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REAL SUBMANIFOLDS OF MAXIMUM COMPLEX TANGENT SPACE

AT A CR SINGULAR POINT

XIANGHONG GONG AND LAURENT STOLOVITCH

ABSTRACT. We study a germ of real analytic n-dimensional submanifold of C” that has
a complex tangent space of maximal dimension at a CR singularity. Under the condition
that its complexification admits the maximum number of deck transformations, we study
its transformation to a normal form under the action of local (possibly formal) biholo-
morphisms at the singularity. We first conjugate formally its associated reversible map o
to suitable normal forms and show that all these normal forms can be divergent. If the
singularity is abelian, we show, under some assumptions on the linear part of o at the
singularity, that the real submanifold is holomorphically equivalent to an analytic normal
form. We also show that if a real submanifold is formally equivalent to a quadric, it is
actually holomorphically equivalent to it, if a small divisors condition is satisfied. Finally,
we prove that, in general, there exists a complex submanifold of positive dimension in C™
that intersects a real submanifold along two totally and real analytic submanifolds that
intersect transversally at a CR singularity of the complex type.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. We are concerned with the local holomorphic invariants of a real an-
alytic submanifold M in C". The tangent space of M at a point x contains a maximal
complex subspace of dimension d,. When this dimension is constant, M is called a Cauchy-
Riemann (CR) submanifold. The CR submanifolds have been extensively studied since
E. Cartan. For the analytic real hypersurfaces in C" with a non-degenerate Levi-form,
the normal form problem has a complete theory achieved through the works of E. Car-

tan [Car32], [Car33], Tanaka [Tan62], and Chern-Moser [CM74]. In another direction,

the relations between formal and holomorphic equivalences of real analytic hypersurfaces
have been investigated by Baouendi-Ebenfelt-Rothschild [BER97], [BER00], Baouendi-Mir-
Rothschild [BMRO02], Juhlin-Lamel [JL13], where positive results were obtained. In a recent
preprint, Kossovskiy and Shafikov [KS13] showed that there are real analytic real hyper-
surfaces which are formally but not holomorphically equivalent.

We say that a point xg in a real submanifold M in C" is a complex tangent, or a CR
singularity, if the complex tangent spaces T, MNJ,T,, M do not have a constant dimension in
any neighborhood of xy. A real submanifold with a CR singularity must have codimension
at least 2. The study of real submanifolds with CR singularities was initiated by E. Bishop
in his pioneering work [Bis65], when the complex tangent space of M at a CR singularity
is minimal, that is exactly one-dimensional. The very elementary models of this kind of
manifolds are classified as certain quadrics which depend on one non-negative number, the
Bishop invariant. They are the Bishop quadrics, given by

QCC® z=|n"+7(>+7]), 0<v<oo.

The origin is a complex tangent which is said to be elliptic if 0 < v < 1/2, parabolic if
~v = 1/2, or hyperbolic if v > 1/2.

In [MWS&3], Moser and Webster studied the normal form problem of a real analytic
surface M in C? which is the higher order perturbation of (). They showed that when
0 < v < 1/2, M is holomorphically equivalent to a normal form which is an algebraic
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surface that depends only on 7 and two discrete invariants. They also constructed a
formal normal form of M when the origin is a non-exceptional hyperbolic complex tangent
point; although the normal form is still convergent, they showed that the normalizing
transformation is divergent in general for the hyperbolic case. We mention that the Moser-
Webster normal form theory, as in Bishop’s work, actually deals with an n-dimensional
real submanifold M in C", of which the complex tangent space has (minimum) dimension
1 at a CR singularity.

The main purpose of this work is to investigate an n-dimensional real analytic subman-
ifold M in C™ of which the complex tangent space has the largest possible dimension at
a given CR singularity. The dimension must be p = n/2. Therefore, n = 2p is even. We
are interested in the geometry, the analytic classification, and the normal form problem of
such real analytic manifolds.

In suitable holomorphic coordinates, a 2p-dimensional real analytic submanifold M in
C? that has a complex tangent space of maximum dimension at the origin is given by

(1.1) M: 245 = Ej(,Z), 1<j<p,
where 2/ = (z1,...,2,) and
Ei(2,2) = hy(2, 7)) + ¢;(Z) + O(|(, 2)P).

Moreover, each h;(z’,Z’) is a homogeneous quadratic polynomial in 2/, Z" without holomor-
phic or anti-holomorphic terms, and each ¢;(Z’) is a homogeneous quadratic polynomial in
Z'. One of our goals is to seek suitable normal forms of perturbations of quadrics at the
CR singularity (the origin).

The study of these kind of real submanifolds, with p > 1, was initiated in [Sto07] by the
second-named author.

1.2. Basic invariants. To study M, we consider its complexification in C? x C? defined
by

'LUp_H':EZ'('LU/,Z/), 1= ]_,...,p.

M {zpﬂ- = E(z,w), i=1,...,p,

It is a complex submanifold of complex dimension 2p with coordinates (2/,w’) € C? . Let
71, T2 be the restrictions of the projections (z,w) — z and (z,w) — w to M, respectively.
Note that my = pom1po, Where pg is the restriction to M of the anti-holomorphic involution
(z,w) = (W0,2).

Our basic assumption is the following condition.

Condition B. ¢(2') = (1(2), ..., q,(2)) satisfies ¢~*(0) = {0}.

Let us first describe the significance of condition B. When p = 1 this corresponds to
the case that the Bishop invariant v of M at the origin does not vanish. When v =
0, Moser [Mos85] obtained a formal normal form that is still subject to further formal
changes of coordinates. In [HY(09a], Huang and Yin obtained a formal normal form with
a complete set of formal holomorphic invariants of M when v = 0. They used their formal
normal form to show that two such real analytic surfaces are holomorphically equivalent
if and only if they have the same formal normal form. The formal normal forms for co-
dimension two real submanifolds in C™ have been further studied by Huang-Yin [HY12] and
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Burcea [Burl3]. Note that by a rapid iteration method, Coffman [Cof06] showed that any
m dimensional real analytic submanifold in C™ of one-dimensional complex tangent space
at a CR singularity satisfying certain non-degeneracy conditions is locally holomorphically
equivalent to a unique algebraic submanifold, provided 2(n + 1)/3 < m < n.

When M is a quadric, i.e. each E; in (L)) is a quadratic polynomial, our basic condi-
tion B is equivalent to 7 being a 2P-to-1 branched covering. Since my = po71p0, then 7o is
also a 2P-to-1 branched covering. We will see that the CR singularities of the real subman-
ifolds are closely connected with these branched coverings and their deck transformations.

We now introduce our main results. Some of them are analogous to the Moser-Wester
theory. We will underline major differences which arise with p > 1.

1.2.1. Branched covering and deck transformations. In section 2] we study the existence
of deck transformations for m;. We will show that they must be involutions and they
commute pairwise. We show that they form a group of order 2* for some 0 < k < p. This
is a major difference between the real submanifolds with one dimensional complex tangent
space at a CR singularity and the ones with maximum complex tangent space, when p > 1.
Indeed, we recall that in the Moser-Webster theory, the branched covering m; is 2-to-1
and consequently the group of deck transformations of 7; has order 2. The group is then
generated by a unique involution 7.

In this paper, we will focus on the case where the group of deck transformations of m;
has the maximum order 2P. Thus, we will impose the following condition.

Condition D. M satisfies condition B and the branched covering m of M admits the
maximum 2P deck transformations.

Condition D gives rise to two families of commuting involutions {7;1, ..., T } intertwined
by the anti-holomorphic involution py: (¢/,w’) — (@', Z’) such that 7; = por1;00 (1 <
j < 2P) are deck transformations of mo. We will call {r1,..., 7120, po} the set of Moser-
Webster involutions. We will show that there is a unique set of p generators for the deck
transformations of my, denoted by 711, ..., 71, which are characterized by the property that
each 7, fixes a hypersurface in M pointwise. Then

7'1:T110-~-OT1p

is the unique deck transformation of which the set of fixed-points has the smallest dimension
p. Let 79 = pomipo and

g = T17T3.
Then o is reversible by 7; and po, i.e. 07! = Tjo7; ' and 0=! = poopy.

As in the Moser-Webster theory, the existence of such 2P deck transformations allows
us to transfer the normal form problem for the real submanifolds into the normal form
problem for the sets of involutions {1, ..., Tip, po}-

In this paper we will make the following assumption.

Condition E. M satisfies condition D and M has distinct eigenvalues, while the latter
means that o has 2p distinct eigenvalues.

Note that the condition excludes the higher dimensional analogous complex tangency
of parabolic type, i.e. of v = 1/2. The normal form problem for the parabolic complex
tangents has been studied by Webster [Web92|, and in [Gon96] where the normalization
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is divergent in general. In [AG09], Ahern and Gong constructed a moduli space for real
analytic submanifolds that are formally equivalent to the Bishop quadric with v = 1/2.

We now introduce our main results.

Our first step is to normalize {71, 75, po}. When p = 1, this normalization is the main step
in order to obtain the Moser-Webster normal form; in fact a simple further normalization
allows Moser and Webster to achieve a convergent normal form under a suitable non-
resonance condition even for the non-exceptional hyperbolic complex tangent.

When p > 1, we need to carry out a further normalization for {7y, ..., 71, po}; this is
our second step. Here the normalization has a large degree of freedom as shown by our
formal and convergence results.

In sections 2 through 7, we will study the formal normal forms and the relations on the
convergence of normalizations in these two steps. Let us first describe main results in these
sections.

1.2.2. Normal forms of quadrics with the mazimum number of deck transformations. The
basic model for quadric manifolds with such a CR singularity is a product of 3 types of
quadrics defined by

Q.. CC*: 2= (21 +27v.21)%
Q., C C%: 2= (21 + 2771)%;
Q,, C C: 23 = (21 +27:%2)%, 2= (2 +2(1—7,)7)2%
Here
(1.2) 0<7v <1/2, 1/2<9,<o0, Reys>1/2, Im~,>0.

Note that @, @, are elliptic and hyperbolic Bishop quadrics, respectively. Realizing a
type of pairs of involutions introduced in [Sto07], we will say that the complex tangent of
Q.. at the origin is complez. We emphasize that this last type of quadric is new as we will
show that ()., is not holomorphically equivalent to a product of two Bishop surfaces. A
real submanifold of dimension n in C™ with n = 2p that is a product of the above quadrics
will be called a product of quadrics, or a product quadric.

In section B, we study all quadrics which admit the maximum number of deck transfor-
mations. For such quadrics, all deck transformations are linear. Under condition E, we will
first normalize o, 7, 75 and pg into S , Tl, T, and p where

oo &= Nl =N,

A

Ty & =m0y =%
S: & =&, np=uty
with .
Ae>1 =1 INI>1 Age. =X, =X
Here 1 < j < p. Throughout the paper, the indices e, h,s have the ranges: 1 < e < e,,
ex < h<e,+hy e+ h, <s<p—s, Thus e, + h, +2s, = p. We will call ey, h,, s, the
numbers of elliptic, hyperbolic and complex components of a product quadric, respectively.
As in the Moser-Webster theory, at the complex tangent (the origin) an elliptic component

of a product quadric corresponds a hyperbolic component of S, while a hyperbolic component
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of the quadric corresponds an elliptic component of S. One could identify a complex
component of the quadric with a hyperbolic (instead of complex) component of S: however,
each type of complex tangents exhibits striking differences in the formal normal forms,
the convergence of normalizations, and the existence of attached complex submanifolds, as
illustrated by the results in this section.

For the above normal form of 77,7, and S, we always normalize the anti-holomorphic
involution p, as

& =7, o= &,

/ _ / =
(13) p: giz - §h7 /’77 - ﬁha

55 = §s+s* 9 775 = 773-‘,—3* 9

g—l—s* = 637 77;+s* = ﬁs'

With the above normal forms T 1,T2,5’,p with § = T1T2, we will then normalize the
Ti1,...,Tip under linear transformations that commute with Ty, Ts, and p, i.e. the lin-
ear transformations belonging to the centralizer of T1,T5 and p. This is a subtle step.
Instead of normalizing the involutions directly, we will use the pairwise commutativity of
T11,--.,T1p tO associate to these p involutions a non-singular p x p matrix B. The nor-
malization of {7i1,..., T, p} is then identified with the normalization of the matrices B
under a suitable equivalence relation. The latter is easy to solve. Our normal form of
{71, .., Tip, p} is then constructed from the normal forms of T}, 75, p, and the matrix B.
Following Moser-Webster [MWS&3], we will construct the normal form of the quadrics from
the normal form of involutions.

Theorem 1.1. Let M be a quadratic submanifold defined by
“p+j = hj(z/vz/> + qj(z/)v 1<j<p.

Suppose that M satisfies condition E, i.e. the branched covering of w1 of complexification M
has 2P deck transformations and M has 2p distinct eigenvalues. Then M is holomorphically
equivalent to

QBO’: p+j = L?(Z/,E/), 1<j<p
where (L1(2',Z'),...,L,(2",Z)) = B(z' — 2vZ'), B € GL,(C) and

Y.. O 0 0
| 0 0 0
TTlo 0o 0 o,

0 o0 I, -7, O
Here p = e, + h. + 2s,, I, denotes the s, X s, identity matriz, and
Ye. = diag(’yb s a’ye*)a Yh, = diag(’ye*—i-la SRR 76*+h*)>
Vs = diag(’ye*—l—h*—l—lv e 77p—s*)

with e, v, and 75 satisfying (L2)). Moreover, B is uniquely determined by an equivalence
relation B ~ CBR. for suitable non-singular matrices C, R which have exactly p non-zero
entries.
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See Theorem [B.7] for detail of the equivalence relation. The scheme of finding quadratic
normal forms turns out to be useful. It will be applied to the study of normal forms of the
general real submanifolds.

1.3. Formal normalization and divergence of normal forms.

1.3.1. Formal submanifolds, formal involutions, and formal centralizers. In section [l we
show that the formally holomorphic classification of formal submanifolds with the maxi-
mum number of formal deck transformations and the formally holomorphic classification
of suitable families of involutions {71, ..., 71,, p} are equivalent. This equivalence will be
used to derive the formal normal forms of the submanifolds. As mentioned earlier, we will
first normalize ¢ = 7175 under general formal biholomorphic transformations. The normal
forms of ¢ turn out to be in the centralizer of S, the normal form of the linear part of o.
The family is subject to a second step of normalization, under mappings which again turn
out to be in the centralizer of S. Thus, before we introduce normalization, we will first
study various centralizers. We will discuss the centralizer of S as well as the centralizer of
{Tl,Tg} in section 4l The centralizer of {Tll, e ,Tlp, p} is more complicated, which will
be discussed in section [I0.

1.3.2. Normalization of 0. As mentioned earlier, we will divide the normalization for the
families of non-linear involutions into two steps. This division will serve two purposes:
first, it helps us to find the formal normal forms of the family of involutions {71, ..., 71, p};
second, it helps us understand the convergence of normalization of the original normal form
problem for the real submanifolds. For purpose of normalization, we will assume that M
is non-resonant, i.e. o is non-resonant, if its eigenvalues p1, .. ., pp, ,ul_l, . ,,u;l satisfy

WAL ¥Qezr, |Ql£0.

In section B we obtain the normalization of ¢ by proving the following.

Theorem 1.2. Let o be a holomorphic map with linear part S. Assume that sy fhp
are non-resonant. Suppose that ¢ = T where 71 is a holomorphic involution, p is an
anti-holomorphic involution, and 7o = prip. Then there exists a formal map V such that
p =W is given by (L3), o* = VoW and 77 = V17, have the form

= Ng(Enny, My = Ai_j1<£n)£j'
Here, &n = (&1, ..., &np). Assume further that log M (see (B.31) for definition) is tangent

to the identity. Under a further change of coordinates that preserves p, o* and 7 are
transformed into

(1.5) 61 & = My(En)&;, 1y = M (Emmy, 1< G <p,
7= Nij(Emmy, my = N (€M), Ny = A
Here the jth component of log M(C) — I is independent of ¢;. Moreover, M s unique.

Remark 1.3. The condition that log M is tangent to identity at the origin has to be
understood as a non-degeneracy condition of which it is the simplest instance. When there
is no ambiguity, “tangent to identity” stands for “tangent to identity at the origin”.
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We will conclude section B with an example showing that although o, 7,7 are both
linear, {71,..., 71, p} are not necessary linear, provided p > 1.
Section [l is devoted to the proof of the following divergence result.

Theorem 1.4. There exists a non-resonant real analytic submanifold M with pure elliptic
complex tangent in C® such that if its corresponding o is transformed into a map o* which
commutes with the linear part of o at the origin, then o* must diverge.

Note that the theorem says that all normal forms of o (by definition, they belong to the
centralizer of its linear part, i.e. they are in the Poincare-Dulac normal forms) are divergent.
It implies that any transformation for M that transforms ¢ into a Poincaré-Dulac normal
form must diverge. This is in contrast with the Moser-Webster theory: For p = 1, a
convergent normal form can always be achieved even if the associated transformation is
divergent (in the case of hyperbolic complex tangent), and furthermore in case of p = 1
and elliptic complex tangent with a non-varnishing Bishop invariant, the normal form can
be achieved by a convergent transformation. The divergent Birkhoff normal form for the
classical Hamiltonian systems was obtained in [Gonl2] by the first-named author. We refer
to [SMT1l, Mos73| as general references concerning Hamiltonian and reversible dynamics.

1.3.3. Normalization on the family {7;;, p}. In section [7, we will follow the scheme devel-
oped for the quadric normal forms in order to normalize {71, ...,71,, p}. Let 6 be given

by (L3). We define
iy & = MyEnmy, = A €&, & =& = m
where k # j, A;(0) = A;, and M = A%] We have the following formal normal form.

Theorem 1.5. Let M be a real analytic submanifold that is a higher order perturbation of
a non-resonant product quadric. Suppose that its associated o is formally equivalent to &
given by (LH). Suppose that the formal mapping log M in Theorem L2 is tangent to the
identity. Then the formal normal form of M is completely determined by

M), .

Here ® is a formal invertible mapping in C¢(T11,...,T1p). Moreover, ® is uniquely deter-
mined up to the equivalence relation ® ~ RPR- with R.: & = €€, n;=¢€mn; (1<j<p)
and R? = I. Furthermore, if the normal form (L4) of o can be achieved by a convergent
transformation, so does the normal form of M.

The set C°(711, ..., T1p) is defined by Definition

The second part of the paper is devoted to geometric properties of M and in particular
those obtained through convergent normalization, under additional assumptions on M.

We first turn to a holomorphic normalization of a real analytic submanifold M with the
so-called abelian CR singularity. This will be achieved by studying an integrability prob-
lem on a general family of commuting biholomorphisms described below. The holomorphic
normalization will be used to construct the local hull of holomorphy of M. We will also
study the rigidity problem of a quadric under higher order analytic perturbations, i.e. the



9

problem if such a perturbation remains holomorphically equivalent to the quadric if it is
formally equivalent to the quadric. The rigidity problem is reduced to a theorem of holo-
morphic linearization of one or several commuting diffeomorphisms along a suitable ideal
that was devised in [Stol3]. Finally, we will study the existence of holomorphic submani-
folds attached to the real submanifold M. These are complex submanifolds of dimension
p intersecting M along two totally real analytic submanifolds that intersect transversally
at a CR singularity. Attaching complex submanifolds has less constraints than finding a
convergent normalization. Therefore, our only assumption is that M is non-resonant and
admits the maximum number of deck transformations. A remarkable feature of attached
complex submanifolds is that their existence depends only on the existence of suitable (con-
vergent) invariant submanifolds of . When the real submanifold has a complex tangent
of pure complex type, the existence is ensured under a mild non-resonance condition but
without any further restriction such as small divisors condition on the eigenvalues of M.

1.4. Abelian CR singularity and analytic hull of holomorphy.

1.4.1. Normal form of commuting biholomorphisms. Let F = {F}, ..., Fy} be a finite fam-
ily of germs of biholomorphisms of C" fixing the origin. Let D,, be the linear part of F;,, at
the origin. We say that the family F is (formal) completely integrable, if there is a (formal)
biholomorphic mapping ® such that {®1F,,®: 1 <m < £} = {F,,: 1 <m < £} satisfies

(1) Fon(2) = (1 (2)21, -+ s tonn (2)2n) A0A firn; © Dy = fimm; for 1 < m,m/ < £ and
1 < j < n. In particular, £, commutes with D, for all 1 < m,m’ < (.
(44) For each j and each @ € N" with |Q| > 1, u%(0) = f,;(0) hold for all m if and
only if u%(z) = pm;(2) hold for all m.
Note that a necessary condition for F to be formally completely integrable is that Fi, ..., F}
commute pairwise. The main result of section [§is the following.

Theorem 1.6. Let F be a family of finitely many germs of biholomorphisms at the origin.
Suppose that F is formally completely integrable. Then it is holomorphically completely
integrable, provided the family of linear parts D of F is of the Poincaré type. In particular,
F is holomorphically equivalent to a normal form in which each element commutes with
Dq,...,Dy.

The definition of Poincaré type is in Definition .9l Such results for commuting germs
of vector fields were obtained in [Sto00, [Sto05] under a collective Brjuno-type of small
divisors condition. For a single germ of real analytic hyperbolic area-preserving map-
ping, the result was due to Moser [Mos56], and for a single germ of reversible hyperbolic
holomorphic mapping ¢ = 77 of which 7 fixes a hypersurface, this result was due to
Moser-Webster [MWS&3]. Our proof is inspired by these proofs.

1.4.2. Conwvergence of normalization for the abelian CR singularity. In sections 7 we will
obtain the convergence of normalization for an abelian CR singularity which we now define.
We characterize the abelian CR singularity as follows. We first consider a product quadric
(2 which satisfies condition E. So the branched covering 7 for the complexification of () are
generated by p involutions of which each fixes a hypersurface pointwise. We denote them by
Ti1, ..., Thp. Let Ty; = pTijp. It turns out that each 77; commutes with all Tj; except one,
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Ty, for some 1 < k; < p. When we formulate S; = T1;To; for 1 < j <p, then Sy,...,5,
commute pairwise. Consider a general M that is a third-order perturbation of product
quadric () and satisfies condition E. We define o; = 71;7,. In suitable coordinates, T;;
(resp. S;) is the linear part of 7;; (resp. ;) at the origin. We say that the complex tangent
of a third order perturbation M of a product quadric at the origin is of abelian type, if
o1, ...,0, commute pairwise. If each linear part S; of o, has exactly two eigenvalues 1, ,uj_l
that are different from 1, then S := {Si,...,S,} is of Poincaré type if and only if |u;| # 1
for all j. As mentioned previously, Moser and Webster actually dealt with n-dimensional
real submanifolds in C" that have the minimal dimension of complex tangent subspace
at a CR singular point. In their situation, there is only one possible composition, that is
0 = 11T». When the complex tangent has an elliptic but non-vanishing Bishop invariant, o
has exactly two positive eigenvalues that are separated by 1, while the remaining eigenvalues
are 1 with multiplicity n — 2.

As an application of Theorem [[L0], we will prove the following convergent normalization.

Theorem 1.7. Let M be a germ of real analytic submanifold in C* at an abelian CR
singularity. Suppose that M has distinct eigenvalues and has no hyperbolic component of
complex tangent. Then M s holomorphically equivalent to

M: Zprs = M (Q)G, 1<7<np,
where ¢ = (C1, - ..,(p) are the convergent solutions to
Ce = Ac(Q)2eZe — B(Q)(22 +72),
(s = As(Q)2:Zsts, — Bo(Q) (22 + A3(O)Z24,.),
Cotor = Asts (Q)ZsZaps, — Boys (O) (2314, + Af(ers*)(C)Ei)

with , A2 (O
14+ A7.(Q) 14+ A3;(¢ .
Aec ::—167 AC ::A'C—Juj:‘%s—i_s*v
N NP 1= MO R o
B;(¢ ::1;, ] =€,58,8+ S4.
A A T3)E
Moreover, A1;(0) = X;, and Ay = (AH,._. ., \1p) commutes with the anti-holomorphic invo-

lution p,: (. — Ze, (s — ZSJFS*, Csts. — Cs-

We will also present a more direct proof by using a convergence theorem of Moser and
Webster [MW83] and some formal results from section [8

In the above theorem M; = A%j, and they are obtained by Theorem for the Jacobian
matrix of log M to be arbitrary. When 2 log diag(Ajy, ... Ay,) is tangent to the identity, M
can be further uniquely normalized in suitable holomorphic coordinates to obtain a unique
normal form for M; see Remark 0.4l When p > 1, the unique normal form shows that M
has infinitely many holomorphic invariants and M is not biholomorphic to the product of
Bishop surfaces in C? even if the CR singularity has pure elliptic type. As an application
of Theorem [I.7], we will prove the following.

Corollary 1.8. Under the conditions in Theorem [, the manifold M can be holomorphi-
cally flattened. More precisely, in suitable holomorphic coordinates, M is contained in the
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linear subspace CP x RP defined by zpie = Zptre and 2prs = Zpysts, where 1 < e < e, and
r < s < e+ S,

One of significances of the Bishop quadrics is that their higher order analytic perturbation
at an elliptic complex tangent has a non-trivial hull of holomorphy. As another application
of the above normal form, we will construct the local hull of holomorphy of M, that is
the intersection of domains of holomorphy in C” that contain M, via higher dimensional
non-linear analytic polydiscs.

Corollary 1.9. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Suppose that M has distinct eigenvalues and has only elliptic component of complex tangent.
Then in suitable holomorphic coordinates, Hio.(M), the local hull of holomorphy of M, is
filled by a real analytic family of analytic polydiscs of dimension p. Moreover, Hioe(M) is
the transversal intersection of p real analytic submanifolds H;(M) with boundary and in
suitable holomorphic coordinates all H;(M) are contained in RP x CP.

For a precise statement of the corollary, see Theorem The hulls of holomorphy for
real submanifolds with a CR singularity have been studied extensively, starting with the
work of Bishop. In the real analytic case with minimum complex tangent space at an
elliptic complex tangent, we refer to Moser-Webster [MW83] for v > 0, and Krantz-Huang
[HK95] for v = 0. For the smooth case, see Kenig-Webster [KW82], [ KW84], Huang [Hua98].
For global results on hull of holomorphy, we refer to [BG83| [BK91].

1.5. Rigidity of quadrics. In Section 10, as an application of the theorem of linearization
of holomorphic mappings on an ideal Z [Stol3| (see Theorem [I1.§ below), we will prove
the following theorem, which corresponds to the case Z =0 :

Theorem 1.10. Let M be a germ of real analytic submanifold at the origin of C™. Suppose
that M is formally equivalent a product quadric that has distinct eigenvalues. Suppose that
each hyperbolic component has an eigenvalue py, which is either a root of unity or satisfies
Brijuno small divisors condition. Then M is holomorphically equivalent to the product
quadric.

Brjuno small divisors condition is defined by (I1.32]). When p = 1, this result is due to
the first-named author under a stronger small divisor condition, namely Siegel’s condition
[Gon94]. In the case p = 1 with a vanishing Bishop invariant, such rigidity result was
obtained by Moser [Mos85] and by Huang-Yin [HY09b] in a more general context.

1.6. Attached complex submanifolds. We now describe convergent results for attached
complex submanifolds. The convergent results are for a general M, including the one of
which the complex tangent might not be of abelian type.

We say that a formal complex submanifold K is attached to M if KN M contains at least
two germs of totally real and formal submanifolds K, Ky that intersect transversally at a
given CR singularity. In [KIi85], Klingenberg showed that when M is non-resonant and
p = 1, there is a unique formal holomorphic curve attached to M with a hyperbolic complex
tangent. He also proved the convergence of the attached formal holomorphic curve under
a Siegel small divisors condition. When p > 1, we will show that generically there is no
formal complex submanifold that can be attached to M if M does not admit the maximum
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number of deck transformations or if the CR singularity has an elliptic component. When
p > 1 and M is a higher order perturbation of a product quadric of Q.,,Q,, we will
encounter various interesting situations.

Firstly, by adapting Klingenberg’s proof for p = 1 and using a theorem of Poschel [P5s86],
we will prove the following.

Proposition 1.11. Let M be a third order perturbation of a product of quadrics of which
each has complex type at the origin. Suppose that M admits the maximum number of deck
transformations and it is non-resonant. Then M admits an attached complex submanifold.

The proposition does not need any small divisors condition and a more detailed version in
the presence of hyperbolic components is in Theorem Furthermore, the non resonance
condition is satisfied for 7, ..., 7, outside the union of countable algebraic hypersurfaces.

Secondly, we will show that a non-resonant product quadric has a unique attached com-
plex manifolds. However, under a perturbation of the quadric, the attached complex sub-
manifold of the quadric can split into different attached formal submanifolds which may
or may not be convergent. In fact, we will show that the coexistence of divergent and
convergent attached complex submanifolds for a complex tangent of the complex type; see
Proposition [ITT.0.

Finally, for the convergence of all attached formal complex submanifolds, we have the
following.

Theorem 1.12. Let M be a third order perturbation of a product quadric. Suppose that M
admits the maximum number of deck transformations and is non resonant. Suppose that
M has no elliptic component and the eigenvalues of o satisfy a Bruno type condition, then
all attached formal submanifolds are convergent.

The above theorem for hyperbolic complex tangency was drafted in [Sto07]. For the
Bruno type of condition in the theorem, see (I[1.32)), which was introduced in [Stol3] for
linearization on ideals.

1.6.1. Notation. We briefly introduce the notation used in the paper. The identity map is
denoted by I. We denote by LF' the linear part at the origin of a mapping F': C™ — C"
with F(0) = 0. Let F'(0) or DF(0) denote the Jacobian matrix of the F at the origin.
Then LF(z) = F'(0)z. We also denote by DF(z) or simply DF', the Jacobian matrix of F'
at z, when there is no ambiguity. By an analytic (or holomorphic) function, we shall mean
a germ of analytic function at a point (which will be defined by the context) otherwise
stated. We shall denote by O, (resp. (5n, M., ﬁn) the space of germs of holomorphic
functions of C™ at the origin (resp. of formal power series in C", holomorphic germs, and
formal germs vanishing at the origin).

Acknowledgment. This joint work was completed while the first-named author was
visiting at SRC-GAIA of POSTECH. X.G. is grateful to Kang-Tae Kim for hospitality.
2. CR SINGULARITIES AND DECK TRANSFORMATIONS

We will consider a real submanifold M of C™. The simplest local holomorphic invariant
of M is the dimension of its complex tangent subspace T é;’O)M at a given point xy. Here
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T;E;’O)M is the space of tangent vectors of M at xy of the form Z;‘:l aj%. Let M have
J

dimension n. In this paper, we assume that 7. éé’O)M has the largest possible dimension
p =n/2 at a given point g, or equivalently, that the complexified tangent space T,, M @ C
is the direct sum of T;E;’O)M and its complex conjugate. We study local invariants of M
under a local holomorphic change of coordinates fixing the zy. In suitable holomorphic
affine coordinates, we have o = 0 and

(2.1) M: 2y = Ej(,2), 1<j<p.

Here we have set 2/ = (z1,...,%,) and we will denote 2" = (2p11,...,29,). The 1-jet at
the origin of the complex analytic functions F; vanishes; in other words, F; together with
their first order derivatives vanish at 0. The tangent space Ty M is then the z’-subspace.
For the local theory, the only interesting case is when M is not a complex submanifold,
that is that £(z/,Z’) is not holomorphic in 2/, which we assume throughout the paper.
The main purpose of this section is to obtain some basic invariants and a relation between
two families of involutions and the real analytic submanifolds which we want to normalize.

2.1. CR singular set. Let M be given by (2.I). Then

0
X = Z {a] b D2pyj }

is tangent to M at (2, 2”) if and only if

P _ p —
OE, (2,7 0EL(Z, 7
kaE aj%> E aj%:o, 1<k<p.
j j

j=1 j=1

To consider the second set of equations, we introduce

9By ., 0B
0z1 82,,
(2.2) C(Z.7)=|: :
OE, OE,
0z1 82,,

Note that M is totally real at (2/,2") € M if and only if C(2, 2’) # 0. We will assume that
C(#',Z') is not identically zero in any neighborhood of the origin. Then the zero set of C
on M, denoted by Mcgsing, is called CR singular set of M, or the set of complex tangents
of M. We assume that M is real analytic. Then Mcgging is a possibly singular proper real
analytic subset of M that contains the origin.

2.2. Existence of deck transformations and examples. We first derive some qua-
dratic invariants. Applying a quadratic change of holomorphic coordinates, we obtain

(2.3) Ei(,7) = hi(,Z) + ¢;(Z) + O, Z)]).

Here we have used the convention that if z = (z1,...,2,), then O(|z|¥) denotes a formal
power series in x without terms of order < k. A biholomorphic map f that preserves the
form of the above submanifolds M and fixes the origin must preserve their complex tangent
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spaces at the origin, i.e. z” = 0. Thus if Z denote the old coordinates and z denote the
new coordinates then f has the form

7 =AY+ B +0(|z]), Z=U+0(z.
Here A and U are non-singular p x p complex matrices. Now f(M) is given by
Uz" = h(AZ, A7) + q(AZ) + O(|z]*).

We multiply the both sides by U~! and solve for 2”; the vectors of p quadratic forms
{h(Z',Z"),q(Z")} are transformed into

(2.4) (h(z,2),3(7)} = {Uh(AY,AZ), U q(AZ).

This shows that if M and M are holomorphically equivalent, their corresponding quadratic
terms are equivalent via (2.4]). Therefore, we obtain a holomorphic invariant

¢ = dimc{z": q1(2') =+ = q,(2') = 0}.

We remark that when M, M are quadratic (i.e. when their corresponding E,E are ho-
mogeneous quadratic polynomials), the equivalence relation (24)) implies that M ,M are
linearly equivalent, Therefore, the above transformation of A and ¢ via A and U deter-
mines the classifications of the quadrics under local biholomorphisms as wells as under
linear biholomorphisms. We have shown that the two classifications for the quadrics are
identical.

Recall that M is real analytic. Let us complexify such a real submanifold M by replacing
7 by w' to obtain a complex n-submanifold of C?", defined by

M. { = Bi(+,w),

Wy = Bi(w', '), i=1,...,p.

We use (2/, w’) as holomorphic coordinates of M and define the anti-holomorphic involution
p on it by

(2.5) p(Z w') = (o', 7).

Occasionally we will also denote the above p by pg for clarity. We will identify M with
a totally real and real analytic submanifold of M via embedding z — (z,Z). We have
M = M N Fix(p) where Fix(p) denotes the set of fixed points of p. Let m: M +— C™ be
the restriction of the projection (z,w) — z and let my be the restriction of (z,w) — w. It
is clear that my = T p on M. Throughout the paper, 7, ms, p are restricted on M unless
stated otherwise.

