
1e(ζ))

2
|ze|2 −

Λ1e(ζ)

(1− Λ2
1e(ζ))

2
(z2e + z2e),(9.12)

ζs =
Λ1s(ζ) + Λ3

1s(ζ)

(1− Λ2
1,s(ζ))

2
zszs+s∗ −

Λ1s(ζ)

(1− Λ2
1s(ζ))

2
(z2s + Λ2

1s(ζ)z
2
s+s∗),(9.13)

ζs+s∗ =
Λ1(s+s∗)(ζ) + Λ3

1(s+s∗)
(ζ)

(1− Λ2
1(s+s∗)

(ζ))2
zszs+s∗(9.14)

− Λ1(s+s∗)(ζ)

(1− Λ2
1(s+s∗)

(ζ))2
(z2s+s∗ + Λ2

1(s+s∗)(ζ)z
2
s).

Here Λ1j(ζ) = λj + O(ζ) (1 ≤ j ≤ p) satisfy (9.4)-(9.5). In particular, M̂ is contained in
zp+e = zp+e and zp+s = zp+s+s∗.

By Lemma 11.2, that σ has distinct eigenvalues is equivalent to γ1, . . . , γp being distinct.

Proof. We use a realization which is different from (2.23). We assume that M already has
the normal form as in Theorem 9.3. Thus for j = 1, . . . , p, we have

(9.15) τ1j : ξ
′
j = Λ1j(ξη)ηj, η′j = Λ−1

1j (ξη)ξj, (ξ′k, η
′
k) = (ξk, ηk), k 6= j.

Let us define

fj(ξ, η) = ξj + ξj ◦ τ1j , gj = fj ◦ ρ, 1 ≤ j ≤ p.

The latter implies that the biholomorphic mapping ϕ(ξ, η) = (f(ξ, η), g(ξ, η)) transforms
ρ into the standard complex conjugation (z′, w′) → (w′, z′). Define

Fj(ξ, η) = ξj ◦ τ1j(ξ, η)ξj, 1 ≤ j ≤ p.

Using the expressions of τ1j given by (9.15), we verify that fj and Fj are invariant by τ1k.
Note that the linear part of fj(ξ, η) is ξj + λjηj for 1 ≤ j ≤ p, and the quadratic part of
Fj(ξ, η) is λjξ

2
j . By Lemma 2.7, f1, . . . , fp and F1, . . . , Fp generate all invariant functions

of {τ11, . . . , τ1p}.
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Next using Λ1e ◦ ρz = Λ1e and Λ1s ◦ ρz = Λ−1
1(s+s∗)

, we rewrite zj = fj(ξ, η), wj = gj(ξ, η)
as

ξe =
ze − Λ1e(ξη)we

1− Λ2
1e

, ηe =
we − Λ1e(ξη)ze

1− Λ2
1e

,

ξs =
zs − Λ2

1s(ξη)ws+s∗

1− Λ2
1s(ξη)

, ηs =
Λ1s(ξη)(ws+s∗ − zs)

1− Λ2
1s(ξη)

,

ξs+s∗ =
zs+s∗ − Λ2

1(s+s∗)
(ξη)ws

1− Λ2
1(s+s∗)

(ξη)
, ηs+s∗ =

Λ1(s+s∗)(ξη)(ws − zs+s∗)

1− Λ2
1(s+s∗)

(ξη)
.

Using the above formulae and wj = zj, we compute ζj = ξjηj to obtain (9.12)-(9.14).
Note that Fj(ξ, η) = ζjΛ1j(ζ). This shows that zp+j = Fj◦ϕ−1(z′, z′) have the form (9.11).

Again, we use the formula of τ1,k to verify that z = (z′, z′′) are invariant by all ϕτ1kϕ
−1.

On the other hand, z = (z′, z′′) generate invariant functions of the deck transformations of

π1 for the complexification of M̂ given by (9.11). This shows that {ϕτ11ϕ−1, . . . , ϕτ1pϕ
−1}

and the deck transformations of π1, of which each family consists of commuting involutions,
have the same invariant functions. By Lemma 2.7, we know that the two families must be
identical. This shows that (9.11) is a realization for {τ11, . . . , τ1p, ρ}.

To verify the last assertion of the theorem, we set z∗p+e = zp+e, z
∗
p+s = zp+s+s∗, and

z∗p+s+s∗ = zp+s. Set ζ∗e = ζe, ζ
∗
s = ζs+s∗ , and ζ∗s+s∗ = ζs. We take complex conjugate on

identities (9.11)-(9.14). By (9.4)-(9.5), we have

Λ1e = Λ1e ◦ ρz, Λ1s = Λ−1
1(s+s∗)

◦ ρz.
We verify that z∗, ζ∗ still satisfy (9.11)-(9.14), if zj+p, ζj are replaced by z∗p+j, ζ

∗
j , respec-

tively, and zj are unchanged for 1 ≤ j ≤ p. By the uniqueness of solutions ζ to (9.12)-(9.14),
we conclude that ζ∗j = ζj. Therefore, zp+j = z∗p+j. The proof is complete. �

9.2. Hull of holomorphy of real submanifolds with an abelian CR singularity.

Let X be a subset of Cn. We define the hull of holomorphy of X , denoted by H(X), to be
the intersection of domains of holomorphy in Cn that contain X .

We assume thatM is real analytic and has a non-resonant complex tangent at the origin
of elliptic type only. By Theorem 9.5, we may assume that M is given by

M : zp+j = Λ1j(ζ)ζj, 1 ≤ j ≤ p,

where ζj = ζj(z
′) (j = 1, . . . , p) are the convergent real-valued solutions to

ζj =
1 + Λ2

1j(ζ)

(1− Λ2
1j)

2(ζ)
|zj|2 −

Λ1j(ζ)

(1− Λ2
1j(ζ))

2
(z2j + z2j), 1 ≤ j ≤ p.(9.16)

For ζ ∈ Rp with small |ζ |, we know that Λ1j(ζ) > 1.
In a neighborhood of the origin in Rp, let us define the following germ of real analytic

diffeomorphism:
R : ζ → (Λ11(ζ)ζ1, . . . ,Λ1p(ζ)ζp) .

If ǫ is small enough, for each x′′ ∈ [0, ǫ]p, we can define ζ = R−1(x′′). Note that R sends
ζj = 0 into xp+j = 0 for each j. We can write

R−1(x′′) = (xp+1S1(x
′′), . . . , x2pSp(x

′′))
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with Sj(0) > 0. Then M ∩ {z′′ = x′′} is given by (9.16). For x′′ ∈ [0, ǫ]p let Dj(x
′′) be the

compact set in the zj plane whose boundary is defined by the jth equation in (9.16) where
ζ = R−1(x′′). When xp+j > 0, the boundary of Dj(x

′′) is an ellipse with

(9.17) Dj(x
′′) ⊂ ∆C1

√
xp+j

.

Here and in what follows constants will depend only on λ1, . . . , λp. Thus

D(x′′) := D1(x
′′)× · · · ×Dp(x

′′)× {x′′} ⊂ Cp ×Rp

is a product of ellipses and its dimension equals the number of positive numbers among
xp+1, . . . , x2p. We will call D(x′′) an analytic polydisc and ∂∗D(x′′) := ∂D1(x

′′) × · · · ×
∂Dp(x

′′)×{x′′} its distinguished boundary. Note that ∂∗D(x′′) is contained in M . In fact,
M is foliated by ∂∗D(x′′) as x′′ vary in [0, ǫ]p and ǫ is sufficiently small. We will specify the
value of ǫ later. We will use this foliation and Hartogs’ figures in analytic polydiscs to find
the local hull of holomorphy of M at the origin.

As x′′ vary in [0, ǫ]p, let M ǫ be the union of ∂∗D(x′′), and Hǫ the union of D(x′′). Both
Hǫ andM ǫ are compact subsets in C2p. For any open ball Bǫ∗ in C2p centered at the origin
with radius ǫ∗,

Bǫ∗ +M ǫ := {a + b : a ∈ Bǫ∗ , b ∈M ǫ}
is contained in a given neighborhood ofM ǫ, if ǫ∗ is sufficiently small. Analogously, Bǫ∗+Hǫ

is a connected open neighborhood of Hǫ. Let us first verify that a function that is holomor-
phic in a connected neighborhood of M ǫ in Cn extends holomorphically to a neighborhood
of Hǫ. Assume that f is holomorphic in a neighborhood U of ∂ǫ∗D := ∪x′′∈[0,ǫ]p∂

∗D(x′′).
We first note that Hǫ is defined by

Aj(x
′′)|zj|2 − Bj(x

′′)(z2j + z2j ) ≤ xp+j, 1 ≤ j ≤ p;(9.18)

y′′ = 0, x′′ ∈ [0, ǫ]p(9.19)

with

Aj(x
′′) =

1 + Λ2
1j(R

−1(x′′))

Sj(x′′)(1− Λ2
1j(R

−1(x′′))
, Bj(x

′′) =
Λ1j(R

−1(x′′))

Sj(x′′)(1− Λ2
1j(R

−1(x′′))
.

Let δ be a small positive number. For x′′ ∈ [−δ, ǫ]p, let Dδ
j (x

′′) ⊂ C be defined by

Aj(x
′′)|zj |2 − Bj(x

′′)(z2j + z2j) ≤ xp+j + δ.

Fix δ > 0 sufficiently small. Let Pǫ,δ (resp. ∂∗Pǫ,δ) be the set of z = (z′, z′′) satisfying
the following: y′′ ∈ [−δ, δ]p, x′′ ∈ [−δ, ǫ]p, and zj ∈ Dδ

j (x
′′) (resp. zj ∈ ∂Dδ

j (x
′′)) for

1 ≤ j ≤ p. Let Uǫ,δ (resp. Uǫ,δ1) be a small neighborhood of Pǫ,δ (resp. Pǫ,δ1). Assume that
0 < δ1 < δ and δ1 is sufficiently small. We may also assume that Uǫ,δ1 is contained in Uǫ,δ

and ∂∗Pǫ,δ ⊂ U . Thus, for (z′, z′′) ∈ Uǫ,δ1, we can define

F (z′, z′′) =

∫

ζ1∈∂Dδ
1(x

′′)

· · ·
∫

ζp∈∂Dδ
p(x

′′)

f(ζ ′, z′′) dζ1 · · · dζp
(ζ1 − z1) · · · (ζp − zp)

.

When z is sufficiently small, F (z) = f(z) as f is holomorphic near the origin. Fix z0 ∈ Uǫ,δ1 .
We want to show that F is holomorphic at z0. So F is a desired extension of f . By
continuity, when z = (z1, . . . , z2p) tends to z0, x

′′ tends to x′′0 and ∂D
δ
j (x

′′) tends to ∂Dδ
j (x

′′
0),
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while zj ∈ Dδ
j (x

′′
0) when z is sufficiently close to z0. By Cauchy theorem, for z sufficiently

close to z0 we change contour integrals successively to get

F (z′, z′′) =

∫

ζ1∈∂Dδ
1(x

′′
0 )

∫

ζ2∈∂Dδ
2(x

′′
0 )

· · ·
∫

ζp∈∂Dδ
p(x

′′
0 )

f(ζ ′, z′′) dζ1 · · ·dζp
(ζ1 − z1) · · · (ζp − zp)

.

The set of integration is fixed. The integrand is holomorphic in z. Hence F is holomorphic
at z = z0.

Next we want to show that Hǫ is the hull of holomorphy of M ǫ in B2p
ǫ0 for suitable ǫ, ǫ0

that can be arbitrarily small.
Let us first show that Hǫ is the intersection of domains of holomorphy in Cn. Recall

that Hǫ is defined by (9.18)-(9.19). Next, we define for δ′ := (δ1, . . . , δp) with δj > 0

ρδ
′

j = Aj(x
′′)|zj|2 −Bj(x

′′)(z2j + z2j)− xp+j + (δ−1
1 + · · ·+ δ−1

p )

p∑

i=1

y2p+i

+
∑

i 6=j

δ−1
i

{
Ai(x

′′)|zi|2 −Bi(x
′′)(z2i + z2i )− xp+i

}
.

When p = 1, the last summation is 0. The complex Hessian of ρδ
′

j is

2p∑

α,β=1

∂2ρδ
′

j

∂zαzβ
tαtβ = Aj(x

′′)|tj|2 +
δ−1
1 + · · ·+ δ−1

p

2

∑

i

|tp+i|2 +
∑

i 6=j

1

δi
Ai(x

′′)|ti|2

+ Re
∑

k

ajk(x
′′; zj)tjtp+k + Re

∑

k,ℓ

bj,kℓ(x
′′; zj)tp+ktp+ℓ

+ Re
∑

i 6=j

∑

k

1

δi
cj,ik(x

′′; zi)titp+k + Re
∑

i 6=j

∑

k,ℓ

1

δi
dj,kℓ(x

′′; zi)tp+ktp+ℓ.

Here ajk(x
′′; 0) = bj,kl(x

′′; 0) = cj,ik(x
′′; 0) = dj,kl(x

′′; 0) = 0, and i, j, k, ℓ are in {1, . . . , p}.
From the Cauchy-Schwarz inequality, it follows that for |z| < ǫ0 with ǫ0 > 0 sufficiently
small and 0 < δj < 1,

2p∑

α,β=1

∂2ρδ
′

j

∂zαzβ
tαtβ ≥ 1

2
Aj(x

′′)|tj|2 +
δ−1
1 + · · ·+ δ−1

p

4

∑

j

|tp+j|2 +
1

2

∑

i 6=j

δ−1
i Ai(x

′′)|ti|2.

Therefore, each ρδ
′

j is strictly plurisubharmonic on |z| < ǫ0 for all 0 < δi < 1. Hence for

δ = (δ0, . . . , δp) = (δ0, δ
′) ∈ (0, 1)p+1,

ρδ(z) = max
j

{ρδ′j , |y′′|2 − δ20, x
2
p+j − ǫ2}

is plurisubharmonic on the ball B2p
ǫ0 . By (9.17), D(x′′) is contained in B2p

C2ǫ1/2
for x′′ ∈ [0, ǫ]p.

We now fix ǫ < (ǫ0/C2)
2 to ensure

(9.20) D(x′′) ⊂ B2p
ǫ0
, ∀x′′ ∈ [0, ǫ]p.

This shows that
Hǫ

δ := {z ∈ B2p
ǫ0 | : ρǫδ(z) < 0}

is a domain of holomorphy.
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Let us verify that

Hǫ =
⋂

δ0>0,...,δp>0

Hǫ
δ.

Fix z ∈ Hǫ. From (9.20) we get z ∈ B2p
ǫ0
. We have y′′ = 0. Hence (9.18) hold and x2p+j ≤ ǫ2.

Clearly, ρδj(z) < 0 for each j and δ ∈ (0, 1)p. This shows that z ∈ Hǫ is in the intersection.
For the other inclusion, let us assume that z is in the intersection. Then y′′ = 0 and
x′′ ∈ [0, ǫ]p. So (9.19) holds. With ρδj(z) < 0, we let δi tend to 0 for i 6= j. We conclude

Ai(x
′′)|zi|2 − Bi(x

′′)(z2i + z2i ) ≤ xp+i

for all i 6= j, and hence for all i as p > 1. When p = 1 the above inequality can be obtained
directly from ρδ1. We have verified (9.18). This shows that z ∈ Hǫ.

In view of (9.18)-(9.19), the boundary of Hǫ is the union ∪p
j=1Hǫ

j with Hǫ
j being defined

by

Aj(x
′′)|zj|2 −Bj(x

′′)(z2j + z2j) = xp+j ,

Ai(x
′′)|zi|2 − Bi(x

′′)(z2i + z2i ) ≤ xp+i, 1 ≤ i ≤ p, i 6= j;

y′′ = 0, xp+j ≤ ǫ 1 ≤ j ≤ p.

Therefore, we have proved the following theorem.

Theorem 9.6. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that the complex tangent of M is purely elliptic and has distinct eigenvalues at
the origin. There is a base of neighborhoods {Uj} of the origin in Cn which satisfies the
following: For each Uj, the local hull of holomorphy H(M ∩ Uj) of M ∩ Uj is foliated by
embedding complex submanifolds with boundaries. Furthermore, near the origin H(M ∩Uj)
is the transversal intersection of p real analytic submanifolds of dimension 3p with boundary.
The boundary of H(M ∩ Uj) contains M ∩ Uj; and two sets are the same if and only if
p = 1.

Remark 9.7. The proof shows that the hull of H(M∩Uj) is foliated by analytic polydiscs,
where an analytic polydisc is a biholomorphic embedding of closed unit polydisc in some
Ck with 1 ≤ k ≤ p.

10. Rigidity of product quadrics

The aim of this section is to prove the following rigidity theorem: Let us consider a higher
order analytic perturbation of a product quadric. If this manifold is formally equivalent
to the product quadric, then under a small divisors condition, it is also holomorphically
equivalent to it.

The proof goes as follows : Since the manifold is formally equivalent to the quadric, the
associated sets of involutions {τ1i} and {τ2i} are simultaneously linearizable by a formal
biholomorphism that commutes with ρ. In particular, σ1, . . . , σp, as defined by (9.1) and
(9.2), are formally linearizable and they commute pairwise. These are germs of biholo-
morphisms with a diagonal linear part. According to [Sto13][theorem 2.1], this abelian
family can be holomorphically linearized under a collective Brjuno type condition (11.32).
Furthermore, the transformation commutes with ρ. Then, we linearize simultaneously and
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holomorphically both τ1 := τ11◦· · ·◦τ1p and τ2 := τ21◦· · ·◦τ2p by a transformation that com-
mutes with both ρ and S, the family of linear parts of the σ1, . . . , σp. Finally, we linearize
simultaneously and holomorphically both families {τ1i} and {τ2i} by a transformation that
commutes with ρ, S, T1 and T2.

These last two steps will be obtained through a majorant method and the application
of a holomorphic implicit function theorem. This is done in Proposition 10.6. They first
require a complete description of the various centralizers and their associated normalized
mappings, i.e. suitable complements. This is a goal of Proposition 10.3.

Throughout this section, we do not assume that µ1, . . . , µp are non resonant in the sense
that µQ 6= 1 if Q ∈ Zp and Q 6= 0. In fact, we will apply our results to M which might be
resonant. However, we will retain the assumption that σ has distinct eigenvalues when we
apply the results to the manifolds.

We recall from (9.1) and (9.2), the definition of germs of holomorphic diffeomorphisms :

σi := τ1i ◦ τ2i, 1 ≤ i ≤ e∗ + h∗;(10.1)

σs := τ1s ◦ τ2(s∗+s),(10.2)

σs+s∗ := τ1(s+s∗) ◦ τ2s, e∗ + h∗ < s ≤ p− s∗.(10.3)

They satisfy

σ−1
i = ρσiρ, 1 ≤ i ≤ e∗ + h∗; σ−1

s+s∗ = ρσsρ, e∗ + h∗ < s ≤ p− s∗.

Recall the linear maps

S : ξ′j = µjξj, η′j = µ−1
j ηj ;

Sj : ξ
′
j = µjξj, η′j = µ−1

j ηj , ξ′k = ξk, η′k = ηk, k 6= j;(10.4)

Tij : ξ
′
j = λijηj , η′j = λ−1

ij ξj, ξ′k = ξk, η′k = ηk, k 6= j;(10.5)

ρ :

{
(ξ′e, η

′
e, ξ

′
h, η

′
h) = (ηe, ξe, ξh, ηh),

(ξ′s, ξ
′
s+s∗, η

′
s, η

′
s+s∗) = (ξs+s∗ , ξs, ηs+s∗, ηs).

(10.6)

We need to introduce notation for the indices to describe various centralizers regarding
T1j , Sj and ρ. We first introduce index sets for the centralizer of S, T1, ρ. We recall that
S and Ti denote the families {S1, . . . , Sp} and {Ti1, . . . , Tip}, respectively. Also, Ti =
Ti1 ◦ · · · ◦ Tip .

Let (P,Q) ∈ Np×Np and 1 ≤ j ≤ p. By definition, ξPηQej belongs to the centralizer of
S if and only if it commutes with each Si. In other words, ξPηQej ∈ C(S) if and only if

(10.7) µpk−qk
k = 1, ∀k 6= j; µ

pj−qj
j = µj .

Note that the same condition holds for ξQηPep+j to belong to C(S). This leads us to define
the set of multiindices

Rj := {(P,Q) ∈ N2p : µ
pj−qj
j = µj, µ

pi−qi
i = 1, ∀i 6= j}, 1 ≤ j ≤ p.
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We observe that if (P,Q) ∈ Rj, then

pj = qj + 1, j 6= h; pi = qi, ∀i 6= j, h;

λph−qh
h = ±1, h 6= j.

For convenience, we define for P = (pe, ph, ps, ps+s∗) and Q = (qe, qh, qs, qs+s∗)

ρ(PQ) := (qe, ph, ps+s∗, ps, pe, qh, qs+s∗, qs),

ρa(PQ) := (qe, ph, ps+s∗, ps),(10.8)

ρb(PQ) := (pe, qh, qs+s∗, qs),(10.9)

f ρ(PQ) := (f ◦ ρ)PQ =: fρ(PQ).

Hence, we have ξPηQ ◦ ρ = ξ
ρa(PQ)

ηρb(PQ) as well as ρ(PQ) = (ρa(PQ), ρb(PQ)).
According to (10.7) and equation (10.6) of ρ, the restriction of ρ to Rh is an involution,

which will be denoted by ρh. Moreover, ρ is a bijection ρs from Rs onto Rs+s∗. We define
an involution on Re by

ρe(PQ) := (ρb(PQ), ρa(PQ)).

Note that ρe is not a restriction of ρ, and ρs is not an involution either.
Next, we introduce sets of indices to be used to compute the centralizers on T1, T2, ρ. Set

Nj := Rj ∩ {(P,Q) : pi ≥ qi, ∀i 6= j}, 1 ≤ j ≤ p.

Note that when p = 1, Nj = Rj for j = e or h. Let us set

Ajk(P,Q) := max{pk, qk}, k 6= j, Ajj(P,Q) = pj ;

Bjk(P,Q) := min{pk, qk}, k 6= j, Bjj(P,Q) = qj .

We define a mapping

(Aj , Bj) : Rj → Nj

with

Aj := (Aj1, . . . , Ajp), Bj := (Bj1, . . . , Bjp).

We notice that, for (P,Q) ∈ Nj, Aj ◦ ρj(P,Q) = (pe, ph, ps+s∗, ps) and Bj ◦ ρj(P,Q) =
(qe, qh, qs+s∗, qs). In other words, on Nj for j = e or h, Aj ◦ ρj just interchanges the sth
and the (s+ s∗)th coordinates for each s, so does Bj ◦ ρj.

Finally, for (P,Q) ∈ Rj we define

νPQ :=

{∏
h′ λ

qh′−ph′
h′ , j 6= h,

λph−qh−1
h

∏
h′ 6=h λ

qh′−ph′
h′ , j = h;

(10.10)

ν+PQ :=

{∏
h′|qh′>ph′

λ
qh′−ph′
h′ , j 6= h;∏

h′ 6=h,qh′>ph′
λ
qh′−ph′
h′ , j = h.

(10.11)

Here e∗ < h′, h ≤ e∗ + h∗. Note that ν+PQ is only defined for (P,Q) ∈ Rj . For convenience,
we however define

νQP := νPQ, (P,Q) ∈ Rj .

If p = 1 we set ν+PQ = 1.
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Lemma 10.1. Let (P,Q) ∈ Rj. Then

νPQ = ±1, (P,Q) ∈ Rj , j 6= h; ν+PQ = ±1;(10.12)

νρe(PQ) = νPQ, (P,Q) ∈ Re; νρ(PQ) = νPQ, ∀(P,Q);(10.13)

ν+ρe(PQ) = νPQν
+
PQ, (P,Q) ∈ Re; ν+ρ(PQ) = ν+PQ, (P,Q) ∈ Rh ∪ Rs+s∗.(10.14)

Proof. From the definition ofRj , we have (λ
pi−qi
i )2 = µpi−qi

i = 1 for i = h′ in (10.10)-(10.11).