Our first basic assumption on M is the following condition.

Condition B. ¢, = 0.

Note that a necessary condition for ¢, = 0 is that functions ¢;(2’), ¢2(2'), ..., ¢,(2') are
linearly independent, since the intersection of k germs of holomorphic hypersurfaces at 0
in C? has dimension at least p — k. (See [Chi89], p. 35; [Gun90][Corollary 8, p. 81].)

When 7: M — C? is a branched covering, we define a deck transformation on M for
m to be a germ of biholomorphic mapping F' defined at 0 € M that satisfies 7 o I = ;.
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In other words, F(2/,w'") = (2, f(Z/,w)) and
B ) = B, f(Z ), i=1,...p.

Lemma 2.1. Suppose that q. = 0. Then Mcrsing s a proper real analytic subset of M and
M is totally real away from Mcpsing, 1.e. the CR dimension of M 1is zero. Furthermore,
71 45 a 2P-to-1 branched covering. The group of deck transformations of m consists of 2°
commuting involutions with 0 < ¢ < p.

Proof. Since ¢'(0) = {0}, then 2/ — ¢(0,2') is a finite holomorphic map. Hence its
Jacobian determinant is not identically zero. In particular, C(z/,Z’), defined by (2.2)), is
not identically zero. This shows that M has CR dimension 0.

Since w" — q(w’) is a homogeneous quadratic mapping of the same space which vanishes
only at the origin, then

la(w)] = c|w']”.

We want to verify that m; is a 2P~to—1 branched covering. Let A, = {z € C: |z| <r}. We
choose C' > 0 such that m(z,w) = (2/, E(Z',w’)) defines a proper and onto mapping

(2.6) Tt My = MO (AR x AL) x (AP, x AD,)) — AL x A,

By Sard’s theorem, the regular values of 7 have the full measure. For each regular value
z, 7 *(2) has exactly 27 distinct points (see [Chi89], p. 105 and p. 112). It is obvious that
M is smooth and connected. We fix a fiber F, of 2P points. Then the group of deck
transformations of 7; acts on F), in such a way that if a deck transformation fixes a point
in F,, then it must be the identity. Therefore, the number of deck transformations divides
2P and each deck transformation has period 2¢ with 0 < ¢ < p.

We first show that each deck transformation f of m; is an involution. We know that f is
periodic and has the form

7= w = Avw' + B2+ 0(2),

where A, B are matrices. Assume that f has period m. Then f(2,w') = (2, Aw' + BZ)
satisfies f™ = I and f is locally equivalent to f; indeed fgf~! = g for
g=> (f)y o f.
i=1
Therefore, it suffices to show that f is an involution.
We have R

(W) =, A™0 + (A™ '+ ..+ A+ 1)BY).
Since f is a deck transformation, then E(2’,w’) is invariant under f. Recall from (2.3) that
E(7,7') starts with quadratic terms of the form h(z’,Z’) + ¢(z'). Comparing quadratic

A A~

terms in E(2',w') = Eo f(2/,w'), we see that the linear map f has invariant functions

2" =Rz w') + q(w').
We know that A™ = I. By the Jordan normal form, we choose a linear transformation
W' = Sw' such that SAS_IA is the diagonal matrix diaga with a = (ay,...,a,). In (2, a@")
coordinates, the mapping f has the form (2/,@') — (2, (diaga)w’ + SBZ’). Now

hi(2 @) + G (@) := (2, S™ ) + ¢;(S™ ")
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are invariant under f. Hence ¢;(@0') are invariant under @’ — (diaga)w’. Since the common

zero set of ¢ (w'), ..., g,(w') is the origin, then
V ={u' € CP: g(w") = 0} = {0}.
We conclude that ¢(w1,0,...,0) is not identically zero; otherwise V' would contain the

w;-axis. Now ¢((diaga)w’) = g(w@'), restricted to @' = (w0y,0,...,0), implies that a; = +1.
By the same argument, we get a; = £1 for all j. This shows that A? = I. Let us combine
it with

A"=1, (A" '+...+A+I)B=0.

If m = 1, it is obvious that f = I. If m = 2¢ > 1, then (A +I)B = 0. Thus f2(¢/,w') =
(2, A%w + (A +T1)B2') = (2/,w’). This shows that every deck transformation of 7 is an
involution.

For any two deck transformations f and g, fg is still a deck transformation. Hence

(fg)? = I implies that fg = gf. O

Next, we want to introduce types of complex tangents. When p = 1, the types give the
classification for quadratic parts of the real submanifolds. For higher dimensions, the types
serves a crude classification, but they are significant to characterize our results.

Let us first recall types of complex tangents for surfaces. The Moser-Webster theory
deals with the case p = 1 for a real analytic surface

2 = |21 + (2 +21) + O(|=]?).

Here v > 0 is the Bishop invariant of M. The complex tangent of M is said to be elliptic,
parabolic, or hyperbolic according to 0 < v < 1/2,y = 1/2 or 71 > 1/2, respectively.
One of most important properties of the Moser-Webster theory is the existence of the
above mentioned deck transformations. When 7, # 0, there is a pair of Moser-Webster
involutions 71,7 with 75 = p7mp such that 7; generates the deck transformations of ;.
In fact, 7y is the only possible non-trivial deck transformation of ;. When 7y # 1/2, in
suitable coordinates their composition ¢ = 773 is of the form

T8 =pE+O0(En)P), ' ="+ O(En)).

Here p(&,n) = (7,€) when 0 < v < 1/2, and p(&,n) = (£,7) when v > 1/2. When
the complex tangent is elliptic, o is hyperbolic with p > 1; when the complex tangent is
hyperbolic, then o is elliptic with |u| = 1. When the complex tangent is parabolic, the
linear part of ¢ is not diagonalizable and 1 is the eigenvalue. We also remark that the

Moser-Webster theory deals with a more general case where n-dimensional submanifolds
M in C™ have the form

zm=lull+m(F +2)+0B), y;=0(2), 2<j<n

with the Bishop invariant 0 < 73 < oco. Here n > 1 is not necessarily even. The origin
is then a complex tangent of M of which the complex tangent space at the origin has the
minimum dimension 1.

Our basic model is the product of the above-mentioned Bishop quadrics

Qv: zpry = |71+ (7 +75), 1<j<p
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Here 0 < v; <00, v #1/2, v = (71,...,7) and Qy := Q4, X --- x Q,,. We will see later
that with p > 2, there is yet another simple model that is not in the product. This is the
quadric in C* defined by

(27) ers P23 = 2129 + ’ysfg + (]_ _ ,}/S)Z%’ 2 = Fq.

Here v, is a complex number. We will, however, exclude v = 0 or equivalently v, = 1
by condition B. We also exclude v, = 1/2 by condition E. Note that v = 1/2 does not
correspond to a product Bishop quadrics either, by examining the CR singular sets. Under
these mild non degeneracy conditions, we will show that ~, is an invariant when it is
normalized to the range

(2.8) vs € (1/2,00) + (0, 00).

In this case, the complex tangent is said of compler type. Notice that @, is contained in
a real hyperplane when v; > 0, while Q., is contained in C? x R?.

We have introduced the types of the complex tangent at the origin. Of course a product
of quadrics, or a product quadric, can exhibit a combination of the above basic 4 types. We
will see soon that quadrics have other invariants when p > 1. Nevertheless, in our results,
the above invariants that describe the types of the complex tangent will play a major role
in the convergence or divergence of normalizations.

Before we proceed to discussing the deck transformations, we give some examples. The
first example turns out to be a holomorphic equivalent form of a real submanifold that
admits the maximum number of deck transformations and satisfies other mild conditions.

Example 2.2. Let B = (b;;,) be a non-singular p x p matrix. Let M be defined by

2
(29) Zp+j = <Z bjkzk + Rj(zl>§/)) ) 1 S ] S b,
k

where each R;(0,7) starts with terms of order at least 2. Then M admits 2 deck transfor-

mations for 7;. Indeed, let Eq, ... Eg be the set of diagonal p x p matrices with E? =1,
and let R is the column vector (Ry,..., R,)". Any deck transformation (2, w’) — (2/,0)
must satisfy
(2.10) Buw' + R(Z,w') = E;(Bw' + R(',w")),
for some E;. Since B is invertible, it has a unique solution

w =BT'E;Bu’ + O(|]) + O(Jw'|*).
Finally, (2/,w') — (Z/,@') is an involution, as if (2/,w’, @) = (Z/,w’, f(2',w")) satisty (2.10)
if and only if (2/, f(2/,w’),w’), substituting for (', w’, @') in ([2.10)), satisfy (2.10).

Example 2.3. Let M be defined by
Zpri = 2% + b7 + E;(2, %), 1<j<p-—2s,
Zs = ZsZsts, + bsts. e + Es(2',Z),
Zsydts = ZstsRs T bs§§+s* + Eots. (2, Zsts.), D—25, <5 <p—s..

Here b; # 0 and E; = O(3) for 1 < j <p. Then M admits 27 deck transformations for .
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We now present two examples to show that the deck transformations can be destroyed
by perturbations when p > 1. This is the major difference between real submanifolds with
p > 1 and the ones with p = 1.

The first example shows that a small perturbation can reduce the number of deck trans-
formations to any number 2¢.

Example 2.4. Let M, . be defined by
Zpt+j = ijj + fyﬁ? + ej_ﬁ?_l, 1 < j < p
with zy = z,. Suppose that €; # 0 and

(2.11) N (1) e e #0.

We want to show that M, . admits the identity deck transformation only. Let 7(2',w’) =
(2, A(2',w")) be a deck transformation. Then

(2.12) 2 A (2 W) + AL (2 W) + 6 A (2 W) = zjw; + vl + €owi_y.
Let a;(w’) = A;(0,w'). Set 2’ = 0. By [2.I)), we can solve for a7 to get unique solutions

ai(w') = w?.
This shows that a;(w’) = £w;. Since €;_; # 0, setting w; = 0 and comparing the coeffi-
cients of z;w;_; in ([2.12) yield A;_1(2/,0) = O(]z'|*). Comparing the coefficients of z;w; in
([212)), we conclude that A;(2',w’) = w; + O(|(z/,w)[*). This shows that LT = I. Since 7

is periodic, then 7 = 1.

The next example shows that the number of deck transformations can be reduced to any
number 2¢ by a higher order perturbation, too.

Example 2.5. Let N, . be a perturbation of ()., defined by
i = 2% + 07+ €mZg, 1< j<p.

Here €; # 0 for all j. Let 7 be a deck transformation of N, . for m;. We know that 7 has
the form

2=z, wi=A;(2,w') + Bi(, w') + O(| (2, w)]?).

Here A; are linear and B; are homogeneous quadratic polynomials. We then have

(2.13) z; A (2 w') + %-A?(z', w') + A?_l(z', w') = zjw; + %-w?,

(2.14) ziBj (2, w') + 2v;(A;B;) (2, w') + A?_l(z’, w') = wj-’_l.

We know that L7 is a deck transformation for @,. Thus a;(w’) = A;(0,w') = +w;. Set

z; = 0 in (ZI3)-2I4) to get a;(w’)|e;—1(w?_; —a?_;(w’)). Thus a;_i(w') = w;_;. Hence,
the matrix of L7 is triangular and its diagonal entries are 1. Since L7 is periodic then
L7 = 1. Since 7 is periodic, then 7 = 1.

Based the above two examples, we impose the second basic assumption.

Condition D. M satisfies condition B and the branched covering m of M admits the
maximum 2P deck transformations.

Let us first derive some significant properties for real submanifolds that satisfy conditions
B and D.
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2.3. Real submanifolds and Moser-Webster involutions. The main result of this
subsection is to show the equivalence of classification of the real submanifolds with that
of families of involutions {7i1,...,71,, p}. The relation between two classifications plays
an important role in the Moser-Webster theory for p = 1. This will be the base of our
approach to the normal form problems.

Let F be a family of holomorphic maps in C" with coordinates z. Let LF denote the
set of linear maps z — f/(0)z with f € F. Let O} denote the set of germs of holomorphic
functions h at 0 € C™ so that ho f = h for each f € F. Let [9,]57 be the subset of linear
functions of ML,

Lemma 2.6. Let G be an abelian group of holomorphic (resp. formal) involutions firing
0 € C". Then G has 2° elements which are simultaneously diagonalizable by a holomorphic
(resp. formal) transformation. If k = dimg[9N,|FC then ¢ < n — k. Assume further-

more that { = n — k then, in suitable holomorphic (z1, ..., z,) coordinates, the group G is
generated by Zyi1, ..., 4, with
(2.15) Zj: 2y =—z, zi=z, i#j 1<i<n.
In the z coordinates, the set of Eom;ergent (resp.  formal) power series in zy,...,Z,
2,22 s equal to OF (resp. OF), and with Z = Z,,_y; -+ - Zy,,
(2.16) D) = [,)7, Fix(Z) = () Fix(Z)).

j=k+1

Proof. We first want to show that G has 2° elements. Suppose that it has more than one
element and we have already found a subgroup of G that has 2° elements fi,..., foi. Let
g be an element in G that is different from the 2° elements. Since g is an involution and
commutes with each f;, then

flv"’7f2i7 gf17"'7gf2i

form a group of 2¢+! elements. We have proved that every finite subgroup of G has exactly
2¢ elements. Moreover, if G is infinite then it contains a subgroup of 2¢ elements for every
¢ >0. Let {f1,..., far} be such a subgroup of G. It suffices to show that ¢ < n—k. We first
linearize all f; simultaneously. We know that Lfi, ..., Lfy commute pairwise. Note that
I+ f](0)71f; linearizes f;. Assume that fi is linear. Then f; = Lf; and L f, commute, and
I+ f5(0)! fo commutes with f; and linearizes fo. Thus f; can be simultaneously linearized
by a holomorphic (resp. formal) change of coordinates. Without loss of generality, we may
assume that each f; is linear. We want to diagonalize all f; simultaneously. Let E;' and
E7' be the eigenspaces of f; with eigenvalues 1 and —1, respectively. Since f; = fj_1 fifi,
each eigenspace of f; is invariant under f;. Then we can decompose

(2.17) c'= @ Ein---nE"
(ilr“vis)
Here (iy,...,4,) runs over {—1,1}* with subspaces E(-#) .= ' ... N B £ {0}. On

each of these subspaces, f; = I or —I. We are ready to choose a new basis for C" whose
elements are in the subspaces. Under the new basis, all f; are diagonal.



20

Let us rewrite (2I7) as
Cr=Vielhe V.

Here V; = Eli and I, = (1,...,1). Also, I; # (1,...,1) and dim V; > 0 for j > 1. We have
dimc Fix(G) = dimc V; = dlmc[i)ﬁ ]LG = k. Therefore ({ <n—dimcV; <n-—k We
have proved that in suitable coordinates G is generated by Zy.1,...,Z,. The remaining
assertions follow easily. O

We will need an elementary result about invariant functions.

Lemma 2.7. Let Zyy1,...,Z, be defined by (215). Let F' = {fry1,..., fu} be a family
of germs of holomorphic mappings at the origin 0 € C™. Suppose that the family F s
holomorphically equivalent to {Zyi1,...,Zn}. Let bi(2),...,b,(2) be germs of holomorphic
functions that are invariant under F. Suppose that for 1 < j <k, b;(0) =0 and the linear
part of b; at the origin is b;. Suppose that fori >k, bj(z) = O(|z*) and the quadratic part
of b; at the origin is b} . Suppose that bl, ..., b are linear independent, and that by, ..., 0}
are linearly independent modulo bl, .. bk, i.€e.

> ebi(z) = di(2)bi(2) + O(|z)

holds for some constants c; and formal power series d;, if and only if all c¢; are zero.

Then invariant functions of F are power series in by, ..., b,. Furthermore, F' is uniquely
determined by by, ..., b,. The same conclusion holds if F' and b; are given by formal power
series.

Proof. Without loss of generality, we may assume that F'is {Zy.1,...,Z,}. Hence, for all

j, there is a formal power series a; such that b;(z) = aj(z1,..., 2k, 2441, - .-, 22). Let us
show that the map w — a(w) = (a1(w), ..., a,(w)) is invertible.

By Lemma 2.6l b1(z),...,bkx(z) are linear combinations of 21, ..., zx, and vice versa. By
Lemma again, bj_,,...,b} are linear combinations of z}_ ,,...,z2 modulo z,..., z.
This shows that

= izl + Y du(2)be(2), P>k
>k <k
Since by 4, ..., b}, are linearly independent modulo bi,...,b,. Then (¢ij) is invertible; so is

the linear part of a.

To show that F' is uniquely determined by its invariant functions, let F' be another such
family that is equivalent to {Zy1, ..., Z,}. Assume that F' and F have the same invariant
functions. Without loss of generality, assume that F is {Zks1,- -y Zn}. Then z,..., 2
are invariant by each Fj, i.e. the ith component of Fj(z) is z; for i < k. Also F7y(z) = 2}

for ¢ > k. We get Fj, = %z,. Since 2, is not invariant by F', then it is not invariant by

F either. Then Fj, ¢(2) = —z for some ¢; > k. Since Fj, is equivalent to some Z;, the
set of fixed points of F}, is a hypersurface. This shows that Fj, = Z,. So the family I is
{Zys1, -, Zn}- O

We now want to find a special set of generators for the deck transformations and its basic
properties, which will be important to our study of the normal form problems.
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Lemma 2.8. Let M be defined by (21) and [23) with q. = 0. Suppose that T;, the group
of deck transformations of m;: M — CP, has exactly 2P elements. Then the followings hold.
(i) Tv is generated by p distinct involutions 1i; such that Fix(m1), ..., Fix(m,) are
hypersurfaces intersecting transversally at 0. And 7 = 71 ---71p 1S the unique
deck transformation of which the set of fixed points has dimension p. Moreover,
Fix(m) = (N Fix(7y;).
(ii) OT (resp. OTY) is precisely the set of convergent (resp. formal) power series in z'
and E(2',w'). O (resp. (5,7;2) is the set of convergent (resp. formal) power series
inw' and E(w',2"). In particular, in (2',w") coordinates of M, T, and Ty satisfy

(2.18) [0, J1 7 N [ ]1 7 = {0},
dim Fix(7;) = p, Fix(m) N Fix() = {0}.

Here [9,]1 is the set of linear functions in 2',w’ without constant terms.

Proof. (i). Since z1,..., 2, are invariant under deck transformations of 7, we have p’ =
dime[0, ] > p. By Lemma 26, 7, has at most 22?7 deck transformations. Therefore,
p’ = p. By Lemma again, we may assume that in suitable (£,7) coordinates, the deck
transformations are generated by

(219) Zj: (fﬂ?) — (5)”17' < =1, =N Nj+1, - - '777]))7 1 S] Sp

It follows that Z = Z; --- Z, is the unique deck transformation of m;, of which the set of
fixed points has dimension p.

(ii). We have proved that in (£, 7n) coordinates the deck transformations are generated
by the above Zi,...,Z,. Thus, the invariant holomorphic functions of Z, ..., Z, are pre-
cisely the holomorphic functions in &y, ..., &y, 07, ..., 5. Since 21, ..., z, and E;(2/,w’) are
invariant under deck transformations, then on M

(220) Z,: f(gan%aan;%)a E(Z,aw/) :9(&77%,’77;2;)

Since (2’,w’) are local coordinates of M, the differentials of z1, .. ., z, under any coordinate
system of M are linearly independent. Computing the differentials of 2z’ in variables &, n by
using (2.20), we see that the mapping & — f(£,0) is a local biholomorphism. Expressing
both sides of the second identity in (2.20)) as power series in &, 7, we obtain

E(f(&,0),w') = g(&ni, ... mz) +O(|(&mP).
We set € = 0, compute the left-hand side, and rewrite the identity as

(2.21) g(0,m7,...,m2) = q(w') + O(|(&m)).

As coordinate systems, (2/,w’) and (£,n) vanish at 0 € M. We now use (Z,w') =

O(|(&,m)]). By @220), f(0) = ¢g(0) = 0 and g(£,0) = O(|¢]?). Let us verify that the lin-
ear parts of ¢1(0,7),...,g,(0,n) are linearly independent. Suppose that Z§:1 ¢;g;(0,m) =

O(|n|?). Replacing &, by O(|(2’,w’)|) in (Z21I)) and setting 2z’ = 0, we obtain

ZCJQJ O(lw'), chqj
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As remarked after condition B was introduced, ¢, = 0 implies that ¢, (w’),. .., g,(w') are
linearly independent. Thus all ¢; are 0. We have verified that £ — f(¢,0) is biholomorphic
near £ = 0. Also n — ¢(0,7) is biholomorphic near n = 0 and g(&,0) = O(|¢]?). Therefore,
(&,m) — (f,9)(&,m) is invertible near 0. By solving (2.20), the functions &, 77, ... ,775 are
expressed as power series in 2’ and E(Z/,w’).

It is clear that zi, ..., 2, are invariant under 71;. From linearization of 7;, we know that
the space of invariant linear functions of L7; is the same as the space of linear invariant
functions of L7y, which has dimension p. This shows that 21, ..., 2, span the space of linear
invariant functions of L7y. Also wy,...,w, span the space of linear invariant functions of
Lty. We obtain [,]F7 N [9N,]¥™ = {0}. We have verified (ZI8).

In view of the linearization of 77 in (i), we obtain dimFix(r) = dimFix(77) = p.
Moreover, Fix(7;) is a smooth submanifold of which the tangent space at the origin is
Fix(L7;). We choose a basis uy,...,u, for Fix(Lm). Let vy,...,v, be any p vectors such
that uy, ..., up, v, ..., v, form a basis of C". In new coordinates defined by > &u;+n;v;, we
know that linear invariant functions of L7y are spanned by &, ..., &,. The linear invariant
functions in (&,7) that are invariant by L7, are spanned by f;(&,n) = >, (axék + bjrni)
for 1 < j < p. Since [M,)F™ N [M,]F2 = {0}, then &,...,&, fi,..., [, are linearly
independent. Equivalently, (b;;) is non-singular. Now Fix(L7y) is spanned by vectors
> wlajrug+0bj,vr). This shows that Fix(Lm)NFix(Lt,) = {0}. Therefore, Fix(7q) intersects
Fix(7y) transversally at the origin and the intersection must be the origin. O

We remark that the proof of the above lemma actually gives us a more general result.

Corollary 2.9. Let 0 < p < n. Let J be a group of commuting holomorphic (formal)
involutions on C™.

(i) Fix(L3) = {0} if and only if [M,]%? has dimension 0.

(ii) Let 3 be another family of commuting holomorphic (resp. formal) involutions such
that [IM,]57 N [IN,]E7 = {0}. Then Fix(L3) N Fix(L3) = {0}. Moreover, Fix(3) N
Fix(3) = {0} if 3 and J consist of convergent involutions.

In view of Lemma 2.8 we will refer to

{7,725, 1< < p}
as the Moser-Webster involutions, while the two groups of the 2P involutions intertwined by

p will be called the extended family of Moser-Webster involutions. Recall that m; = p7;p.
Let us denote

7—12: {7—117---77—1;)}7 7—212 {Tgl,...,Tgp}.

Thus the sets of involutions are uniquely determined by

{Tp} ={m1,- - Ty, P}

The significance of the two sets of involutions is the following proposition that transforms
the normalization of the real manifolds into that of two families of commuting involutions.
For clarity, recall the anti-holomorphic involution pg: (2, w') — (w', 2’).

Proposition 2.10. Let M and M be two real analytic submanifolds of the form 1) and
@3)) that admit Moser-Webster involutions {T1, po} and {T1, po}, respectively. Then M and



23

M are holomorphically equivalent if and only if {T1,po} and {T1,po} are holomorphically
equivalent, i.e. if there is a biholomorphic map f commuting with py such that fT,f~1 = 7},
that is that fri;f~" =7, for 1 <j <p. Here {iy,... i} ={1,...,p}.

Let Ty = {m1,...,7p} be a family of p distinct commutmg holomorphic involutions.
Suppose that Fix(111), . .., Fix(7y,) are hypersurfaces intersecting transversely at the origin.
Let p be an anti-holomorphic involutions and let Ty be the family of involutions To; = p11;p
with 1 < j < p. Suppose that

(2.22) )17 N [ = {0}
There exists a real analytic real n-submanifold
(2.23) M CC?:z,;=A7), 1<j<p

such that the set of Moser-Webster involutions {7~], po} of M is holomorphically equivalent
to {T1, p}-

Proof. We recall from (2.6]) the branched covering
w1 M= MO ((Af X AL) x (As x Alg)) — Af x AL,
Here C' > 1. Let m be restricted to M;. Then my = 77 0 p is defined on p(M;). Note that
my: p(My) — Af x AL,

We have m;*(2) N Fix(p) = {(z, z)} for z € M and m (Fix(p )) M. Let By C A} x A%, be
the branched locus. Take B = 7 (By). We will denote by Ml, B and B() the corresponding
data for M. Here M; is an analogous branched covering over m (./\/l ). We assume that
the latter contains f(m(My)) if M is equivalent to M via f.

Assume that f is a biholomorphic map sending M into M. Let f¢ be the restriction of
biholomorphic map f“(z,w) = (f(2), f(w)) to M. Let M be defined by 2" = E(z',Z') and
M be defined by 2" = E(2',7'). By f(M) C M, f = (f, f") satisfies

f'(Z,BE(z,%)) = E(f'(<, E(z,%)), (7, E(Z,2))).

Using the defining equations for M, we get f¢(M) C M and pfe = fp on M N p(M).
We will also assume that f¢(M;) is contained in le. It is clear that f¢ sends a fiber
77 1(2) onto the fiber 77 1(f(2)) for z € Q = m (M) \ (Bo U f~1(By)), since the two fibers
have the same number of points and f is injective. Thus f°r; = 714, f© on 7 ' (Q). Here i;
is of course locally determined on 7, *(Q). Since B has positive codimension in M; then
M; \ B is connected. Hence i; is well-defined on 77 *(Q2). Then féry; = 7;, f¢ on M, \ B.
This shows that f© conjugates simultaneously the deck transformations of M to the deck
transformations of M for 7;. The same conclusion holds for m.

Conversely, assume that there is a biholomorphic map g: M — M such that pg = gp and
gTi; = T1j,9. Since T, ..., Ty are distinct and M; \ B is connected, then U#i{x e My \
B: 1;(x) = 7;(x)} is a complex subvariety of positive codimension in M; \ B. Its image
under the proper projection 7 is a subvariety of positive codimension in A x A%, \ By. This
shows that the latter contains a non-empty open subset w such that {m;(z),..., 7w (z)} =
7y 'm(x) has 2P distinct points for each 7y(x) € w. Therefore, 7yy,..., T2 are all deck
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transformations of m; over w. Hence they are all deck transformations of m;: M; \ B —
A% x AP, \ By, too. This shows that 71 ' (m(2)) = {m;(z): 1 < j < 2°} for z € M, \ B.
Now, g sends 7i;(z) to 7y, (g(z)) for each j. Hence f(z) = mgny'(2) is well-defined and
holomorphic for z € A§ x Af; \ By. By the Riemann extension for bounded holomorphic
functions, f extends to a holomorphic mapping, still denoted by f, which is defined near the
origin. We know that f is invertible and in fact the inverse can be obtained by extending
the mapping z — mg 'm(z). If 2 = (2, E(Z,w')) € M, then v’ = Z' and f(z) =
mgn; H(2) = mg(z,Z) with (2,%) € Fix(p). Since pg = gp, then g(z,%) € Fix(p). Thus
f(z) =my(z,Z) € M.

Assume that {7;} and p are germs of involutions defined at the origin of C". As-
sume that they satisfy the conditions in the proposition. From Lemma it follows that
Ti1, - .., Tip generate a group of 27 involutions, while the p generators are the only elements
of which each fixes a hypersurface pointwise. To realize them as deck transformations of the
complexification of a real analytic submanifold, we apply Lemma to find a coordinate
map (£,1) = ¢(§,n) = (A, B)(&,n) such that invariant holomorphic functions of {7,} are
precisely holomorphic functions in

Z = (A& m), -, A&m), 2= (BI(Em), ., By(&,m)-

Note that B, is skew-invariant under 7y; and is invariant under 7y; for ¢« # j and A is
invariant under all 7;. Set

wi =Ajop(&n), w]=DBlop(En).

Since T9; = p71jp, the holomorphic functions invariant under all 75; are precisely the holo-
morphic functions in the above w',w”. We now draw conclusions for the linear parts of
invariant functions and involutions. Since ¢ is biholomorphic, then LA, ..., LA, are lin-
early independent. They are also invariant under L7y;. Since 79; = p71,p, the p functions
LA, o p are linearly independent and invariant under L7y;. Thus

LA,,...,LA, LAjop,...,LA,0p
are linearly independent, since [,]X™ N[9N,,]X™ = {0}. This shows that the map (£,7) —
(2, w') = (A(&,m), Ao p(§,m)) has an inverse (£,7) = ¥ (2',w’). Define
M: 2" =(Bf,...,B))oy(,7).
The complexification of M is given by
M: "= (B;,....Bl)oy(dw), w'= (E?, . ,E;) o(w', ).
Note that ¢ o (2, w') = (2/, B o 9(z',w’)) is biholomorphic. In particular, we can write
B} o (2, 7) = hj(2,Z) + ¢;(Z) + b;(') + O(|(='. Z) ).
Here ¢;(Z') = ¢;(Z'), and g(w’) is the linear part of w’ — Bo1(0,w’). Therefore, |q(w’)| >
cJw')? and ¢, = 0. By Lemma[21], m: M — CP is a 2P-to-1 branched covering defined near
0 € M. Since B? is invariant by 71, then z” = B?o04)(2/,w’) is invariant by ¢~ ;9 (2, w').
Also A is invariant under 71;. Then 2/ = Ao (2’,w’) is invariant by ¢~ '7;9 (2, w’). This
show that {¢)~'7;;4} has the same invariant functions as of the deck transformations of ;.
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By Lemma27, {¢)~'71;1} agrees with the set of deck transformations of 7. For po(z', w') =
(w',2") we have poty~' = ¢p~!p. This shows that M is a realization for {71, ..., 71, p}. O

Remark 2.11. (i) We choose the realization in such a way that z,.; are square functions.
Of course, the choice is not unique. In fact, we can replace 2" by f(z) = (fp+1(2), ..., fap(2))
as long as the mapping z — (2/, f(z)) is biholomorphic. However, this particular holomor-
phic equivalent form of M will be crucial to study the asymptotic manifolds in section [I1]
In fact, by Example 2.4] (2.9]) provides a general equation for M to admit 2P deck transfor-
mations. (ii) An interesting case is when f(z) can be so chosen that M is holomorphically
flattened, i.e, M is contained in Im 2” = 0. In [MWS83], such a choice is always possible at
least at the formal level. We will discuss the holomorphic flatness in Theorem

Next we want to compute the deck transformations for a product quadric. We will first
recall the Moser-Webster involutions for elliptic and hyperbolic complex tangents. We will
then compute the deck transformations for complex tangents of complex type.

Let us first recall involutions in [MWS83] where the complex tangents are elliptic (with
non-vanishing Bishop invariant) or hyperbolic. When ~; # 0, the non-trivial deck trans-
formations of

2= |z + 7 + 7))
for 7y, my are 1, 7o, respectively. They are

Y A ! —1 . _
T 21 = %1, Wy = —W1 — 71 215 To = PT1P

with p being defined by (25)). Note that 7 and 75 do not commute and o = 77 satisfies
ol =rnor=pop, TP=1 p'=1I

When the complex tangent is not parabolic, the eigenvalues of o are p, u=! with p = A2
and

A2 =X+ =0.
For the elliptic complex tangent, we can choose a solution A > 1, and in suitable coordinates
we obtain

(2.24) ni: =M+ 0(E ), 1 =1+ O0((En)]?),
T2 = P71, p(€>77) = (ﬁ> g)a
o: & =ps+0(EP), 7 =p"n+0(EnP), n=I
When the complex tangent is hyperbolic, i.e. 1/2 < < oo, 7; and o still have the above
form, while |u| = 1 = |A| and ~
p(&:m) = (£,7).
When the complex tangent is parabolic, i.e. v = 1/2, the pair of involutions still exists.
However, Lo is not diagonalizable and 1 is its only eigenvalue.
For the complex type, new situations arise. Recall that such a quadric has the form

(2.25) Q. : 23 = 21%Z2 + VoZa 4+ (1 — 75)22, 24 = Zs.

Here v, is a complex number. Let us first check that such a quadric is not the product of
two Bishop quadrics : Its CR singular set is defined by

(Zl + 2’7852)(2’2 + 2(1 — 78)51) =0.
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It is the union of a complex line and a totally real plane, or two totally real planes. The

CR singular set of a quadric defined by z3 = |21 > + 71(2? +72) and 24 = |29]* + Yo(23 + 23)
is given by

(Zl + 2’7151)(2’2 + 2’7222) = 0.

It is the union of two complex lines, or one complex line and a 3 dimensional plane.

By condition B, we know that v, # 0,1. Let us compute the deck transformations of

the complexification of (Z25]). According to Lemma (1), the deck transformations for
m, are generated by two involutions

21 = %1,
r_ r_
o) 2y = 2, L) F2 = k2
T11 - , 1 T12 - ,
Wy = —Wy — 7 22, wy = wy,
/o . I = \—1
wh = wy; wh = —wy — (1 —7,) 2.
We still have p defined by (2.5). Let 7o; = p7i;p. Then 791, 720 generate the deck transfor-
mations of my. Note that
r_ —1 r_
21 = TR — Vs Wa, 21 = 21,
/ ! -1
BESE )= — (1 =) w,
T21 - , T22 . ,
w; = Wy, wy) = Wy,
/
w2 == w27 w2 == w2.

Recall that 7; = 71732 is the unique deck transformation of 7; that has the smallest dimen-
sion of the set of fixed-points among all deck transformations. They are

e
2 = %,

/I ~—1
2= 21— Wa,
!/ / —1
) 2 = 2, )=z — (=) wy,
T ;o 1 T2 I
Wy = —W1 — Vs 22, wy = Wi,
I = \—-1,. . I
wh = —wy — (1 —7,) 1 2; wh = ws.

And 77, is given by

2= =2 — 75w,
” 2h = —29 — (1 — ) Ly,
Vo) wi =+ (s =) = D,
wh = (1 =7,) 21 + (7, = 72) 7" = Dwa.