We also have µph−qh−1
h = 1 for terms in (10.10)-(10.11). Thus

λ
ph′−qh′
h′ = ±1, λph−qh−1

h = ±1.

Thus we obtain (10.12); the rest identities follow from the definition of ρe, ρ, and the above
identities. �

Lemma 10.2. For all multiindices (P,Q) ∈ Re ∪ Rh, we have

λρa(P,Q)−ρb(P,Q) = λQ−P , µρb−ρa = µP−Q,(10.15)

ξPηQ ◦ ρ ◦ T1 = λQ−P ξ
ρb(PQ)

ηρa(PQ),(10.16)

ξPηQ ◦ ρ ◦ S−1 = µP−Qξ
ρa(PQ)

ηρb(PQ).(10.17)

Proof. The first identity in (10.15) follows from (10.8)-(10.9) and the fact that λe and µe

are reals, λ−1
h = λh, ps = qs, and ps+s∗ = qs+s∗ . This gives us the first identity in (10.15),

and the second identity follows from the first. A direct computation shows that

ξPηQ ◦ ρ ◦ T1 = λ
ρa−ρb

ξ
ρb(PQ)

ηρa(PQ), ξPηQ ◦ ρ ◦ S−1 = µρb−ρaξ
ρa(PQ)

ηρb(PQ).

The result follows from (10.15). �

It is tedious to find necessary and sufficient conditions to describe the centralizer of
T1, T2, ρ, as the mappings in the families are non diagonal. There are different ways to
described these conditions too. To keep computation relatively simple, we do not aim a
minimum set of conditions. Of course, when we use the centralizers we will verify all the
sufficient conditions.

Proposition 10.3. Let S = {S1, . . . , Sp}, Ti = {Ti1, . . . , Tip} and ρ be given by (10.4)-
(10.6). Let ϕ = I + (U, V ) be a formal biholomorphic map that is tangent to the identity.

(i) ϕ ∈ C(S) if and only if

Uj,PQ = 0 = Vj,QP , ∀(P,Q) 6∈ Rj .(10.18)

Also, ϕ ∈ C(S, ρ) if and only if additionally

Uh,PQ = Uh,ρ(PQ), (P,Q) ∈ Rh; Us+s∗,PQ = U s,ρ(PQ), (P,Q) ∈ Rs+s∗ ;

Ve,QP = U e,ρ(PQ), (P,Q) ∈ Re;

Vh,QP = V h,ρ(QP ), (P,Q) ∈ Rh; Vs+s∗,QP = V s,ρ(QP ), (P,Q) ∈ Rs+s∗ .

(ii) ϕ ∈ C(S, T1) if and only if (10.18) holds and

(10.19) Vj,QP = λ−1
j λP−QUj,PQ, ∀(P,Q) ∈ Rj .
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Also, ϕ ∈ C(S, T1, ρ) if and only if in addition to (10.18) and (10.19)

Ue,PQ = νPQUe,ρe(PQ), (P,Q) ∈ Re;(10.20)

Uh,PQ = Uh,ρ(PQ), (P,Q) ∈ Rh;(10.21)

Us,PQ = U s+s∗,ρ(PQ), (P,Q) ∈ Rs.(10.22)

(iii) ϕ ∈ C(T1, T2) if and only if in addition to (10.18) and (10.19)

Uj,PQ = ν+PQUj,(Aj ,Bj)(P,Q), (P,Q) ∈ Rj \ Nj .(10.23)

Also, ϕ ∈ C(T1, T2, ρ) if and only if additionally

Uj,PQ = ν+PQU j,(Aj ,Bj)◦ρj (PQ), (P,Q) ∈ Nj, j = e, h;(10.24)

Us+s∗,PQ = ν+PQU s,(As,Bs)◦ρ(PQ), (P,Q) ∈ Ns+s∗.(10.25)

We remark that condition (10.23) holds trivially when (P,Q) ∈ Nj, in which case it
becomes Uj,PQ = Uj,PQ.

Proof. To simplify notation, we abbreviate

ρa = ρa(PQ), ρb = ρb(PQ), Aj = Aj(P,Q), Bj = Bj(P,Q).

Recall that λe = λe, λh = λ
−1

h and λs+s∗ = λ
−1

s . By definition,

Se = T1eT2e, Sh = T1hT2h, Ss = T1sT2(s+s∗), Ss+s∗ = T1(s+s∗)T2s.

In the proof, we will use the fact that Sj is reversible by both involutions in the composition
for Sj . In particular,

(10.26) T1jSjT1j = S−1
j , ∀j.

However, we have T2(s+s∗)SsT2(s+s∗) = S−1
s and T2sSs+s∗T2s = S−1

s+s∗ . For simplicity, we will
derive identities by using (10.26) and

(10.27) S−1
e = ρSeρ, S−1

h = ρShρ, S−1
s+s∗ = ρSsρ.

Finally, we need one more identity. Recall that

T1eT2j = T2jT1e, j 6= e; T1hT2j = T2jT1h, j 6= h;

T1sT2j = T2jT1s, j 6= s+ s∗; T1(s+s∗)T2j = T2jT1(s+s∗), j 6= s.

Therefore, for any j we have the identity

(10.28) T1SjT1 = S−1
j .

In what follows, we will derive all identities by using (10.26), (10.27) and (10.28), as well
as SiSj = SjSi, T1iT1j = T1jT1i and T2 = ρT1ρ.

(i) The centralizer of S is easy to describe. Namely, ϕ ∈ C(S) if and only if

Uj ◦ Sj = µjUj , Uj ◦ Sk = Uj , k 6= j,

Vj ◦ Sj = µ−1
j Vj , Vj ◦ Sk = Vj , k 6= j.
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For ϕρ = ρϕ, we need

Uh = Uh ◦ ρ, Us+s∗ = Us ◦ ρ,(10.29)

Ve = Ue ◦ ρ, Vh = Vh ◦ ρ, Vs+s∗ = Vs ◦ ρ.(10.30)

(ii) Suppose that ϕ ∈ C(S, T1). Then, it also belongs to C(S, T1). Hence, it satisfies
Vj = λ−1

j Uj ◦ T1.(10.31)

This implies (10.19).
Assume furthermore that ϕ ∈ C(S, T1, ρ). Eliminating Ve in (10.31) with (10.30), we

obtain

Ue = λeUe ◦ ρ ◦ T1.
According to (10.16), we obtain

Ue,ρbρa = λeλ
Q−P

U e,PQ.

If (P,Q) ∈ Re and since µe, µs, µs+s∗ are of norm greater than 1, then we have ps+s∗ = qs+s∗ ,

ps = qs and pe = qe + 1. By λeλ
Q−P

= νPQ = ν−1
PQ we get (10.20).

Using (10.31), we eliminate Vj from (10.30) and (10.29) to obtain

λ−1
h Uh ◦ T1 = λ−1

h Uh ◦ T1 ◦ ρ, λ−1
s+s∗Us+s∗ ◦ T1 = λ−1

s Us ◦ T1 ◦ ρ.
Since T1ρT1 = ρT2T1 = ρS−1, the previous equalities read

Uh = λ2hUh ◦ ρ ◦ S−1, Us+s∗ = λ2s+s∗Us ◦ ρ ◦ S−1.

We recall that λs+s∗ = λ
−1

s . According to (10.17), we obtain

Uh,ρ(PQ) = λ2hµ
P−QUh,PQ, Us+s∗,ρ(PQ) = λ2s+s∗µ

P−QU s,PQ.

If (P,Q) ∈ Rh, then µP−Q = µh = λ−2
h . If (P,Q) ∈ Rs, then µP−Q = µs = λ−2

s+s∗. The
result then follows.

(iii) Let ϕ ∈ C(T1, T2). Then, in particular, we have

Uj = Uj(T1k), k 6= j; Vj = λ−1
j Uj ◦ T1.

Let (P,Q) ∈ Rj \Nj. For each k such that qk > pk, we compose Uj by T1k. We emphasize
that when (P,Q) ∈ Rj , such a k is a hyperbolic index. Using the previous identity, we
obtain

(10.32) Uj,PQ = Lj,PQUj,AjBj

with

Lj,PQ :=
∏

k 6=j,pk<qk

λqk−pk
k .

By the definition of ν+PQ, we conclude

(10.33) Lj,PQ = ν+PQ, (P,Q) ∈ Rj .

If (P,Q) ∈ Nj, then (Aj, Bj) = (P,Q) and we have Lj,PQ = ν+PQ = 1, so that the relation
(10.32) just becomes the identity Uj,PQ = Uj,PQ.
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Assume now that ϕ ∈ C(T1, T2, ρ). In addition to the previous conditions, we have (10.29)
and (10.30). Hence, (10.20)-(10.22) and (10.32) lead to:

νPQU e,ρe(PQ) = Ue,PQ = Le,PQUe,AeBe , (P,Q) ∈ Re;

Uh,ρh(PQ) = Uh,PQ = Lh,PQUh,AhBh
, (P,Q) ∈ Rh;

U s+s∗,ρ(PQ) = Us,PQ = Ls,PQUs,AsBs , (P,Q) ∈ Rs.

Since ρe, ρh are involutions on Re and Rh, respectively, and since ρ is a bijection from Rs

onto Rs+s∗, we obtain

νρe(PQ)U e,PQ = Le,ρe(PQ)Ue,(Ae,Be)◦ρe(PQ), (P,Q) ∈ Re;

Uh,PQ = Lh,ρh(AB)Uh,(Ah,Bh)◦ρh(PQ), (P,Q) ∈ Rh(PQ);

Us+s∗,PQ = Ls,ρ(AB)Us,(As,Bs)◦ρ(PQ), (P,Q) ∈ Rs+s∗ .

By (10.33), we copy the values Lj,ρ(PQ) = ν+ρ(PQ) from (10.14). We have

ν+ρj(PQ) = ν+PQ, if j 6= e, and (P,Q) ∈ Rj ;

ν+ρe(PQ) = νPQν
+
PQ, if (P,Q) ∈ Re;

νρe(PQ) = νPQ, if (P,Q) ∈ Re.

Finally, we obtain

Uj,PQ = ν+PQU j,(Aj ,Bj)◦ρj(PQ), (P,Q) ∈ Rj , j = e, h;

Us+s∗,PQ = ν+PQUs,(As,Bs)◦ρ(PQ), (P,Q) ∈ Rs+s∗.

Therefore, we have derived necessary conditions for the centralizers. Let us verify that
the conditions are also sufficient. Of course, the verification for (i) is straightforward.
Furthermore, that ϕ = I + (U, V ) commutes with S1, . . . , Sp is equivalent to Uj,PQ =
Vj,QP = 0 for all (P,Q) ∈ Rj, which is also trivial in cases (ii) and (iii).

For (ii), (10.18) and (10.19) imply that ϕ commutes with T1. We verify that ϕ commutes

with ρ. Write ρϕρ = (Ũ , Ṽ ). Applying (10.19) and (10.20) each twice, we get for (P,Q) ∈
Re

Ũe,PQ = V e,ρ(PQ) = λ−1
e λρb−ρaU e,ρe(PQ) = λ−1

e λρb−ρaνPQUe,PQ.

We get Ũe,PQ = Ue,PQ. The identities for hyperbolic and complex components of ρϕρ = ϕ
are easy to verify.

For (iii), let us verify that (10.23), (10.18), and (10.19) are sufficient conditions for
ϕ ∈ C(T1, T2). By (10.19), we get ϕT1 = T1ϕ. Also, for ϕ ∈ C(T1) it remains to show that
for (P,Q) ∈ Rj

(10.34) (Uj ◦ T1k)PQ = Uj,PQ, k 6= j; (Uj ◦ T1j)QP = λjVj,QP .

We introduce (Pj, Qj) via ξ
PηQ ◦ T1j = λ

pj−qj
j ξPjηQj and also denote (Pj, Qj) by (P,Q)j.

We first remark that (10.23) also holds for (P,Q) ∈ Nj. Therefore, we will use (10.23)
for all (P,Q) ∈ Rj .