In contrast to the elliptic and hyperbolic cases, 717 and p71p commute; in other words,
T11pT11p is actually an involution. And 75 and pri9p commute, too. However, 71 and 799
do not commute, and Ti2, 791 do not commute either. Thus, we form compositions

-1
Os1 = T11T22, Os2 = T12721, Og = POs1P.
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By a simple computation, we have

/

2] = 21,
! -1
” zh = —2z9 — (1 — 75) "ty
sl ;-1 2\—1
wy =7, Z2+((73_78) —1)’(1]1,
Wy = Wwy;
[ —_—
2] = =21 — Vg W2,
2y = 2,
052 ;o
wl —wl,

wy = (1=7) " 21+ ((F, =75~ = Dwa.
We verify that
051052 = 05 = T1T2.

This allows us to compute the eigenvalues of 0,104 easily:

(2.26) [T TR TR T
Hs = (73_1 - 1)_1'
In fact we compute them by observing that the first two in (2.26) and 1 with multiplicity

are eigenvalues of oy, while the last two in (2Z26) and 1 with multiplicity are eigenvalues
of og. Therefore, for v, # 1/2, i.e. us # 1, we can find a linear transformation of the form

V1 (21, w2) = (§2,m2) = P21, w2), (22, w1) = (§1,m) = P(wy, 22)

such that o4, 04,05 = 045104 are simultaneously diagonalized as

oa: & = pby, omo= pgtm, & = &, = 12,
(2.27) o: & = &, no= m, & = ;' mh = I,
oo & = pe, M o= pgtm, & =06, m o= A
Under the transformation ¢, the involution p, defined by (2.5)), takes the form
(228) /)(5175277717772) = (E27517ﬁ27ﬁ1)'
Moreover, for 7, j = 1,2, we have
(2.29) T &= Nmg, =X & =& mi=mn, i

—1

)\1 = >\S7 )\2 = Xs ) Hs = >\§

When v, = 1/2, the only eigenvalue of o4 is 1. We can choose a suitable ¢ such that
transforms o4, 049, 05 into

o § =&, m=m+&, & =&, n =
(2.30) o & =&,  m o=, § =&, My = —Satmy,

o5 & =&, m=%&&+m, & =&, M= -5+
Note that eigenvalues formulae (226]) and the Jordan normal form (2Z30) tell us that 7
and 7 do not commute, while o1, 0,5 commute as mentioned earlier.
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Remark 2.12. The mappings o4, 05 behave like a hyperbolic mapping when |ug| > 1,
an elliptic mapping when |us] = 1, or a parabolic mapping when us = 1. Recall that o
has 4 distinct eigenvalues for the first case, 2 distinct eigenvalues with multiplicity for the
second case, and only eigenvalue of 1 for the last case. The o is diagonalizable for the first
two cases, but it has a Jordan bock with multiplicity for the last case. In this paper, we
will only study the first case of complex type, i.e.

|IU’S‘ > 17
which follows from condition E.

For later purpose, we summarize some facts for complex type in the following.

Proposition 2.13. Let Q,, C C* be the quadric defined by 2.1) and 2.8). Then 7 admits
two deck transformations i1, T2 such that the set of fized points of each 71; has dimension
3. Also, T9; = pTijp are the deck transformations of my and

T11721 = T21T11,  T12T22 = T22712-
Let Os1 = T11722, Os2 = T12721, Ti = Ti17i2, and Og = T1T2. Then
_ _ -1 _ -1 _
0 = 051052 = 0452051, Og9 = POs1P; Oy = POgp.

In suitable coordinates o4, 049,0,ps are given by 227)-(228) when vs # 1/2; when v, =
1/2, they are given by (2.28)) and ([2.30). If

vs €{z € C: Rez >1/2,Imz > 0},
then oy admits 4 distinct eigenvalues (v;1 —1)7L, ;1 = 1,71 — 1, and (771 — 1)~

The commutativity of o, 0., 01, 0so Will be important to understand the convergence of
normalization for the abelian CR singularity to be introduced in section

Let us summarize some facts in this section.

Let 7, = 71 -- -7 for ¢ = 1,2. Note that they are intertwined by the anti-holomorphic
involution via 75 = p7p. Each 7; is the unique deck transformation for 7; whose set of fixed
points has minimum dimension p. Then o = 7175 is reversible by 7; and p in the sense that

o =01, pop=o"t, Ti=1I1p*=1I

The reversible map o will play a central role to the study of the submanifolds M, as we
will demonstrate this in the classification of quadratic manifolds. In particular, they carry
some geometry and dynamics associated to the real manifolds; for instance the attached
complex submanifolds are closely related the invariant submanifolds of o, which is discussed
in section[I1l We will also call 741, ..., 7y, the generators of the deck transformations, which
are unique as each Fix(r;) has codimension 1.

For various reversible mappings and their relations with general mappings, the reader is
referred to [OZI11] for recent results and references therein.

To derive our normal forms, we shall transform {7, 79, p} into a normal form first. We
will further normalize {7y}, p} by using the group of biholomorphic maps that preserve the
normal form of {7y, 7, p}, i.e. the centralizer of the normal form of {7y, 7, p}.
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3. QUADRICS WITH THE MAXIMUM NUMBER OF DECK TRANSFORMATIONS

In section 2 we establish the basic relation between the classification of real manifolds
and that of two families of involutions intertwined by an antiholomorphic involution; see
Proposition .10l As a first application, we obtain in this section a normal form for two
families of linear involutions and use it to construct the normal form for their associated
quadrics. This section also serves an introduction to our approach to find the normal forms
of the real submanifolds at least at the formal level.

3.1. Normal form of two families of linear involutions. To formulate our results, we
first discuss the normal forms which we are seeking for the involutions. We are given two
families of commuting linear involutions 7y = {111, ...,T1,} and Ty = {Ts1, ..., Ty} with
Ty; = pT1;p. Here p is a linear anti-holomorphic involution. We set

T1 = T11 B 'Tlpa T2 = pTlp
Recall that our involutions satisfy the additional (ZI6]) and ([2:22)). Thus

(3.2) (201 N (] = {0}

Recall that [9,,]; denotes the linear functions without constant terms. We would like to
find a change of coordinates ¢ such that o ~'77;¢ and ¢~ pp have a simpler form. We would
like to show that two such families of involutions {77, p} and {77, p} are holomorphically
equivalent, if there are normal forms are equivalent under a much smaller set of changes of
coordinates, or if they are identical in the ideal situation.

Next, we describe our plans to derive the normal forms for linear involutions. The scheme
to derive the linear normal forms turns out to be essential to understand the derivation of
normal forms for non-linear involutions and the perturbed quadrics. We define

S - Tng.

Besides conditions (B.1])-(3.2]), we will soon impose condition E below that S has 2p distinct
eigenvalues.
We first use a linear map v to diagonalize S to its normal form

S: & =&, ny=p;'n, 1<j<p
The choice of v is not unique. We further normalize T}, T5, p under linear transformations
commuting with S i.e. the invertible mappings in the linear centralizer of S. We use a
linear map that commutes with S to transform p into a normal form too, which is still

denoted by p. We then use a transformation v, in the linear centralizer of S and p to
normalize the T3, T5 into the normal form

A~

T‘ii f; = )‘ijnja 77; = )\i_jlgj, 1 S] S p.

Here we require \g; = Al_jl. Thus p; = )\%j for 1 <j <p, and Ayy,..., A, form a complete
set of invariants of 17,75, p, provided they are normalized into the regions

Ae > 1, ImAy, >0, arghs € (0,7/2), |As] > 1.



30

Next we normalize the family 77 of linear involutions under mappings in the linear
centralizer of T}, p. Let us assume that 77, p are in the normal forms Ty, p. To normalize
the families {77, p}, we use the crucial property that Tiq,...,7}, commute pairwise and
each T, fixes a hyperplane. This allows us to express the family of involutions via a single
linear mapping ¢;:

Ty = 101 Z;07 1
Here the linear mapping ¢; depends only on Ay,..., A, and
Zin& =& nmi=mn (i #J), m=-n
Expressing ¢; in a non-singular pxp constant matrix B, the normal form for {711, ..., T, p}
consists of invariants Ay,..., A\, and a normal form of B. After we obtain the normal form

for B, we will construct the normal form of the quadrics by using the realization procedure
in the proof of Proposition 2.10l

We now carry out the details.
Let Ty =Ty - - Thp, To = pThp and S = T T5. Since T; and p are involutions, then S is
reversible with respect to 7; and p, i.e.

STH=T71ST, S =p'Sp, TP=1I p*=1I
Therefore, if £ is an eigenvalue of S with a (non-zero) eigenvector u, then
Su=ru, S(Tw)=r""Tu, S(pu)=F "'pu, S(pTwu)=TFpTiu.

Following [MW&3] and [St07], we will divide eigenvalues into 4 types: p is elliptic if u # £1
and g is real, p is hyperbolic if |u] = 1 and p # 1, p is parabolic if =1, and p is complex
otherwise. The classification of ¢ into the types corresponds to the classification of the
types of complex tangents described in section [Z namely, an elliptic (resp. hyperbolic)
complex tangent is tied to a hyperbolic (resp. elliptic) mapping . A complex tangent of
parabolic (reps. complex) type is tied to a mapping of parabolic (resp. complex) type.

To classify the families of linear involutions, we need a mild assumption to exclude
multiplicity in 7,...,7, and also parabolic complex tangent at the origin. We therefore
impose the following condition on quadrics.

Condition E. The composition S has 2p distinct eigenvalues.

Lemma 3.1. Under conditions E and (3.2]), neither 1 nor —1 is an eigenvalue of S.

Proof. Assume for the sake of contradiction that 1 is an eigenvalue. We have seen that
eigenvalues arrive in pairs p, p~1 if g # £1. Since there are n = 2p eigenvalues by condition
E, both —1 and 1 are eigenvalues. Let u, v be eigenvectors such that

Su=u, Tu=eu, Tou=ecu € ==%I1;
Sv=—v, Tw=ecv, Tw=—cv, e ==I1.
Since Fix(T7) N Fix(Ty) = {0}, then ¢ = —1. Without loss of generality, we may assume
that e = —1. Let V be the span of eigenvectors of S with eigenvalues other than =+1.

Thus T; preserves V., dim V = 2p — 2, dim Fix(T}|y) = p, and dim Fix(T5|y) = p— 1. Since
p+(p—1) > 2p—2, then Fix(T}) NFix(T3) has dimension at least one, a contradiction. [J
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We now assume conditions E and (B.1])-(3:2]) for the rest of the section to derive a normal
form for 77, and p.

We need to choose the eigenvectors of S and their eigenvalues in such a way that T3, T5
and p are in a normal form. We will first choose eigenvectors to put p into a normal form.
After normalizing p, we will then choose eigenvectors to normalize T7 and T5.

First, let us consider an elliptic eigenvalue u.. Let u be an eigenvector of u.. Then u
and v = p(u) satisfy
(3.3) S() = pte, Tw) = A, o= Ay

j
Now Ty(u) = pTip(u) implies that
—1
>\2 = >\1 y Me = ‘)\1‘2.
Replacing (u,v) by (cu,cv), we may assume that A\; > 0 and A\, = A\;'. Replacing (u,v)
by (v,u) if necessary, we may further achieve
plu) =v, A =A>1, fpre=A>1

We still have the freedom to replace (u,v) by (ru,rv) for r € R*, while preserving the
above conditions.

Next, let p, be a hyperbolic eigenvalue of S and S(u) = ppu. Then u and v = T (u)
satisfy

plu) = au, p(v) =bv, |af =[b] = 1.
Replacing (u,v) by (cu,v), we may assume that a = 1. Now Ty(v) = pTip(v) = bu. To
obtain b = 1, we replace (u,v) by (u, \/I;_lv). This give us (33)) with |A\;| = 1. Replacing
(u,v) by (v,u) if necessary, we may further achieve
p(u> =u, p(U) =, AL = )\ha Hh = )‘%w arg A € (0777-/2)

Again, we have the freedom to replace (u,v) by (ru,rv) for r € R*, while preserving the
above conditions.

Finally, we consider a complex eigenvalue p,. Let S(u) = psu. Then @ = p(u) satisfies
S(a) = m;'a. Let u* =Ty(u) and @* = p(u*). Then S(u*) = p;'u* and S(a*) = mu*. We
change eigenvectors by

so that

Note that S(u) = Mu, S(u*) = A\ 2u*, S(@) = N @, and S(*) = A ai*. Replacing
(u, @, u*, w*) by (u*,u*, u, ) changes the argument and the modulus of \; as A{' becomes
A1. Replacing them by (u u, @*, u*) changes only the modulus as A\; becomes A\;* and then
replacing them by (u*, @*, —u, —ﬁ) changes the sign of \;. Therefore, we may achieve

ps =M A=A, argy, € (0,7/2), |\ > 1.

We still have the freedom to replace (u, u*, @, @*) by (cu, cu*,cu,cu*).
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We summarize the above choice of eigenvectors and their corresponding coordinates.
First, S has distinct eigenvalues
2 <2
M= A AL M EANE AL AT

s

—2 ~2

R

Also, S has linearly independent eigenvectors satisfying
Ste = Nue, Suf =\ %u’,
Svp = Aoy, Svp = A\, g,
2 4

— ~ N2~ ~ 5
Swy = Nw,, Swi=\2w!, Sw,=\, W, Sw =\

Furthermore, the p, T}, and the chosen eigenvectors of S satisfy
pue = ul,  Tiue = A\ 'ub;
pup = v, pup =vp, Tiv, = )\,_le,’:;
pws =W, pwi =w., Tiws= )\S_lw:, Ty, = A\

For normalization, we collect elliptic eigenvalues y. and ', hyperbolic eigenvalues iy,
and g, !, and complex eigenvalues in i, 7%, 77+ and 77,. We put them in the order

fe =Tle,  Hpre = 1o
by  Mpthe+h = Hps
Hsy,  Hsts, = ﬁs_la Hpts = ,Us_la Pptsets = [g-
Here and throughout the paper the ranges of subscripts e, h, s are restricted to
1<e<e, e.<h<e,+h, e +h,<s<p-—s,.

Thus e, + h, + 2s, = p. Using the new coordinates

Z(geue + neu:) + Z(ghvh + nhv;;) + Z(gsws + gs-i-s*ws + nsw: + 778+8*w:)7
we have normalized o, 717,75 and p. In summary, we have the following normal form.

Lemma 3.2. Let 11, Ty be linear holomorphic involutions on C™ that satisfy B.2). Then
n = 2p and dim[M,|7* = p. Suppose that Ty = poTipo for some anti-holomorphic linear
involution py. Assume that S = TiTy has n distinct eigenvalues. There exists a lin-
ear change of holomorphic coordinates that transforms Ty, Ts, S, py simultaneously into the
normal forms 11,15, S, P

(3.4) Ti: g =XNmy, my=X\'¢, 1<j<p
(3.5) Ty: & =Ny, my=XN¢&, 1<j<p;
(3.6) S:& =&, my=p5n, 1<5<p;
gé = Nes 772 = gea
) & =6, Mh = Th»
(3.7) p: 57 - Eh , fh
f - _s—i—s*’ /s+s* - _s’
775 = ns—i-s*’ ns—i-s* = 775~
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Moreover, the eigenvalues iy, . . ., i, satisfy

(3.8) =X, 1<j<p;

(3.9) Ae>1 =1, P >1 Aews, = A,
(3.10) arg A, € (0,7/2), argAs € (0,7/2);

(3.11) Ao < Ay, 0 <argly <arg Ay < m/2;

(3.12) arg Ay < arg Ay 11, or arg Ay = arg Ay 11 and |Ag| < [Ag11].

Here 1 < € < ey, e, < W <e,+hy, ande, +h, < s <p—35,. And1 < e < e,,
ex < h <e,+h ande, +h, < s < p—s,. Ifg is also in the normal form ([B.4) for
possible different eigenvalues fii, . . ., fi, satisfying (3.8)-B.12), then S and S are equivalent
if and only if their eigenvalues are identical.

The above normal form of p will be fixed for the rest of paper. Note that in case of non-
linear involutions {mi,...,71,, p} of which the linear part are given by {Tii,...,T1,, p}
we can always linearize p first under a holomorphic map of which the linear part at the
origin is described in above normalization for the linear part of {m1, ..., 71,, p}. Indeed, we
may assume that the linear part of the latter family is already in the normal form. Then
¢ = 1(I + (Lp) o p) is tangent to the identity and (Lp) o ¢ o p = 1, i.e. 9 transforms p
into Lp while preserving the linear parts of 711,...,7,. Therefore in the non-linear case,
we can assume that p is given by the above normal form. The above lemma tells us the
ranges of eigenvalues p., ptp, and g that can be realized by quadrics that satisfy conditions
E and B.1)-(B.2).

Having normalized T} and p, we want to further normalize {111, ...,7},} under linear
maps that preserve the normal forms of 7} and p. We know that the composition of 77, is
in the normal form, i.e.

(3.13) Ty Ty = T

is given in Lemma[3.2l We first need to find an expression for all 77; that commute pairwise
and satisfy ([B.I3)), by using invariant and skew-invariant functions of 73. Let

(57 7]) = 901(’2—1—7 Z_>
be defined by

(3.14) =t Aoy 20 =1 — N,
(3.15) Z;[ =&+ A, 2, =Mh — M
(3.16) F =6+ A, 27 =1 — A,

__1 _ —_
(3’17) Z;_—i-s* = £s+s* + )\s Nsdsir  Rsts, — Nstse — )\s§s+s*-

In (2%, 27) coordinates, ¢ Ty, becomes
Z:izt =t 2T .
We decompose Z = Z; - - - Z,, by using

Zii (2N 27) = (25,20, 2 2

G—10 " *j >

ETTRTRRRRY- B
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To keep simple notation, let us use the same notions x,y for a linear transformation
y = A(x) and its matrix representation:

Az — Ax.

The following lemma, which can be verified immediately, shows the advantages of coordi-
nates z*, 27,

Lemma 3.3. The linear centralizer of Z is the set of mappings of the form

(3.18) ¢: (27,27) = (AzT,Bz7),

where A, B are constant and possibly singular matrices. Let v be a permutation of {1, ... ,p}.
Then Z;p = ¢pZ, ;) for all j if and only if ¢ has the above form with B = diag, d. Here
(319) diagy(dl, ce ,dp) = (bij>p><p7 bjy(j) = dj, bjk =0 Zf k §£ V(j)

In particular, the linear centralizer of {Z,...,Z,} is the set of mappings [B.18)) in which
B are diagonal.

To continue our normalization for the family {7};}, we note that <p1_1T11 D1y e e ey <p1_1T1p<p1
generate an abelian group of 2P involutions and each of these p generators fixes a hyperplane.
By Lemma there is a linear transformation ¢, such that

o7 e Ty = Z;, 1< j<p.

Computing two compositions on both sides, we see that ¢; must be in the linear centralizer
of Z. Thus, it is in the form [BI8]). Of course, ¢; is not unique; (ﬁl is another such linear
map for the same T3, if and only if b1 = P19 with ¢y € C(Zy,...,2Zy,). By (B1I8), we may
restrict ourselves to ¢, given by

(3.20) d1: (21,27) = (27,Bz27).

Then gz~51 yields the same T}; if and only if its corresponding matrix B = BD for a diagonal
matrix D.

In the above we have expressed all T'y,..., T}, via equivalence classes of matrices. It
will be convenient to restate them via matrices.

For simplicity, T; and S denote T}, S, respectively. In matrices, we write

e (9)-n(5). w (5)(3): = (5)5(5)

Recall that the bold faced A represents a linear map A. Then
0 A A2 0
(e 8, o8 ),
Al 0 2pX2p 0 Al 2pX2p
We will abbreviate

€e* = (gla cee >€e*)a Eh* = (56*4-17 cee age*-i-h*)a 525* = (§E*+h*+1a SR gp)

We use the same abbreviation for . Then (§..,m..), (§4.,M5.), and (&, , M2, ) subspaces
are invariant under 7, T3, and p. We also denote by 77, T!* T¢* the restrictions of T} to



35

these subspaces. Define analogously for the restrictions of p, S to these subspaces. Define
diagonal matrices A, , A1y, , A1, , of size e, X ey, hy X hy and s, X s, respectively, by

A, 0 0 0 A, 0 0 O
0 Ay, O O — 0 A, 0 o0
A=10 o A, o | M=o 0 A o
o 0 0 A 0 0 0 Ay
Thus, we can express 77" and 5% in (2s,) X (2s,) matrices
0 0 A, O Al 0 0 0
re_| 0 0 0 AL g _| O AL 0 0
AL 0 0 0 ) 10 0 A2 O
0 A, 0 0 0o 0o o A

Let I, denote the k x k identity matrix. With the abbreviation, we can express p as

e O Ie* *
P*:(I6 0)7 p' =T,
0 I, 0 0
o |, o 0o o
P 0 0 0 I,
0 0 I, 0

Note that p is anti-holomorphic linear transformation. If A is a complex linear transfor-
mation, in (§,7n) coordinates the matrix of pA is pA, i.e.

o () ()

with
O 0 o oI, o o O
o I,, o 0 0 O 0 O
O 0o oI O o0 o0 O
10 0 I, 0 O O 0 O
P=11, o0 o o0 0 0 0 O
O 0o O O O 1, 0 o
O 0 0O O O o o0 I,
0O 0 0O O O o0 I o
For an invertible p x p matrix A, let us define an n x n matrix E by
171, -A 1 I, A
(3.21) Ea = 5 (A—l 1, ) , Ey = (—A‘l 1)

For a p x p matrix B, we define

(3.22) B, = (Ig g) .
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Therefore, we can express
(3.23) Ty; = EA,B.Z;B.'E!, Ty = pTy;p,
(3.24) Z; = diag(1,...,1,—1,1,...,1).

Here —1 is at the (p + j)-th place. Moreover, B is uniquely determined up to equivalence
relation via diagonal matrices D:

(3.25) B ~ BD.

We have expressed all {T'y,...,T1,, p} for which T =Ty -Ty, and p are in the normal
forms in Lemma and we have found an equivalence relation to classify the involutions.
Let us summarize the results in a lemma.

Lemma 3.4. Let {111, ..., T, p} be the involutions of a quadric manifold M. Assume that
S = TipTip has distinct eigenvalues. Then in suitable linear (§,n) coordinates, Thy, ..., T,
are given by 323), while Ty, --- Ty, = Ty and p are given by 34) and B7), respectively.
Moreover, B in (323)) is uniquely determined by the equivalence relation [B25) for diagonal
matrices D.

We remind the reader that we divide the classification for {T%y,...,T1,, p} into two
steps. We have obtained the classification for the composition 71 - -7, = T} and p in
Lemma 3.2l Having found all {T}4,...,T},, p} and an equivalence relation, we are ready

to reduce their classification to an equivalence problem that involves two dilatations and a
coordinate permutation.

Lemma 3.5. Let {TM,... Tip, p} be given by [B23). Suppose that T, = TH Ty, p,
Ty = ,oTlp, and S = TyTy have the form in Lemma B2l Suppose that S has distinct
eigenvalues. Let {Tll,.. Tlp,,o} be gwen by (B.23) where \; are unchanged and B is

replaced by B. Suppose that R~ TR = Tl,,(] for all j and Rp = pR. Then the matriz of
R is R = diag(a,a) with a = (a.,,a,,as,, a, ), while a satisfies the reality condition

(3.26) a.. € (R, a, € (R, a,=a €(C)".
Moreover, there exists d € (C*)? such that
(3.27) B = (diaga) 'B(diag, d), i.e., a; by 1()d

~

v=l(5) = bij, 1< i,j < D-

Conversely, if a,d satisfy (3.26) and B.217), then R™'T1;R = Tl,,(j) and Rp = pR.

Proof. Suppose that R~'T;R = ﬁ,,(j) and Rp = pR. Then R™'T1R =T, and R"'SR = S.
The latter implies that the matrix of R is diagonal. The former implies that

R: & =a;&;, ;= am;
with a; € C*. Now Rp = pR implies ([8.26). We express R™'Ty;R = ﬁy(j) via matrices:
(3.28) ExB.Z,;)B'E;! = R7'E,,B.Z;B;'E;'R.

In view of formula ([B2I)), we see that E5, commutes with R = diag(a,a). The above
is equivalent to that ¢ := B;'RB, satisfies Z,(;) = v,/)_lzj'l/;. By Lemma we obtain
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1 = diag(A, diag, d). This shows that

A 0 (1 0\ ' [diaga 0 I o
0 diag,d/ \0 B 0 diaga/ \0 B/~
The matrices on diagonal yield A = diaga and (3.27). The lemma is proved. O

Lemma does not give us an explicit description of the normal form for the families
of involutions {7111, ..., T, p}. Nevertheless by the lemma, we can always choose a v and

diag d such that the diagonal elements of B, corresponding to {Tl,,(l), e ,Tw(p), p}, are 1.

Remark 3.6. In what follows, we will fix a B and its associated {77, p} to further study
our normal form problems.

3.2. Normal form of the quadrics. We now use the matrices B to express the normal
form for the quadratic submanifolds. Here we follow the realization procedure in the proof
of Proposition Z.I0. We will use the coordinates 2™, 2~ again to express invariant functions
of T1; and use them to construct the corresponding quadric. We will then pull back the
quadric to the (£, 1) coordinates and then to the z,Z coordinates to achieve the final normal
form of the quadrics.

We return to the construction of invariant and skew-invariant functions z*, 2~ in (B.14)-
(BI7). when B is the identity matrix. For a general B, we define ®; and the matrix ®;*
by

ozt 27) = (e, o =B = (_ghy )
Note that Z+ = z* and ®;'T};®, = Z;. The Z*, Z; with i # j are invariant functions of
Ty, while Z; is a skew-invariant function of T1;. They can be written as
Zt =&+ M, ZT =B (-ATE+ ).
Therefore, the invariant functions of 7; are generated by
Zf =g+ g, (Z7) = (Bi(-AT'E+0)? 1< <p.

J
Here B; is the jth row of B~!. The invariant (holomorphic) functions of T, are generated
by
(3.29) Wi =2 op, (W;)=(Z opp, 1<j<p.

J

Here W = Z; o p. We will soon verify that
m: (& n) = (&, w') = (Z7(§,n), W (& n))
is biholomorphic. A straightforward computation shows that mpm~! equals
po: (2 w") — (W', 7).
We define
M:z) = (Z7 om (¢, 2))%

We want to find a simpler expression for M. We first separate B from Z~ by writing
(3.30) 77 = (-A{'I), Z-=B'Z".



38

Note that m does not depend on B. To compute 7o m~!, we will use matrix expressions

for (&...m..), (§n..mn,) and (&, M,,, ) subspaces. Let me,, my., m,, be the restrictions m
to these subspaces. In the matrix form, we have by (3.29)

Wt=Z%p, W =7Zp.

Recall that A; = diag(A.., A, Ay, Ap. ). Thus

o I Ale* -1 _ I _Ale* (I - A%e)_l 0
e = Ale* I 7 me* n _Ale* I 0 (I - A%e*)_l ’
T A, | I —ALL | [T=A3,)7! 0
M, = [I Al_hlj ’ M, = [—Am* Aip, 0 (I-AL)
[T 0 Ay, 0

0I 0 A

0I 0 A,

I 0 Ay o

ALl O 0 —Ai,

o | 0 AL AL 0 [Ls* 0 }
I 0 _Ls 7

S —1I 0 0
0 -1 I 0
(Al_sl - Als*>_1 0
L, = * — —1._q|-
0 (Als* - Als*>

Note that I—A? is diagonal. Using (3.30) and the above formulae, the matrices of Z;lom_l,
ZAh_ om™', and Z;' om™"! are respectively given by
Z.m;' =L, [I —2(Aw, +A7)7Y],
Le* = (I - A%e,)_l(_Ale* - Al_el*)7

Z, my ! =Ly, [T —2Au, (A, + A5,
Ly, = (T A3,) 7 (— A, — A7),
o 1 [—I—Al‘f* o 0 21} {Ls* 0 ]
SelS 0 ~-I-Aj, 21 0/]|0 -L,
i [I 0 0_2 —2(I+ Afi)‘l]
0T —2(I+A; )" 0 ’
P [<I+ AL (A, = AL , 0 ]
- 0 (T+ Ay ) (A, — Av) ™M

Combining the above identities, we obtain

71m-! — diag(Le*,Lh*,is*) (Ip, —2diag (I‘e*,Alh*Fh*, {f‘o I‘(ﬂ ))
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with fs* =I-T,, and

(331) I‘e* = (Ale* + Al_el*>_17 I‘h* = (Alh* + Al_hl*>_17 I‘S* = (I + Al_s%)_l'
We define Bj to be the j-th row of
(3.32) B := B 'diag(L,,, L., L,,).

With z, = (z,_s,41,- -, 2p), the defining equations of M are given by

- 2
2= {Bj diag(z., — 2T, Ze, , zn, — 20, A1n, 21, , 2., — 2157, 7., — 2(1 — Fs*)is*)} )

p+] - Sx sy Hsy

Let us replace z; with j # h, 2, by iz; and i\/)\h_lzh, respectively. We also multiply the
h-th column of B by —iv/\, and its j-th column, 5 # h, by —i. In the new coordinates,
M is given by

~ _ 2
o= {Bj diag(ze, + 2T Ze.. 21, + 204, 2s, + 2057, .7, +2(I — rs*)zs*)} .

Explicitly, we have

€*+h*
(333)  Qp.: 2pe) = (Z boze + 2ve%0)
=1

P—5Sx

. B . N2
+ Z bjS(zs + 295Zs1s.) + bj(s+s*)(zs+s* + 2’754—3*23))
5:5*"1‘}1*"1‘1

for 1 < 7 < p. Here
(3.34) Yots. = 1 =7
By (B8.32), we also obtain the following identity
B = —iB ! diag(Le,, Ly, , L. ) diag(L.,, A}}*, L,.)

The equivalence relation (3.27)) on the set of non-singular matrices B now takes the form

~

(3.35) B = (diag, d)"'B diaga,

where a satisfies (3.26]) and diag, d is defined in (3.19]).
Therefore, by Proposition 2.10] we obtain the following classification for the quadrics.

Theorem 3.7. Let M be a quadratic submanifold defined by (2.1)) and (23)) with g, = 0.
Assume that the branched covering my has 2P deck transformations. Let T1,Ts be the pair of
Moser-Webster involutions of M. Suppose that S =TTy has 2p distinct eigenvalues. Then
M is holomorphically equivalent to (3.33)) with Be GL(p, C) being uniquely determined by
the equivalence relation (3.35)).

When B is the identity, we obtain the product of 3 types of quadrics
Q’Ye P Rpte = (Ze + 27656)2?
Q. t Zpan = (20 + 277n)%;

Q’ys: Rpts = (Zs + 27555+s*)27 RBptstss. — (Zs+s* + 2(1 - 73)25)2
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with

1 1 1
(3.36) Ve

YR A VS Ve I e
Note that arg A\; € (0,7/2) and |\s| > 1. Thus

0<% <1/2, v >1/2, ~v,€{2€C: Rez>1/2,Imz> 0}.

We define the following invariants.

Definition 3.8. We call I' = diag(T.,, Ty, Ts,, I, — Ty.), given by formulae (B31), the
Bishop invariants of the quadrics. The equivalence classes B of non-singular matrices
B under the equivalence relation ([B.27) are called the extended Bishop invariants for the
quadrics.

Note that I'., has diagonal elements in (0,1/2), and I, has diagonal elements in
(1/2,00), and T'y, has diagonal elements in (1/2, 00) + (0, 00).
We remark that Z; is skew-invariant by 73; for ¢ # j and invariant by 71;. Therefore,

the square of a linear combination of Z;,..., Z; might not be invariant by all T3;. This
explains the presence of B as invariants in the normal form.

It is worthy stating the following normal form for two families of linear holomorphic
involutions which may not satisfy the reality condition.

Proposition 3.9. Let T; = {T1,..., Ty}, i = 1,2 be two families of distinct and commut-
ing linear holomorphic involutions on C". Let T; = T} ---T;,. Suppose that for each 1,
Fix(T}), ..., Fix(T;,) are hyperplanes intersecting transversally. Suppose that Ty, Ty satisfy
B2) and S = TVl has 2p distinct eigenvalues. In suitable linear coordinates, the matrices

of T;, S are
0 A (A 0
= (a0 5) 5= (0 )

with Ay = A[' being diagonal matriz whose entries do not contain +1,4i. The A? is
uniquely determined up to a permutation in diagonal entries. Moreover, the matrices of T;;
are

(3.37) Ti; = Ea,(B:).Z;(B,); 'Ey;

for some non-singular complex matrices B1, By uniquely determined by the equivalence
relation

(338) (B1> Bg) ~ (Bl, Bg) = (R_lBl diagyl dl, R_lBg diagyz dg),

where diag,, di,diag,, da are defined as in (3.19), and R. is a non-singular diagonal complex
matriz representing the linear transformation ¢ such that

0 T = Togy, i=1,2j=1,...,p

Here T is the family of the involutions associated to the matrices Bi, and Ep, and B, are

defined by B.21)) and (3.22).
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Proof. Let k be an eigenvalue of S with (non-zero) eigenvector u. Since T;ST; = S~!. Then
S(Ty(u)) = k~T;(u). This shows that k! is also an eigenvalue of S. By LemmaB.1] 1 and

—1 are not eigenvalues of S. Thus, we can list the eigenvalues of S as pu1, . . ., fip, 47 ' - - -, ,u;;l.
Let u; be an eigenvector of S with eigenvalue p;. Fix A; such that )\5 = ;. Then
v; = AjTi(uy) is an eigenvector of S with eigenvalue ;. The Y &u; + njv; defines a

coordinate system on C" such that T;, S have the above matrices A; and S, respectively.
By (3.20) and (3.23), T;; can be expressed in (3.37)), where each B; is uniquely determined
up to B; diagd,. Suppose that {7’ i} {ng} are another pair of families of linear involutions
of which the corresponding matrices are Bi,B,. If there is a linear change of coordinates
¢ such that o~ 'T;;0 = Ti,,i(j), then in the matrix R of ¢, we obtain (B.38)); see a similar
computation for (3.27)) by using (3.28). Conversely, (3.28)) implies that the corresponding
pairs of families of involutions are equivalent. U

4. FORMAL DECK TRANSFORMATIONS AND CENTRALIZERS

In section 2l we show the equivalence of the classification of real analytic submanifolds M
that admit the maximum number of deck transformations and the classification of the fam-
ilies of involutions {1, ..., 7,, p} that satisfy some mild conditions (see Proposition 2.10]).
To classify the families of involutions and to find their normal forms, we will first study
normal forms at the formal level. The main purpose of this section is to show that at the
formal level, the classification of the formal submanifolds of the desired CR singularity and
the classification of {71, ..., 71,, p} are equivalent under these mild conditions.