106

For k 6= j, h, we have (Pk, Qk) = (P,Q). Thus in this case we immediately get the first
identity in (10.34). Using (10.23) twice, we obtain for j 6= h

(Uj ◦ T1h)PQ = λph−qh
h Uj,(PQ)h = λph−qh

h ν+(PQ)h
Uj,(Aj ,Bj)(P,Q)

= λph−qhν+(PQ)h
ν+PQUj,PQ = Uj,PQ.

Combining with the identities which we have proved, we get (Uj ◦ T1j)QP = (Uj ◦ T1)QP =
(λjVj)QP for j 6= h. This gives us all the identities in (10.34) for (P,Q) ∈ Rj . These iden-
tities are trivial when (P,Q) is not in Rj . Therefore, we have shown that these conditions
are sufficient for ϕ ∈ C(T1, T2).

Finally, we need to verify that (10.18), (10.19), and (10.23)-(10.25) imply that ϕ and ρ
commute.

To shorten operations applied to multiindices, let us introduce the follow notation. For
(P,Q) ∈ Nj , define

ιj : (P,Q) 7→ (Aj, Bj) ◦ ρj(P,Q), j = e, h; ιs : (P,Q) 7→ (As, Bs) ◦ ρ(P,Q).
Then ιj is an involution on Nj when j = e, h, and it is a bijection from Ns+s∗ onto Ns

when j = s. Furthermore, the inverse of ιs is given by

ιs+s∗ : (P,Q) 7→ (As+s∗, Bs+s∗) ◦ ρ(P,Q).
Fix (P,Q) ∈ Re. By (10.23) and (10.24), we have

Ue,PQ = ν+PQUe,(Ae,Be)(P,Q) = ν+PQν
+
(Ae,Be)(P,Q)Ue,ιe◦(Ae,Be)(P,Q).(10.35)

We know that pj = qj when j 6= h or j does not equal the e (j can represent other elliptic
components). We know that pe = qe + 1 for the e. By treating case by case for ph ≥ qh or
ph < qh, i.e. 2

h∗ cases in total, we verify that

ιe ◦ (Ae, Be)(P,Q) = ιe(P,Q), ν+PQν
+
(Ae,Be)(P,Q) = λ−1

e λρb−ρaν+ρbρa .

This allows us to apply (10.19) and (10.23) to rewrite the right-hand side of (10.35) as
V e,ρ(PQ). We repeat a simpler procedure for Uh,PQ with (P,Q) ∈ Rh: We apply (Ah, Bh)
to the multi-index (P,Q) and use (10.24) once. We then check the multiindex and the
coefficient to conclude that the result is Uh,ρ(PQ). (Here we do not need apply (10.19).)
For Us+s∗,PQ with (P,Q) ∈ Rs+s∗ , we apply (As+s∗ , Bs+s∗) to (P,Q) and use (10.25) once.
The result is U s,ρ(PQ). With Uh,PQ = Uh,ρ(PQ) and Us+s∗,PQ = U s,ρ(PQ), we apply (10.19)

to obtain Vh,PQ = V h,ρ(PQ) and Vs+s∗,PQ = V s,ρ(PQ). This shows that ϕ commutes with ρ.
The proof is complete. �

We have described the conditions on centralizers. We now determine complements of
these conditions to define normalized mappings.

Definition 10.4. Let ϕ = I + (U, V ) be a formal mapping tangent to the identity.

(i) We say that ϕ is normalized with respect to S1, . . . , Sp if

Uj,PQ = 0 = Vj,QP , if (P,Q) ∈ Rj , ∀j.
Furthermore, ρϕρ is normalized w.r.t. S1, . . . , Sp if and only if ϕ is.
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(ii) We say that ϕ is normalized with respect to {S, T1, ρ} if

Uh,PQ = −Uh,ρ(PQ), ∀(P,Q) ∈ Rh;(10.36)

Us+s∗,PQ = −U s,ρ(PQ), ∀(P,Q) ∈ Rs+s∗ ;(10.37)

Ue,PQ = −νPQU e,ρe(PQ), ∀(P,Q) ∈ Re;(10.38)

Vj,QP = −λ−1
j λP−QUj,PQ, ∀(P,Q) ∈ Rj .(10.39)

(iii) We say that ϕ is normalized w.r.t. {T1, T2, ρ} if

Uj,PQ = −ν+PQUj,(Aj ,Bj)(P,Q), ∀(P,Q) ∈ Rj \ Nj ,(10.40)

Uj,PQ = −ν+PQU j,(Aj ,Bj)◦ρj(P,Q), ∀(P,Q) ∈ Nj , j = e, h;(10.41)

Us+s∗,PQ = −ν+PQU s,(As,Bs)◦ρ(P,Q), ∀(P,Q) ∈ Ns+s∗.(10.42)

Lemma 10.5. Let F be a formal map which is tangent to the identity. There exists a
unique formal decomposition F = HG−1 with G ∈ C(S, T1, ρ) (resp. C(T1, T2, ρ)) and H ∈
Cc(S, T1, ρ) (resp. Cc(T1, T2, ρ))). If F is convergent, then G and H are also convergent.

Proof. We will apply Lemma 4.8 as follows. Let Ĥ be the set of mappings in Cc

2(S, T1, ρ).

Note that Ĥ is a R-linear subspace of (M̂2
n)

n. We will define a R-linear projection π

from (M̂2
n)

n onto Ĥ such that π preserves the degree of F if F is homogeneous. We will

show that Ĝ = (I−π)Ĥ agrees with Cc

2(S, T1, ρ). We will derive estimates on π stated in
Lemma 4.8, from which we conclude the convergence of H,G.

The same argument will be applied to the second case of C(T1, ρ) and Cc(T1, ρ).

For the first case, let us define a projection π : (M̂2
n)

n → Ĥ . We decompose

(U, V ) = (U ′ + U ′′, V ′ + V ′′), π(U, V ) = (U ′, V ′).

We first define

U ′
j,PQ = Uj,PQ, V ′

j,PQ = Vj,PQ, U ′′
j,PQ = 0, V ′′

j,PQ = 0,

for (P,Q) 6∈ Rj . Suppose that (P,Q) ∈ Re. We have

Ue,PQ = U ′
e,PQ + U ′′

e,PQ,

Ue,ρe(PQ) = U ′
e,ρe(PQ) + U ′′

e,ρe(PQ).

According to (10.38) and (10.20), we need to seek solutions that satisfy

(10.43) U ′
e,PQ + νPQU

′
e,ρe(PQ) = 0, U ′′

e,PQ − νPQU
′′
e,ρe(PQ) = 0.

Hence, for (P,Q) ∈ Re we choose

U ′
e,PQ =

1

2
(Ue,PQ − νPQUe,ρe(PQ)), U

′′
e,PQ =

1

2
(Ue,PQ + νPQU e,ρe(PQ)).

We verify directly that the solutions satisfy (10.43) as follows:

U ′
e,PQ + νPQU

′
e,ρe(PQ) =

1

2
(Ue,PQ − νPQU e,ρe(PQ))

+
1

2
(νPQU e,ρe(PQ) − νPQνρe(PQ)U e,PQ) = 0.
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Here we have used the fact that ρe is an involution and νρe(PQ)νPQ = 1 from (10.13).
Analogously, for (P,Q) ∈ Rh, we achieve (10.36) and (10.21) by taking

U ′
h,PQ =

1

2
(Uh,PQ − Uh,ρh(PQ)), U ′′

h,PQ =
1

2
(Uh,PQ + Uh,ρh(PQ)).

For (P,Q) ∈ Rs+s∗ , we achieve (10.22) and (10.37) by taking

U ′
s+s∗,PQ =

1

2
(Us+s∗,PQ − Us,ρ(PQ)), U ′′

s+s∗,PQ =
1

2
(Us+s∗,PQ + U s,ρ(PQ)).

We have determined coefficients for U ′
j,PQ, U

′′
j,PQ with (P,Q) ∈ Rj . Let us set for (P,Q) ∈

Rj ,

V ′
j,QP = −λ−1

j λP−QU ′
j,PQ,(10.44)

V ′′
j,QP = λ−1

j λP−QU ′′
j,PQ.(10.45)

This fulfills the conditions on V ′
j and V ′′

j easily. Note that the last identity means that
(U ′′, V ′′) commutes with T1. We have obtained the required formal decomposition.

To prove the convergence, we start with

(10.46) λ−1
j λP−Q = νPQ = ±1

for (P,Q) ∈ Rj . So π is indeed an R-linear projection which preserves degrees. Since
|νPQ| = 1, we have that

|U ′
PQ| ≤ max

(P ′,Q′)
|UP ′Q′|.

Here (P ′, Q′) runs over all permutations of (P,Q) in 2p coordinates. The same holds for
V ′. Hence, with the notation of Lemma 4.8, we have

{π(U, V )}sym ≺ (U, V )sym.

The existence and uniqueness as well as the convergence also follow from Lemma 4.8.
We now consider the second case of C(T1, T2, ρ) by minor changes. Let us define a

projection π : ((M̂2
n)

n → Ĥ. Here Ĥ is the space associated with the mappings satisfying

the normalized conditions (10.40)-(10.42). Let Ĝ = (I−π)Ĥ. We decompose as above

(U, V ) = (U ′ + U ′′, V ′ + V ′′), π(U, V ) = (U ′, V ′).

We choose :

U ′′
j,PQ =

1

2
(U ′

j,PQ + ν+PQUj,(Aj ,Bj)(P,Q)), (P,Q) ∈ Rj \ Nj,(10.47)

U ′
j,PQ =

1

2
(U ′

j,PQ − ν+PQUj,(Aj ,Bj)(P,Q)), (P,Q) ∈ Rj \ Nj,(10.48)

U ′′
j,PQ =

1

2
(Uj,PQ + ν+PQU j,(Aj ,Bj)◦ρj (PQ)), (P,Q) ∈ Nj, j = e, h,(10.49)

U ′
j,PQ =

1

2
(Uj,PQ − ν+PQU j,(Aj ,Bj)◦ρj(PQ)), (P,Q) ∈ Nj, j = e, h,(10.50)

U ′′
s+s∗,PQ =

1

2
(Us+s∗,PQ + ν+PQU s,(As,Bs)◦ρ(PQ)), (P,Q) ∈ Ns+s∗,(10.51)

U ′
s+s∗,PQ =

1

2
(Us+s∗,PQ − ν+PQUs,(As,Bs)◦ρ(PQ)), (P,Q) ∈ Ns+s∗.(10.52)
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We set U ′′
j,PQ = 0 = V ′′

j,QP for (P,Q) 6∈ Rj . Let us verify that π(U, V ) = (U ′, V ′) is in Ĥ .
Recall that

ιe : (P,Q) → (Ae, Be) ◦ ρe(PQ) = (Ae, Be)(ρb(P,Q), ρa(P,Q)), (P,Q) ∈ Ne.

To verify (10.41) for j = e, via (10.50) we compute

U ′
e,PQ + ν+PQU

′
e,(Ae,Be)◦ρe(PQ) =

1

2
(Ue,PQ − ν+PQUe,ιe(PQ))

+
ν+PQ

2
(Ue,ιe(PQ) − ν+ιe(PQ)Ue,PQ) = 0.

Here we have used the fact that ιe : Ne → Ne is an involution and

νPQνιe(PQ) = 1, ν+PQν
+
ιe(PQ) = 1, (P,Q) ∈ Ne.

Recall that

ιj(P,Q) = (Aj , Bj)(ρa(PQ), ρb(PQ)), j = h, s.

We also know that ιh is an involution on Nh and ιs is a bijection from Ns+s∗ onto Ns.
Analogously, we verify (10.41) for U ′

h and (10.42) via (10.50) and (10.52). Note that
(P,Q) → (Aj , Bj)(P,Q) is a projection on Rj . Analogously, we verify (10.40) via (10.48).

This shows that π(U, V ) is in Ĥ. We can also verify that (U ′′, V ′′) = (I−π)(U, V ) satisfies
the conditions on the centralizer, i.e. it is in Ĝ.