We will also study the centralizers of various linear maps to deal with resonance. This
is relevant as the normal form of o will belong to the centralizer of its linear part and any
further normalization will also be performed by transformations that are in the centralizer.

4.1. Formal submanifolds and formal deck transformations. We first need some
notation. Let I be an ideal of the ring R[[z]] of formal power series in x = (x1,...,zxy).
Since R[[7]] is noetherian, then I and its radical /T are finitely generated. We say that I
defines a formal submanifold M of dimension N — k if /T is generated by 71, ..., 7, such
that at the origin all r; vanish and dry, ..., dry are linearly independent. For such an M, let
I(M) denote /T and let ToM be defined by dri(0) = --- = dr(0) = 0. If F = (f1,..., fn)
is a formal mapping with f; € R[[z]], we say that its set of (formal) fixed points is a
submanifold if the ideal generated by fi(z) — z1,..., fn(x) — zy defines a submanifold.
Let I,1 be ideals of R[[z]], R[[y]] and let v/, VT define two formal submanifolds M M,
respectively. We say that a formal map y = G(x) maps M into MifloGcC VI If M, M
are in the same space, we write M C M if I ¢ v/I. We say that a formal map F' fixes M
pointwise if I(M) contain each component of the mapping F' — L.
We now consider a formal p-submanifold in C? defined by

(4.1) M: 2y = Ej(,2), 1<j<p.
Here E; are formal power series in 2’,Z". We assume that

(4.2) Ei(«,7) = hi(,Z) + ¢;(Z) + O((I(/, 7))
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and hj,g; are homogeneous quadratic polynomials. The formal complexification of M is
defined by

Zp+i:Eii(zlvw,)7 izlv"’7p7
wpy = Eij(w', ), i=1,...,p.

We define a formal deck transformation of m; to be a formal biholomorphic map
m: (2w = (¢, f(Z,w'), 7(0)=0

such that m7 = m, i.e. F o7 = E. Recall that condition B says that ¢, = dim{z’ €
C™: q(7') = 0} is zero, i.e. ¢ vanishes only at the origin in CP.

Lemma 4.1. Let M be a formal submanifold defined by (EI))-[E2). Suppose that M
satisfies condition B. Then formal deck transformations of m are commutative involutions.
FEach formal deck transformation T of my: M — CP is uniquely determined by its linear part
Lt in the (2/,w'") coordinates, while LT is a deck transformation for the complexification
form: Q — C” where Q 1is the complexification of the quadratic part QQ of M. If M is
real analytic, all formal deck transformations of m are convergent.

Proof. Let us recall some results about the quadric (). We already know that ¢, = 0
implies that m; for the complexification of () is a branched covering. As used in the proof
of Lemma 2.1l 7; is an open mapping near the origin and its regular values are dense. In
particular, we have

(4.3) det O {h(2', w") + q(w')} £ 0.

Let 7 be a formal deck transformation for M. To show that 7 is an involution, we
note that its linear part at the origin, L7, is a deck transformation of (). Hence L7 is an
involution. Replacing 7 by the deck transformation 72, we may assume that 7 is tangent
to the identity. Write

7(Z W) = (2w +u(Z,w)).
|

We want to show that u = 0. Assume that u(z/,w’) = O(|(z’, w')|¥) and let u;, be homoge-
neous and of degree k such that u(2/,w’) = ux(2’,w’) + O(|(2', w")|¥+1). We have
E(Z v +u(z,w') = E(Z,w).

Comparing terms of order k + 1, we get
D {h(Z,w") + q(w') }ug (2, w") = 0.

By (@3), ur = 0. This shows that each formal deck transformation 7 of m; for M is an
involution. As mentioned above, L7 is a deck transformation of 7; for ). Also if 7,7 are
commuting formal involutions then 7717 is an involution and 7 = 7 if and only if LT = L7.

Assume now that M is real analytic. We want to show that each formal deck transfor-
mation 7 is convergent. By a theorem of Artin [Art6§], there is a convergent 7(z/, w') =
7(2,w') + O(|(#',w')|?) such that Eo7 = E, i.e. 7 is a deck transformation. Then 777 is
a deck transformation tangent to the identity. Since it is a formal involution by the above
argument, then it must be identity. Therefore, 7 = 7 converges. O
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Analogous to real analytic submanifolds, we say that a formal manifold defined by (Z1])-
([A2)) satisfies condition D if its formal branched covering m; admits 2P formal deck trans-
formations.

Recall from section 2] that it is crucial to distinguish a special set of generators for the
deck transformations in order to relate the classification of real analytic manifolds to the
classification of certain {7i1,..., Ty, p}. The set of generators is uniquely determined by
the dimension of fixed-point sets. We want to extend these results at the formal level.

Proposition 4.2. Let M, M be formal p-submanifolds in C™ of the form @1)-@2). Sup-
pose that M, M satisfy condition D. Then the following hold :

(1) M and M are formally equivalent if and only if their associated families of involu-
tions {Ti1, ..., Tip, p} and {711, ..., T1p, p} are formally equivalent.

(17) Let Ty = {711, ..., T1p} be a family of formal holomorphic involutions which com-
mute pairwise. Suppose that the tangent spaces of Fix(m1),. .., Fix(m,) are hyper-
planes intersecting transversally at the origin. Let p be an anti-holomorphic formal
involution and let To = {To1,...,Top} with T9; = prijp. Suppose that o = 175 has
distinct eigenvalues for 7, = 71 - - Tip, and

[0, ]1 7 N [,]1 ™ = {0}

There exists a formal submanifold defined by

(4.4) 2 = (Bf,...,Bi)(z’,E’)
for some formal power series By, ..., B, such that M satisfies condition D. The set
of involutions {Ti1, ..., Tip, po} of M is formally equivalent to {m,..., Ty, p}.

Proof. (i) Let M and M be given by 2" = F(2',2") and 3" = E(3' ,~?), respectively. Suppose
that f is a formal holomorphic transformation sending M into M. We have

(4.5) (2, E(,w") = E(f(, E(z/,w), T (w/, E(w', 2))).

Here f = (f’, f"). Recall that po(z/,w’) = (w’,2’). Define a formal mapping (2/,w') —
(Z,0") = F(2,w') by

(4.6) F( ') = (f'(, E(, ")), f (v, E(W, ))).

It is clear that Fipg = poF'. By Lemma 2.7, we know that z' and 2" = E(Z,@’) generate
invariant formal power series of {71;}. Thus, Z’oF (2, w") = f'(2, E(z,w')) and EoF (', w’)
are invariant by F~' o 7y, o F. By ([&5) and the definition of F,

EoF(Z,w') = f'(2, E(z',u")).
This shows that f(2/, F(z/,w’)) is invariant under F~' o 7, 0 F. Since f is invertible, then
2" and E(z',w’) are invariant under F~' o 7y; o F. Therefore, {71} and {F~'o7; 0 F} are

the same by Lemma [2.7] as they have the same invariant functions.
Assume now that {r,} = {F~! o 7y; o F'} for some formal biholomorphic map F com-

muting with py. Recall that Z’, 2" are invariant by 7;. Then 2’ o F" and E o F are invariant
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by {71;}. By Lemma 27, invariant power series of 7; are generated by 2/, E(2',w’). Thus
we can write

ZFoF(Z,w') = f'(Z,E(Z,w)),
(4.7) Eo F(,uw') = f'(<, BE(<,u"))
for some formal power series map f = (f’, f”). Since poF' = Fpg, then by (4.0)

F(Z,w') = (f/(<,0), F (,0) + O(|(,w) ).
Since F'is (formal) biholomorphic then 2 — f’(2,0) is biholomorphic. Then
110, B0, w)) = B0, F'(w,0)) + O(Ju'|*).

We have E(0,w') = g(w') + O(Jw/]?) and E(0,w') = §(w') + O(|w'[?). Here q(w'),j(w")
are quadratic. By condition ¢, = 0, we know that ¢;,...,¢, and hence ¢y o L,..., gy o L
are linearly independent. Here L is the linear part of the mapping w’ — fl(w’ ,0), which
is invertible. This shows that the linear part of w’ — f”(0,w’) is biholomorphic. By (4.7)),
f"(2,0) = O(|'|?). Hence f = (f’, f") is biholomorphic. By a simple computation, we
have f(M) = M, i.e.
E(f'(2), f'(z)) = f"(2)

for 2" = E(,7).

(ii) Assume that {7y;} and p are given in the (§,7) space. We want to show that a formal
holomorphic equivalence class of {7y}, p} can be realized by a formal submanifold satisfying
condition D. The proof is almost identical to the realization proof of Proposition 2.10 and
we will be brief. Using a formal, instead of convergent, change of coordinates, we know
that invariant formal power series of {r;} are generated by

Z=(AEm), -, AEm), 2= (BIE )., By(&,m),

where B, is skew-invariant by 7, and A, B; are invariant under 7, for i # j. Moreover,
o(&,n) = (A, B)(&,n) is formal biholomorphic. Set

wy = Ajop(€m), wy =B} op(En)
Then (£,1) — (A(£,1), Ao p(€, 7)) has an inverse 1. Define
M: 2" =(B},...,B2)oy(<, 7).
The complexification of M is given by
M: 2" = (B2,...,BY)od(, ), w'=(Bi,...,By)od,z).

Note that ¢ o (', w') = (2, B o (', w'))
B o) satisfies

Since ¢ is invertible, the linear part D of

[ D(0, w')| = |w']/C.

This shows that ¢, = 0. As in the proof of Proposition .10, we can verify that M is a
realization for {7, p}. O
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4.2. Centralizers and normalized transformations. In this subsection, we describe
several centralizers regarding 5, 7) and 7;. We will also describe the complement sets of
the centralizers, i.e. the sets of mappings which satisfy suitable normalizing conditions.
Roughly speaking, our normal forms are in the centralizers and coordinate transformations
that achieve the normal forms are normalized, while an arbitrary formal transformation
admits a unique decomposition of a mapping in a centralizer and a mapping in the comple-
ment of the centralizer. The description of the centralizer of {77, p} is more complicated and

it will be given in section [[1l We will also deal with the convergence for the decomposition.
Recall that

(4.8) S: & =&, ni=u'n, 1<j<p,

(4.9) T &= Ny, =" 1

with g = A and Ay = Ayj = \;.

Definition 4.3. Let F be a family of formal mappings on C" fixing the origin. Let C(F)

be the centralizer of F, i.e. the set of formal holomorphic mappings ¢ that fix the origin
and commute with each element f of F,ie., fog=go f.

Note that we do not require that elements in C(F) be invertible or convergent.
We first compute the centralizers.

Lemma 4.4. Let S be given by @X) with ..., 1, being non-resonant. Then C(S)
consists of mappings of the form

(4.10) V&= ai(Ené&;,  my=bi(Emm;, 1<j <p.
Let 1, be formal holomorphic involutions such that S = T17o. Then
70 & = N (Emny, 0l = AN (EN)E, 1< <p
with Alez_jl = p;. The centralizer of {Ty, Ty} consists of the above transformations satis-
Jying
(4.11) bj=ua;, 1<j7<p.

Proof. Let e; = (0,...,1,...,0) € NP, where 1 is at the jth place. Let ) be given by
&= aipgt™ = bpa" .

By the non-resonance condition, it is straightforward that if ¢S = St, then a;pg = bjop =
0if P — @ # e;. Note that S—1 = Ty ST, for Ty: (€,1) — (1,€). Thus 71Ty commutes with
S. So 7Ty has the form (410) in which we rename a;,b; by Alj,]\lj, respectively. Now
72 = I implies that

Ay (AnA)(OG - (Aphip) (OG)AL(C) =1, 1< j<p.
Then A1;(0)A1;(0) = 1. Applying induction on d, we verify that for all j
A(QAL(Q) =1+0(¢Y), d>1.

Having found the formula for 77, we obtain the desired formula of 71 via composition
(TlTQ)T(). |:|



46

Let Dy := diag(p11, - - -, fan), - - -, Dg := diag(e, - - -, ften) be diagonal invertible matrices
of C". Let us set D := {D;z}i—1, 4.
Definition 4.5. Let F' be a formal mapping of C" that is tangent to the identity.
(1) Let n = 2p. F is normalized with respect to S if F = (f,g) is tangent to the
identity and F' contains no resonant terms, i.e.
fiavepa = 0= gjaate,), |Al>1.
(i1) Let n = 2p. F is normalized with respect to {11, 15}, if F = (f,g) is tangent to
the identity and
fiAvepa = —Gjare), Al >1.
(7i1) F' is normalized with respect to D if it does not have components along the
centralizer of D, i.e. for each @ with |Q| > 2,
fio=0, if ,uiQ = pi; for all 4.
Let C¢(S) (resp. CS(Ty,Ty), C5(D)) denote the set of formal mappings normalized with
respect to S (resp. {11, T»}, the family D).

For convenience, we let C5(S) (resp. C3 (T, Ty), CS(D)) denote the set of formal mappings
F —1 with F € C(S) (resp. C<(T1,T3), C5(D)).

Remark 4.6. Note that if f € C(S) (resp. C¢(T1,T3)), then pfp is in C(S) (resp.
C (T, Ty)).

We now deal with the following decomposition problem: Let C be a set of analytic
mappings. We shall decompose an arbitrary invertible mapping into the composition of an
element of a centralizer of C and an element which is normalized with respect to C. We
shall also deal with the convergence issue. The following lemma, which deals with a general
situation, will be used several times.

Definition 4.7. Let A be a group of permutations of {1,... ,n}. Then A acts on the

right (resp. on the left) on @Z by permutation of variables z = (z1, ..., z,) as follows: Let
F(z) =3 0150 Fgz9 be a formal mapping from C" to C", and let v, u € A; set
voF opu(z ZFV(Z -1(Q)?
QeN™

Define the components (AF);, (F\A);, and consequently (AFA); by

= Y max|Fel?,

QeEN”
(FA)(z) = > Igeax|ﬂu*1(cz)|2 :
QeN”
AFA)i(2) = Foiyu- @
( )i(2) (V{E)%%I Du1(@]2
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We see that F'A is the smallest (w.r.t. <) power series mapping that majorizes F' and
is right-invariant under A, while AF is the smallest power series mapping that majorizes
F and is left-invariant under A. In particular, if F,G are mappings without constant or
linear terms, then

(4.12) A(F o (I +G)A < (AFA)(AIA+ AGA),

where the last relation holds if the composition is well-defined.
To simply our notation, we will take A to be the full permutation group of {1,...,n}.
We will denote
Foym = AFA.

Lemma 4.8. Let 7 be a real subspace of (M2)". Let w : (M2)" — H be a R linear pro-
jection (i.e. w2 = ) that preserves the degrees of the mappings and let G := (I —m)(9N2)™.
Suppose that there is a positive constant C' such that

(4.13) (E) < CEgyp,

for any E € (ﬁi)” Let F' be a formal map tangent to the identity. There exists a unique
decomposition

(4.14) F=HG!

with G—1€G and H—1 € H. If F is convergent, then G and H are also convergent.

Proof. If f is a formal mapping, we define the k-jet:
TEf(z) =Y foz
|QI<k
Write F =1+ f,G=1+gand H =1+ h. We need to solve F'G = H, i.e to solve
h—g=fI+g)
Since f/(0) = 0, then for any k£ > 2, the k-jet of f(I + g) depends only on the (k — 1)-jet of

g. Since 7 is linear and preserves degrees, ([{I3)) implies that J* commutes with 7. Hence
we can define, for all k > 2,

—J¥g) =7 (JH(fU +9), JR) =T —7) (J*(f(I+9)).
This solves the formal decomposition uniquely. Assume that F'is a germ of holomorphic
mapping. Hence, we have

9= C(f(I+9))sym < C foym(Lsym + Gsym)-
Since ggym is the smallest left and right A invariant power series that dominates g, we have
gsym < C.fsym([sym + gsym)-
Therefore, ggym is dominated by the solution u to
u = C foymLsym + 1), u(0)=0.

Notice that u is real analytic near the origin by the implicit function theorem. So, gsym
is convergent, and both g and h = g + f(I + g) are convergent in a neighborhood of the
origin. U



Corollary 4.9. The previous decomposition (EI4) is valid with G := Co(S) and H := C5(S)
(resp. G :=Co(T1,Ts) and H :=CS(11,15); G := Co(D) and H :=C5(D)).

Proof. We apply the previous lemma by finding . The first case is obvious since K is in
Co(S) (resp. C5(S9)) if and only if Kgz? € Ca(S) (resp. CS(S)) for all Q. So we take

:Z Z KLQZer.

J=1 esze§
Next, we consider the case where G = Cg(Tl, Tg) and H = CS (Tl, T2) We need to find
a projection such that H = 7(M2)" and G = (I—7)(M2)". Note that g € Co(T7, ) and
h € C§(Ty,Ty) are determined by conditions
Jirepy = 9G+p) e Mitvtey = —PGpatte), 17 <D,
95,PQ = 9ii+p@p =0, P —Q #e;.
Thus, if h — g = K, we determine g uniquely by combining the above identities with

-1
9j,(v+ej)y = o5 {K' (vej)y T K(j+p)ﬁ(v+€j)} )

h] (v+eji)y {K (v+ej)y _K(j+p),'y(“/+6j)}

for 1 < 5 < p. For the remaining coefﬁ(nents of h, set h; pg = K; pg. Therefore, m(K) :=
h < Ky, and the proof is complete. O

Remark 4.10. Let A, B be two subgroups of permutations. Instead of using the full
permutations group, we could have used Gy, := AGB. We have

G < AGB < CA(F o (I +G))B < (AFA)(AIB+ AGB).

Remark 4.11. We do not know if there are convergent G € C(S) and H € C¢(S) such
that ' = GH when F' is convergent. Note that the formal decomposition exists.

Recall that for j =1,...,p, we define

Zj:é-/:gv 7712:77/%7 k#]u U;:_m
We have seen in section [3] how invariant functions of Z; play a role in constructing nor-
mal form of quadrics. In section [7, we will also need a centralizer for non linear maps
(see Lemma [T.2) to obtain normal forms for two families of involutions. Therefore, let us
first record here the following description of centralizer of Z, ..., Z,.

Lemma 4.12. The centralizer, C(Zy, ..., Z,), consists of formal mappings

&n) = UEn),....mVi&n),...,nVe(&n))

such that U(&,m),V(€,n) are even in eachn;. Let C(Zy, ..., Z,) denote the set of mappings
I + (U, V) which are tangent to the identity such that

(415) Uj,PQ - V},P(ej—l—Q’) = 07 Q>Ql S 2Np’ |P| + |Q| > ]-> |P| + |Q,| > L.

Let ¢ € C(Z) be tangent to the identity. There exist unique vy € C(Z1,...,7Z,) and
V1 € C(Zy, ..., Z,) such that ¥ = V1iy". Moreover, if ¥ is convergent, then vy and i,
are convergent.
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Proof. The lemma follows immediately from Lemma @8 in which H is the R linear space of
mappings (U, V) without constant or linear terms, which satisfy ([ZCI:S]) The projection 7 is

the unique projection onto [ (i.e. m* =7, and 7 is the identity on H ) such that 7 is linear
and preserves degrees, and 7(E) = 0 if E(g, n) =0((&n)?) and E € Co(Z4,...,2,). O

5. FORMAL NORMAL FORMS OF THE REVERSIBLE MAP o

Let us first describe our plans to derive the normal forms of M. We would like to show
that two families of involutions {7;, 7;, p} and {71, To;, p} are holomorphically equivalent,
if their corresponding normal forms are equivalent under a much smaller set of changes
of coordinates. Ideally, we would like to conclude that {71;, 72;, p} are holomorphically
equivalent if and only if their corresponding normal forms are the same, or if they are
the same under a change of coordinates with finitely many parameters. For instance the
Moser-Webster normal form for real analytic surfaces (p = 1) with non-vanishing elliptic
Bishop invariant falls into the former situation, while the Chern-Moser theory [CMT74] for
real analytic hypersurfaces with non-degenerate Levi-form is an example for the latter.
Such a normal form will tell us if the real manifolds have infinitely many invariants or
not. One of our goals is to understand if the normal form so achieved can be realized
by a convergent normalizing transformation. We will see soon that we can achieve our
last goal under some assumptions on the family of involutions. Alternatively and perhaps
for simplicity of the normal form theory, we would like to seek normal forms which are
dynamically or geometrically significant.

Recall that for each real analytic manifold that has 2P, the maximum number of, com-
muting deck transformations {7y;}, we have found a unique set of generators 7y,..., T,
so that each Fix(7y;) has codimension 1. More importantly 74 = 7y; - - - 7y, is the unique
deck transformation of which the set of fixed points has dimension p. Let 7, = p7p and
0 = 1173. To normalize {7, 79;, p}, we will choose p to be the standard anti-holomorphic
involution determined by the linear parts of o. Then we normalize ¢ = 7375 under formal
mapping commuting with p. This will determine a normal form for {7}, 75, p}. This part
of normalization is analogous to the Moser-Webster normalization. When p = 1, Moser
and Webster obtained a unique normal form by a simple argument. However, this last step
of simple normalization is not available when p > 1. By assuming logM associated to o
is tangent to the identity, we will obtain a unique formal normal form &, 7y, 7» for o, 71, 7.
Next, we need to construct the normal form for the families of involutions. We first ignore
the reality condition, by finding ® which transforms {7,} into a set of involutions {7y}
which is decomposed canonically according to 7;. This allows us to express {71, ..., Tip, p}
via {71, T2, @, p}, as in the classification of the families of linear involutions. Finally, we
further normalize {71, 72, , p} to get our normal form.

Definition 5.1. Throughout this section and next, we denote {h}, the set of coefficients
of hp with |P| < d if h(x) is a map or function in = as power series. We denote by
Ap(t), A(y; t), etc., a universal polynomial whose coefficients and degree depend on a mul-
tiindex. The variables in these polynomials will involve a collection of Taylor coefficients
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of various mappings. The collection will also depend on |P|. As such dependency (or in-
dependency to coefficients of higher degrees) is crucial to our computation, we will remind
the reader the dependency when emphasis is necessary.

For instance, let us take two formal mappings F, G from C™ into itself. Suppose that
F =1+f with f(z) = O(Jz]?) and G = LG + g with g(z) = O(|z|?) and LG being linear.
For P € N™ with |P| > 1, we can express
(5.1) (FYp =—fp+Fe({f}p11),

(5.2) (GoF)p=gp+ ((LG)o f)p+Gr(LG:{f, g}ip1-1),
(5.3) (F'oGoF)p=gp—(fo(LG)p+((LG)o f)p+Hp(LG;{f. g} p|-1)-
5.1. Formal normal forms of pair of involutions {7, 7}. We first find a normal form
for o in C(S).
Proposition 5.2. Let o be a holomorphic map. Suppose that o has the linear part
S:& =&, mj=p'n, 1<j<p

and i, ..., [, are non-resonant. Then there exists a unique normalized formal map ¥ €
Ce(S) such that o* = UoW € C(S). Moreover, 6 = 5 c*hy € C(S), if and only if
o € C(S) and it is invertible. Let

0" &= M;(En)§;,  m; = Ni(€nny,

a: & = M;(En&, 0y = Ni(Enny,

Yo: § = a;(En)§;, 1y = bi(Em)n;.

(1) Assume that 11,72 are holomorphic involutions and o = Ty7y. Then o* = 115 with
(5.4) T =0T R & = N (Enny, 0 = AN (ENE;
Nj :Mj_l, Mj :Alegjl.
Let the linear part of T; be given by
Tp: & = Nimy, 0 = A5G
Suppose that )\z_jl = Aij. There exists a unique 1y € CC(Tl,T2) such that
=y o & = Ay(Enmy, ) = AN (EnE:

(55) M A%] N_ ]\2j - [\_1

Let 1y be a formal biholomorphic map. Then {7 714y, ¥y 7} has the same

form as of {71, T2} if and only if Y1 € C(TI,T2)' moreover, N;;(&n), M;(&n) are
transformed into

(5.6) Aijot, Mo,
Here v, (¢) = (diag c(¢))?¢ and 11 (€,m) = ((diag c(én))¢, (diag c(én))n).
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(13) Assume further that o = prip, where p is defined by B.1). Let
Pz3<j_)Zj> 1 <j <t hy CS_)Zs—l—s*? ex+he <5< p— s

Then p¥ = Up, 75 = prip, and (0*)~' = po*p. The last two identities are equiva-

lent to
(57) A2_el = Ale O Pz, Me P, = Me> 1<e< €x;
(58) A2h :Alhopz> Mhopz:M_la €x <h§ h*+6*7
h
(59) A2(s) = Al(s*+s) O Pz,
5.10 A2 Sx+s :Alsopz> M_lopz :Ms*-l—sa he +e. <s SP_S*
(5x+s) s

Let b and 7 = ¥y 7590 be as in (i). Then pby = bop, and 71,7, satisfy

(511) ]\ie - ‘/N\ie © Pzs ]\z_hl = Aih © Pz, Ais-i—s* = ALl o Pz-

18

Proof. We will use the Taylor formula

Fo+9) = f@) + 3 i Def (i) + R £(5:9)

k=1

with Dy f(z;y) = {0F f(z + ty)}]i=o and

612 R = men) [0=0m 3 Syt

|a|=m+1

Set D = D;. Let o be given by

& = MJ(En)& + fi(&m),  nf = NJ(Enmn; + g;(&,n)
with

(5.13) (f,9) € C5(5).
We need to find ® € C¢(S) such that U~'oW = ¢* is given by

& = M;(En)é;,  n; = N;(En)n;.
By definition, ¥ has the form
E=&+Ui&m)s my=n;+Vi§n)s  Ujprenp = Vip(pte;) = 0.

The components of Wo* are

(5.14) & = M;(En)&; + U;(M(En)€, N(En)n),
(5.15) n; = N;j(Emn; + Vi(M(En)E, N(En)n).

To derive the normal form, we only need Taylor theorem in order one. This can also
demonstrate small divisors in the normalizing transformation; however, one cannot see the
small divisors in the normal forms. Later we will show the existence of divergent normal
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forms. This requires us to use Taylor formula whose remainder has order two. By the
Taylor theorem, we write the components of oW as

(5.16) & = (Mj(&n) + DM (En)(nU + €V +UV))(& + Uj)
+ [i(&n) + D (&) (U, V) + A;(€,n),
(5.17) n; = (N} (&n) + DN (En)(qU + &V + UV)) (n; + V;)
+ (& m) + Dg; (&, n)(U,V) + B;(&; ).
Recall our notation that UV = (Uy(&,n)Vi(&,n), ..., Up(&,m)V,(E,m)). The second order

remainders are

(5.18) Aj(&,m) = RyMj (En; EU + 0V + UV)(& + Uj) + Rof5(€,m; U, V),
(5.19) Bj(€,m) = RaN} (€n; €U +nV + UV )(n; + V;) + Rag;(§,m; U, V).

Note that the remainder R, M? is independent of the linear part of M°. Thus
RyM) = Ry(M) — LM)), RyN;] = Ry(N; — LN)).

Let us calculate the largest degrees of coefficients of M®— LM° (U, V, f, g) on which 4; pg
depend. We denote the two degrees by w,d, respectively. Since ord(f,g,U,V) > 2, we
have

2w —2)+(d+4)+1<|P|+|Q|, or (d—2)+2d<|P|+]Q|,

where the first inequality is obtain from the first term on the right-hand side of (5.I8]) and
the second term yields the second inequality. Since M° — LM (U, V), and (f,g) do not
have linear terms, we have w > 2 and d > 2. Thus, we have crude bounds

P|+ -1
a<ipljo -1 we PO
Analogously, we can estimate the degrees of coefficients of N°. We obtain

Ajrg = Ajp{M° = LM } ipmoi-1; {£, U, V3 ipiig-1),

Bjor = Bjgp({N° - LNO}%; {9, U, V}ipi+i0-1)-

Recall our notation that { f, U, V '}, is the set of coefficients of fpg, Upg, Vpg with |P|+|Q] <
d. Here A; pq(t';t"), B op(t';t") are polynomials of which each has coefficients that depend
only on j, P, and they vanish at ¢’ = 0.

To finish the proof of the proposition, we will not need the explicit expressions involving
DM?, DN}, Df;, Dg;. We will use these derivatives in the proof of Lemma So we
derive derive these expression in this proof too.

We apply the projection (5.14)-(5.I5) and (5.16)-(EI7) onto C5(.S), via monomials in
each component of both sides of the identities. The images of the mappings
(& n) = (UM(En)S, N(En)n), V(M (En)E, N(En)n)),
(&) = (M(En)U (&, m), N°(&,m)V (€, m))
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under the projection are 0. We obtain from (5.14)-(5.17) and (5.18)-(5.19)
(5.20) (1" = 1)Uspq = fipg +Upo({M°} irai-1; {f, U, V}ipi+iq-1),

(5.21) (u@=F — /Lj_l)Vj,QP = gjQpr + Vj,QP({NO}%; 19, U, V}pi+ig-1)
for =@ = p;, which is always solvable. Next, we project (5.14)-(5.15) and (5.16)-(5.17)

~

onto Cy(S), via monomials in each component of both sides of the identities. Using (5.13)
we obtain

(5.22) Mp = Mp + Mp({M°}pi—1; {f. U,V }2yp|-1),
(5.23) Np = Np + Np({N°}1pj—1: {f, U, V}a1p-1).
Here Mp, Np are polynomials of which each has coefficients that depend only on P, and

{M"}, stands for the set of coefficients MP with |P| < d. Note that U pqg = V;op = 0
when |P|+ |Q| = 2, or ord(f,g) > |P| +|Q|. And Mp = Np = 0 when ord(f,g) > 2|P|,

by (513). Inductively, by using (G.20)-(G21) and (5:22))- (5:23), we obtain unique solutions

U,V,M,N. Moreover, the solutions and their dependence on the coefficients of f, g and
small divisors have the form

(5.24) Ujprg = (NP_Q - Nj)_l {fj,PQ + u;PQ((Sd—la {MO, NO}[%]Q {f, g}d—l)} )

(525) V}'vQP = (:U“Q_P - :U“j_l)_l {gijP + V;,QP((Sd—b {M07 NO}[%]v {f> g}d—l)} )

where d = |P| + |Q| and p”~% # p;, and 64y is the union of {uy, uy, ..., pp, py '} and

1
12 —Hy
This shows that for any M% N there exists a unique mapping ¥ transforms o into o*.
Furthermore, U po(t';t"), Vi op(t';t") are polynomials of which each has coefficients that
depend only on j, P, @), and they vanish at t" = 0.
For later purpose, let us express M, N in terms of f, g. We substitute expressions (5.24))-

(6:29) for U,V in (5:22)-([523) to obtain
(5.26) Mp = Mp + My (dp-1, {M°, N°}1p-1; {f, g}a1p)-1),
(5.27) Np = Np +Np(O2pi-1, {M", N} p-15 {f, g}2ipi-1)

with f, g satisfying (B.13).

Assume that & = v, '0*Yy commutes with S. By Corollary 9, we can decompose
Yo = HG™! with G € C(S) and H € C¢(S). Furthermore, G™15G commutes with S and
H='o*H. By the uniqueness conclusion for the above 1y, H must be the identity. This
shows that 1, € C(9).

(i). Assume that we have normalized 0. We now use it to normalize the pair of in-
volutions. Assume that o = 77 and 77 = I. Then ¢* = 7{75. Let Ty(&,n) = (n,€).
We have Ty(c*)~'Ty = Torfo*r;Ty. By the above normalization, Ty(o*)~'T, commutes
with S. Therefore, 77T} belongs to the centralizer of S and it must be of the form
(& m) = (EA1(€n),nAT(€n)). Then (7)* = I implies that

A1 (En(A1AT)(En))AT(En) = 1.



54

The latter implies, by induction on d > 1, that AjA} = 1+0(d) for all d > 1, i.e. AjA = 1.
Let 77 be given by GBE) We want to achieve Alegj =1 for 7; = ¢y "7/ by applying a

transformation 1 in C(T1,Ty) that commutes with S. According to Definition B3, it has
the form

do: & =51+ a;(0)), my =(1—a;(())
with a;(0) = 0. Here fj = gjﬁj and ¢ == (51, ce fp). Computing the products ¢ in ¢ and
solving ¢ in ¢, we obtain
ot G =& Hb(O)Y i =m(1—bi(Q)
Note that (a3)p = Ajp({a}p|-1), and
Emy =& (1—a2(Q), &y =&mi(1—b3(()~!
JFrom vy 1y = I, we get

(5.28) b;(¢) = a;(0), bj P =a;p+ Bjp({a}tip-1).

By a simple computation we see that 7; = 15 ') is given by
&= (@ 7; = &A51(0)

with

AjAs;(0) = (AuyAay) ()1 +b;(¢) (1 = 45(0))*.
Here ¢} = (;(1 — a?(f )). Using (5.28)) and the implicit function theorem, we determine a;
uniquely to achieve /~\1j/~\2j =1.
To identify the transformations that preserve the form of 71, 75, we first verify that each
element ¢, € C (T 1, Tg) preserves that form. According to (4.11]), we have

Uiz & = &a;(0), my = ;(C),
¢1_13 6]' = gjbj(C)a ﬁj = njbj(<)>
b;(¢)a;(¢) = 1.
This shows that ¢ '7; is given by
& = Ay (Qb;(Omy 115 = A (OB Q).

Then v 'F1 is given by

&= MOy 7 = A;HOE:
Since (; = §j~2(§ ), then 74, still satisfy (5.5). Conversely, suppose that 1)1 preserves
the forms of 7, 7. We apply Corollary .9 to decompose ¢ = ¢1¢; U with ¢ € C(T1,T3)
and ¢, € C© (Tl, T 2) Since we just proved that each element in C(7},T5) preserves the form
of 7;, then ¢ = 119 also preserves the forms of 71, 72. On the other hand, we have shown
that there exists a unique mapping in C(7},7) which transforms {7, 75} into {71, T2 }.
This shows that ¢y = I. We have verified all assertions in (i).

(ii). According to Remark (4.6, C¢(S) and C*(1},T5) are invariant under conjugacy by

p. We have U~lg0 = ¢* and U € C(S). Note that pop = o' and po*p have the
same form as of (¢*)7!, i.e. they are in C(S) and have the same linear part. We have
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pVpop¥~—tp = p(c*)~tp. The uniqueness of ¥ implies that p¥p = ¥ and 75 = prip. Thus,
we obtain relations (5.7)-(510). Analogously, pwp is still in C<(T}, Ts), and pgop preserves
the form of 71, 7. Thus pwop = 1y and 7o = p7yp, which gives us (B.IT)). O

We will also need the following uniqueness result.

Corollary 5.3. Suppose that o has linear part S with nonresonant M1y . Let W be the
unique formal mapping in CS(S) such that W~'oW € C(S). If U e C(S) is a polynomial
map of degree at most d such that W'oW (€, n) = (&, n) + O(|(&,1)|™) and 6 € C(S),
then U is unique. In fact, ¥ — ¥ = O(d +1).

Proof. The proof is contained in the proof of Proposition Let us recap it by using
(Eﬂl) (Eﬂ) and the proposition. We take a unique normalized mapping ® such that
1o Ud e C(S). By (524)-B25), © = 1+ O(d + 1). From Proposition 5.2 it follows
that ¢ := ¥OT! € C(S). We obtain Ud = o U. Thus )o¥ = ¥ + O(d 4 1). Since
Yo € C(S), and W, ¥ are in C¢(S), we conclude that ¥ = W + O(d + 1). O

When p = 1, Proposition is due to Moser and Webster. In fact, they achieved
Ml(Cl) — d&m)*

Here 0 = 0, %1 for the elliptic case and ¢ = 0, =7 for the hyperbolic case when p; is not a

root of unity, i.e. 7 is non-ezxceptional. In particular the normal form is always convergent,

although the normalizing transformations are generally divergent for the hyperbolic case.
Let us find out further normalization that can be performed to preserve the form of

*

o*. In Proposition 5.2, we have proved that if ¢ is tangent to .S, there exists a unique
U e C(S) such that U~'o¥ is an element ¢* in the centralizer of S. Suppose now that
o = 17> while 7; is tangent to T;. Let 75 = U5, U. We have also proved that there is a
unique g € CC(Tl, Tg) such that 7; = ¥, 771y, i = 1,2, are of the form (5.3, i.e.

Ti f; = Aij(C)nja 773 (C)fﬁv
51 &= M;(Q)¢, n= Mj YOy

Here ¢ = (&1, .-, mp), /~X2j = /~\1_]1 and Mj = A%] We still have freedom to further
normalize 71,7, and to preserve their forms. However, any new coordinate transformation
must be in C(T},T5), i.e. it must have the form

Ui: & = ai(En)&,  n; — ai(En)n;.
When 1; = p71;p, we require that i1 commutes with p, i.e.
Ue = Uy,  Qp = Ap, G5 = Qgis, -
In ¢ coordinates, the transformation v; has the form
(5.29) @G = bi(Q)¢, 1<j<p
with b; = a . Therefore, the mapping ¢ needs to satisfy

be >0, b, >0, by=Dbys,..
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Recall from (5.7)-(5.10) the reality conditions on M;

M.op, = M., l1<e<e,;
m:]\;[h_l, ex < h < hy + ey;
MS*JFS :m, he +e, <s<p—s,.
Here
(5.30) P21 G =Gy G Caperr Comse — G,

for1<j<e,+h,and e, + h, < s <p-—s,.
Therefore, our normal form problem leads to another normal form problem which is
interesting in its own right. To formulate a new normalization problem, let us define

- [ log(M;(¢)/M;(0)), 1<j<e,
531 (log M);(¢) = {—z' log(NE,(0)/N,(0)), e < <p.

Let F =log M := ((log M)y, ..., (log M),). Then the reality conditions on M become

(5.32) F=p.Fp..
The transformations (5.29) will then satisfy
(5.33) p=op- =, b;(0)>0, 1<j<e +h.

Therefore, when F’(0) is furthermore diagonal and invertible and its jth diagonal entry
is positive for 7 = e, h, we apply a dilation ¢ satisfying the above condition so that F
is tangent to the identity. Then any further change of coordinates must be tangent to
the identity too. Thus, we need to normalize the formal holomorphic mapping F' by
composition F o ¢, for which we study in next subsection.

5.2. A normal form for maps tangent to the identity. Let us consider a germ of
holomorphic mapping F'(¢) in CP with an invertible linear part A¢ at the origin. According
to the inverse function theorem, there exists a holomorphic mapping ¥ with W(0) = 0,
U’(0) = I such that F'o ¥(¢{) = A(. On the other hand, if we impose some restrictions on
U, we can no longer linearize F'in general.

To focus on applications to CR singularity and to limit the scope of our investigation,
we now deliberately restrict our analysis to the simplest case : F is tangent to the identity.
We shall apply our result to F' = log M as defined in the previous subsection. In what
follows, we shall devise a normal form of such an F' under right composition by ¥ that
preserve all coordinate hyperplanes, i.e. V;(¢) = (;(C), 7 =1,...,p.

Lemma 5.4. Let ' be a formal holomorphic map of CP that is tangent to the identity at
the origin.

(i) There exists a unique formal biholomorphic map v which preserves all ; = 0 such
that F' := F o1 has the form

(5.34) F=I1+f, f(Q)=0(¢»; 9,f=0, 1<j<p.

(13) If F is convergent, the ¢ in (i) is convergent. If F' commutes with p,, so does the

0.
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(1ii) The formal normal form in (i) has the form
(5.35) fia = fio+ Fiolfba-1), =0, Q> 1.
Here Fj ¢ are universal polynomials depending only on F'(0) and they vanish at 0.

Proof. (i) Write F' = I + f and

V1 =G+ Goi(Q),  g;(0)=0.
For F' = F o1, we need to solve for f,g from

£(0) = Gg;(O) + f09(Q).

Fix Q = (q1,...,¢,) € NP with |Q] > 1. We obtain unique solutions
(5.36) 9j.a-e; = —{Li(()}a, ¢ >0,
(5.37) fie = {fH@(O))}e: 4 =0.

(ii) Assume that F is convergent. Define h(¢) = >_ |hg|¢¥. We obtain for every multi-
index @ = (q1, ..., qp) and for every j satisfying ¢; > 1

gj,Q—ej S {f_](C1 + Clgl (C)a SRR Cp + prp(g))}Q .
Set w(¢) =" (g, (). We obtain

w(¢) =Y TG+ w(Q). ... G+ w(Q)).

Note that f;(¢) = O(|¢]*) and w(0) = 0. By the Cauchy majorization and the implicit
function theorem, w and hence g, ), f are convergent.

Assume that p,Fp, = F. Then p,LFp, is normalized, p,1p, is tangent to the identity,
and the jth component of p.Fp.(¢) — LF(C) is independent of ¢j. Thus p.1p, normalizes
F too. By the uniqueness of ¥, we obtain p,¢p, = .

(iii) By rewriting (£.37), we obtain
(5.38) fio=Ffia +{fiW) = fita = fia + Fiol o~ {9}0-2)-

From (5.36), it follows that

IbQ-er = —f1.@ T Grg-e. ({f H-1, {9}10-2);, 1@ > 1.

Note that {g}o = 0 and {f}; = 0. Using the identity repeatedly, we obtain gy g_., =
—fr@ + G g_e, ({f}@1-1). Therefore, we can rewrite (5.38) as (5.33). O

5.3. A unique formal normal form of a reversible map o. We now state a normal
form for {71, 79, p} under a condition on the third-order invariants of o.

Theorem 5.5. Let 7, 7o be a pair of holomorphic involutions with linear parts T;. Let
o = T7y. Assume that the linear part of o is

S:&¢ =&, my=p'n, 1<j<p
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~

and i1, ..., p, are non-resonant. Let U € C°(S) be the unique formal mapping such that
=V G = A&y, = Ay(En) TN
ot = UTloW: &) = My(en)g;, o, = My(€n) ",

with M; = Alez_jl. Suppose that o satisfies the condition that log M is tangent to the
identity.

A

(i) Then there exists an invertible formal map 1y € C(S) such that

(5.39) f= i § = A (Emny,  nf = Aii(Em) s
(5.40) G=rlo s & = M(En)&, 0 = M;(En) ',

Here A2j = Al_jl, and T; is the linear part of 7;. Moreover, logM 1s tangent to the
wdentity at the origin.

(i1) The centralizer of {71, T2} consists of 27 dilations (§,m) — (a&, an) with a; = £1.
And Aij are unique. If \;; are convergent, then 1, is convergent too.

(7i1) Suppose that & is divergent. If o is formally equivalent to a mapping 6 € C(é)
then ¢ must be divergent too.

(v) Let p be given by B1) and let 7o = prip. Then the above ¥ and 1y commute with
p. Moreover, 7;, ¢ are unique.

Proof. Assertions in (i) and (ii) are direct consequences of Proposition 5.2l and Lemma [5.4]
in which F is the M in Proposition The assertion on the centralizer of {71, 72} is
obtained from (5.6]) of Proposition in which A;; = A;;. Now (iii) follows from (ii) too.

Indeed, suppose o is formally equivalent to some convergent

G: &= M;(En)g;, 0= M;(En)~ ;.
Then by the assumption on the linear part of log M, we can apply a dilation to achieve
that (log M)'(0) is tangent to the identity. By Lemma[5.4] there exists a unique convergent

mapping ¢: ¢; = b;(¢)¢; (1 < j < p) with b;(0) = 1 such that log M o ¢ is in the normal
form log M,. Then

(&), m) = (b€, b (Emmy), 1<j<p

transforms & into a convergent mapping o,. Since the normal form for log M is unique,
then & = o,. In particular, ¢ is convergent.

(iv). Note that pop = o=, Also p(c*)~!p has the same form as o*. By (p¥ ' p)o(p¥p) =
(po*p)~t, we conclude that p¥Up = W. The rest of assertions can be verified easily. U

Under the condition that log M is tangent to the identity, the above theorem completely
settles the formal classification of {1y, 79, p}. It also says that the normal form 77,7, can
be achieved by a convergent transformation, if and only if ¢* can be achieved
by some convergent transformation, i.e. the ¥ in the theorem is convergent.

However, we would like state clear that our results do not rule out the case where a
refined normal form for {7}, 7, p} is achieved by convergent transformation, while ¥ is
divergent, when log M is tangent to the identity.
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5.4. An algebraic manifold with linear ¢. We conclude the section showing that when
Ty, T are normalized as in this section, {7;;} might still be very general; in particular {7, p}
cannot always be simultaneously linearized even at the formal level. This is one of main
differences between p =1 and p > 1.

Example 5.6. Let p = 2. Let ¢ be a holomorphic mapping of the form
or & =&+ a&n). =n+ N aG(TEn), i =12

Here ¢; is a homogeneous quadratic polynomial map and
Ti(&,m) = (M, Aamz, A7 161, A5 '),

Let 7 = ¢T1j¢>—1 and 1; = p71i;p. Then ¢ commutes with 7t and 7y = 7. In particular
Ty = p11p and o0 = 775 are in linear normal forms. However, 7y is given by

& =X — q (A, A7) + qu (M, €2, AT, m2) + O(3),

& = & — @2(&n) + (M, &2, AT €1, m2) + O(3),

m = A = AT (€ n) + AT (€ Aame, i, Ay TEe) + O(3),
Mo =12 — A3 g2 (A, A71E) + A5 qa(61, Ao, 1, A3 162) + O(3).

Notice that the common zero set V' of &7 and &97) is invariant under 71, 79,0 and p. In
fact, they are linear on V. However, for (¢',n') = m1(§,n), we have

Emy = —maqi(0, &, ) + 111 (0, Aama, 11, Ay 1) — A\ H1qr (0, Aama, A7)
+ AT 6@ (0, &, A1, n) mod (&1, o, O(4)).

For a generic ¢, 711 does not preserve V.

By a simple computation, we can verify that o; = 71;75; for 7 = 1,2 do not commute
with each other. In fact, we will prove in section [l that if the p, ..., p, are nonresonant,
o; commute pairwise, and o is linear as above, then 7i; must be linear.

6. DIVERGENCE OF ALL NORMAL FORMS OF A REVERSIBLE MAP o

Unlike the Birkhoff normal form for a Hamiltonian system, the Poincaré-Dulac normal
form is not unique for a general o; it just belongs to the centralizer of the linear part S of o.
One can obtain a divergent normal form easily from any non-linear Poincaré-Dulac normal
form of ¢ = 7 by conjugating with a divergent transformation in the centralizer of S;
see ([B.0). We have seen how the small divisors enter in the computation of the normalizing
transformations via (5.24)-(5.25), but they have not yet appeared in (5.22)-(5.23) in the
computation of the normal forms. To see the effect of small divisors on normal forms,
we first assume a condition, to be achieved later, on the third order invariants of ¢ and
then we shall need to modify the normalization procedure. We will use two sequences of
normalizing mappings to normalize 0. The composition of normalized mappings might not
be normalized. Therefore, the new normal form & might not be the ¢* in Proposition
We will show that this 7, after it is transformed into the normal form ¢ in Theorem (i),
is divergent. Using the divergence of &, we will then show that any other normal forms of o
that are in the centralizer of S must be divergent too. This last step requires a convergent
solution given by Lemma [5.4
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Our goal is to see a small divisor in a normal form &; however they appear as a product.
This is more complicated than the situation for the normalizing transformations, where a
small divisor appears in a much simple way. In essence, a small divisor problem occurs
naturally when one applies a Newton iteration scheme for a convergence proof. For a small
divisor to show up in the normal form, we have to go beyond the Newton iteration scheme,
measured in the degree or order of approximation in power series. Therefore, we first refine

the formulae (5.22)).
Lemma 6.1. Let 0 be a holomorphic mapping, given by
&= MEnE + fi(Em), =Ny (Emn; +9;(Em), 1<j<p.

Here M)(0) = p; = NJ(0)~". Suppose that ord(f,g) > d, d > 4, and I + (f,g) € C(S).
Assume that s, ..., p, are non-resonant. Assume that

(MOY(0) = diag(ps, .. 1y)-

There exist unique polynomials U,V of degree at most 2d — 1 such that W = I + (U, V) €
Ce(S) transforms o into

o € = M(EnS + f(&m), o =N(Enn+g(&n)
with I + (f,§) € C(S) and ord(f, §) > 2d. Moreover,

(61) Uj,PQ = (/J“P_Q - :uj)_l {fj,PQ + uj*,PQ((Sé—la {MO’ NO}[%]’ {fa g}é—l)} )
(62) ‘/ijP = (IU’Q_P - :uj_1>_1 {gijP + V;,QP(df—lv {M07 NO}[Z*TlP {f7 g}f—l)} 9

for 2 <|P|+1Q| =¢<2d—1 and u"~9 # p;. In particular, ord(U,V) > d. For |P| =d
and |P'| < d,

(6.3) M pr = M p,

(6.4)  Mp=Mp+1; {20U;V))pp + (U} )(prepp—ey) } +{D L&) (U, V)} (Piey)p-

Remark 6.2. Formula (6.4) gives us an effective way to compute the Poincaré-Dulac
normal form. It tells us that under the above conditions, the coefficients of M;p(&n)E; of
degree 2| P|+1 do not depend on coefficients of f(&,n), g(§,n) of degree > 2|P|, if 2| P| > 3.

Proof. 1dentities (6.1))-(6.3)) follow directly from (5.24))-(5.26]), where by notation in Defini-
tion [5.1]

ipo(50) = Vigp(50) = Mp(+0) = 0.
Let D; denote 0,. Let Du({,n) and Dv(¢) denote the gradients of two functions. The
right-hand sides of (5.14)) and (5.16]) give us

(6.5)  M;(En)&; + Us(M(En)E, N(Enn) = f3(&,n) + Dfi(&,n) (U, V) + A;(&,n)
+ (MY(&n) + DMY(En)(nU + EV + UV))(&; + U;).

We recall from (5.I8)) the remainders
Aj(&n) = RoMG (66U +nV + UV)(& + Uj) + Ref5(€,m; U, V).
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Here by (5.12]), we have the Taylor remainder formula

Rof(zy) = 2/0 (1=t éaaf(x + ty)y" di.

|a|=2

Since ord(U, V') > d, ord(f,g) > d, and d > 4, then A;, defined by (5.I8), satisfies

A;(&,m) = O((&,n) ).

Recall that f;(&,n) and U;(€,n) do not contain terms of the form &;£Pn”; while g;(¢,n) and
V;(&,m) do not contain terms of the form 7;6¥n”. Assume that i # j. Then D;M}(En) =
O([&n]). We see that D; M (En)n:Us(€,n) and D; M7 (En)&;Vi(€, 1) do not contain terms of
PnP | and

DM (En)&U (€, mVi(€,m) = O(2d + 3).
Comparing both sides of (6.5) for coefficients of ;£Fn?, we get (6.4). O

Set |0n(p)] == max{|v|: v € dn(p)} for

p
_ 1
(6.6) 5N(M):U{Mz’,ﬂil>ﬂiPGZP,P#%’JHSN}.
J

j=1
Definition 6.3. We say that 4”9 — p; and u@~" — p5" are small divisors of height N, if
there exists a partition

U{In72 = l: P.Q €N, |P[+1Q] < N,u™"9 # ;b = S U Sk

J
with [uF=9 — u;| € S¥ and S} # 0 such that
max S5 < C'min SY,
max SY < (min Sy)™¥ < 1.
Here C' depends only on an upper bound of |u| and |u|~" and
Ly > N.

If |pf=@ — py] is in SY and if P,Q € NP, we call |P — Q| the degree of the small divisors
-1

pf=@ — py and p@f — prt

To avoid confusion, let us call u”~9 — ji; that appear in S% the exceptional small divisors.
These small divisors have played important roles in Siegel’s works [Siebd) [Sied1]. Siegel’s
small divisors technic was extended to a construction of divergent Birkhoff normal form in
[Gonl2| (see also [PMO3] for related problems). The degree and height play different roles
in computation. The height serves as the maximum degree of all small divisors that need
to be considered in computation.

Roughly speaking, the quantities in S%, are comparable but they are much smaller than
the ones in S§. We will construct u for any prescribed sequence of positive integers Ly so
that

max S% < (min Sy)*Y < 1
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for a subsequence N = Nj tending to oo. Furthermore, to use the small divisors we will
identify all exceptional small divisors of height 2N, + 1 and all degrees of the exceptional
small divisors with N, being the smallest.

We start with the following lemma which gives us small divisors that decay as rapidly
as we wish.

Lemma 6.4. Let L, be an increasing sequence of positive integers such that Ly tends to
0o as k — oo. There exist a real number v € (0,1/2) and a sequence (py,q,) € N? such
that e, 1,v are linearly independent over Q, and

(6.7) lqev — pr — €| < A(pg, qi) PErwEE
o r1
(6.8) A(pr, qr) = mm{i, lqv —p—re|: 0 < |r|+|q| < 3(gx + 1),
(p7 q, T) # 07 :l:(p/m Ak, 1)7 :l:2(pk7 dk, 1)}

Proof. We consider two increasing sequences {my}72,, {nx}>, of positive integers, which
are to be chosen. For kK =1,2,..., we set

k
, 1
V=1V + Y, :E —
my!

/=1

ar = myl.

ne

j'? ' j'?
3=0 Z>k

We choose my, > (my)!(n,!) for £ < k and decompose

Qv = pi + €k + €},

k
1
Pr = myplvp_q € N, €L = Z H, 62 = ’/n].gll/]/C
=0
We have e), < my! 2, -5 and
/ S
qrV =Pk T+ €+ € — Z ik
Z—nk—i-l ’
| 1 (Ph+ax)
(6.9) lqey — pre — €| < my vy, + Z —<{12 (g +1)°)1} :
Here (6.9) is achieved by choosing (ma,n1), ..., (Mmg41,ng) successively. Clearly we can

get 0 < v < 1/2 if my is sufficiently large.
Next, we want to show that re+p+ qv # 0 for all integers p, ¢, r with (p, q,r) # (0,0,0).
Otherwise, we rewrite —my!p = my!(qv + re) as

mg 00
my,! 1 my!
=0 j’ l=np+1 j>my, J:

The left-hand side is an integer. On the right-hand side, the first two terms are integers, ge
is a fixed irrational number, and the rest terms tend to 0 as k — oo. We get a contradiction.
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To verify (6.7)), we need to show that for each tuple (p, ¢, r) satisfying (6.5,

1
(6.10) lqv — p —re| > |quv — pr — €| PrFa T,
We first note the following elementary inequality

1

1
6.11 > _min{3—e,——
(6.11) W+Qd_(q_1ﬂmm{ S

} »q€EL, q=>1.

Indeed, the inequality holds for ¢ = 1. For ¢ > 2 we have gle = m + € with m € N and

z;w 1
6— —_ _—
l
k:qu qg+1
Furthermore,l—e>1—q%zg_—}as
1 1 2
€< —— + E — '
q+1 k2q+2k(k+1) q+1

We may assume that ¢ > 0. If ¢ = 0, then |r| < 3¢x + 3 and hence |p + re| > m. Now
(6.10) follows from (6.9). Assume that ¢ > 0. We have

te e+ pr— qrV
k
_ |9xP — 4Pk | T4k — (g le + pr — qrV|
= + el —q————.
qk qk dk

We first verify that qpp — gpr. and ¢ — rqx do not vanish simultaneously. Assume that both
are zero. Then (p,q,7) = r(pk, qr,1). Thus |r| # 1,2, and |r| > 3 by conditions in (G.8));
we obtain || + |q| > 3(|gx| + 1), a contradiction. Therefore, either gi.p — gpi or rq, — q is

not zero. By (6.11)) and (6.12)),

1 1 1 le + pr — qrV|
—qutptre[>—- - -
| | @ 3 (rgx —q|+1)! k
1
Zw—4|e+pk—%”|-

Using (6.9) twice, we obtain the next two inequalities:
1 - 1
\—mwuwwdz§{®%+4ﬂ}12&%+6—%W%”Wh
The two ends give us (6.10]). O

We now reformulate the above lemma as follows.

Lemma 6.5. Let L, be an increasing sequence of positive integers such that Ly tends to
+o0 as k — oco. Let v € (0,1/2), and let py and g be positive integers as in Lemma [6.4].
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Set (pi1, po, p13) := (e~ e”,¢e°). Then
(6.13) |1 — pa < (CA*(P))H5, - P = (pr, ai, 0),
(6.14) AY(B) = min{[u® — | B € 2[R < 2au+p1) + 1.

R —e; # 0, %(pk, x, —1), £2(px, @i —1)}.

Here C' does not depend on k. Moreover, all exceptional small divisors of height 2| Py| + 1
have degree at least | Py|. Moreover, ut* — us is the only exceptional small divisor of degree
| P.| and height 2| Py| + 1.

In the definition of A*(Py), equivalently we require that
R# P, Rl R, R}

with R} := —P, + 2e3, R2 := 2P, — e3, and R} := —2P; + 3e3. Note that |Ri| = |B| +
2,|R2| = 2|P| + 1, and |R;| = 2|P| + 3 are bigger than |P;|, i.e. the degree of the
exceptional small divisor p* — us. Each pf — ps is a small divisor comparable with
u — pz. Finally, A*(Pg) tends to zero as |P| — oo. Let us set N := 2|P| + 1, and

1 2 3
S = {In™ = sl ™ = s, 1 = g, 1 = o]}

Sl = U{WR—M\; ReZ3|R| < 2(qw+p) + 1,

J
R—e; #0, (e, qr, —1), £2(px, qk> —1)}.

This implies that the last paragraph of Lemma holds when the Ly in Definition [6.3]
denoted it by L)y, takes the value LYy = %|P;|Ly and k is sufficiently large, while Lj is
given in Lemma [6.5]

Proof. By Lemma [6.4] we find a real number v € (0,1/2) and positive integers py, g such
that e, 1, v are linearly independent over Q and

(6.15) gk — e — pr| < Apr, gi) 1,
A(pe,qr) = min{|qv —re —p|: 0 < |r| + |q| < 3(qr + 1),
(p7 q, T) ;é 07 :l:(pkv gk, 1)7 :l:z(pkv gk, 1)} :
Note that pq, po, 3 are positive and non-resonant. We have
0% = ps] = ] e 7 1)
Let v*:= (=1,v,e). If |[R-v* — vj| <2, then by the intermediate value theorem
2| v — | < IR = | < gl R v — v,

IfR-l/*—l/;>201"R-1/*—1/;<—2,Wehave

1 = | > e .
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Thus, we can restate the properties of v* as follows:
= ® O — pig| < C'(C" Ay, ai))
A(pr; gr) = min {[p®*7) —1[: 0 < ||+ [q] < 3(gx + 1),
(p7 q, T) # 07 :l:(plm dk, _1)7 :l:2(pk7 gk, _1)} :

Recall that 0 < v < 1/2. By (GI5), we have |y — e — pg| < 1. Since pg, g, are positive,
then pr < vqr < qx/2. Assume that |puf — u;| = A*(P), |R| < 2(pr + q) + 1, and

R - ej # 07 :l:(p/m 4k, _1>7 :l:2(pk7 qk, _1>

Set R’ := R —¢j and (p,q,7) := R'. Then A*(Py) = |p;||uf — 1]. Also, |r| +|q| < |R'| <
|R|+1<2(pr +qr) +2 < qu +2q5 + 2 < 3(qi, + 1). This shows that [u? — 1| > A(p, qi).
We obtain A*(Py) > 1;A(p.qr). We have verified (6.13). For the remaining assertions, see
the remark following the lemma. U

In the above we have retained y; > 0 which are sufficient to realize ju1, pg, pi3, gy piy ' 113"
as eigenvalues of ¢ for an elliptic complex tangent. Indeed, with 0 < pu; < 1, interchanging
¢, and 7, preserves p and changes the (&, 7;) components of o into (u; &1, ).

We are ready to prove Theorem [I.4, which is restated here:

Theorem 6.6. There exists a non-resonant elliptic real analytic 3-submanifold M in C°
such that M admits the maximum number of deck transformations and all Poincaré-Dulac
normal forms of the o associated to M are divergent.

Proof. We will not construct the real analytic submanifold M directly. Instead, we will
construct a family of involutions {r1,...,7,, p} so that all Poincaré-Dulac normal forms
of o are divergent. By the realization in Proposition 2.10, we get the desired submanifold.

We first give an outline of the proof. To prove the theorem, we first deal with the
associated o and its normal form &, which belongs to the centralizer of S, the linear part
of o at the origin. Thus ¢* has the form

o &' =M(En)E, o =N(Enn.

We assume that log M is tangent to identity at the origin. We then normalize ¢* into
the normal form & stated in Theorem (i). (In Lemma we take I = log M and
F =log M.) We will show that ¢ is divergent if ¢ is well chosen. By Theorem 5.5 (iii), all
normal forms of ¢ in the centralizer of S are divergent. To get 0, we use the normalization
of Proposition [5.2] (i). To get &, we normalize further using Lemma 5.4l To find a divergent
o, we need to tie the normalizations of two formal normal forms together, by keeping track
of the small divisors in the two normalizations.

We will start with our initial pair of involutions {7, 79} satisfying 73 = p7{p such that o°

*

is a third order perturbation of S. We require that 7{ be the composition of 77, ..., 77,. The
latter can be realized by a real analytic submanifold by using Proposition 2.10. We will then

perform a sequence of holomorphic changes of coordinates ¢, such that 7 = @,;le_1<pk,

% = prFp, and of = 7F7F. Each ¢, is tangent to the identity to order dy. For a suitable
choice of ¢, we want to show that the coefficients of order d; of the normal form of o*

increase rapidly to the effect that the coefficients of the normal form of the limit mapping
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0 increase rapidly too. Here we will use the exceptional small divisors to achieve the

rapid growth of the coefficients of the normal forms.

We now present the proof. Let ¢ = P70, 79 = prPp, and

7_1 : gj = 1j(§77)77j> 77j = (A?j(ﬁﬁ))_lfj,
o & = (AY;(Em)°¢, ) = (AL (En) 2 (En)ny

Since we consider the elliptic case, we require that (A;(&n))? = p;es™. So ¢ — (A9)*(¢)
is biholomorphic. Recall that ¢° can be realized by {77,,..., 7], p}. We will take

(6.16) on: & = (E+hD(©),m), ord ™ =dy >3,
(6.17) d, > 2dy_1, B <1,
We will also choose each h;k)(f) to have one monomial only. Let A, := A? denote the

polydisc of radius r. Let ||-|| be the sup norm on C3. Let H® (&) = ¢ +h#)(¢) and we first
verify that Hy, = H® o...o H® converges to a holomorphic function on the polydisc A,
for r; > 0 sufficiently small; consequently, ¢ o - - -0 @, converges to a germ of holomorphic
map at the origin. Note that H®) sends A,, into A, for rpp =1 + r,‘jk. We want to
show that when r; is sufficiently small,

1

(6.18) T < s = (2— %)rl.

It holds for k = 1. Let us show that ryyq/ry — 1 < 6y := sgp1/sk — 1, i.e.
1

rl < g, =

(k+1)(2k—1)
We have (2r1)dk 1 < (2r)F when 0 < r; < 1/2. Fix r; sufficiently small such that
(2r)F < m for all k. By induction, we obtain (6.I8)) for all k. In particular, we

have ||[R® (&) < [|€]] + |H®(€)]| < 27p4q for ||€]] < 7. To show the convergence of Hy,
we write Hy — Hy,_1(£) = h®) o H;_,. By the Schwarz lemma, we obtain

2r
1490 His(@)l) < =g el lel <

Therefore, Hy converges to a holomorphic function on [[£]| < ry.
Throughout the proof, we make initial assumptions that dj and h(* satisfy (E16)-([E17),
e ! < pj<e and p@ #£ 1 for Q € Z* with Q # 0. Set o = 775, 75 = prfp, and
=o' ok
We want ¢* not to be holomorphically equivalent to o®=1  Thus we have chosen a Dk
that does not commute with p in general. Note that ok is still generated by a real analytic

submanifold; indeed, when 7/ = Tl-(lk .. -7‘2-(;_1) and Tk I = prj_lp, we still have the
same identities if the superscript (k — 1) is replaced by k and 7'1( equals ¢, "7 - 1( wi. It is

clear that o* = o*~! + O(d}). As power series, we have

o' =1+ 0(dy), k<t<oo0.
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We know that ¢*° does not have a unique normal form in the centralizer S. Therefore,
we will choose a procedure that arrives at a unique formal normal form in .S. We show that
this unique normal form is divergent; and hence by Theorem (iii) any normal form of
o that is in the centralizer of S must diverge.

We now describe the procedure. For a formal mapping F', we have a unique decomposi-
tion

F=NF+ N°F, NFeC(S), NF €C9).
Set 65° = 0. For k =0,1,..., we take a normalized polynomial map ®; € C5(S) of degree
less than dj, such that o} := @,;1&,;’%1% is normalized up to degree d, — 1. Specifically, we
require that

deg(I)k Sdk—l, P, GCC(S); Nca,io(g,n) :O(dk)
Take a normalized polynomial map W, such that ¥, and 635, := \If,;ila};ollfkﬂ satisfy
deg \Ifk_H < 2d — 1; \If].H_l c C;(S), N%,‘;ﬁ’rl = O(2dk)

We can repeat this for £ = 0,1,.... Thus we apply two sequences of normalization as
follows

6=V 0@ Ul od oo™ o Byo Wy Pyo Wy,
We will show that Wyy = I +O(dy) and ®; = I + O(2dy_1). This shows that the sequence
DoWy - - - §p W, 1 defines a formal biholomorphic mapping ® so that

(6.19) 6% =07 1o™d

is in a normal form. Finally, we need to combine the above normalization with the normal-
ization for the unique normal form in Lemma [5.4l We will show that the unique normal
form diverges.

Let us recall previous results to show that &, ¥, are uniquely determined. Set

(6.20) . {8=:A%w%&ﬂf+-fwwanx
W = NW(Enn+ g™ & n),

(6.21) (J?(k)jg(k)) € C5(S).

Recall that d, = 0. Assume that we have achieved

(6.22) (f®, 6%y = O(2dj_1).

Here we take d_; = 2 so that ([6.20)-(€.22) hold for k¥ = 0. By Proposition 5.2} there is
a unique normalized polynomial mapping ®; that transforms 6;° into a normal form. We
denote by ®, the truncated polynomial mapping of ®; of degree dp — 1. We write

O & =+UPEn), 0 =n+VP(En),
(U® vEY =0(©2), deg(U® V®) < g, —1.
By Corollary 5.3l &, satisfies
= MW (en)g + FP (&, n),
1 =N®(Enn+gM (),
(6.23) (f ™, g™y e cs(S), ord(f™,g") > di.
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In fact, by (524)-(E25) (or (B20)-(E21]), we have
(6.24) Uy = (" = ) { 2 + Uspabas VD, KO} {9, 50}0) }
(6.25) Vo= (12" = ;") {0e + Vier(das, {M(k N}y 9,99} 0) }

for |P| +|Q| = d < dy and pf~% # u;. By (5.20)-(E21) (or (522)-(5.23)), we have

(6.26) M](Dk) = M](Dk) + Mp(69p|-1, {M(k), N(k)}\m—l; {f(k),fl(k)}mm—l),
(6.27) N = N + Np(Sayp—1, AMP, NEY o5 LD, 68 51p1)

for 2|P| — 1 < di. Recall that U; pg, Vjqr, M, p, and N; p are universal polynomials in
their variables. In notation defined by Definition [5.1]

U pq(+0) = Vier(50) =0, Mp(;0) =Np(-;0) =0

Since dy, > 2dy_1, we apply (6.24)-(6.25)) for d < 2dj,_; < dj, and (6.26)- ([6.27) for 2|P|—
2d;,_1 < d, to obtain

(6.28) O, — I = (UP, V) = 0(2d)_4),
(6.29) ME =P NP =NP P <dy,.
By Lemma [6.1] there is a unique normalized polynomial mapping

\IIk—l—l(ga 77) = (5 + U(k+1) (5) n)a n + V(k—H) (67 77))7
(U(k—i—l)’ ‘A/(k—i-l)) c CC(S)
(O, VE0) = 02), deg(U0, 70) < 2, — 1

such that 675, = U, | ;' 07°®, ¥y satisfies the following:
6731 & = MED (e + FOHD 1y = NED (En)n + g&oD,
(f(k—i-l)’g(k—i—l)) € C5(9), ord(f (k1) gDy > 94,
By (61)-(6.2]), we know that
(6.30) U350 = (u"™2 = 1) ™ { £ + U poGes, AM©, N}y (£, 6 }0) }
(6.31) Ve = (u@ " — ;) {gJQP+V or(0e-1, {M( N®Y, ) P, g™ 1)}

for d, < |P|+|Q| = ¢ < 2d;, — 1 and p”~9 # p;. Recall that U p, and Viop are
universal polynomials in their variables. In notation defined by Definition |5:|] po(50) =
Viop(+;0) = 0. Thus

s

(6.32) Uy — I = (UFD VEDY — O(dy),
k+1) f(@ o (k41 g(k)P
(6.33) U = 22—, Vigy =22~ [P +1Q| = d.