As before, we have

|U ′
j,PQ|, |U ′′

j,PQ| ≤ max
i

max
(P ′,Q′)permutation of (P,Q)

|Ui,P ′Q′|.

Equations (10.44), (10.45) lead to the same inequality for V ′, V ′′. Hence, again the result
follows from Lemma 4.8. �

Proposition 10.6. Assume that the family of involutions {T1, T2, ρ} is formally lineariz-
able. Assume further that σ1, . . . , σp defined by (10.1)-(10.3), are linear.

(i) There is a biholomorphic mapping in the centralizer of {S, ρ} which linearizes τ1
and τ2.

(ii) Assume further that τ1 = T1 and τ2 = T2. Then {τ11, . . . , τ1p, ρ} is holomorphically
linearizable.

Proof. (i) Suppose that Ψ is a formal mapping satisfying

Ψ−1τ1jΨ = T1ij , Ψρ = ρΨ.

Then T1j = (LΨ) ◦ T1ij ◦ (LΨ)−1, and LΨ commutes with ρ. Replacing Ψ by Ψ ◦ LΨ−1,

we may assume that Ψ is tangent to the identity and ij = j. We decompose Ψ = Ψ1Ψ
−1
0 ,

where Ψ1 is normalized w.r.t. S, T1, ρ and Ψ0 is in the centralizer of S, T1, ρ. Since Ψ,Ψ0

commute with Sj and ρ, then Ψ1 commutes with Sj, ρ too. We now let Ψ denote Ψ1.
To be more specific, let us write

τ1 :

{
ξ′i = λiηi + fi(ξ, η) i = 1, . . . , p,

η′i = λ−1
i ξi + gi(ξ, η) i = 1, . . . , p,
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and

Ψ:

{
ξ′i = ξi + Ui(ξ, η) i = 1, . . . , p,

η′i = ηi + Vi(ξ, η) i = 1, . . . , p.

Let us write that Ψ conjugates τ1 to

T1 : ξ
′
i = λiηi, η′i = λ−1

i ξi, i = 1, . . . , p.

We have Ψ ◦ T1 = τ1 ◦Ψ; that is

λiVi − Ui ◦ T1 = −fi ◦Ψ(ξ, η) i = 1, . . . , p,(10.53)

λ−1
i Ui − Vi ◦ T1 = −gi ◦Ψ(ξ, η) i = 1, . . . , p.(10.54)

Since Ψ commutes with each Sj, then Uj,PQ = Vj,QP = 0 for (P,Q) 6∈ Rj . Let us find
an equation involving only the unknown Ue, Uh, Vh, Us, Vs. By the reality conditions, they
determine U, V completely.

Since the normalized mapping Ψ commutes with ρ, we have

Uh,PQ = Uh,ρ(PQ), (P,Q) ∈ Rh, U(s+s∗),PQ = U s,ρ(PQ), (P,Q) ∈ Rs+s∗ ,

Ve,QP = Ue,ρe(QP ), (P,Q) ∈ Re,(10.55)

Vh,QP = V h,ρ(PQ), (P,Q) ∈ Rh, Vs+s∗,QP = V s,ρ(QP ), (P,Q) ∈ Rs+s∗ .

Let us combine the above identities with the (first two) normalizing conditions

Uh,PQ = −Uh,ρ(PQ), (P,Q) ∈ Rh,

Us+s∗,PQ = −U s,ρ(PQ), (P,Q) ∈ Rs+s∗ ,

Ue,PQ = −νPQUe,ρe(PQ), (P,Q) ∈ Re,

Vj,QP = −λ−1
j λP−QUj,PQ, (P,Q) ∈ Rj .

Recall that Ψ belongs to the centralizer of S so that Uj,PQ = Vj,QP = 0 for (PQ) 6∈ Rj and
all j. We then immediately see that Uh, Us, Us+s∗, Vh, Vs, Vs+s∗ are 0.

We now use the two last conditions to determine Ue, Ve and majorize them. By (10.54),
(10.55) and (10.46), we obtain

Ue,PQ − νPQU e,ρe(QP ) = −λe{ge ◦Ψ}PQ.

Using (10.38), we obtain that, for (P,Q) ∈ Re,

Ue,PQ = −1

2
λe{ge ◦Ψ}PQ,

as well as

Ve,QP =
1

2
νPQλe{ge ◦Ψ}PQ.

Therefore, we have

|Ve,QP |, |Ue,PQ| ≤ C |{ge ◦Ψ}PQ| .
In view of (4.12), we then have

ψsym ≺ Cgsym ◦Ψsym = gsym ◦ (Isym + ψsym).

Therefore, ψsym is convergent at the origin and so is Ψ.
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(ii) Assume now that σ = S, τ1 = T1, τ2 = T2 are linear. Suppose that Ψ linearizes the
{τij} and commutes with ρ. We decompose Ψ = Ψ1Ψ

−1
0 with Ψ1 being normalized w.r.t.

S, T1, T2, ρ and with Ψ0 being in the centralizer of S, T1, T2, ρ. From (i), we know that Ψ
is diagonal and Ψ−1τijΨ = Tij . We have

Ψ−1
1 τijΨ1 = Ψ−1

0 TijΨ0 = Tij.

Hence, Ψ1 linearizes the τij and is normalized w.r.t S, T1, T2, ρ. Since Ψ,Ψ1 commute with
S and ρ, so does Ψ1. Let us denote Ψ = Ψ1 and let us write Φ = I + (U, V ).

We recall

T1j :





ξ′j = λjηj

η′j = λ−1
j ξi

ξ′k = ξk, k 6= j

η′k = ηk, k 6= j,

τ1j :





ξ′j = λjηj + fjj(ξ, η)

η′j = λ−1
j ξi + gjj(ξ, η)

ξ′k = ξk + fjk(ξ, η), k 6= j

η′k = ηk + gjk(ξ, η), k 6= j.

Since we have Ψ ◦ T1j = τ1j ◦Ψ, we obtain the following relations

(10.56)





λjVj − Uj ◦ T1j = −fjj ◦Ψ
λ−1
j Uj − Vj ◦ T1j = −gjj ◦Ψ
Uk − Uk ◦ T1j = −fjk ◦Ψ, k 6= j

Vk − Vk ◦ T1j = −gjk ◦Ψ, k 6= j.

According to (10.19), the left-hand side of the two first equations are zero. We shall use
the two last ones to obtain estimates. According to the normalizing conditions, we find
as above, that Uh, Us, Us+s∗, Vh, Vs, Vs+s∗ are 0. Thus we only have to show that Ue, Ve are
convergent.

In the second last identity in (10.56) with k = e, let us compose on the right by all T1j
with j 6= e. We have for j′ 6= e and j 6= e,

Ue ◦ T1j − Ue ◦ T1j ◦ T1j′ = −fj,e ◦Ψ ◦ T1j′ = fj,e ◦ τ1j′ ◦Ψ.
Repeating this for all T1j except for j = e and taking summation, we get

Ue − Ue ◦ T−1
1e ◦ T1 = −

{
p∑

i=1

fj,e ◦ τ11 · · · ◦ τ̂1e ◦ · · · ◦ τ1i
}

◦Ψ.

Here τ̂1e means that τ1e is not included in composition if i ≥ e. Thus

Ue ◦ T1e − Ue ◦ T1 = −
{

p∑

i=1

fj,e ◦ τ11 · · · ◦ τ̂1e ◦ · · · ◦ τ1i
}

◦ τ1e ◦Ψ.

Combining with the first identity in (10.56) and eliminating Ue ◦ T1e, we obtain

λeVe − Ue ◦ T1 = f̃e ◦Ψ
for a convergent power series f̃e. The normalizing condition (10.39) says that λQ−P

1 Ue,PQ =
−λeVe,QP for (P,Q) ∈ Re. We obtain

Ve,QP =
1

2λe
{f̃e ◦Ψ}QP ≺ 1

2λe
{f̃e ◦Ψ}QP , (P,Q) ∈ Re.
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If (P,Q) is not in Re, the above still holds as Ve,QP = 0.

Indeed this is the key point, if Uj,PQ 6= 0 then (P,Q) ∈ Rj so that µ
pj−qj
j = µj and

µpℓ−qℓ
ℓ = 1, ℓ 6= j. As we have observed and since j 6= h (j is actually e), this implies that
pj = qj + 1 and pℓ = qℓ, ℓ 6= j, h. Since the hyperbolic λh are of modulus one, we have
either |λP−Q| = λe. Thus

|Ue,PQ| = |Ve,QP | ≤
1

2λe
{f̃e ◦Ψ}QP ≤ 1

2λe
{f̃e ◦Ψsym}PQ.

We obtain

ψsym ≺ C
(
f̃ sym ◦ (Isym + ψsym

)
.

Therefore, Ue, Ve are convergent at the origin since they are majorized by a solution of an
analytic implicit function theorem. �

Remark 10.7. The results obtained so far in this section does not require that σ has
distinct eigenvalues. To apply the results to the real manifolds, we impose it again as in
previous sections.

Theorem 10.8. Let M be a germ of analytic submanifold that is a third order perturba-
tion of a product quadric Q in C2p. Suppose that M , i.e. its σ, has n distinct eigenvalues.
Suppose that M is formally equivalent to the product quadric Q. Suppose that each hyper-
bolic component has an eigenvalue µh which is either a root of unity or satisfies the Brjuno
condition (11.32). Then M is holomorphically equivalent to the product quadric.

Proof. We first apply Theorem 11.8 with I = 0 ([Sto13]) that linearize simultaneously and
holomorphically the σ1, . . . , σp. Note that the small divisor condition in this special case is
equivalent that each µh is either a root of unity or a Brjuno number. Then, we apply suc-
cessively the two assertions of Proposition 10.6. Hence, in good holomorphic coordinates,
{τ11, . . . , τ1p, ρ} are linear. Then, by Proposition 2.10, the manifold is holomorphically
equivalent to the quadric. �

We present two convergence proofs for Theorem 9.3: one is based on normalization for
each member of the family {σ1, . . . , σp}, and another is based on simultaneous normaliza-
tion for the whole family. Besides the simultaneous linearization in a more general frame
work [Sto13] used above, the first approach by linearizing the family {σ1, . . . , σp} one by
one is still valid. Here it is crucial that the linear maps of {σ1, . . . , σp} have a very simple
structure. Indeed, let φ1 be a holomorphic mapping that linearizes σ1; the existence of such
a convergent φ1 is ensured [Rüs02]. With the transformation by φ1, we may assume that

σ1 is the linear Ŝ1. Let φ2 be the unique holomorphic mapping that is normalized w.r.t. Ŝ2

and linearizes σ2. Since Ŝ1 and σ2 commute, we verify that Ŝ1φ2Ŝ
−1
1 is normalized w.r.t.

Ŝ2 and linearizes σ2. Then φ2 commutes with Ŝ1 and linearizes σ2. Inductively, we find a
biholomorphic mapping that linearizes all σ1, . . . , σp. The remaining argument is as in the
proof of the theorem.

11. Existence of attached complex manifolds

We are interested in complex submanifolds K in C2p that intersect the real submanifold
M at the origin. Recall thatM has real dimension 2p. Generically, the origin is an isolated
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intersection point if dimK = p. Let us consider the situation when the intersection has
dimension p. Without further restrictions, there are many such complex submanifolds; for
instance, we can take a p-dimensional totally real and real analytic submanifold K1 of M .
We then let K be the complexification of K1. To ensure the uniqueness or finiteness of the
complex submanifolds K, we therefore introduce the following.

Definition 11.1. Let M be a formal real submanifold of dimension 2p in Cn. We say that
a formal complex submanifold K is attached to M if K ∩M contains at least two germs of
totally real and formal submanifolds K1, K2 of dimension p that intersect transversally at
the origin. Such a pair {K1, K2} are called a pair of asymptotic formal submanifolds of M .

Before we present the details, let us describe the main steps to derive the results. We first
derive the results at the formal level. We then apply the results of [Pös86] and [Sto13]. The
proof of the co-existence of convergent and divergent attached submanifolds will rely on a
theorem of Pöschel on stable invariant submanifolds and Siegel’s small divisor technique
used in the proof of the divergent normal form in section 6. However, the argument for the
divergent part will be simpler.