“TPr—0o QP —1>
ph=Q —p;t e pQ=F —
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Here =9 + ;. By (6.3)-(64), we have
(6.34) MY = M®B,, P < dy,
k41 k k1) ¢ (k+1) & (k1
(6.35) MY = M+ {200V pp + (O 1)) |
Dk [kt v(k—i—l) } P|=d,.
+{ D@ f prayp 1PI=
As mentioned in Remark[6.2] one of consequence of the above formula is that the coefficients
of M;Hl)(fn)fj of degree 2d;, + 1 do not depend on the coefficients of f*), g*®) of degree
> 2dy, provided (), g)) = O(dy) is in CS(S) as we assume.
Next, we need to estimate the size of coefficients of M®*) that appear in (6.34)-(6.35).
Recall that we apply two sequences of normalization. We have

~ _ 1 1 -1 -1 00
o1 =V, 109, -V 0Py 00 oPgoW - DypoWyy,.

Thus, M®*), N® depend only on 6, &g, ¥y, &y, ..., ¥y, Dy

Recall that if wuy,...,u,, are power seres, then {u;,...,u;,}qs denotes the set of their
coefficients of degree at most m, and |{uy, ..., u, }q4| denotes the sup norm. We choose o>
in such a way that its coefficients of degree m satisfy

[{o" | + {0} < C™

Here C does not dependent on k, ji1, jt2, it3, dj, and h®). We also need some crude estimates
on the growth of Taylor coefficients. If F' = I + f and f = O(2) is a map in formal power

series, then (B.1))-(5.3]) imply

(6.36) [(F~ el < [Fpl+ 2+ [{F1maD™,

(6.37) (G o F)p| <|((LG) o F,G)p| + (2 + [{f, Gy )™,

(6.38) (F7'oGoF)p| <|(G,(LG)o F,FoLG)p|+ (2 + |{f,Glm_1])™,

for m = |P| > 1 and some positive integer /,,. Inductively, let us show that for k =
0,1,2,...,

(6.39) (MW, NEYp| <65 1, m=2|P|+1 < 2d;_y,

(6.40) {6} pal < 05—y, m=|P|+]|Q| = 2d—s.

We emphasize that here and in what follows L, does not depend on the choices of j;, d,, h¥)
which satisfy the initial conditions but are arbitrary otherwise. The above estimates hold

trivially for £ = 0 and d_; = 2, since 5° = 0* is convergent. For induction, we assume
that (€.39)-(6.40) hold. We need to find possibly larger L,, for m > 2dy_; in order to verify

(6.41) {M D NEFDY | < ghm o m = 2|P| + 1 < 2d,
(6.42) {oRatrol < 0oy, m =[P +]Q| > 2dy.

The &, = I + (U®,V®) is a polynomial mapping. Its degree is at most d; — 1 and its
coefficients are polynomials in {64 }4,—1 and g, —1; see (6.24)-(G.25]). Hence

k k 0
(6.43) Uypol + Vigel < 65y, m =P +1Ql.
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Note that the inequality holds trivially for m < 2d;_;, in which case the left-hand side is
zero and we do not change the value of L,,. For m > 2d;_;, we might have to increase L,,

if necessary to obtain (6.43). Applying (6.38) to o° = &, 655°®,,, we obtain from (6.40)
and (6.43) that

(6.44) |M P|+| E <ok, m=2/P|+1,
(6.45) [f 50l + 199 pl < 0km 1, m=|P|+Q|.

Here we use that fact that since dj, > 2dj_1, the small divisors in ds4, ,—1 appear in dg, 1
too. Furthermore, (6.45) holds trivially when m < 2dj_1, as in this case its left-hand side
is 0. If |P| < dj—1 (i.e. m =2|P|+1 < 2dy_1 + 1), from ([6.29) and (639) it follows (G.44])
for the same L,, in (6.39). For (6.453]) with m > 2dy_, and for (€44) with m > 2dj_1 + 1,
we might have to increase the value of L,, so that they are valid. We further remark that
for possibly increased L,,, (6.39)-(6.40) remain valid. To obtain (€.41])-(6.42), we note that
U1 is a polynomial map that has degree at most 2d; — 1 and the coefficients of degree m
bounded by 62Ld’:_1; see (6.30)-(6.31). This shows that

k+1) k+1) m
(6.46) U+ VS < ok [P +1Q| =

The argument to obtain (G4I)-(G.42) for 675, = Ui ,07°Wksq is similar to the one to
obtain (6.44)-([6.45) for of° = ®;'6°®,. Of course, we still use (6.38), while replacing
6.28), ©29), ©39), and (©A0) by ©.32), 6.34), [6.44), and ([6.45), respectively. We

emphasize that the sequence L,, can be chosen consistently, as for d, — oo, we only
increase each L,, for finitely many times.

Let us summarize the above computation for 6°° defined by ([6.19). We know that 6> is
the unique power series such that 6> — 6¢° = O(dy) for all k, and 6 is a formal formal
form of 0. Let us write

. {5’ = M(Eme,
= N=(n)n.
Let |P| < di. By (629), we get M}f*” = Ml(fﬂ); by ([634]) in which k is replaced by k41,
we get M (k+2) _ Mékﬂ) as |P| < dy < dgi1. Therefore,
(6.47) My = MY |P| < dy.
For |P| < dy, (6.34)) says that M}ﬁjl) = M](Dk); by (6.44]) that holds for any P, we obtain

(6.48) M| = MGV <oy, [Pl <dy, m=2|P|+1.

To obtain rapid increase of coefficients of M ﬁj”, we Want to use both small divisors

hidden in U }ng and V(QP in (6.35). Therefore, if M P is already sufficiently large for

|P| = d, that will be specified later, we take ¢ to be the identity, ie. 7 = L

Otherwise, we need to achieve it by choosing

k 1 k-1
T =% 1 Pk

Therefore, we examine the effect of a coordinate change by ¢, on these coefficients.
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Recall that we are in the elliptic case. We have p(¢,1) = (7,€) and 75 = prFp. Recall
that

or: &= (E+h€),n), ordh® =d; > 3.
By a simple computation, we obtain

(& n) = 71 (En) + (= (), AP (€)) + O(|(€, )| **),
(& n) =171 ) + ATRB (), =B (X)) + O(|(&, )| ™).

Then we have

(6.49) of ="t 4 (r®) s(k)) +O(dy, + 1);
W(g.m) = —AnB(Ag) — AP (X%¢),
®(&,n) = A72h0 () + 27RO (A1),

Since o* converges to 0*°, from (6.49) it follows that

(6.50) 0 =" 14+ (r® s®)) 1 O(dy + 1).

For |P| + |Q| = dj, we have

g = { A 06 —hP o)}

(k) _ —2, (k) 17.(k) /y —
sj,QP_{Aj W () + A7 A5 () ln)}QP

We obtain

(6.51) Py = —APreip®) _ \2Pp®)

(6.52) s® = A2 AP P = 4y,

(6.53) e =sop =0, |P|+1Q] = di, Q#0.

The above computation is actually sufficient to construct a divergent normal form ¢ €
C(S). To show that all normal forms of ¢ in C(S) are divergent, We need to related it to
the normal form ¢ in Theorem [5.5, which is unique. This requires us to keep track of the
small divisors in the normalization procedure in the proof of Lemma [5.4]

Recall that F*+1 = log M*+D is defined by

(6.54) FY(Q) = log(u; MV (0) = ¢ +afV(0), 15 <3,
We also have F™ = log M> with F(¢) = ¢ +a5°(¢). Then by (6.47),
(6.55) a2 =al'sY, |P| < dy.
By (52) and (654), we have

al5i0(Q) = i WD+ A p (O ), (P> 1
By (6.48), we have
(6.56) Ay p (MY )| < 8k, [Pl =dy,, m=2|P|+1.
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Recall from the formula (5.33) that F*+1 F> have the normal forms F*+1) = [ 4 g(+1)

and F> = [ +a>, respectively. The coefficients of dgg Y and a5 are zero, except the ones
given by

~(k+1 k 1
al'oV = a4 By o({a® ™V} g1-),

A%) = %Q + B;o({a™}g1-1),

for @ = (¢1,...,qp),¢; = 0, and |Q] > 1. Derived from the same normalization, the B;
in both formulae stands for the same polynomial. Hence a(oﬁ) =a If 1) for |P| < dy, by

(E55). Combining (6.35) and (6.47) yields
k1 (k+1) ¢ (k1) o (k1 1k
(6.57) as, Py T ai(%;k) = 2(U W V3 W )PP+ ((Ué ! ))2)(Pk+63)(Pk—63) + H3 1Mi’§,l)’k
+ {Df3 ( an)(U(k+l)> V(k+l))}(Pk+€3)Pk + Ak?k({M(k—i_l)}lPM—l)'

We regard a3’ as polynomials in (uF=@—p;)~t. The above formula holds for any Py, with
| Py| =

To examine the effect of small divisors, we assume that P, = (pg,qx,0) are given by
Lemmal6.5] so are 1, p2, and pz. Then the second term in (6.57) is 0 as the third component
of P, — e3 is negative. We apply the above computation to

| Py| = dg.

Taking a subsequence of P, if necessary, we may assume that dj, > 2d;_; and dy_; > 3 for
all £ > 1. The 4 exceptional small divisors of height 2|P;| + 1 in (6.14]) are

o | 2P, —e3

—2Pj+es -1
Mg M - :

p* =g, p — p3,  p i3

The last two cannot show up in a3, , since their degree, 2dy, + 1, is larger than the degrees
of Taylor coefficients in a3 p, . We have 3 products of the two exceptional small divisors of
height 2|P;| 4+ 1 and degree | Pg|, which are

_Pk

(u" =) (= —pg), (" = pa) (™ = ps), (™ — g ) (™ = g,

The first product, but none of the other two, appears in (U (kD kH)) p.p,- 1he third term
and fék) in 3%, do not contain exceptional small divisors of degree [P;| = dy > 2d),; — 1.
Since f\" = O(dy) by [E23), the exceptional small divisors of height 2|P,| 4+ 1 can show
up at most once in the fourth term of a3, . Therefore, we arrive at

. a 1
~ oo k1) ¢ (k+1) )k
asz p, :2U3§,P0V},(OP +Allf(5dk—1>Ma{f( )ag( )}dk)

+ A2 (04 1; {f<'f>,g<k>}dk> g M+ A p (M ),

A 1
Allc(édk—lvm7{ }dk)_( 31?3))7 318;2) A3(6dk 17{f 79 }dk)

By (6.44) and (6.56), we obtain \Mék}k\ + | Ag.p, {MEDY b 1) < §ymy for m = 2dy, + 1.
Omitting the arguments in the polynomial functions, we obtain from ([6.43)-(6.46]), and
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([E47) that

i i K [0a,—1 (1) "
AL+ AR+ L0 | [ A < 5t ey m = 20R 41

for a possibly larger L,,. We remark that although each term in the inequality depends on
the choices of the sequences p;,d;, h®) the L,, does not depend on the choices, provided
that 1, di, h® satisfy our initial conditions. Therefore, we have

5%, | > 20050 Valoh | = 10a, 1 ()2 [P — pg] 7.
Recall that of° = &, "W, ! - O o@DV, - - - Dy, Set
G =0 D e T R - By
By (6.50), we get
(6.58) o =5+ (r®, s®) + O(dy + 1).

Recall that ®; depends only on coefficients of 53¢, = W, ! 022, W, _; of degree less than dj,
while Wj_; depends only on coefficients of 03° | = @,;_11&;@_1@6_1 of degree at most 2d,_;—1
which is less than dj. too. Therefore, &5, ¥U)_4,..., Py depend only on coefficients of 0> of

degree less than dy. On the other hand, 0> = ¢~ + O(d},). Therefore, 53° depends only

on o*~! and hence it depends only on k(¥ for ¢ < k. By (6.58), we can express

k k k
(6.59) 190 =FRa+80a alop = alop+ 50,

where |P| + |Q| = dj and fj,PQ,§j7QP depend only on h® for ¢ < k. Collecting (6.33),
(659), and (6.51)-(6.53), we obtain

| 7|  [8a—a () e
e = psllp=Pe — gL I —

|as” Pk| =
with
T, = (_>\Pk+63h(k) — A2 hékpk + fé%é))(k_zﬂ + A_Pk_egh:(a]fpk + §?€kopt))
= NPT, R, = AR RA, R+ Nalin).
Set Tk(hék])gk) = —\272PT We are ready to choose hgfl)gk to get a divergent normal form.

We have either |~)\Pk_63 + 1] > 1 or [\ — 1| > 1. When the first case occurs, one of
|T:(0)], |Tk(1)], |Tk(—1)| is at least 1/4; otherwise, we would have

2|)\Pk—63 + 1|2 = |Tk(1) + Tk(—l) - 2Tk(0)| <1,

which is a contradiction. Here the first identity follows from the fact that f PQr 3 ](kc)gp
depend only on A for ¢ < k. When the second case occurs, we conclude that one of
I T5(0)], |Tx(3)|, |Tx(—i)| is at least 1/4. This shows that by taking hgf}))k to be one of
0,1,—1,4, —i, we can achieve

|Tk‘ Z i,u2pk_2€3-
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Therefore,
|&§opk| 2 M2Pk—263 = ‘5dk—1(:u)|L2dk+l
’ 2| "% — || — pg” | | — ps
Recall that pz = e®. If |uf* — ps| < 1 then 1/2 < p*= < 2. The above inequality implies
. M3Pk—363
(6.60) |a3,Pk‘ > ma
provided

1 _
‘:upk - ,U/3| S @wdk—l(ﬂ’)‘ L2dk+17 |Pk| = dk
For the last inequality to hold, it suffices have
(6.61) | = pas| < [0 —1 ()| 7F2 T (o ()] < 1/4.

Note that the sequence L,, does not depend on the choice of A. The existence of 1, o, 13
is ensured by Lemma as follows: We choose the sequence L,, in Lemma [6.5] denoted
by L, now, so that |Py|Lj, > 2Lag, +1 + 2. Then (6.61)) follows from (6.13)), the definitions

of d4,—1(p) by ([6.6) and of A*(P;) by (6.14); indeed
W% — sl < (CAM (PP < (A% (P2
< (T ()7 < 601 ()Pt

Here the second inequality follows from C'(A*(P,))Y? < 1 when k is sufficiently large. The
third inequality is obtained as follows. The definition of A*(P;) and |Py| = d imply that
any small divisor in &4, ;(p) is contained in A*(P,). Also, A*(P,) < u; ' for i = 1,2,3
and k sufficiently large. Hence, A*(P;) < 5(;;_1(/1), which gives us the third inequality.
Without loss of generality, we may assume that L, > k. From (6.60) and (6.61]) it follows
that

@555, | > 057 (1) = S5, (),

di_1 di—1

for k sufficiently large. As d4, () — +o00, this shows that the divergence of Fy and the
divergence of the normal form &.

As mentioned earlier, Theorem (iii) implies that any normal form of ¢ that is in the
centralizer of S must diverge. U

7. A UNIQUE FORMAL NORMAL FORM OF A REAL SUBMANIFOLD

Recall that we consider submanifolds of which the complexifications admit the max-
imum number of deck transformations. The deck transformations of m; are generated
by {7i1,...,7p}. We also set m; = pryjp. Each of 7;,..., 7, fixes a hypersurface and
T; = T11 - - - T1p is the unique deck transformation whose set of fixed points has the smallest
dimension. We first normalize the composition o = 7775. This normalization is reduced to
two normal form problems. In Proposition we obtain a transformation ¥ to transform
T1, To, and o into

TG = NGy, 1) = A (),
0" & = M;(En)&;, my = M (€, 1< 5 <p.
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Here Ay; = Al_j1 and M; = A%j are power series in the product ¢ = (&1, ...,&m,).
We also normalize the map M: ( — M(() by a transformation ¢ which preserves all
coordinate hyperplanes. This is the second normal form problem, which is solved formally
in Theorem under the condition on the normal form of o, namely, that log M is tangent
to the identity. This gives us a map ¥; which transforms 7, 75, and ¢ into 71,72, & of the
above form where A;; and M; become Aij, Mj.

In this section, we derive a unique formal normal form for {7,...,7,, p} under
the above condition on log M. In this case, we know from Theorem that C(o)
consists of only 27 dilatations

(71) REZ (gj,’f]j) — (€j£j7 Ej’f]j), € = :l:l, 1 S] S p.

We will consider two cases. In the first case, we impose no restriction on the linear parts of
{7i;} but the coordinate changes are restricted to mappings that are tangent to the identity.
The second is for the family {7;;} that arises from a higher order perturbation of a product
quadric, while no restriction is imposed on the changes of coordinates. We will show that
in both cases, if the normal form of ¢ can be achieved by a convergent transformation, the
normal form of {r;,...,7,, p} can be achieved by a convergent transformation too.

We now restrict our real submanifolds to some classes. First, we assume that o and 71, 7
are already in the normal form & and 7y, 75 such that

(7:2) 7 =AN(Enn, 0 =An)7E, Ay =ATY
(7.3) G: & =MEnE, 0 =My, M=A%

Let us start with the general situation without imposing the restriction on the lin-
ear part of log M. Assume that & and 7, are in the above forms. Recall that Z; =
diag(1,...,—1,...,1) with —1 at the (p + j)-th place, and Z := Z; ---Z,. Let Z, (resp.
Z) be the linear transformation with the matrix Z; (resp. Z). We also use notation

I 0 I A
) e-(29) m-( LA

Here B, as well as A; given by (C2), is a non-singular complex (p x p) matrix. Define two
transformations

(7.5) (Bi).: (g) — (B)). (g) Ey.: (g) ~ (_ A;Il e Ai(fﬁ)) (g)

Let us assume that in suitable linear coordinates, the linear parts of two families of invo-
lutions {71, ..., 7} for i = 1,2 are given by

(7.6) Lty =Ty, Ty =Ea(B).Zi(Bi); By, A;=Ai(0).

Here T;; are in the normal forms described in Lemma or in Proposition [3.9]
Note that (B;). commutes with Z. Also, F3 o7; = Z o Ej . Let us set

(7.7) 7ij = Ex, 0 (Bi)s 0 Zjo (By); ' o B!

and we have 7y = 741 ---T1p. The following lemma is analogous to the scheme used to
classify the quadrics with the maximum number of deck transformations. The lemma
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provides a way to represent all involutions {71, ..., 7120, p} provided that we already have
a normal form for o.

Lemma 7.1. Let {r;} and {m;} be two families of formal holomorphic commuting invo-
lutions. Let 7, = T;1 -+ - T;p and 0 = T T9. Suppose that

=1 = u(fn)m, ;= A (En) '
o=06:&=MEng, = Mi(En) "y

with Mj = /A\%j Assume further that the linear parts T;; of 7i;, given by (T.6) are in normal
forms in Lemma or Proposition[3.9. Then we have the following :

(1) For i = 1,2 there exists ®; € C(7;), which is tangent to the identity, such that
(I)Z-_lTZ‘j(I)Z' = 722']‘ fOT’ 1 S] S p-

(11) Let {71;} and {72;} be two families of formal holomorphic commuting involutions.
Suppose that 7, = 7; and & = & and é{lfijéi = %j with ®; € C(7;) being tangent to
the identity and

Fij = Bx, 0 (Bi).o Zjo (B); o By
Here fori = 1,2, the matriz B; of B; is non-singular. Then
Y77 = i),
if and only if there exist Y € C(71,72) and T; € C(7;) such that
(7.8) d;=Ylod,0Y; i=12,
T 7T = /%iui(j)a 1<j<p

Here each v; is a permutation of {1,...,p}.
(113) Assume further that 7o; = prjp with p being defined by (B0). Define 71, by (1)
and let

Toj = PT1;p-
Then we can choose ®3 = pPy1p for (i). Suppose that (fg = p(flp where <i>1 s as
in (i). Then {71, p} is equivalent to {m;, p} if and only if there exist Y;, v; with
ve = vy, and Y satisfying the conditions in (i1) and Yo = pY1p. The latter implies
that Yp = pT.

Proof. (i) Note that 7;; is conjugate to Z; via the map Ej o (B;).. Fixi. Each 7;; is an
involution and its set of fixed-point is a hypersurface. Furthermore, Fix(my),. .., Fix(7,)
intersect transversally at the origin. By Lemma there exists a formal mapping v; such
that ¢; '7;;0; = L7i;. Now Li); commutes with L7;;, Replacing ; by @/},(L@/},)_l, we may
assume that 1; is tangent to the 1dent1ty We also find a formal mapping 1/12, which is
tangent to the identity, such that w 17%)1@@ = L7;; = L7;;. Then ®; = wzw ! fulfills the
requirements.
(ii) Suppose that

— ~ T 1
q) szq) Tij = q)ﬂ'”q)l
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Assume that there is a formal biholomorphic mapping Y that transforms {r;;} into {r;;}
for i = 1,2. Then

(7.9) Y'Y =Ty, J=1,....p, i=1,2.
Here v; is a permutation of {1,...,p}. Then

(7.10) Y7, =Y, Yo=07.

Set T, := <I>Z-_1T<i>i. We obtain

(7.11) Y7 = Ty, 1<35<Dp,
(7.12) o =Ty, i=1,2.

Conversely, assume that (ZI0)-(7I2) are valid. Then (Z.9) holds as
T_ITZ'J'T = T_l(I%-f'Z-j(I)-_lT = (i)ZTZ_I%UTZ(i)Z_I = %I/(j)

(iii) Assume that we have the reality assumption m; = pr;p and To; = p7i;p. As
before, we take ®;, tangent to the identity, such that 7; = <I>1%1j<1>f1. Let & = pPqp.
By Toj = pTijp, we get 7o = pTijp = <I>2%2j<1>2_1 for vy = 1. Suppose that <i>l satisfy the
analogous properties for 71; and p. Suppose that T7'7,;T = 7,5, v2 = 11, and Tp = pT.
Letting Y; = q);lTi)i we get To = pYyp. Conversely, if T; and Ty satisfy To = pTyp,
then

pr = p‘blTl(i)l_lp = (I>2T2(i)2_1 =T.
This shows that T satisfies the reality condition. O

Now we assume that F = logM is tangent to the identity and is in the normal form
(534). Recall the latter means that the jth component of F — I is independent of the
j variable. We assume that the linear part T;; of 7;; are given by (Z.6]), where the non-
singular matrix B is arbitrary. As mentioned earlier in this section, the group of formal
biholomorphisms that preserve the form of & consists of only linear involutions R. defined
by ([I)). This restricts the holomorphic equivalence classes of the quadratic parts of M.
By Proposition 8.9, such quadrics are classified by a more restricted equivalence relation,
namely, (B1,Bs) ~ (B1,By), if and only if

B, =R 'B;diag, d, i=1,2.

For simplicity, we will now fix a representative By, By for its equivalence class.
Using the normal form {7y, 72} and the matrices By, B, we first decompose 7; = 71 - - - Typ.
By Lemma [T (i), we then find ®; such that

Tij = (I)i%ijq)i_l, 1 Sj S p-
For each i, ®; commutes with 7;. It is within this family of ®; € C(7;) for i = 1,2 that we

will find a normal form for {7;;}. When restricted to 7; = p7;p, the classification of the
real submanifolds is within the family of {{7,}, {m;}} as described above and such that

Dy = pPyp.
From Lemma [7.1] (ii), the equivalence relation on C(7;) is given by

(i)i - T_lq)iTi, Z == 1,2
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Here T; and T satisfy
TZ_I%Z]TZ = %iyi(j)’ 1 Sj S P; T7A'Z'T_1 = 7A'Z', = 1, 2.
We now construct a normal form for {7;;} within the above family. Let us first use the
centralizer of C*(Zy, ..., Z,), described in Lemma .12 to define the complement of the
centralizer of the family of non-linear commuting involutions {71,...,71,}. Recall that

the mappings F3 and (B;). are defined by (Z3]). According to Lemma {12, we have the
following.

Lemma 7.2. Let i =1, 2. Let {7i1,..., Ty} be given by (T7). Set
& = Ej, o (Bj)..
Then C(71, . .., Tip) = {E€:do&i " ¢o € C(Z1,...,Z,)}. Set
C(Fitye oo Tip) = {EWE 01 €C( L, ..., Zy)} .
Fach formal biholomorphic mapping ¢ admits a unique decomposition wlq/zo_l with
Y1 € C(Tin, -y Tip)y %o € C(Tiny .-, Tip)-

If 7,; and 1 are convergent, then 1,11 are convergent. Assume further that 7o; = pT1;p
with p being given by B1). Then pdrp € C(T11,...,T1p) for ¢1 € C(Ta1, ..., Tap).

Proposition 7.3. Let 7;,6 be given by (T2)-T3) in which log M is in the formal normal
form (B34). Let {7;;} be given by (T10). Assume further that the linear parts T;; of 7:; are
in normal forms in Lemma B3] or PropositionB.9. Suppose that

(7.14) d; €C(r), decC(sn), P0)=d0)=1 i=12

Then {Y 71, X} = {7i;} fori = 1,2 and for some Y € C(71,72), if and only if there exist
formal biholomorphisms Y, Y3, 5 such that

(7.15) T o ((Bi)eo Zjo (By) ") o Y7h = (By). 0 Zyyjy o (Bi)

(7.16) O, = Y1, Y eC(Fi,...,Tp), i=1,2,

(7.17) T6Y ! =5,

where each v; s a permutation of {1,...,p}. Assume further that To; = pT1;p and Oy =

p®1p and Oy = pPrp. If T commutes with p, one can take 15 = pYip and vy = 1.
Proof. Recall that
Tij - (I)Z'%ijq)i_l, (I)Z c C(ﬁ), 7-2'j - (i)ﬁ:iji)i_l, (i)l < 6(722)

Suppose that

(7.18) Y'Y =Ty, J=1,....p, i=1,2.
By Lemma [7T], there are invertible Y; such that
(7.19) Ti_l%ijTi =Ti,5), 1<7<p,

O, =Y lo®;0Y; i=12.
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Let us simplify the equivalence relation. By Theorem 5.5, C(71, 72) consists of 27 dilations
T of the form (&,7n) — (a&, an) with a; = £1. Since ®;, ®; are tangent to the identity, then
D7Y,(0) is diagonal too. In fact the linear part of T at the origin is

Clearly, T commutes with each non-linear transformation Fy . Simplifying the linear parts
of both sides of (Z.19), we get

(7.20) T 'o ((Bi)so Zjo (BZ)*_l) oY ! = (BZ)* 0 Zy,(j) © (Bi)_l.

*

From the commutativity of T and Ej again and the above identity, it follows that
(7.21) T ' ofoT =7, j=1...,p,i=12.
Using (.13) and (7.21]), we can rewrite (7.I8) as
119701 = &, 717, 7D
It is equivalent to Y;7;; = 7;; Y7, where
T = o7 o, T
Therefore, by ([Z8), in C(7;), ®; and ®; are equivalent, if and only if
O, = TIOYIT, YreC(fu,...,Tp), i=1,2.

Conversely, if T satisfy the above identities, we take T; = T;Y. Note that (Z.I7]) ensures
that T commutes with 7; and E . Then (Z.21)), or equivalently (Z.20) as T commutes with

By, gives us (Z19). O

Proposition 7.4. Let {r;;}, {7}, ®;, and ®; be as in Proposition [[3 Decompose ®; =
0Dt with ®yy € C(741, . .., 71p) and ®io € C(Fin, .. ., T1p), and decompose ®; analogously.
Then {{m;},{m;}} and {{71;},{T2;}} are equivalent under a mapping that is tangent to
the identity if and only if Dy = Py for i = 1,2. Assume further that Toj = pTijp and
Toj = pTi;p- Then two families are equivalent under a mapping that is tangent to the
identity and commutes with p if and only if ®;1 = Dy

Proof. When restricting to changes of coordinates that are tangent to the identity, we have
T =1 in (TI]). Also (7I0) is the same as v; being the identity. By the uniqueness of the

decomposition ®; = &, ®;;', (TI6) becomes ®;; = ;. O

We consider the following special case without restriction on coordinate changes. We
will assume that M is a higher order perturbation of non-resonant product quadric. Let
us recall ¢ be given by (Z.3) and define 7;; as follows:

& = Ay(€nmy

. &= M(En)é R ;= A (En)g
7.22 : J ~ ij f J
(7.22) U{%ZMﬁ@M@ Y=g

=" k#j
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with Agy; = A7 and M; = A?,. Let 7 = 7 -+ - 7. Recall that E in (TF). Set

(7.23) C (P, 1) = {EAIwEI{II: b e, ... Zp)} .
Proposition 7.5. Let {11, ..., T, p} be the family of involutions associated with a real an-

alytic submanifold M that is a higher order perturbation of a non-resonant product quadric.
Assume further that the linear parts T;; of 7;; are in normal forms in Lemmal3.5l. Let 6 be
the formal normal form & of the o associated to M that is given by [T3) in which log M is
in the formal normal form (5:34)). In suitable formal coordinates the involutions T;; of M
have the form

(724) 7'1j :\Ifﬂj\I’_l, ’7'2]' :p’lep, \If GC(%l)ch(f'll,...,f'lp).

Moreover, if 71, ..., 7, have the form (T24) in which ® is replaced by ®. Then there
exists a formal mapping R commuting with p and transforms the family {711, ..., T1,} into
{m1,...,7p} if and only if R is an R, defined by (1)) and

(7.25) ¥ = R7'UR,.

In particular, {m1,..., 71, p} is formally equivalent to {711, ..., T, p} if and only if U in

([C24)) is the identity map.

Proof. We apply Proposition with B; = By = I. We need to refine the equivalence
relation (CI8)-(CIT). First we know that (ZI7) means that Y is some R.. Since R, is
diagonal, then (T.I5]) is always true for vy = v, = I. It remains to refine (ZI6). We have
®y = pP1p. We know that T is a dilation of the form

§ = €&, n—=en;, 1<j<p ==L
Since By = I, then ®; € C*(711,...,71,) implies that T='®;T € C(11,...,71p); and T
commutes with each 71;. By the uniqueness of decomposition, (Z.16) becomes
Oy =TT, B = TR,
The second equation defines Y75 that is in C(711, ..., 71,) as T, @y, <i>,~0 are in the centralizer.
Rename @41, ®1; by U, U. This shows that the equivalence relation is reduced to ((25). O

We now derive the following formal normal form.

Theorem 7.6. Let M be a real analytic submanifold that is a higher order perturbation of
a non-resonant product quadric. Assume that the formal normal form & of the o associated
to M is given by ([T3]) in which logM is tangent to the identity and in the formal normal
form [B.34). Let Ej, be defined by (L4). Then M is formally equivalent to a formal

submanifold in the (21, ..., z9,)-space defined by
M: Rp+j = (A;lUj(gvn) - ‘/](577]»27 1 S] <p,

where (U,V) = EAl(o)E/{ll‘I’_l; U is in C(71) and C*(Ti1,...,T1p), defined by (23), and
&, m are solutions to

z=Ui(&n) + NVi(6m), Zy=Ujop&,n)+NViop(&n), 1<j<p.
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Furthermore, the WU is uniquely determined up to conjugacy R-VURZ' by an involution
Re: & — €&,m; — €y for 1 < 5 < p. The formal holomorphic automorphism group
of M consists of involutions of the form

LGZ Zj = €j%5,  Zp+j 7 Zp+j, 1 S] < p

with € satisfying RV = VR.. If the o associated to M is holomorphically equivalent to
a Poincaré-Dulac normal form, then M can be achieved by a holomorphic transformation
too.

Proof. We fist choose linear coordinates so that the linear parts of {my,..., T, p} are in
the normal form in Lemma 322l We apply Proposition and assume that 7;; are already
in the normal form. The rest of proof is essentially in Proposition and we will be brief.
Write T; = E3 ()0 Z;© E;xll(o)‘ Let ¢ = (U, V) with U,V being given in the theorem. We
obtain
my =yTyw~, 1< <p.

Let f; = & + \jn; and hy = (\;&; — n;)?. The invariant functions of {T1y,...,T3,} are
generated by fi,..., fy, h1, ..., h,. This shows that the invariant functions of {7y, ..., 71, }
are generated by fiov,..., f,oY,hio,... h,01. Set g := f o op. We can verify that
¢ = (f, g) is biholomorphic. Now ¢p¢~! = py. Then M is defined by

Rp+j = Ej(zl>z/)a 1 S] < b,

where E; = h; o ¢~'. Then E; o ¢ and z; 0 ¢ = f; are invariant by {7y, }. This shows that
{¢7;;67'} has the same invariant functions as deck transformations of 7; of the complexifi-
cation of M. By Lemma 7] ¢110 " agrees with the unique set of generators for the deck
transformations of ;. Then M is a realization of {m1,. .., 71p, p}. O

8. NORMAL FORMS OF COMPLETELY INTEGRABLE COMMUTING BIHOLOMORPHISMS

In this section, we shall consider a family of commuting germs of holomorphic diffeo-
morphisms at a common fixed point, say 0 € C". We shall give conditions that ensure
that the family can be transformed simultaneously and holomorphically to a normal form.
This means that there exists a germ of biholomorphism at the origin which conjugates each
germ of biholomorphism in the family to a mapping that commutes with the linear part of
every mapping of the family. We can achieve this under two conditions:

a) The family is “formally completely integrable”. This means that the the normal
form of the family has the “same resonances” as the normal form of the family of
the linear parts.

b) The family of linear parts is of “Poincaré type”. In general, individually, each
linear part might not satisfy these conditions. They are satisfied, collectively, by
the family.

For our convergence proof, both conditions will be essential. To be more specific, let
D, := diag(p11, - -, pan), - - -, Dg == diag(pe, - - -, ften) be diagonal invertible matrices of
C". Let us consider a family F := {F;}!_, of germs of holomorphic diffeomorphisms of
(C™,0) of which the linear of F;(x) at the origin is
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Let us set D :={D,};=1,. 4. Thus

The group of germs of (resp. formal) biholomorphisms tangent to identity acts on the
family F by ®,F == {® 1o Fjod: 1 <i </}

Let us denote O,, (resp. O,) the ring of germs of holomorphic functions at the origin

(resp. ring of formal power series) of C™. Let Q = (¢1,...,¢,) € N"and z = (z1,...,2,) €
C", we shall write
Ql:=q++qn, 29 :=af . 2P

Let us specialize to a family {F;},—1_, of commuting germs of holomorphic dif-
feomorphisms, that is that F; o F; = Fj o I} for all 1 < 4,5 < /. Since it generates an
abelian group, such a family is said to be abelian. We emphasize that the family does not
necessarily form a group and

(< .