We now describe the formal results. When p = 1 and M has a non-resonant hyperbolic
complex tangent, it admits a unique attached formal holomorphic curve [Kli85]. When
p > 1, new situations arise. First, we show that there are obstructions to attach formal
submanifolds. However, the formal obstructions disappear when M admits the maximum
number of deck transformations and M is non-resonant. These two conditions allow us to
express M in an equivalent form (4.4). This equivalent form for M , which has not been
used so far, will play an essential role in our proof for p > 1.

We will consider a real submanifold M which is a higher order perturbation of a non-
resonant product quadrics. By adapting the proof of Klingenberg [Kli85] to the manifoldM
(4.4), we will show the existence of a unique attached formal submanifold for a prescribed
non-resonance condition. As in [Kli85], we also show that the complexification of K in M
is a pair of invariant formal submanifolds K1,K2 of σ. Furthermore, K is convergent if and
only if K1 is convergent.

Let us first recall the values of the Bishop invariants. The types of the invariants play
an important role for the existence and the convergence of attached formal complex sub-
manifolds. From (3.34), and (3.36), we recall that

γe =
1

λe + λ−1
e

, γh =
1

λh + λh
, γs =

1

1 + λ−2
s

,(11.1)

0 < γe < 1/2, γh > 1/2, γs ∈ (1/2,∞) + i(0,∞), γs+s∗ = 1− γs.(11.2)

As in Lemma 3.2, we normalize

λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ
−1

s ;(11.3)

arg λh ∈ (0, π/2), arg λs ∈ (0, π/2).(11.4)

Recall that µj = λ2j . By (11.1), we have

(11.5) γ2j =
µj

(1 + µj)2
, j = e, h; γsγs+s∗ =

µs

(1 + µs)2
.

We first verify the following.
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Lemma 11.2. Let γj, λj be given by (11.1)-(11.4). Let µj = λ2j . Assume that µ1, µ
−1
1 , . . .,

µ−1
p are distinct. Then

γ2e , γ2h, γsγs+s∗, γsγs+s∗

are distinct p numbers. The latter is equivalent to γ1, . . . , γp being distinct.

Proof. Note that x−1+x and x−1 decrease strictly on (0, 1). So γ2e , γ
2
h are distinct. We also

have

γsγs+s∗ = γs − γ2s .

If a, b are complex numbers, then a− a2 = b − b2 if and only if a = b or a + b = 1. Since
γs is not real, then γsγs+s∗ are different from γ2e and γ2h. For any distinct complex numbers
a1, a2 in (0,∞) + i(1/2,∞). We have 1− a2 6= 1− a1, a1, a2. The lemma is proved. �

Let us first investigate the numbers of pairs of formal asymptotic submanifolds and
attached formal submanifolds.

Lemma 11.3. LetM be a formal submanifold that is a third order perturbation of a product
quadric Q in C2p. Assume that the associated S of Q has distinct eigenvalues

µ1, . . . , µp, µ−1
1 , . . . , µ−1

p .

(i) If M admits an attached formal submanifold, its CR singularity has no elliptic
component.

(ii) If Q has no elliptic components, then Q has at least 2h∗+s∗−1 pairs of asymptotic
totally real and real analytic submanifolds and all of them are contained in a single
attached complex submanifold.

(iii) There is no formal submanifold attached to

M : z3 = (z1 + 2γ1z1)
2 + (z2 + 2γ2z2)

3, z4 = (z2 + 2γ2z2)
2.

Here M has a hyperbolic complex tangent at the origin.
(iv) Assume that M has no elliptic component and it admits the maximum number of

formal deck transformations. Let

(11.6) ν = µǫ = (µǫ1
1 , . . . , µ

ǫp
p ), ǫj = ±1, ǫs+s∗ = ǫs.

Suppose that

(11.7) νQ 6= ν−1
j , ∀Q ∈ Np, |Q| > 0, 1 ≤ j ≤ p.

Then M admits a unique pair of asymptotic formal submanifolds K1, K2 such that
each Ki is defined by z′ = ρi(z

′) for a formal anti-holomorphic involution ρi and
the linear part of ρ−1

2 ρ1 has eigenvalues ν1, . . . , νp. In particular, if (11.7) holds for
each ν of the form (11.6) then M admits exactly 2h∗+s∗−1 pairs of asymptotic formal
submanifolds.

Proof. (i) Let M be defined by

zp+j = Qj(z
′, z′) +Hj(z

′, z′), 1 ≤ j ≤ p

where Hj(z
′, z′) = O(|z′|3) and each Qj is quadratic. Let {K1, K2} be a pair of asymptotic

formal submanifolds of M . We know that K1, K2 are tangent to M at the origin. Let
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K ′
i be the projection of Ki onto the z′-subspace. Since T0M is a p-dimensional complex

subspace, then K ′
1, K

′
2 are still totally real. Let K ′

1 be defined by

K ′
1 : z

′ = Az′ +R(z′), AA = I, R(z′) = O(2)

such that ρ1(z
′) := Az′ + R(z′) defines anti-holomorphic formal involutions. Let K2 be

the (formal) fixed-point set of the anti-holomorphic involution ρ2(z
′) = Ãz′ + R̃(z′) with

R̃(z′) = O(2). Then K1, K2 intersect transversally at the origin if and only if

det(Ã−A) 6= 0.

Let us define holomorphic mappings

ρi(z
′) := ρi(z′), i = 1, 2.

Then K is given by

z′′p+j = Qj(z
′, ρi(z

′)) +Hj(z
′, ρi(z

′)), i = 1, 2, j = 1, . . . , p.

The two equations agree, if and only if

(11.8) Qj(z
′, ρ1(z

′)) +Hj(z
′, ρ1(z

′)) = Qj(z
′, ρ2(z

′)) +Hj(z
′, ρ2(z

′)), 1 ≤ j ≤ p.

Recall that

Qj(z
′, z) = (zj + 2γjzj)

2, j = e, h;

Qs(z
′, z′) = (zs+s∗ + 2γs+s∗zs)

2,

Qs+s∗(z
′, z′) = (zs + 2γszs+s∗)

2.

Let us first find necessary conditions on the linear parts of ρi for (11.8) to be solvable. Let

w′ = Az′ and w̃′ = Ãz′. Comparing the quadratic terms in (11.8) for i = 1, 2, we see that

(zj + 2γjwj)
2 = (zj + 2γjw̃j)

2,

(zs+s∗ + 2γs+s∗ws)
2 = (zs+s∗ + 2γs+s∗w̃s)

2,

(zs + 2γsws+s∗)
2 = (zs + 2γsw̃s+s∗)

2.

Here γs+s∗ = 1− γs, by (11.2). For each j, wj 6= w̃j. Otherwise, the fixed points of ρ1 and
ρ2 do not intersect transversally. Therefore, the above 3 identities can be written as

zj + 2γjwj = −(zj + 2γjw̃j),

zs+s∗ + 2γs+s∗ws = −(zs+s∗ + 2γs+s∗w̃s),

zs + 2γsws+s∗ = −(zs + 2γsw̃s+s∗).

In the matrix form, we get Ã = −γ−1 −A with

γ :=




γe∗ 0 0 0

0 γh∗
0 0

0 0 0 γs∗

0 0 γ̃s∗ 0


 .
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Here γ̃s∗ = Is∗ − γs∗ . Let us express in block matrices

A =




Ae∗e∗ Ae∗h∗ Ae∗s∗ Ae∗(2s∗)

Ah∗e∗ Ah∗h∗ Ah∗s∗ Ah∗(2s∗)

As∗e∗ As∗h∗ As∗s∗ As∗(2s∗)

A(2s∗)e∗ A(2s∗)h∗ A(2s∗)s∗ A(2s∗)(2s∗)




where the diagonal block matrices are of sizes e∗×e∗, h∗×h∗, s∗×s∗, and s∗×s∗, respectively.
When AA = I, for ÃÃ = I we need γ−1 +A+ γ−1Aγ = 0. Recall that γ21 , . . . , γ

2
e∗+h∗

are
real and distinct. It is easy to see that Ae∗h∗ = 0, Ah∗e∗ = 0, and Ae∗e∗ ,Ah∗h∗ are diagonal.
Also,

(11.9) Ae∗e∗ +Ae∗e∗ = −γ−1
e∗ , Ah∗h∗ +Ah∗h∗ = −γ−1

h∗
.

In block matrices, we obtain

γ−1
j Aj(2s∗)γ̃s∗ = −Ajs∗, γ̃−1

s∗ A(2s∗)jγj = −As∗j ;(11.10)

γ−1
j Ajs∗γs∗ = −Aj(2s∗), γ−1

s∗ As∗jγj = −A(2s∗)j ;(11.11)

γ̃−1
s∗ A(2s∗)(2s∗)γ̃s∗ = −As∗s∗, γ̃−1

s∗ A(2s∗)s∗γs∗ = −As∗(2s∗) − γ̃−1
s∗ ,(11.12)

γ−1
s∗ As∗(2s∗)γ̃s∗ = −A(2s∗)s∗ − γ−1

s∗ , γ−1
s∗ As∗s∗γs∗ = −A(2s∗)(2s∗).(11.13)

In the first 4 equations, we have j = e∗, h∗. Note that the last two equations are of the
form (11.12).

By Lemma 11.2, we know that γ2e , γ
2
h, and γsγs+s∗ are distinct. Thus, Ajs∗ = Aj(2s)∗ = 0

and As∗j = A(2s∗)j = 0 for j = e∗, h∗. Since γsγs+s∗ is different from all γs+s∗γs, then

As∗s∗ = A(2s∗)(2s∗) = 0 while As∗(2s∗), A(2s∗)s∗ are diagonal. Now AA = I implies that

(11.14) Ae∗e∗Ae∗e∗ = I, Ah∗h∗Ah∗h∗ = I, As∗(2s∗)A(2s∗)s∗ = I.

Combining the first identities in (11.9) and (11.14), we know that the diagonal eth element
ae of Ae∗e∗ must satisfy

2ae = γ−1
e , a2e = 1.

Since 0 < γe < 1/2, there is no such solution ae if e∗ > 0. We have verified (i).
Note that γ−1

h = λh + λh with |γh| = 1. For the hyperbolic components, by the second
identities in (11.9) and (11.14), one set of solutions is given by

Ah∗h∗ = −λh∗ Ãh∗h∗ = −λ−1
h∗
.

For the complex components, we use As∗(2s∗)A(2s∗)s∗ = I and multiply both sides of the
second identity in (11.12) by As∗(2s∗). The (s− s∗)th diagonal element as must satisfy

as(as + γ̃−1
s ) + γ̃−1

s γs = 0.

By the last identity in (11.5), we get

a2s + (1− µs)as + µs = 0.

Hence, as = −1 or as = −µs. We get one set of solutions

A(2s∗)s∗ = −I, As∗(2s∗) = −I,

Ã(2s∗)s∗ = −µ−1
s∗ , Ãs∗(2s∗) = −µs∗ .
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There are exactly 2h∗+s∗−1 solutions for A, Ã since we can only determine the pairs

{Ah∗h∗ , Ãh∗h∗}, {As∗(2s∗),As∗(2s∗)}.
Note that

Ã−1A = diag ν,(11.15)

ν = µǫ = (µǫ1
1 , . . . , µ

ǫp
p ), ǫ2j = 1, νs+s∗ = ν−1

s ,(11.16)

where there are 2h∗+s∗−1 distinct combinations. Thus, we get exactly 2h∗+s∗−1 pairs {K1
ǫ , K

2
ǫ }

of asymptotic linear submanifolds indexed by ǫ = (ǫ1, . . . , ehs+s∗) with ǫ
2
j = 1 for the prod-

uct quadric. We may restrict to ǫ1 = 1. The attached formal submanifolds associated to
these linear asymptotic submanifolds are unique and it is given by

zp+h = (1− 4γ2h)z
2
h,

zp+s = (1− 2γs+s∗)
2z2s+s∗ ,

zp+s+s∗ = (1− 2γs)
2z2s .

This finishes the proof of (ii).
(iii). Let us continue the computation for the perturbations. We have determined linear

parts of antiholomorphic involutions ρi. We expand components of R(z′) as

Rj(z
′) =

∞∑

k=2

Rj;k(z
′), 1 ≤ j ≤ p.

Here Rj;k are homogeneous terms of degree k. We expand R̃j analogously. Suppose that

terms of order up to k−1 in Rj , R̃j have been determined. For the hyperbolic components,
we need to solve the equations

4
√

1− 4γ2hzh(Rh;k(z
′) + R̃h;k(z

′)) = · · · ,(11.17)

where the right-hand side has been determined. Indeed, let us compute the (k + 1)-jet of
(11.8). We obtain

(1− 2γjλj)
2z2j + 2(1− 2γjλj)zjRj;k = (1− 2γjλ

−1
j )2z2j + 2(1− 2γjλ

−1
j )zjR̃j;k +R

where R is polynomial that depends on R̃j;l, Rj;l, l < k. Since (1−2γjλj) = −(1−2γjλ
−1
j ),

we obtain (11.17).
When p > 1, the system of equations (11.17) cannot be solved even formally, unless the

right-hand side is divisible by zh. When p = 1, the equation (11.17) is clearly solvable.
In fact, under the non-resonant condition on µ1, the formal anti-holomorphic involutions
{ρ1, ρ2} can be uniquely determined.

Let us keep the above notation and compute for the example stated in (iii). We need to
solve

(z1 + 2γ1w̃1)
2 + (z2 + 2γ2w̃2)

3 = (z1 + 2γ1w1)
2 + (z2 + 2γ2w2)

3,

(z2 + 2γ2w̃2)
2 = (z2 + 2γ2w2)

2.
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Again w̃2 −w2 cannot be identically zero. Thus w̃2 = −w2 − γ−1
2 z2. Then we need to solve

(z1 + 2γ1w̃1)
2 = (z1 + 2γ1w1)

2 + 2(z2 + 2γ2w2)
3.

By (ii), we know that w1 = λ1z1 +R1(z
′) and w2 = λ2z2+R2(z

′) with Ri(z
′) = O(2). Also

w̃1 = λ1z1 + R̃1(z
′) and w̃2 = λ2z2 + R̃2(z

′). Comparing the cubic terms implies that z1
must divide 2(1 + 2γ2λ2)

3z32 , which is a contradiction.
(iv) For a general M , following Klingenberg [Kli85] we reformulate the problem by con-

sidering the following equations

h(z′) = q(z′, ρi(z
′)) +H(z′, ρi(z

′)), i = 1, 2,

h∗(ρi(z
′)) = q(ρi(z

′), z′) +H(ρi(z
′), z′), i = 1, 2.

Here h, h∗, ρi are unknowns. Initially, we only require that ρ1, ρ2 be arbitrary biholomorphic
maps, except their linear parts match with z′ → Az′ and z′ → Ãz′. This will ensure that
the solutions ρi are unique and they are involutions.

As demonstrated in (iii), in general there is no formal submanifold attached to M . We
now assume that M admits the maximum number of deck transformation. By Lemma 2.8
and Proposition 2.10 we know that in suitable holomorphic coordinates, M is given by

zp+j =
(∑

h

bjh(zh + 2γhzh) +
∑

s

bjs(zs + 2γszs+s∗)

+
∑

s

bj(s+s∗)(zs+s∗ + 2γs+s∗zs) + Ej(z, z)
)2
, 1 ≤ j ≤ p.

Here (bjk) is invertible and Ej(z, z) = O(2). This special form, which has not played
significant roles until now, will allow us removing the obstruction to formal solutions ρi.

For the proof of our result, we will restrict (bjk) to be the identity matrix. Let M be
defined by

zp+h = (zh + 2γhzh + Ej(z
′, z′))2,

zp+s = (zs + 2γszs+s∗ + Ep+s(z
′, z′))2,

zp+s+s∗ = (zs+s∗ + 2γs+s∗zs + Ep+s+s∗(z
′, z′))2.

We fix linear parts of ρi such that

ρ1(z
′) = Az′ +R(z′), ρ2(z

′) = Ãz′ + R̃(z′).

For i = 1, 2 we then need to solve w, w̃ from

zh + 2γhρih + Eh(z
′, ρi) = (−1)ifh,(11.18)

zs + 2γsρis+s∗ + Ep+s(z
′, ρi) = (−1)ifs,(11.19)

zs+s∗ + 2γs+s∗ρis + Ep+s+s∗(z
′, ρi) = (−1)ifs+s∗,(11.20)

2γhzh + ρih + Eh(ρi, z
′) = (−1)if ∗

h(ρi),(11.21)

2γszs+s∗ + ρis + Ep+s(ρi, z
′) = (−1)if ∗

s (ρi),(11.22)

2γs+s∗zs + ρis+s∗ + Ep+s+s∗(ρi, z
′) = (−1)if ∗

s+s∗(ρi).(11.23)
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Suppose that we have already determined terms of Rj , R̃j, fj, f
∗
j of order < k. We have

ρ1(z
′) = Az′ +R(z′), ρ−1

1 (z′) = A−1z′ −A−1R′(A−1z′),

where the terms in R′ −R of order k depend only on terms of R of order < k. Recall that
Ã−1A = diag ν is given by (11.15). For terms of order k, by eliminating fj , f

∗
j , we therefore

need to solve

RjQ + R̃jQ = · · ·(11.24)

where the dots denote terms which have been determined. We compose from right in the
last 3 identities for i = 1 (resp. i = 2) by ρ−1

1 (resp ρ−1
2 ). From the new identities, we

obtain
A−1R(A−1z′) + Ã−1R̃(Ã−1z′) = · · · .

Recall that the linear part of Ã−1A is diag ν with ν := νǫ. Thus we need to solve (11.24)
and

ν−1
j Rj,Q + νQR̃j,Q = · · · .

The equation admits a unique solution as

(11.25) νQ 6= ν−1
j , Q ∈ Np, |Q| > 1, 1 ≤ j ≤ p.

This shows that Rj,Q, R̃j,Q are uniquely determined.
To verify that ρi are involutions, we compose by ρ−1

i from right in (11.18)-(11.20), and
we apply complex conjugate to the coefficients of the new identities. This results in (11.21)-

(11.23) in which (ρi, f
∗
j ) are replaced by ((ρi)

−1, f i). We can also start with (11.21)-(11.23)
and apply the same procedure to get (11.18)-(11.20), in which (ρi, fi) are replaced by

((ρi)
−1, f

∗
i ). By the uniqueness of the solutions, we conclude that (ρi)

−1 = ρi as both sides

have the same linear part. We now have (ρi)
−1(z′) = ρi(z′). Hence z

′ = ρi(ρi(z
′)) = ρ2i (z

′).
This shows that each ρi is an involution. �

We remark that given complex numbers

µ1, . . . , µh∗, µh∗+1, . . . , µh∗+s∗, µh∗+s∗+s = µ−1
h∗+s

with |µh| = 1. Let ν = µǫ be given by (11.6). The set of ν that violate (11.7) is contained
in the union of the sets defined by νQ = ν−1

j . Here Q ∈ Np, |Q| > 1 and 1 ≤ j ≤ p. For
each Q, j, the above equations define an algebraic set of codimension at least 1 in the space
(S1)h∗ ×Cs∗ .

We now can prove the following theorem.

Theorem 11.4. Let M be a higher order perturbation of a product quadric. Assume that
in (ξ, η) coordinates, its associated σ has a linear part given by the diagonal matrix with
diagonal entries µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p . Let ν = νe be of the form (11.16) and satisfy
(11.25). Then M admits a unique pair of asymptotic submanifold {Kǫ

1, K
ǫ
2} such that the

complexification of Kǫ
1 in M is an invariant formal submanifold Hǫ of σ that is tangent to

(11.26) Hǫ =
( ⋂

ej=1,1≤j≤p

{ξj = 0}
)
∩
( ⋂

ei=−1,1≤i≤p

{ηi = 0}
)
.

Furthermore, the complexification of Kǫ
2 equals τ1Hǫ.
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Proof. We will follow Klingenberg’s approach for p = 1, by using the deck transformations.
Here we assume that M admits the maximum number of deck transformations. Suppose
that K is an attached formal complex submanifold which intersects with M at two totally
real formal submanifolds K1, K2. We first embed K1 ∪K2 into M as M is embedded into
M. Let Ki be the complexification of Ki in M. Since ρ fixes Ki pointwise, then ρKi = Ki.

We want to show that τ1(K1) = K2; thus Ki is invariant under σ. Recall that Ki is
defined by

(11.27) ρi(z
′) = w′.

On K1, by (11.18) and (11.20) we have L̃(z′, w′) +E(z′, w′) = −f(z′). The latter defines a
complex submanifold of dimension p. Thus it must be K1. On M,

(L̃j(z
′, w′) + Ej(z

′, w′))2 = zp+j

are invariant by τ1. Thus each L̃j(z
′, w′)+Ej(z

′, w′) is either invariant or skew-invariant by
τ1. Computing the linear part, we conclude that they are all skew-invariant by τ1. Hence
τ1(K1) is defined by

L̃(z′, w′) + E(z′, w′) = f(z′),

which is the defining equations for K2.
Finally, if K1 is convergent, then (11.27) implies that ρ1 is convergent. Hence K1, the

fixed point set of ρ1, is convergent. �

We now study the convergence of attached formal submanifolds. Let us first recall a
theorem of Pöschel [Pös86]. Let ν and ǫ be as in (11.16). Define

ων(k) = min
1<|P |≤2k,P∈Np

min
1≤i≤p

{
|νP − νi|, |νP − ν−1

i |
}
.

Suppose that

(11.28) −
∑ log ων(2

k)

2k
<∞.

Then the unique invariant formal submanifold of σ that is tangent to the Hǫ defined by
(11.26) is convergent.

We now obtain a consequence of Theorem 11.4 and Pöschel’s theorem.

Theorem 11.5. LetM be a higher order perturbation of a product quadric. Suppose thatM
admits the maximum number of deck transformations. Assume that the CR singularity ofM
has no elliptic components. Let ν = µǫ be given by (11.16). Assume that ν = (µǫ1

1 , . . . , µ
ǫp
p )

satisfy (11.28). Then M admits an attached complex submanifold.

Since the eigenvalues of σ are special, we verify that the condition (11.28) can be satisfied.
Let us first prove Proposition 1.11, by considering the case when the complex tangent

has pure complex type. Then condition (11.28) always holds if ν1, . . . , µp satisfy the weaker
non-resonance condition (11.25). Indeed, in this case, the eigenvalues of σ are

µs, µs∗+s = µ−1
s , µp+s = µ−1

s , µp+s∗+s = µs.

Recall that 1 ≤ s ≤ s∗ and p = 2s∗. We may assume that |µs| > 1. We take

(11.29) νs = µs, νs+s∗ = µs.
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Assume that

νQ − νj 6= 0, Q ∈ Np, |Q| > 1, 1 ≤ j ≤ p.

Under the condition (11.29), we can find a positive integer r such that

min {|ν1|r, . . . , |νp|r} > max {|ν1|, . . . , |νp|} .
It is easy to see that |µP − νj| ≥ c for some positive constant and all Q ∈ Np with |Q| > 1.
Hence (11.28) holds. We have proved Proposition 1.11.

We now consider the general case by showing that the set of {µh, µs+s∗, µ
−1
s+s∗} that

satisfy (11.28) for some choice of ν has the full measure. Without loss of generality, we
may assume that |µh∗+s| > 1. Thus we list the eigenvalues of σ as

µh∗
, µs∗ , µ̃s∗, µh∗

, µ̃s∗, µs∗

with

µh∗
= (µ1, . . . , µh∗), µs∗ = (µh∗+1, . . . , µh∗+s∗), µ̃s∗ = (µ−1

h∗+1, . . . , µ
−1
h∗+s∗

).

We take (ν1, . . . , νp) = (µh∗
,µs∗ ,µs∗). We first note that there are only finitely many

R1, . . . , Rd ∈ N2s∗ such that

|(νh∗+1, . . . , νp)
Ri | < 2C∗, C∗ := max{|ν1|, . . . , |νp|}.