Let us recall a result by M. Chaperon (see theorem 4 in [Cha86], page 132):

Proposition 8.1. If the family of diffeomorphisms is abelian then there exists a formal
diffeomorphism ®, which is tangent to the identity, such that

F(Dz) =D,Fi(z), 1<i,j</
where Fy := ®,F;, for 1 < i < (. We call the family {]?Z} a formal normal form of the
family F with respect to the family D of linear maps.

As mentioned above, for convenience, we have restricted ourselves to changes of holo-
morphic coordinates that are tangent to the identity. Also ®,{F;}._, = {F}!_, means
that

OF=F, 1<i<L{.
These restrictions will be removed by mild changes. For instance, if ® transforms a family
F into a family F that commutes with LF, the family of the linear part of the F', then
(L®)"Y(LF,)L® = LF;. Therefore, ®(L®)"" is tangent to the identity and transforms F
into (L®)E(L®)~" which commutes with LF.

Let (5,’3 be the ring of formal invariants of the family D, that is
OP = {fe0,| f(Dix) = f(x), i=1,...,0}
As defined in Definition L5 Cy(D) is the “non-linear formal centralizer” of D, that is
Cy(D) = {H € (M?)"| H(D;z) = D;H(z), i=1,...,0}.

Here ﬁn denotes the maximal ideal of the ring @n of formal power series, that is the set
of formal power series vanishing at the origin of C™. Let e; = (0,...,0,1,0,...,0) denote

the jth unit vector of C™. If Q € N" with |Q| > 0, then 2© € OP if and only if
p =1, V1<i</t.

Here pf := pf - pu. If |Q| > 1, then 2%; € Co(D) if and only if
uZ-Q:,uij, V1<i<U/l.
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It can be shown (as in proposition 5.3.2 of [Sto00, GW05]) that 53\15’ is a ring generated
by a finite number of monomials z™ ... zf» (R; € N") and that the non-linear centralizer

C2(D) of D is a module over ﬁD of finite type.

Definition 8.2. A formal normal form {F}},—;
(1) each F} has the form

l’;:ﬂij(l')l’j, jzl,...,n

¢ is said to be completely integrable if

.....

where fi;; are invariant by D (i.e. fi;(z) € OP) and satisfy fi;;(0) = pij;
(2) for each (j,Q) € {1,...,n} x N" with |Q| > 2,

f1i(2)? = jui;(x) for all i = 1,...,¢, if and only if p® = p;foralli=1,...,¢

Definition 8.3. A commutative family of germs of diffeomorphisms F’ is said to be formally
(resp. holomorphically) completely integrable if it is formally (resp. holomorphically)
conjugated to a completely integrable normal form.

Remark 8.4. For a completely integrable normal form, we have that for each Q € N",
p =1forall 1 <4</, if and only if fi;(z)? =1 for all i = 1,...,¢. Indeed, if fi;(x)? = 1
for all © = 1,...,¢, then evaluation at zero give the result. On the other hand, if M,Q =1
for all 1 <4 < /¢, then u,-j,u? = pi; for all 1 <4 < {. Hence, according to the definition,
fiij ()8 (x) = fuj(x) for all 1 <4 < £, which gives 4°(z) =1 for all 1 <4 < £.

We recall from Definition (iii) that a formal diffeomorphism ®, tangent to identity,
is mormalized (w.r.t. D) if it does not have components along the centralizer of D, i.e.

Do = 0if 2@ = p;; for all 4, Q € N" with |Q| > 2. Let C(D) denote the set of the
normalized mappings, and let C$(D) denote the set of mappings ® — I with & € C¢(D).

Lemma 8.5. Any formal diffeomorphism ® of (C",0), tangent to identity, can be written
uniquely as ® = ®; o ®5 with ®; € C(D) and &y € C(D). Furthermore, @y, ®; are
convergent when ® is convergent.

Proof. This follows from Lemma .8, where X is replaced by Co(D) and 7 is defined by

7r (Z fj,Qzer) = Z Z fiox“e;. O

J z%e;€Ca(D)

Lemma 8.6. Let F':= {F}} be a formal normal form of the abelian family of diffeomor-
phisms F = {F;}. Let F := {F,} be another formal normal form of F. Then, there ezists
a formal dzﬁeomorphzsm O, tangent to identity at the origin, such that ® € C(D) and
® o F; = F; o ®. Furthermore, there is a unique ® € C¢(D) that transforms the family F
into a normal form.

Proof. Since both F and F are normal forms of F , there exists a formal diffeomorphism
®, tangent to identity at the origin, such that F; o ® = ® o F;. According to Lemma 8]
we can decompose ® = ®; o &' where &, € C(D) and ®; € C°(D). Hence, we have
CI)I_IOFZ-OCI)I = (Dgloﬁ’ioé[)o. Let us set G; = ¢ 1oF o ®;. Then G, is a formal
diffeomorphism satisfying G;(z) — D,z € C(D). Let us show by induction on N > 2 that if
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Oy =1+ Y + O(N + 1) with & being homogeneous of degree N, then ®¥ = 0. Indeed,
a computation shows that
{(Gn={E}n+D;jodY — 0N oD,

Express @V as sum of monomial mappings. The monomial mappings are not in C(D),
while those of F; and G; are. We obtain ) = 0.

To verify the last assertion, assume that U,F = F and ¥,F = F are in the normal
form. Suppose that ¥, ¥ are normalized. Then (U~'W),F = ¥, (¥~1),F is in the normal
form. Write U~20 = o405 with ¢4 € C¢(D) and v € C(D). Then (), F is in a normal
form. From the above proof, we know that ¢y = I. Now ¥ = \P@bo, which implies that
U= O

Lemma 8.7. If a formal normal form of F' is completely integrable so are all other normal
forms of F; in particular, the unique ® in Lemma transforms F' into a completely
integrable normal form.

Proof. By Lemma R0 we transform a normal form {F}} into another one {F}} by applying
a transformation ® that commutes with each D;. Hence, we have F; := &' o F; o ®, for
alli=1,...,0 Let us write ®(z) = Y penn, 1<j<n ¢1.0T7€;. Then

®o Fy(z) = > dqumilx)?2;.
QeN?
Suppose that {F,} is completely integrable and ® commutes with each D;. Then
® o F(z) = diag(pir (), . . ., rin(2)) - ().

The conjugacy equation leads to

As a consequence, we have

Fi(x) = diag((fuir (2), - -, frin(2)) - 2
with
(fiij 0 ®(2)) - @j(2) = puyj(w) - Dj(),  Le. fiyj = py0 @
Each function fi;; is an invariant function of D since
fiij(Dyx) = pij 0 @7 (Dy) = puij 0 Di(®71(2)) = pij 0 7' ().

The second and third conditions of the definition of the complete integrability is obviously
satisfied by {F;} since fi;; = p;; 0 @71 d

Lemma 8.8. If a formal normal form of F is linear so are all other normal forms of F.
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Proof. According to Lemma 86, we transform a linear normal form {F}} into another one
{F,} by applying a transformation ® that commutes with each D;. Since E(:)s) = D;x, we
have F, = ®(D;®(z)), for all i = 1,...,/. Since ® commutes with each map = — Dz,
then

F;, = o Y(D;®(x)) = & H(®(D;z)) = D,z O

Definition 8.9. We say that the family D is of Poincaré type if there exist constants d > 1
and ¢ > 0 such that, for each (j,Q) € {1,...,n} x N" that satisfies u% — pm; # 0 for some
m, there exists (i, Q") € {1,...,n} xN" such that ,uk = ,uk forall1 <k </, ,uZQI—,uij £ 0,
and

ma (||, %) > A9, Q= Qe N"U(-N").
Such a condition has appeared in the definition of the good set in [BHV10)].

Definition 8.10. Let f =}, n» for? and g = > Qenn gor? be two formal power series.
We say that g majorizes f, written as f < g, if go > 0 and |fg| < g for all Q € N™. Set

= Y fala®.

QeEN™

Theorem 8.11. Let F' be an abelian family of germs of holomorphic diffeomorphisms at

the origin of C™. Assume that it is formally completely integrable and that its linear part

at the origin is of Poincaré type. Then F' is holomorphically conjugated to a normal form
= {Fy,...,F,} so that each F, is defined by

Zl,’j:,uij(l')l’j, jzl,...,n

where pi;;(x) are germs of holomorphic functions invariant under D and 1;;(0) = ;5. In
fact, the unique normalized mapping ® in Lemma B0l is convergent.

The last assertion follows from Lemma and Lemma 8.7 Such a result for commuting
germs of vector fields is known [Sto00] under a Brjuno-type of small divisor conditions.
Such an integrability result for a single germ of two-dimensional hyperbolic real analytic
area-preserving mapping was proved by Moser [Mos56]. For a single germ of reversible bi-
holomorphism of very special type, this result was due to Moser-Webster [MWS&3]; indeed,
as shown by Moser-Webster [MW83][lemma 3.2], a germ of (hyperbolic reversible) map-
ping of the form ¢ = 77, where the 7, 5 are germs holomorphic involutions, is formally
completely integrable under some condition on the linear parts at the origin of 7, 7. Our
proof is inspired from these proofs. However, in Moser-Webster situation, there is only two
eigenvalues p and p~! and the remaining eigenvalues are 1 with multiplicity. The Poincaré
type condition in the above theorem, that is || # 1, is necessary to obtain the convergence
as demonstrated by Moser-Webster. We shall use our result in the next section in order to
normalize a special kind of CR-singularities.

Proof. Let us conjugate, simultaneously, each F; = D;x + f; to Fy = Ij,(:z)x by the action
of ®(z) = x + ¢(x) where ¢(0) = 0 and ¢/(0) = 0. Here, D;(x) denotes the matrix
diag(fu1(x), ..., fun(x)) and each f;;(z) is a formal power series invariant under D, i.e.
fui(x) € (55) . We can assume that ® does not have a non-zero component along the
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centralizer of D; indeed, by Lemma B we can assume that & is normalized w.r.t D.
Then, for each 7 =1,...,¢, we have

A

Fyo®(z) = Dz + f;(®)(x) + Did(z), o EFy(x) =D;(x)z + ¢(E)(x).
Equation F;0® = d®o 13’2 reads

(8.1) (qs(f),.(x)x) - D,.gs(a;)) + <f)i(x) - D,.) v = fi(®)(z) i=1,...,0

Our convergence proof is based on two conditions: the existence of a formal ¢ € C(D) that
satisfies the above equation, and the Poincaré type condition on the linear part D. We
already know that ¢ is unique. We shall project equation (81]) along the “non-resonant”
space (i.e. the space C(D) of normalized mappings w.r.t. D). The mapping ¢ also solves
this last equation and we shall majorize it using that projected equation.

Let us first decompose these equations along the “resonant” and “non-resonant” parts,
Le. C3(D) and C5(D). Since ¢ = 3 ncnn g2 $;01%; is normalized then ¢;q = 0 for
some Q € N, |Q| > 2 and 1 < j < n, if we have u@ = pu,,; for all m. We recall that,
since each D; is a diagonal matrix, then a map belongs to the centralizer of D if and only
if each monomial map of its Taylor expansion at the origin belongs to this centralizer as
well. Since the fi;; is a formal invariant function then

(D)) = > diohl(@)ae; = > gae;
QEN™|Q|>2 Q'EN™,|Q'|>2
The latter contains only non-resonant terms, that is that if ,LLZ-QI = ;; for all 4, then v; o» = 0.

Indeed, ,&ZQ(:);) contains monomials of the form 2 with puf =1 for all 1 <4 < /. Hence,
¥j.q is a linear combination of ¢; g such that Q' = Q + P with u =1 for all 4. Therefore,
if ,uZQI — yu;; for all i, then for all these Q’s, we have 2 = u?/ = p;; for all 7 so that ¢, o = 0;
that is ;o = 0.

Hence, the projection on the resonant mappings in Co(D) leads to

(8.2) (]f)i(x) - DZ-> 2= {fi(®) (@) hress i=1,....0
Here for any formal mapping g(z) = O(|z|*) on C", we define the projection on Cy(D) by

(8.3) (G@)res =Y > g1a%;.
I Vi p®=p;
The projection g onto C5(D) is defined as g(x) — (g(x))yes, i-€. it is the projection of g on
the non-resonant mappings.
Let us consider the projection on the non-resonant mappings. We first need to decompose
power series according to a non-homogeneous equivalence relation on their coefficients. Let
us define the equivalence relation on {1,...,n} x N" by

Here the identities hold as formal power series. Let A be the set of the equivalent classes
on the non-resonant multiindex set

{G:Q) €1 md x N (4 = gy i = ) #0,1Q1 > 1}
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If ,ug — pj 7 0 for some k, clearly ,&g — pg; is not identically zero. We can decompose
any formal power series map f along these equivalent classes and the resonant part of the
mapping. Let 6 € A and f =) nni<jcn fiqgr%e; with f = O(2). We can write

(8.4) fo(x) = fieu9e, D falz) < f(x).

(4,Q)ed seA

We denote by ﬁ% the vector space of such maps. To a given equivalent class §, we
now associate a representative (js, @s), and later we shall identify an equation among n
equations in (8J]) for estimation.

Since ¢ contains no resonant mappings, then

(8.5) = ds.

6€A

Let us decompose the projection onto non-resonant mappings in C5(D) of equation (81))
along each equivalent class ¢ as follows. Using the definition of the equivalence class A, we
obtain

(8.6) A2 @) = s, | Bs(w) = {£(@)}5 (@), ¥i=1,...0

where {f}s denotes the projection of f on ﬁﬁ s, defined by (8.4]).

For each (js,Qs) € A, we know that ug‘s — pij; # 0 for some k. By the Poincaré type
condition, there exist ¢ and Q5 € N™ such that

(87)  uP =gy A0 p=p%, VI<m <l Q5—Qs € NTU(-N")
and, furthermore, one of the following holds:

(8.8) | < cd 194,

(8.9) 1y %] < ed 19,

Here, d > 1 does not depend on @s. So, let us use the ith equation of (80 to estimate .
We have, for that i,

(8.10) Ps = [ﬂ?‘s - ,Uz'ja] - {fi(®@)}5-

Therefore, we have established the uniqueness of ¢ under (83]) and (8I0), and under the
condition that ¢ satisfies the equation when (81 is projected onto C°(D). The existence
of ¢ is ensured by assumption. We now consider the convergence of ¢. By (87) and

Remark 84 we obtain ,&Z-QS_Q‘S = 1. This allows us to rewrite ([81I0) as

(8.11) G5 = [ﬂ?f‘ - um] - {fi(®)}5.

We majorize this power series.
Recall that [1;;(0) = ;5. Let us set

Mij(x) := pij fug ().
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We have M;;(0) = 1 and we decompose
My(x) = Y My qu®.
QEN™

Let us set p* := max;;{| il |,ui__j1|}a and

m; = Z max |M;;olz?, m = Z max | M, olz®.

1<j<n 1<i<l, 1<5<n

QeNr QeNn — = =
Note that m(0) = 1. Then M;; < m and
-l — 1 1 1

PTIT M) 1-(m-1) 2-m’

Here and in what follows, if f(z) is a formal power series with f(0) = 0, then for any
number a # 0, a_l stands for the formal power series in x for

=0
% {1 + Z(a_lf(:c))"}.

To simplify notation in (8I]), let us write @ for Q% and j for js. Fix dy with 1 < d; < d.
We consider the first case that p*cd™1® > dl_‘Q‘. Since d > d;, we have only finitely
many such Q's (recall that each @ has the form Q}). The function M; — p;; — p®M? is
holomorphic in M; € CP at M; = (1,...,1) and does not vanish at this point. Hence, the
function

(i — 7)™ = (g — i M)~
is also holomorphic at M; = (1,...,1). For all @'s in the first case, we have
1 C C
< — — < :
We now consider the second case that p*cd =19l < dl_m. In case (88), we obtain

(A7 = i)™ = =g (U= g M)

(hij — (1)

< i l- u*cd"@m'Q'}_l
< u* [1 - df|Q|m‘Q‘] -
< 1= dl_lm}_1 .

In case (89), we have
-1
(i€ = pig) ™ = =M@ 1= gy O
< ed92 = m) I [1 = pred 192 — m)—\@\}—l
Sy=17-1Qly _ v—al [{ _ g-1@lg _ y-i@l]
=< (W) dy (2 =m) 1—dy™(2-m)

< @) -ate-mTT
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We have obtained the estimates for the second case. Therefore, we have shown that for
any Q@ = Q5 and 1 <j </,

(8.12) (A2 — i)™ < S(m —1).

Here S(t) is a convergent power series in t that is independent of all )'s of the form Q.
Let us set

fr= Z ‘max  |fiolv%,;.

QeNr — ~ T

By the definition of the equivalence relation on multiindices, we have

(8.13) S =

0EA

According to (8II) and (8I2), we have

g5 < S(m—1) {f*(® } .
Now (84) and (813) imply
(8.14) 6 < S(m — 1)f*().

Let us project (82]) onto the kth components of Cy(D) as follows. For a power series
map g, we define

gres,k(x) = Z gk,QxQ.

n=pu,
By the definition of g,es in 83), gres = (Gres.1s- - - s Gresn). We have

pik (Mi (%) — 1) 2 = (lir(7) — prix) Tx = { fir(P) Jres n(2).
Therefore, for all 1 < k < n,

8.15 m— g < ——— ().

(8.15) ( ) mines o] (@)

Let us set p, 1= m We set 27 = t, . =t in ®(x) and m(x). Let ¢(t), ®(t), and
m(t) still denote ¢(¢,...,t), ®(t,...,t), and m(t, ..., t), respectively. Let

W (t) == o(t) + (m(t) — 1)t.
We have W(0) = 0, ¢(t) < tW(t), and (m(t) — 1) < W (t). From estimates (814) and
(BI3), we obtain
(8.16) W (t) < p f5(2(1) + S(m(t) — 1) f*(2(1)).
Since f;;(x) = O(|z|?), there exists a constant ¢; such that
Cl(Zj xj)2

ff(z) < T oS 2 C1(Zj o)
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Hence, estimate (8.I0) reads
ci(n(t + ¢))*
1-— cln(t + (b)
at?*(n(l+ W(t)))?
1—cnt(1+W(t))

(8.17) W) < (e + S(m(t) — 1))

< (e +S(W(2)))

Let us consider the equation in the unknown U with U(0) =0 :
(8.18) Ut)(1 = cnt(1+U(1)) = (e + S(W (1)) crt(n(1 + U()))*.

According to the implicit function theorem, there exists a unique germ of holomorphic
function U(t), solution to (8.I8]) with U(0) = 0. According to inequality (8.17), the function
W is dominated by U : W (t) < U(t). This can be seen by induction on the degree of the
Taylor polynomials at the origin. Therefore, W converges at the the origin. The theorem
is proved. O

9. REAL MANIFOLDS WITH AN ABELIAN CR-SINGULARITY

Let us consider a real analytic manifold M with a CR-singularity at the origin, as in
section We assume that its complexification M has the maximum number of deck
transformations with respect to each projection 7; and ms. The deck transformations are
then generated by germs of holomorphic involutions of (C?,0), which are denoted by

{m1,...mpt, {721,...,Top}
Recall that both families are abelian, that is that
Tij © Tike = Tik © Tij-
They are intertwined by the antiholomorphic involution p:
Toj = PO Ty O p.
Let us consider the following germs of holomorphic diffeomorphisms :
(9.1) 0; =T 0Ty, 1<i<e,+h,,
(9.2) O i=Tis O To(s,ts)s Osts. = Ti(s4s.) O T2ss  €x + e <5 <p— 5,

Notice that the above property holds for quadrics of the complex case by Proposition 213l
The family {o;} is reversible with respect to p. More precisely, we have the following
relations

ot =poip, 1<i<e,+ hy U;rls*zpasp, ex + he <5 <p— s,

Definition 9.1. We say that the manifold M has an abelian CR-singularity at the
origin if its complexification M has the maximum number of deck transformation and if
the family {oy,...,0,} of germs of biholomorphisms at the origin of C? is abelian, i.e.

0,05 = 0;05.
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Definition 9.2. A product quadric is a submanifold in C?* defined by

Zpre = (2e + 27e2.)°, 1<e<e,
Zprn = (2n + 2’Yh5h)2, e +1 < h<e,+ h,
Zpts = (%6 + 2Y5Zs4s,)"

Zppata, = (Zars. +2(1 = 7,)%)% eath. <s<p—s.

with 0 < 7. < 1/2,79, > 1/2, and 75 € (1/2,00) x (0, 00).

In what follows, we assume that M has an abelian CR-singularity at the origin and that
M is a higher order perturbation of a product quadric.

The aim of this section is to show that such an analytic perturbation with an abelian
CR-singularity and no hyperbolic component is holomorphically conjugate to a normal
form. We shall give two proofs of this result. The first one rests on Moser-Webster result
[MWS&3][theorem 4.1] applied successively to each o;. The other one is based on the fact
that the family {o;} is formally completely integrable and their linear part is of Poincaré
type. We then apply Theorem [R.I11

9.1. Normal forms for real submanifolds with an abelian CR singularity.

Theorem 9.3. Let M be a germ of real analytic submanifold in C™ at an abelian CR-
singularity at the origin. Suppose that M is a higher order perturbation of a product quadric
of which 1, . ..,7, satisfy (L2)). Assume that the associated o of M has distinct eigenvalues.
Suppose that M does not have a hyperbolic component (i.e. e, > 0,8, > 0,h, = 0). Then
there exists a germ of biholomorphism 1 that commutes with p and such that, for 1 <i <p
and k=1,2

& = M;(En)&; & = Ari(En)n
— -1 . , = _.1 ;
(93) 'l/)_l 0 0; 0 ¢ . 77: - MZ (57])7]1 ¢_1 0 Ty O ¢ . 77: A]m (gn)gz
fj = gj gj = gj
n; =m0, JFi n,=mny, JFi
Moreover, we have
(94) Ale = Ale O Pz, 1 <e<e
(9.5) A= Al_é—l—s*) 0p,, €, <8< p—s,
(9.6) Mgy = A, 1<j<p.

Proof. We will present two convergence proofs: one is based on a convergent theorem of
Moser and Webster and another is based on Theorem B.11. We first use some formal results
obtained by Moser and Webster [MW83] and some results in section [8
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Since M is a higher order perturbation of a product quadric, there are linear coordinates
such that, for 1 <¢ <p and k = 1,2, 7, and o; are higher order perturbations of

& = i & = el
—1 / —1
. n = N L) = i &
S’l‘ 5/_5 Tk)’l‘ 5/_5
= Sj j = Sj
n,=mn5, J#1, n,=mn5, JFi

For elliptic coordinates, this was computed in [MW83] and recalled in (2:24]). For complex
coordinates, this is computed in (Z.27),(229). Recall that

Om = Tim © Tom, 1< m < p.

Since |u1| # 1, then by theorem 4.1 of Moser-Webster ([MW83]), there is a unique

convergent transformation 1; normalized w.r.t. S; such that o} := ¢ Yooy 0 and
7% := 1y o7y 01y are given by
xll = Ml (57 77)51 51 = Akl(&v 7])7]1
©.7) L) m=MTE mm L) m = AL GG
) oy , Tr ,
fj - gj fj - gj
m=1n J7# L my =1, J#1L

Here k = 1,2. It is a simple fact (e.g. see Lemma R7, D = {S;}) that there is a unique
¢ € C¢(S;) such that ¢~'oy¢ is in the centralizer of S;. Therefore, ¢; = 1 is also
convergent.

Furthermore, we have M;(¢,1) = A (€,17)A5(€,n); and Ayy, Agy, M, are invariant by
S1. In the new coordinates, let us denote 7;,,, 0,, by the same symbols for m > 1. However,
o1 = o7 and T,y = 7;. Since each o, commutes with oy, then o, is in the centralizer
of S;. Indeed, according to [MWS83][Lemma 3.1](or Lemma with D = {S1}), we can
decompose o, = o} 0% where o}, is normalized w.r.t S; and ¢2, is in the centralizer of S;.
Write 010, = 0,,01 as

(o) 010, = 001(03,)

Since 02 01(0? )~ belongs to C(S}), so does (o))

m ) o10,,. Then applying the uniqueness of

1y stated earlier to ol | we conclude that o} = I and o, = 02, is in the centralizer of 5.
Let us verify that ¢% or in general each (formal) transformation ¢ in C(S;) preserves
the form of o} and 7};. Indeed, ! commutes with S; too. Thus ¢~ 'o}¢ commutes with
S1 and its linear part is S7. The linear part of ¢; must preserve the eigenspaces of S; and

hence it is given by

1 1

& —a&, mo—=bm, (&) = (&)

for & = (&,...,&,) and n. = (12,...,m,). By a simple computation, the linear part of
o177 ¢ still has the form (@.7). According to [MW8&3][lemma 3.2], there a unique normal-
ized mapping ¥ that normalizes ¢ 'o7¢ and the p~'77,p’s. According to the uniqueness
property of Lemma B.6] W = Id. Therefore, ¢ preserves the forms of 7 and o7.
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Let 15 be the unique biholomorphic map normalized w.r.t. S such that 15 'oothy = o3
and 1)y L ioths = Ty, are in the normal form :

& = M2(£7 77)52 §y = Ak2(£777>772
)= My (€ e L) = A (6

9.8 : :
n,=mn5, J#2 ny=mn;, J#2

Here k = 1,2, and M; and Ay, are invariant by S,. Since o5 commutes with S7, we have
(Sy281) ™ 0 gy 0 (ST Sh) = Sy 103 Sh.

Note that S; o35S (resp. Sy '77,51) has the form (@.8) in which M, (resp. Ays) is replaced
by My o Sy (resp. Apo 0 S;). In other words S;'o3S; and S;'7,S; are still of the form
([@8). Since S is diagonal, then S} '1/,S; remains normalized w.r.t. So. Applying the above
uniqueness on v, for oy, we conclude that 1y = S;'4»S;. This shows that v preserves
the forms of 7, and o}. By the same argument as above, we have o, € C(Sy, S2).

In summary, we have found holomorphic coordinates so that 7,; = 7, and o, = o},
for m = 1,2. As mentioned previously, we know that o7, 03, 03,..., 0, commute with S}
and Sy. In particular, My, My are invariant by S;,.S,. Repeating this procedure, we find
a holomorphic map ¢ so that all $~'o;¢ = o} and ¢~ '7;¢ = 77; are in the normal forms.
Furthermore, M; and Ay ; are invariant by {Si,...,S,}.

By Lemma 85, we decompose ¢ = ¢1¢," where ¢, is normalized w.r.t. {Sy,...,5,} and
¢o is in the centralizer of {S),...,S,}. Then ¢;'c;¢; = o} and 7 T = 7;; are in the
normal forms, since ¢y commutes with S;. We want to show that ¢; commutes with p.

Note that o' = poep and o), = posp. Thus (pp1p)~'o;(pdr1p) = & where &7 =
p(of)tp and 67 = p(or,,,) 'p. According to ([B), we see that pgip is still normalized
w.r.t. {S1,...,5,}. By Lemma B8 we know that there is a unique normalized formal
mapping ¢; such that gbl_lajgbl are in the centralizer of {S1,...,S,}. Since &} belongs to
the centralizer of {5y, ..., 5,}, then we have pp1p = ¢;.

Now, 73, = p1q;p follows from 75; = p715p. This shows that

Ape = Ajfop, 1<e<e,
A2s = Al(s-‘,—s*) °p,
A2(s+s*) = Als op, €yt h, <s < P — S«.

Let ¢9 be defined by

&= (MM EE, = (AL MT N Emm. 1< <p.
For a suitable choice of the roots, we have ¢op = p¢o. Furthermore, ¢y preserves all

invariant functions of {S;,...,S,}. Hence, each ¢;' o ¢7' o 74 0 ¢1 © ¢ has the form i
stated in Theorem [0.3]

We now present another proof by using the more general Theorem 8111

Note that the above proof is valid at the formal level without using the convergence
result of Moser and Webster. More specifically, if 7;; are given by formal power series with
o1,...,0, commuting pairwise, there exists a formal map 1) that is tangent to the identity
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and commutes with p such that (@3] holds. Since each p; is not a root of unity, then (@.3)
implies that the conjugate family {o,} is a completely integrable normal form.

Let o; be defined as above. Let S; be its linear part at the origin of C™. The eigenvalues
{pij}1<j<n of S; are either j;, p;* or 1. More precisely, if Q € N”, |Q| > 2 then

m if7=m
(9.9) o, = Hmg = =07 = Qi j=m 4 p
1 otherwise.

We need to verify the condition that the family of linear part {Sy,...,S,} is of the Poincaré
type. So we can apply Theorem [B.11]
Suppose that (7,Q) € {1,...,2p} x N? satisfies

e — pu; # 0
for some 1 <1 < 2p. Set d = {min; max (||, |p; ) }/?). We define

p
Q=Q- Z min(g;, ¢i+p)(€; + €itp) = (¢, - - -, qép)'
i=1

Then p = ,uiQ/ for all i. Take i = [ if |Q'| < 2p. In this case, we easily get

(9.10) pd =y 0, |pd| > cdY

by choosing a sufficiently large c¢. Assume that |@Q'| > 2p. Take i such that
qi T Qitp = m]?“X(Qk + Qerp)-

Then ¢; + ¢ivp > |Q'|/p > 1. By ([@39), we get the first inequality in (O.I0). We note that

(qgaqg—l—p) = (¢;,0) or (0, gi+p). Thus
max((4 |, 1) = (masx(l], o] )00 > A,

This shows that {Da1(0),. .., Do,(0)} is of the Poincaré type.

We now apply Theorem BIT as follows. We decompose ¢ = 113, " such that ¢, €
C(Si,...,S,) and ¢y € C(Sy,...,S,). Then each o} = b 0,1, still has the form in ([@.3));
in particular, {07}, ..., 0,} is a completely integrable formal normal form. By Theorem B.11]
Yy is convergent. Now, 1y 'm0 = by (¥~ 1i;00)¢ are still of the form (@3); however
(@4)-([©@6) might not hold. As in the first proof, we can verify that ¢1p = p1);. Applying

another change of coordinates that commutes with p and each S; as before, we achieve
(@3)-([@6). The proof of the theorem is complete. O

Remark 9.4. When M is non-resonant and log M is tangent to the identity, we apply
Theorem to obtain a further holomorphic change of coordinates so that (M, ..., M,)
are uniquely determined by the real analytic submanifold. Then by Proposition [.5]
{Tity .-, Tip}, @ = 1,2, are formally equivalent to {7;1,..., 7}, ¢ = 1,2, defined by (7.22),
if and only if the formal map ¥ in Proposition is the identity. In other words, M has
an abelian CR singularity at the origin if and only if & — I vanishes.
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As a corollary of Theorem [0.3] we have the following normal form for real submanifolds.
In order to study the holomorphic flatness and hull of holomorphy, we choose a realization
similar to the case of Moser-Webster for p = 1.

Theorem 9.5. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that M s a higher order perturbation of a product quadric of which v1,...,7,
satisfy (L2). Suppose that M has no hyperbolic component of complex tangent at the origin.
Suppose that the associated o of M has distinct eigenvalues piy, . .., fip, it ,u;l. Then
M is holomorphically equivalent to

(9.11) M: 2y = Aj(Q)G, 1<5<p,
where ¢ = (C1, ..., (p) are the convergent solutions to
1+ A2, Aqe _

(9.12) Ce = QT%VJQ—%(ZSWLZ@,

Aqs A3, _ Ags -
(9.13) (= (11 (_C)A_g (2)()9 ZsZsts, — %(z? + A%S(C)Zi_l_s*)a

A (s15)(C) + A?(s-{—s*)(C)_
914 S+Sx — S5+«
R (5)

A1<s+s*>(<)

(1-— A2( )(C))2 (Zirs* + A%(s+s*)(<)z§)-
1(s+sx

Here Aj(C) = N +0O(Q) (1 < j <p) satisfy (OA)-@5). In particular, M ‘s contained in
Zpte = Ep+e and Zpts = Ep—l—s—l—s* .

By Lemma [I1.2] that ¢ has distinct eigenvalues is equivalent to 71, ..., 7, being distinct.

Proof. We use a realization which is different from (223]). We assume that M already has
the normal form as in Theorem Thus for j =1,...,p, we have

(9.15) T &= Ay(Enny, 0y = A (ENE, (o) = ), kF# 7.
Let us define
fil¢,m) =& +&omy, gi=fiop, 1<j5<p.

The latter implies that the biholomorphic mapping ¢(&,1) = (f(&, 1), g(§,n)) transforms
p into the standard complex conjugation (', w’) — (w’,z’). Define

Fj(&?ﬁ):é.jo,ﬁj(é.ﬂﬂgj? ]-Sjgp

Using the expressions of 71; given by (Q.10)), we verify that f; and F; are invariant by 7.
Note that the linear part of f;(&£,n) is § + A;n; for 1 < j < p, and the quadratic part of
Fj(&,m) is A&7, By Lemma 27, fi,..., f, and Fi,..., F, generate all invariant functions

of {’7‘11, ce ,Tlp}.
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Next using A0 p, = Ao and Ay, 0 p, = . we rewrite z; = f;(&,n),w; = g;(£,n)
as

¢ _ Fe T A1 (En)we — A1e(€m)ze
¢ 1—A2, 7 1—A2, 7

¢ _ A= A%s(gn)ws-l-s* _ Ars(§m) (Weys, — 25)
’ 1- A%S(Sn) ’ 1—AL(n) 7

g e — Zs+se 1(5+5 (577) Nors, = Al(s—i—s (gn)(ws Zs-i—s*)
o 1— A2 1(s+sx) (£n> ’ e 1- l(s—l—s (577)

Using the above formulae and w; = Z;, we compute ¢(; = &;7; to obtain (9.12)-(Q.14).

Note that F}(&,n) = ¢;A1;(¢). This shows that z,,; = Fjop~'(2',Z’) have the form (Q0.1T]).
Again, we use the formula of 7y to verify that z = (2/,2”) are invariant by all p7p~!
On the other hand, z = (#/, 2”) generate invariant functions of the deck transformations of
m for the complexification of M given by (@IT). This shows that {¢mi07!, ..., @@ '}
and the deck transformations of 71, of which each family consists of commuting involutions,
have the same invariant functions. By Lemma 2.7 we know that the two families must be
identical. This shows that (O.I1)) is a realization for {7'11, ey Tips P}

To verify the last assertion of the theorem, we set z = Zpis+ts., and

p+e - EP-‘FE? Z;—l—s
Zprsts. = Zprse o€t (C = C, ¢ = §s+s*, and (;,, = (,. We take complex conjugate on
identities (O.I1)-(@.14). By (@.4)-([@.5), we have

ANe=MNeop,, A A1 ) © Pz

1(s+sx)
We verify that z*,¢* still satisfy (Q.I1)-(Q.14), if zj4,, (; are replaced by z;, ;,(}, respec-
tively, and z; are unchanged for 1 < j < p. By the uniqueness of solutions ¢ to (9.12)-(@.14),

we conclude that (7 = ¢;. Therefore, 2z,,; = 27, ;. The proof is complete. O

9.2. Hull of holomorphy of real submanifolds with an abelian CR singularity.
Let X be a subset of C". We define the hull of holomorphy of X, denoted by H(X), to be
the intersection of domains of holomorphy in C” that contain X.