Denote by {b1, . . . , b4s∗d} the set of numbers:

νj(νh∗+1, . . . , νp)
−Ri, ν−1

j (νh∗+1, . . . , νp)
−Ri

with h∗ < j ≤ p and 1 ≤ i ≤ d. Let Sm be the set of µh∗
∈ (S1)h∗ satisfying the Siegel

condition

(11.30) min
i,j

{∣∣µP
h∗

− bj
∣∣ , |µP

h∗
− µh|, |µP

h∗
− µ−1

h |
}
≥ C

(1 + |P |)m ,

for P ∈ Nh∗ and |P | > 2. One can verify that, ∪∞
m=2Sm has the full measure on (S1)h∗ for

a fixed set of {bj}.
We take any µh∗+1, . . . , µp such that

(|µh∗+1|, . . . , |µp|)Q 6= |µj|, ∀Q ∈ Np−∗, |Q| > 1.

We then take (µ1, . . . , µh∗) ∈ (S1)h∗ satisfying (11.30). We have

(11.31) |νP − νj | ≥
C

(1 + |P |)m , P ∈ Nh∗, |P | > 2.

To verify it, we write P = (P ′, P ′′) with P ′ ∈ Nh∗ . If P ′′ 6= Ri for 1 ≤ i ≤ d, we have
|νP − νj | ≥ C∗, which satisfies (11.31). Suppose that P ′′ = Ri. Then for j > h∗ we have

|νP − νj| ≥ |(νh∗+1, . . . , νp)
Ri |min

i
{|(µ1, . . . , µh∗)

P ′ − bi|} ≥ C ′

(1 + |P |)m .

Suppose that 1 ≤ j ≤ h∗. If P
′′ 6= 0, we have

|νP − νj | ≥ min(|µh∗+1|, . . . , |µp|)− 1.

This gives us (11.31). Suppose now that P ′′ = 0. Then we get (11.31) immediately. We
have verified (11.31) for all cases.
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We have proved that the non-resonant product quadric has a unique attached complex
submanifold. Let us first show that the unique complex submanifolds attached to the
product quadric may split into two attached submanifolds after a perturbation. In fact, a
stronger result hods; it could split into a divergent attached submanifold and a convergent
one simultaneously.

Proposition 11.6. There is a non-resonant 4-dimensional real analytic submanifolds M
that has pure complex type and admits a convergent attached submanifold and a divergent
one too.

Proof. By Proposition 1.11, it suffice to show the existence of a divergent attached sub-
manifold. The proof is an application of small divisors, as shown in previous divergent
result. However, the proof is much simple. We will be brief.

Consider
M : z3 = (z1 + 2γ1z2 + a(z1z2))

2, z4 = (z2 + 2γ2z1)
2.

Here a is holomorphic in z1z2 and a(0) = a′(0) = 0. By (11.18) for i = 1, 2, we eliminate
f1 to obtain

2γ1R1 + 2γ1R̃1 + a(z1z2) = · · · ,
R1 ◦ ρ1 ◦ ρ2 +R2 + a((z1z2) ◦ ρ1(z1, z2)) = · · · .

Here the right-hand sides depend on coefficients of lower orders. Thus for Q = (k, k), we
have

R1,kk =
ak − (µ1µ

−1
1 )kak + ekk

(µsµ
−1
s )k − 1

.

Here ekk depends only on coefficients of aj with j < k. We will choose ak as follows.
If |ekk| > 1, we choose ak = 0. If |ekk| ≤ 1, we choose an ak such that |ak| = 1 and
|ak − (µ1µ

−1
1 )kak| = 2. In both cases, we obtain

|R1,kk| ≥
1

|(µ1µ
−1
1 )k − 1| .

We can find µ1 such that 0 < |(µ1µ
−1
1 )k − 1| ≤ 1

k!
for a sequence of integer k = kj → ∞.

Furthermore, µ1µ
−1
1 is not a root of unity and |µ1| 6= 1. This shows that R1 is divergent. �

Remark 11.7. It is plausible that there are 2h∗+s∗−1 attached formal complex submanifolds
to a generic M that is a higher order perturbation of non-resonant product quadric and
has the maximum number of deck transformations.

To study the existence of convergence of all attached formal manifolds, we use the fol-
lowing theorem in [Sto13] to conclude simultaneous convergence of all attached formal
submanifolds. In fact the conclusion is much more stronger. Here we recall the technique
of linearization of σ on the resonant ideal, i.e. the ideal generated by ξ1η1, . . . , ξpηp.

For the convenience of the reader, we state the result only for the family F = {F1, . . . , Fl},
where F is {σ1, . . . , σp}, or a single mapping σ. Recall that the linear part D = {Di : 1 ≤
i ≤ l} of F is {S1, . . . , Sp} or S. The matrix of Di is diagonal, which is denoted by diag µi

for µi = (µi,1, . . . , µi,n). Let I be a monomial ideal on Cn. Define

ωk(D, I) = inf

{
max
1≤i≤l

|µQ
i − µi,j| 6= 0: | 2 ≤ |Q| ≤ 2k, 1 ≤ j ≤ n,Q ∈ Nn, xQ 6∈ I

}
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where µQ
i := µq1

i,1 · · ·µqn
i,n. Let {ωk(D)}k≥1 be the sequence of positive numbers defined by

ωk(D) = inf

{
max
1≤i≤l

|µQ
i − µi,j| 6= 0: | 2 ≤ |Q| ≤ 2k, 1 ≤ j ≤ n,Q ∈ Nn

}
.

According to [Sto13], we say that the family D is diophantine (reps. on I), if

(11.32) −
∑ logwk(D)

2k
<∞, (resp.−

∑ logwk(D, I)
2k

<∞).

When D is reduced to one element and I = {0}, this condition is Brjuno condition [Brj71,
Rüs02]. Let CD denote the centralizer of the family D.

We now state the following theorem proved in [Sto13].

Theorem 11.8. Let I be a monomial ideal onCn. Let F be the above family of holomorphic
mappings. Assume that the family D is diophantine on I. Suppose that there is a formal
mapping Φ satisfies the following:

(i) Φ is tangent to the identity and has a zero projection on CD ∪ În, i.e. Φ =
(Φ1, . . . ,Φn) satisfy that Φj,Qx

Qej = 0 if xQ ∈ I or xQej ∈ CD.
(ii) Φ−1FiΦ = Di modulo În for all i.

Then Φ is convergent.

We apply the above theorem to Φ in Cc(S,ResI) and σ which arises from a real analytic
submanifold which is a higher order perturbation of a non-resonant product quadric. Note
that CS is contained in the resonant ideal and the condition on the projection (ii) of the

above theorem is satisfied by the unique normalized map that linearizes σ on În.
As a corollary of the above theorem, we have the following result.

Corollary 11.9. Let ResI be the resonant ideal of S. Assume that σ satisfies the diophan-
tine on I. Then σ is holomorphically linearizable on I. In particular, if {µ1, . . . , µp} is
non-resonant in Zp, i.e. µQ 6= 1 for all Q ∈ Zp with |Q| > 0, then in suitable holomorphic
coordinates, the σ is linear and diagonal on the (ξi1, . . . , ξis, ηis+1, . . . , ηip)-subspace for any
partition {i1, . . . , ip} = {1, . . . , p}.

As a consequence of Corollary 11.9 and Theorem 11.4, we obtain immediately Theo-
rem 1.12, which we restate here in a stronger form.

Theorem 11.10. Let M be a third order perturbation of a product quadric. Suppose that
M admits the maximum number of deck transformations and is non resonant. Suppose
that M has no elliptic component and that the eigenvalues of σ satisfy diophantine con-
dition (11.32), then all attached formal submanifolds are convergent. Moreover, and the
restrictions of σ on these invariant submanifolds are simultaneously linearizable by a single
change of holomorphic coordinates of the ambient space.

As mentioned earlier, the eigenvalues of σ are special. Let us verify that the set of µ that
satisfy the diophantine condition (11.32) has the full measure. Recall that the resonant
ideal is generated by ξ1η1, . . . , ξpηp. Suppose that ξPηQ is not in the ideal. Then pjqj = 0
and |pi − qj | = pj + qj . We need to consider non-zero small divisors of the form

µP
h∗
µQ

s∗µ
R
s∗ − µj, 1 ≤ j ≤ p
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for (P,Q,R) ∈ Zp. Let m be a positive number such that

∣∣|µQ
s∗µ

R
s∗| − |µj|

∣∣ ≥ 1

2
min
j
{|µj|, |µj|−1}, |Q+R| ≥ m.

Let us define
µs = rsνs, rs = |µs|, µh = νh, rh = 1.

Then we can write

µP−Q − µj = µ−1
j

(
r−1
j ν−1

j

∏

s

rps−p′s−qs+q′s
s ·

∏
νph−qh
h

∏
νps+p′s−qs−q′s
s − 1

)
.

Here P = (ph, ps, p
′
s) and Q = (qh, qs, q

′
s). We set

∏

s

rps−p′s−qs+q′s
s = rR

′

, ν−1
j

∏
νph−qh
h

∏
νps+p′s−qs−q′s
s = ν−1

j νR.

Note that |R′| ≤ |P |+ |Q| and |R| ≤ |P |+ |Q|. In view of

|ρeiθ − 1|2 = (r − 1)2 + r sin2(θ/2) ≥ Cmax{|r − 1|2, |eiθ − 1|}
we obtain

|µP−Q − µj| ≥ Cr−1
j max

{
|r−1

j rR
′ − 1|, |ν−1

j νR − 1|
}
.

Now one can see that the set of µ = {µh, µh∗+s, µ
−1
h∗+s} that satisfies the diophantine

condition (11.32) has the full measure.
Finally, we indicate a consequence of σ being linear on the zero set of the resonant ideal.

In this case the solutions {ρ1, ρ2} to (11.18)-(11.23) are linear and there are 2h∗+s∗−1 pairs
{ρj1, ρj2} of solutions. Now (11.18)-(11.23) imply that

E(z′, ρ1(z
′)) = −E(z′, ρ2(z′)), E(ρ1(z

′), z′) = −E(ρ2(z′), z′).
The complex submanifold associated to {ρi1, ρi2} then has the form

Kj : zp+i = (Li(z
′, ρj1(z

′)) + Ei(z
′, ρj1(z

′)))2, 1 ≤ i ≤ p.

Of course, there are additional hidden symmetries in E for σ to preserve the resonant
ideal. On the other hand, E can be quite general as shown by the algebraic example
(Example 5.6).
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tipolis, Parc Valrose 06108 Nice Cedex 02, France.

E-mail address : stolo@unice.fr


	1. Introduction and main results
	1.1. Introduction
	1.2. Basic invariants
	1.3. Formal normalization and divergence of normal forms
	1.4. Abelian CR singularity and analytic hull of holomorphy
	1.5. Rigidity of quadrics
	1.6. Attached complex submanifolds

	2. CR singularities and deck transformations
	2.1. CR singular set
	2.2. Existence of deck transformations and examples
	2.3. Real submanifolds and Moser-Webster involutions

	3. Quadrics with the maximum number of deck transformations
	3.1. Normal form of two families of linear involutions
	3.2. Normal form of the quadrics

	4. Formal deck transformations and centralizers
	4.1. Formal submanifolds and formal deck transformations
	4.2. Centralizers and normalized transformations

	5. Formal normal forms of the reversible map  
	5.1. Formal normal forms of pair of involutions {1,2}
	5.2. A normal form for maps tangent to the identity 
	5.3. A unique formal normal form of a reversible map 
	5.4. An algebraic manifold with linear 

	6. Divergence of all normal forms of a reversible map 
	7. A unique formal normal form of a real submanifold
	8. Normal forms of completely integrable commuting biholomorphisms
	9. Real manifolds with an abelian CR-singularity
	9.1. Normal forms for real submanifolds with an abelian CR singularity 
	9.2. Hull of holomorphy of real submanifolds with an abelian CR singularity

	10. Rigidity of product quadrics
	11. Existence of attached complex manifolds
	References