We assume that M is real analytic and has a non-resonant complex tangent at the origin
of elliptic type only. By Theorem [0.5] we may assume that M is given by

M: Zp+j = Alj(g)ij 1 S] S b,
where (; = (;(2') (j =1,...,p) are the convergent real-valued solutions to
14+ A%(¢) Ay,(C)
(9.16) G = ﬁkﬂz—#
(1—A3)%(C) ( 1;(¢))
For ¢ € R? with small (], we know that Ay;(() > 1.

In a neighborhood of the origin in R”, let us define the following germ of real analytic
diffeomorphism:

(4§ +7), 1<j<p.

R: ¢ — (Au(Q)Crs - Ap(Q)Gp) -

If € is small enough, for each z” € [0, €]P, we can define ( = R™!(z”). Note that R sends
¢; = 0 into z,4; = 0 for each j. We can write

R2") = (py1S1(2"), .o 29pS,(2"))
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with S;(0) > 0. Then M N {z" = 2"} is given by (@.I6]). For z” € [0, €]? let D;(z") be the
compact set in the z; plane whose boundary is defined by the jth equation in (9.16]) where
¢ = R~'(2”). When x,,; > 0, the boundary of D;(2") is an ellipse with

(917) Dj(ilf//) C Aclm.
Here and in what follows constants will depend only on Ay, ..., A,. Thus

D(a") := Dy(a") x -+ x Dp(2") x {z"} C C? x R

is a product of ellipses and its dimension equals the number of positive numbers among
Tpit,- -, Loy We will call D(z") an analytic polydisc and 0*D(x") := 0Dy(a") x -+ x
0D, (2") x {«"} its distinguished boundary. Note that 0*D(z") is contained in M. In fact,
M is foliated by 0*D(z") as 2” vary in [0, €]’ and € is sufficiently small. We will specify the
value of € later. We will use this foliation and Hartogs’ figures in analytic polydiscs to find
the local hull of holomorphy of M at the origin.

As 2" vary in [0, €]?, let M€ be the union of 0*D(z”), and H° the union of D(z”). Both
H¢ and M€ are compact subsets in C?. For any open ball B in C? centered at the origin
with radius e,

B+ M :={a+b:aecB*be M}

is contained in a given neighborhood of M¢, if ¢, is sufficiently small. Analogously, B +H*
is a connected open neighborhood of H¢. Let us first verify that a function that is holomor-
phic in a connected neighborhood of M€ in C" extends holomorphically to a neighborhood
of H¢. Assume that f is holomorphic in a neighborhood U of 9D := Ugicio,qr0*D(2").
We first note that H€ is defined by

(9.18) A" = Bia) (2 +7) S apeye 1<) <
(9.19) y'=0, 2"€l0,¢P
with

1+ A%j(R_l(IH)) '(J?”) _ Alj(R_l(x”))
(") (1 = AL (R (@) (") (1 = Af (R ("))

Let 0 be a small positive number. For 2" € [—0, €], let D?(x”) C C be defined by
Aj(@")]2? = Bj(2")(2] +75) < wpj + 6.

Aj(2") =

Fix § > 0 sufficiently small. Let P, s (resp. 0*P.;5) be the set of z = (2, 2") satisfying
the following: y" € [=4,6]7, " € [—6,¢]’, and z; € DJ(2") (resp. z; € dD}(z")) for
1 <j<p. Let U5 (resp. Ucs,) be a small neighborhood of P, 5 (resp. P.s,). Assume that
0 < d; < 6 and ¢; is sufficiently small. We may also assume that U, 5, is contained in U, s
and 0*P. s C U. Thus, for (¢/,2") € U.s,, we can define

/AN f(C/,Z//)dcl---de
F(z . ) a LleﬁDf(x”) /

eansry (G —21) (G — 2p)
When z is sufficiently small, F'(z) = f(z) as f is holomorphic near the origin. Fix zy € U, s, .
We want to show that F' is holomorphic at zy. So F' is a desired extension of f. By
continuity, when z = (21, ..., z,) tends to zg, ” tends to z{ and 9D (x") tends to dD}(xf),
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while z; € D‘S () when z is sufficiently close to z5. By Cauchy theorem, for z sufficiently
close to z we change contour integrals successively to get

P ) = [ / - F(C, ) GG,
¢1€0D] () J C2€0D3 (f) Geapsan (G —21) (G — 2)

The set of integration is fixed. The integrand is holomorphic in z. Hence F' is holomorphic
at z = zg.

Next we want to show that H€ is the hull of holomorphy of M€ in Bfg’ for suitable ¢, ¢y
that can be arbitrarily small.

Let us first show that H€ is the intersection of domains of holomorphy in C". Recall

that H¢ is defined by (O.I8)-(@.19). Next, we define for ¢’ := (01, ...,0,) with §; > 0

p
pY = Aj(a")|z" — Bi(a") (] +23) — wpy + (67 4+ 6,1 nym

+ 36 A"z = Bi(a") (5 + %) — @i} -
i

When p = 1, the last summation is 0. The complex Hessian of p?’ is

" 5 _I— +51 "
Zazﬂttﬁ— S(@)t [ + 5 Zwuz 5 Al

a,f=1 i#j
+ RGZ a]k l’ Z])t tp+k + RGZ b] kg ZL’ Z])tp_,_ktp_M

+Rezzécﬂk$ thtp+k+ReZZ d]kgl' Z, p+ktp+g

i£j k i£j k0 0;
Here a;,(2";0) = bj u(2";0) = ¢;(2";0) = dju(2";0) = 0, and ¢, j,k, ¢ are in {1,...,p}.
From the Cauchy-Schwarz inequality, it follows that for |z| < ¢ with ¢ > 0 sufficiently
small and 0 <9, < 1,

2p 2 & -1 -1
) 1 S48 1
> tals 2 A+ S Y P 5 Y o A
a =1 77 j i

Therefore, each p?’ is strictly plurisubharmonic on |z| < € for all 0 < ¢; < 1. Hence for
§ = (60,...,0,) = (80,0") € (0,1)P

p(z) = m;tx{pﬁ', y'|> = 65,2

0> P+J 62}

is plurisubharmonic on the ball B2. By (@.17), D(z") is contained in BC 1 for 2 € [0, €.
We now fix € < (¢9/Cs)? to ensure
(9.20) D(z") Cc B, V" €[0,€".
This shows that
M= {z € B | 1 pi(z) < 0}
is a domain of holomorphy.
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Let us verify that
Ho= [] Hs

00>0,...,6,>0

Fix z € H°. From (3.20) we get z € B2’. We have 3 = 0. Hence (2.I8) hold and z7, ; < €.
Clearly, pg (z) < 0 for each 7 and ¢ € (0,1)P. This shows that z € H¢ is in the intersection.

For the other inclusion, let us assume that z is in the intersection. Then 3” = 0 and
2" €[0,€P. So ([@19) holds. With p’(z) < 0, we let §; tend to 0 for i # j. We conclude

A"zl = Bi(a") (27 + 77) < Tpy

for all 7 # j, and hence for all i as p > 1. When p = 1 the above inequality can be obtained

directly from p. We have verified ([0.18). This shows that z € H*.

) In view of ([@.I8)-(@.IJ), the boundary of H¢ is the union U_, H§ with H being defined
y

Aj(@")|z5]* = By(2") (2] +7Z5) = wpa,
Ai(@")|zil* = Bi(a") (& + 7)) S apris 1< i< p, i #£J;
y' =0, ap;<e 1<j<p
Therefore, we have proved the following theorem.

Theorem 9.6. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that the complex tangent of M is purely elliptic and has distinct eigenvalues at
the origin. There is a base of neighborhoods {U;} of the origin in C™ which satisfies the
following: For each U;, the local hull of holomorphy H(M NU;) of M NU; is foliated by
embedding complex submanifolds with boundaries. Furthermore, near the origin H(M NUj;)
is the transversal intersection of p real analytic submanifolds of dimension 3p with boundary.
The boundary of H(M NU;) contains M NUj; and two sets are the same if and only if

p=1.

Remark 9.7. The proof shows that the hull of H (M NUj;) is foliated by analytic polydiscs,
where an analytic polydisc is a biholomorphic embedding of closed unit polydisc in some
CF with 1 < k < p.

10. RIGIDITY OF PRODUCT QUADRICS

The aim of this section is to prove the following rigidity theorem: Let us consider a higher
order analytic perturbation of a product quadric. If this manifold is formally equivalent
to the product quadric, then under a small divisors condition, it is also holomorphically
equivalent to it.

The proof goes as follows : Since the manifold is formally equivalent to the quadric, the
associated sets of involutions {7y;} and {m;} are simultaneously linearizable by a formal
biholomorphism that commutes with p. In particular, oy,...,0,, as defined by (@) and
@2), are formally linearizable and they commute pairwise. These are germs of biholo-
morphisms with a diagonal linear part. According to [Stol3][theorem 2.1], this abelian
family can be holomorphically linearized under a collective Brjuno type condition (IT.32).
Furthermore, the transformation commutes with p. Then, we linearize simultaneously and
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holomorphically both 7y := 710 .07y, and 7 := Tp;0- - -07y, by a transformation that com-
mutes with both p and S, the family of linear parts of the o4, ..., 0,. Finally, we linearize
simultaneously and holomorphically both families {7y;} and {75;} by a transformation that
commutes with p, §, T} and T5.

These last two steps will be obtained through a majorant method and the application
of a holomorphic implicit function theorem. This is done in Proposition [[0.6l They first
require a complete description of the various centralizers and their associated normalized
mappings, i.e. suitable complements. This is a goal of Proposition

Throughout this section, we do not assume that p, ..., u, are non resonant in the sense
that u # 1 if Q € Z? and @ # 0. In fact, we will apply our results to M which might be
resonant. However, we will retain the assumption that ¢ has distinct eigenvalues when we
apply the results to the manifolds.

We recall from (0.1]) and (9.2)), the definition of germs of holomorphic diffeomorphisms :

(101) g; = T4 O To;, 1 SZ S 6*+h*;
(10.2) Os = Tis O To(s,+s),
(10.3) Osts, = Ti(sts:)OT2ss Cx+he <5< p—s,.

They satisfy
ai—l =poip, 1<i<e,+ hy a;rls* = posp, e+ h,<s<p— s,
Recall the linear maps

S: & =&, M= M;lﬁﬁ

(10.4) Sit & =wi&, ny=pin, &=k =1k Kk #J;
(10.5) Ty: &= Xgny, 15 =2;'6, & =& me=1m, Kk#J;
(10.6) ) { (CnoGoh) = O CecCTi).

(& g+s*7772?n;+5*) = (fs+s*>€s>773+s*ans)~

We need to introduce notation for the indices to describe various centralizers regarding
Ti;,S; and p. We first introduce index sets for the centralizer of S,71, p. We recall that
S and 7; denote the families {Si,...,5,} and {T}1,...,T;,}, respectively. Also, T; =
Typo---0T .

Let (P,Q) € N? x N? and 1 < j < p. By definition, £¥n%e; belongs to the centralizer of
S if and only if it commutes with each S;. In other words, £n%e; € C(S) if and only if

(10.7) pp ™ =1, Vk#j py " = py

Note that the same condition holds for £9n"e,, ; to belong to C(S). This leads us to define
the set of multiindices

R ={(P,Q) € N*: pl/™" = puj, pb'™# =1,Vi #j}, 1<j<p.
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We observe that if (P, Q) € R;, then

pi=q;+1, j#h pi=q, Vi#jh
D e S N 7 )

For convenience, we define for P = (pe, pn, Ps, Ps+s.) and @ = (e, Gn, qs, Gs+s. )

P(PQ) := (qe, Phy Psts.r Pss Pes Ghs Qsts. > Gs)
(10.8) Pa(PQ) = (e, Phs Ps+s., D),
(10.9) P(PQ) = (e Gh, Gss. ds)

?p(PQ) = (f—OP)PQ = m-

Hence, we have £¥n% o p = EPG(PQ)ﬁPb(PQ) as well as p(PQ) = (p.(PQ), pp(PQ)).

According to (I0.7) and equation (I0.6]) of p, the restriction of p to R, is an involution,
which will be denoted by p,. Moreover, p is a bijection p,s from R4 onto Rsys,. We define
an involution on R, by

p.(PQ) := (1(PQ), pu(PQ)).

Note that p. is not a restriction of p, and p, is not an involution either.
Next, we introduce sets of indices to be used to compute the centralizers on Ty, Tz, p. Set

Note that when p = 1, N; = R; for j = e or h. Let us set

Ap(P, Q) = max{pr, g}, k#7j, Aj(P,Q)=pj
Bjr(P,Q) == min{py, ¢}, k#j, Bj(P,Q) =g
We define a mapping
(4;, Bj): Rj = N;
with
A; = (Aj,...,A;), Bj:=(Bj,...,Bj).
e it ward o Ny e 1 & ox et e the st

and the (s + s,)th coordinates for each s, so does B, o p;.
Finally, for (P, Q) € R; we define

qn! —Pn! -
Hh/ >\h/ 9 j % h’v
Ph—qn—1 qp! —Pn! N A
A Hh/;,eh A s J=Nh
dp! —Ph! ; .
Hh"qh/>ph, )‘h/ ) J 7A h,

qp’ —Pp/

Hh’;ﬁh,qh/>ph/ >\h/ » J = h

(10.10) Upg = {

(10.11) Vpo = {

Here e, < W/, h < e, + h,. Note that I/;Q is only defined for (P, Q) € R,. For convenience,
we however define

vop ‘= VpQ, (P, Q) c Rj.
If p=1 we set vj, = 1.
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Lemma 10.1. Let (P, Q) € R;. Then
(10.12)  vpo==%1, (P,Q)€R,, j#h; vho = 1
(1013) Vpe(PQ) = VPQ, (P, Q) € Re; Vp(PQ) = VPQ; V(P, Q)7
(10.14) V;;(PQ) — VPQV;Q7 (P’ Q) e Re; V:(PQ) - VFQ’ (P, Q) E Rh U RS—FS*'
Proof. From the definition of R, we have (A" %)% = ("% =1 for = 1/ in (I0.10)-(T0.1T).
We also have p2* ="' =1 for terms in (I0.10)-(I0.IT). Thus

XTI = 1, AT = ]

Thus we obtain (I0.12); the rest identities follow from the definition of p., p, and the above
identities. 0

Lemma 10.2. For all multiindices (P, Q) € R. U Ry, we have

(1015) )\Pa(P7Q)—pb(P,Q) — )\Q—P7 W _ MP_Q’
(10.16) £Pn? 0 po Ty = AP P peu(PQ).
(10.17) fPTIQ opo g1 — NP_QEPG(PQ)ﬁpb(PQ).

Proof. The first identity in (I0.I5) follows from (I0.8)-([I0.9) and the fact that A\, and g,
are reals, A\, ' = A, ps = ¢s, and psys. = gsrs,. This gives us the first identity in (T0.15),
and the second identity follows from the first. A direct computation shows that

PR o poTy = N e VpenPQ) - ¢PpQ 6 o 51 = gr—rag? TP pa(PQ),
The result follows from (I0.15). O

It is tedious to find necessary and sufficient conditions to describe the centralizer of
Ti, T2, p, as the mappings in the families are non diagonal. There are different ways to
described these conditions too. To keep computation relatively simple, we do not aim a
minimum set of conditions. Of course, when we use the centralizers we will verify all the
sufficient conditions.

Proposition 10.3. Let S = {S1,...,5,}, Ti = {T,...,T;p} and p be given by (10.4)-
([I086). Let p =1+ (U,V) be a formal biholomorphic map that is tangent to the identity.

(1) ¢ € C(S) if and only if
(10.18) Uirq=0="Vjgr, Y(P,Q) &R
Also, ¢ € C(S, p) if and only if additionally
Unro = Unprg) (P,Q) € Ru;  Usis, ro = Us ppg)y, (PyQ) € Rots.;
Veor = Uep(PQ), (P,Q) € Re;
Vior = =V 2(QP); (P,Q) € Ry;  Viis.op = Vsp QP); (P,Q) € Ryjs.-
(i7) v € C(S,T1) if and only if (I0I8) holds and
(10.19) Viop =X '"A""CU;pq, V(P,Q) R,
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Also, o € C(S8,T1, p) if and only if in addition to (I0IR) and (I0.19)

(10.20) Uerg = vPQUepor), (P, Q) € Re;
(10.21) Un.pg = Unp(pq): (P, Q) € Ry;
(10.22) Usrq = Usrsr o), (P,Q) € R

(7i1) ¢ € C(Th,T2) if and only if in addition to (I0.18)) and (I0.19)
(10.23) Uirq = vioUjw,)wpaoy (PQ) € R\ N;.

Also, ¢ € C(T1, Tz, p) if and only if additionally

(10.24) Ujrq = vpoUi a0 (P (PLQ) ENG, j=e.h;
(10'25) Us+8*7PQ = V;?_QUS,(AS,BS)OP(PQ% (Pa Q) € N,

We remark that condition (I0.23) holds trivially when (P,Q) € N, in which case it
becomes U; pg = Uj pg.

Proof. To simplify notation, we abbreviate
P = Pa(PQ), pp=p(PQ), A;=A;(P,Q), Bj=B;(P,Q)
Recall that A, = A\, A\ = X,:l and A\, = XS_I. By definition,
Se =TTy, Sp=TipTon, Ss= T18T2(s+s*)a Ss-i—s* = Tl(s+s*)T2s~

In the proof, we will use the fact that .S, is reversible by both involutions in the composition
for S;. In particular,

(10.26) Tv; 5T = Sj_17 vj.

However, we have T5(s14,)SsTo(s1s5.) = S5 Vand Ty, Syt Tos = S, Jrls*. For simplicity, we will
derive identities by using (I0.26) and

(10.27) S;t=pSep,  Spt=pSwp,  Sil. = pSsp.
Finally, we need one more identity. Recall that
T To; =ToThe, J#e6; TypToy =ToTn,  J#h;
Ty Ty = ToiThs, J# s+ 5 TistsnToy = TojT1(s4s.), J 7 5
Therefore, for any j we have the identity
(10.28) ST =S5
In what follows, we will derive all identities by using (10.26]), (I0.27) and (I0.28), as well

as SZS] = SjSi, Tlile = leTli and T2 = pTlp
(i) The centralizer of S is easy to describe. Namely, ¢ € C(S) if and only if

UjoS;=puiU;, UjoS,=U;, k#j,
vjon:M;lvj, VioSy=V;, k#j
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For pp = pp, we need

(10.29) Up=Unop, Uss. =Usop,
(10.30) Vo=U.op, Va=Viop, Vi =Viop.

(i) Suppose that ¢ € C(S,T7). Then, it also belongs to C(S,T}). Hence, it satisfies
(10.31) V; = A 'Uj o T

This implies (I0.19).
Assume furthermore that ¢ € C(S,T},p). Eliminating V. in (I0.31) with (I0.30), we
obtain

U= AU.o0poT.
According to (I0.16]), we obtain
—Q—P—

Ue pppa = AeA Ueprg-
If (P,Q) € R. and since [ie, jis, fis+s+ are of norm greater than 1, then we have ps.s, = gsis+,
ps = ¢s and p, = q. + 1. By AJQ_P =TUpg = 1/;&2 we get ([0.20).

Using (I0.31)), we eliminate V; from (I0.30) and (I0.29) to obtain
N Uno Ty =N UpoTiop, AL, Usps, 0Ty = AT, 0 Ty 0 p.
Since Ty pT, = pIyT, = pS~—', the previous equalities read
Uy=NU,opoS-t, Us, = )\§+S*Us opo S~
We recall that Agis, = X;l. According to (I0.I7), we obtain
Unppg) = MB " Unpg:  Ustsipp@) = Aoss B 9Us po.

If (P,Q) € Ry, then =9 =5, = X% If (P,Q) € Ry, then uF~9 =71, = A\, . The
result then follows.
(iii) Let ¢ € C(T1,T3). Then, in particular, we have

Uj:Uj(le), ]ﬁ?;’éj, ‘/j:AJIUjOTl.
Let (P, Q) € R; \ ;. For each k such that ¢, > p, we compose U; by T1,. We emphasize

that when (P,Q) € R;, such a k is a hyperbolic index. Using the previous identity, we
obtain

(10.32) Uj.rq = LjrQUja;B,
with

k#3,pk<qk
By the definition of v, we conclude

(1033) LjJDQ = I/;;_Q, (P, Q) c Rj.

If (P,Q) € Nj, then (A;, B;) = (P,Q) and we have L; pq = vj, = 1, so that the relation
(I032)) just becomes the identity U; pg = U po.
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Assume now that ¢ € C(71, 72, p). In addition to the previous conditions, we have (10.29)
and (I0.30). Hence, (10.20)-([10.22) and (10.32) lead to:
vrUep.(PQ) = Ue.rq = Le,pQUe s, (P, Q) € Re;
Uhopn(PQ) = Un,pg = Lip@Un,a,B,, (P,Q) € Ry;

Us—l—s*,p(PQ) = Us,PQ = Ls,PQUs,AsBs> (Pa Q) € RS'

Since p., pn, are involutions on R. and Ry, respectively, and since p is a bijection from R
onto Rsys,, we obtain

Vp(PQUe,P@ = Le p.(P@)Ue (4., Byope (@), (P, Q) € Re;
Uh,PQ = Lhyph(AB)Uh,(Ahth)OPh(PQ)’ (P7 Q) S Rh(PQ)§
Us—i—s*,PQ = Ls,p(AB)Us,(AS,BS)op(PQ)7 (P, Q) € Rs—i—s*-

By (I0.33), we copy the values L; ,pg) = u:(PQ) from (I0.I14]). We have

V;;-(PQ) = V;Qa lf] 7& €, and (Pa Q) < Rj;
I/;;(PQ) = vpVpg, if (P,Q) € Re;
Vpo(PQ) = VPQ, if (P, Q) € Re.

Finally, we obtain

Uirq = VhoUia,Bpen @), (PQ) ER;y, j=ek;
Us-i—s*,PQ - V;QU&(AS,BS)OP(PQ)? (Pa Q) € Rs—l—s*'

Therefore, we have derived necessary conditions for the centralizers. Let us verify that
the conditions are also sufficient. Of course, the verification for (i) is straightforward.
Furthermore, that ¢ = I + (U,V) commutes with Si,...,S, is equivalent to U; pg =
Viorp =0 for all (P, Q) € R;, which is also trivial in cases (ii) and (iii).

For (ii), (I0I8)) and (I0.19) imply that ¢ commutes with 77. We verify that ¢ commutes
with p. Write ppp = (U, V). Applying (I0.19) and (I0.20) each twice, we get for (P, Q) €
Re

Ue,pQ = Ve,p(PQ) = )\e_l)\pb_p“U&pe(pQ) = A;lkpb_p“VpQUe,pQ.

We get 067 ro = Ue,pg. The identities for hyperbolic and complex components of ppp = ¢
are easy to verify.

For (iii), let us verify that (I0.23), (I0.18), and (I0.19) are sufficient conditions for
o € C(T1,7T5). By (I0I9), we get Ty = Tip. Also, for ¢ € C(T;) it remains to show that
for (P, Q) S Rj

(10.34) (UjoTi)pq =Ujprq, k#3j; (UjoTij)or = AViqp.

We introduce (P, Q;) via ¥n@oTy; = )\;)j_qupanf and also denote (P}, Q;) by (P, Q);.
We first remark that (I0.23]) also holds for (P, Q) € N;. Therefore, we will use (I0.23))
for all (P,Q) € R;.
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For k # j, h, we have (P, Q) = (P, Q). Thus in this case we immediately get the first
identity in (10.34]). Using (10.23) twice, we obtain for j # h

(Uj o Tin)rq = X"~ " Ujpy, = M " V(pq), Ui4,.8)(PQ)
= )\ph_th(’;Q)hl/PQUj,PQ =Ujrq.

Combining with the identities which we have proved, we get (U; o T;)gp = (U; o T1)gp =
(A\;V;)gp for j # h. This gives us all the identities in (I0.34) for (P, Q) € R;. These iden-
tities are trivial when (P, Q) is not in R;. Therefore, we have shown that these conditions
are sufficient for ¢ € C(T1, T2).

Finally, we need to verify that (I0.18), (I0.19), and (10.23)-(10.25) imply that ¢ and p

commute.

To shorten operations applied to multiindices, let us introduce the follow notation. For
(P, Q) € N;, define

Lj: (P>Q)’_)(Aj’Bj)opj(PaQ)> j:e>h; ls: (P>Q)’_)(AS>BS)Op(P>Q)'

Then ¢; is an involution on N; when j = e, h, and it is a bijection from N5, onto N
when j = s. Furthermore, the inverse of ¢, is given by

Lots.t (P Q) = (Asts., Bsts.) 0 p(P Q).
Fix (P, Q) € R.. By (10.23) and (I0.24)), we have

(10.35) Ue,p@ = VioUe (40,8(PQ) = VPV (h, 5.y .0y Uereo(Aer B (PQ)-

We know that p; = ¢; when j # h or j does not equal the e (j can represent other elliptic
components). We know that p. = g. + 1 for the e. By treating case by case for p, > g, or
Pr < qn, i.e. 2™ cases in total, we verify that

© (Ae’ B@)(P, Q) = Le(P? Q)? V;Qy&e,Be)(PQ - )\ 1)\pb pll pbP

This allows us to apply (I0.19) and (I0.23)) to rewrite the right-hand side of (I0.35]) as
Ve ppq)- We repeat a simpler procedure for Uy, po with (P, Q) € Ry: We apply (A, By)
to the multi-index (P,Q) and use (I0.24) once. We then check the multiindex and the
coefficient to conclude that the result is Uy, ,pg). (Here we do not need apply (I0.19).)
For Ugys, po with (P, Q) € Rsys., we apply (Agis,, Bsts,) to (P, Q) and use (I0.25]) once.
The result is U, P(PQ)- With Uy, pg = Up, P(PQ) and Uyis. po = Us p(pg), we apply ([0.19)
to obtain V} pg = V;W(pQ and Viis, po = =V, o(P@)- This shows that ¢ commutes with p.
The proof is complete. l

We have described the conditions on centralizers. We now determine complements of
these conditions to define normalized mappings.

Definition 10.4. Let ¢ = I 4+ (U, V) be a formal mapping tangent to the identity.
(i) We say that ¢ is normalized with respect to Sy, ..., S, if

Uipg=0=Viop, if (P,Q)eR; Vj.

Furthermore, pypp is normalized w.r.t. Si,...,.S, if and only if ¢ is.
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(17) We say that ¢ is normalized with respect to {S, T}, p} if

(10.36) Unpq = —Unp(ro), V(P,Q) € Ru;
(10.37) Usts., o = —Us p(rq); V(P,Q) € Reys.;
(10.38) Ue,pq = —VPQUe p.(PQ), V(P,Q) € Ra
(10.39) Viop ==X '"A""9U; pg,  V(P,Q) €

(171) We say that ¢ is normalized w.r.t. {T1,7Ts, p} if
(10.40) Uirq = —VpQUia,B)r@:  Y(P.Q) € R\ N,
(10.41) Ui = —vpoUia,8)0p, @) V(P,Q) ENj, j =e,h;
(10.42) Usts.,pq = —VhoUs (A, B)op(p.@)s V(P Q) € Noss,.

Lemma 10.5. Let F' be a formal map which is tangent to the identity. There exists a
unique formal decomposition F' = HG™' with G € C(S, Ty, p) (resp. C(Ti,Ta,p)) and H €
C(S, T, p) (resp. C(T1,T2,p))). If F' is convergent, then G and H are also convergent.

Proof. We will apply Lemma .8 as follows. Let H be the set of mappings in CS(S,Ti,p).
Note that H is a R-linear subspace of (M2)*. We will define a R-linear projection
from (9M2)" onto H such that 7 preserves the degree of F if F is homogeneous. We will

show that G = (I —m)H agrees with C(S, 71, p). We will derive estimates on 7 stated in
Lemma [4.8] from which we conclude the convergence of H, G.
The same argument will be applied to the second case of C(71, p) and C(7, p).

For the first case, let us define a projection 7: (ﬁi)” — H. We decompose
(U, V)=U+U0"V'+V"), «U,V)=U,V).
We first define
Uipe=Uire: Vieg=Vire, Ujpg =0, Vipg=0,
for (P,Q) ¢ R;. Suppose that (P,Q) € R.. We have
Ue,pq = U, prot U”PQ>
Ue,pe(PQ) = Ué —l— Ué pe(PQ)"
According to ([10.38) and (10.20)), we need to seek solutions that satisfy

—/
(1043) Ue ,PQ + VPQU e (PQ) — O U!,PQ - VPQUe,pe(PQ) == O
Hence, for (P, Q) € R. we choose
/ 1 — " 1

ePQ = §(Ue,PQ = vpQUep.(r@)): Ucpq = §(Ue,PQ +pQUe,p.(PQ))-

We verify directly that the solutions satisfy (I0.43) as follows:

Uepq +vPQUep(pg) = 5(Uere = vPeUe,n(r@)

1 _
+ §(VPQU epe(PQ) — VPQVpo(PQ)Ue,pq) = 0.
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Here we have used the fact that p. is an involution and v, (pgyvpo = 1 from (I0.I3).
Analogously, for (P, Q) € Ry, we achieve (I0.36) and (I0.21]) by taking
1 — 1 —
Unrq = 5(Unre = Unpre):  Urpg = 5(Unre + Unpp)-
For (P, Q) € Rsys,, we achieve (I0.22)) and (I0.37) by taking

1 — 1 _
Usis,pQ = i(Us—i-s*,PQ —Uspr@), Ulis. po= §(Us+s*,PQ + Us p(P0))-

We have determined coefficients for U} pg, U pg with (P, Q) € R;. Let us set for (P, Q) €
R;

_ \—1\P-Q
(10.45) e = ATAPRUY,

This fulfills the conditions on V] and V] easily. Note that the last identity means that
(U", V") commutes with Tj. We have obtained the required formal decomposition.
To prove the convergence, we start with

(10.46) AN = pg = 1
for (P,Q) € R;. So 7 is indeed an R-linear projection which preserves degrees. Since
lvpg| = 1, we have that

Upp| < Upror|.

[Upq| < (g}%%)| P
Here (P’, Q') runs over all permutations of (P, Q) in 2p coordinates. The same holds for
V', Hence, with the notation of Lemma (.8, we have

{=(U, V)}sym =< (U, V)Sym-

The existence and uniqueness as well as the convergence also follow from Lemma .8

We now consider the second case of C(71,7s,p) by minor changes. Let us define a
projection : ((53\1%)" — H. Here H is the space associated with the mappings satisfying
the normalized conditions (I0.40)-(I0.42). Let G = (I—7)H. We decompose as above

U vV)=U+uv.,v+v"), =«UV)= U, V.

We choose :
(10-47) ]/':PQ = %(UJ/’,PQ + V;QUj,(Aijj)(PvQ)% (P, Q) S Rj \./\fj,
(10.48) Q= %(U]‘,m — VpUi(a,.8)P@)); (P.Q) € Rj \ N,
(10.49) ipQ = %(UJ,PQ + VU800 PQ) s (PQ) ENG, j=e,h,
(10.50) iPQ = %(UJ,PQ —VpUja,,00,PQ)s  (PQ) €N, j=e,h,
(10.51) !—i—s*,PQ = %(Us+s*7PQ + V;QU&(As,Bs)OP(PQ))’ (P, Q) € Niss.,

1

(10.52) sts.pQ = 5(Usts.pg — VioUs(40B)op(P@))s (P, Q) € Noys, .
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We set U/ py = 0 = V/'yp for (P,Q) & R;. Let us verify that #(U, V) = (U",V") is in H.
Recall that

tet (P, Q) = (Ae, Be) 0 pe(PQ) = (Ae, Be)(po(P, Q) pu(P, Q)), (P, Q) € Ne.

To verify (I0.4])) for j = e, via (I0.50) we compute
1

_/ —_—
Ui po + V;QU@(Ae,Be)ope(PQ) = §(Ue,PQ — V;D_QUG,Le(PQ))
I/;FQ _
+ 5 Uerr) = Vi pg)Uerq) = 0.

Here we have used the fact that ¢.: N, — N, is an involution and
VPQU. (PQ) = 1, V;QVI(PQ) =1, (P, Q) € N,.
Recall that
(P, Q) = (A, Bj)(pa(PQ), pp(PQ)), j=h,s.

We also know that ¢ is an involution on N} and ¢, is a bijection from N, ,, onto N;.

Analogously, we verify ([0.41) for U, and (I0.42) via (I0.50) and (I0.52). Note that
(P, Q) — (A, B;)(P, Q) is a projection on R;. Analogously, we verify (10.40) via (10.48).

This shows that 7(U, V) is in H. We can also verify that (U”, V") = (I1—7)(U, V) satisfies
the conditions on the centralizer, i.e. it is in G.
As before, we have

U Ul oo < U, .
‘ ]’PQ‘7 ‘ ]’PQ‘ - m?X (P’,Q’)perrrlliltaaﬁon of (P,Q) | Z7PIQ,|

Equations (I0.44]), (I0.43]) lead to the same inequality for V/, V”. Hence, again the result
follows from Lemma [4.8 O

Proposition 10.6. Assume that the family of involutions {T1, Tz, p} is formally lineariz-
able. Assume further that oy, ..., 0, defined by (I0)-({I0.3), are linear.

(1) There is a biholomorphic mapping in the centralizer of {S, p} which linearizes 7
and Ty.

(17) Assume further that 7y =Ty and 7o = Ty. Then {m1, ..., Tip, p} is holomorphically
linearizable.

Proof. (i) Suppose that ¥ is a formal mapping satisfying
\I]_lle\I] = Tlija \I]p = p\I’

Then Tyj = (LV) o Ty;, o (LV)~", and LW commutes with p. Replacing ¥ by ¥ o LU,
we may assume that W is tangent to the identity and 7; = j. We decompose ¥ = ;W !
where Wy is normalized w.r.t. §,77, p and ¥ is in the centralizer of S, T}, p. Since ¥, ¥,
commute with S; and p, then ¥; commutes with S}, p too. We now let ¥ denote ;.

To be more specific, let us write

o g;:)\znz_‘_fz(gﬂﬂ 'é:la"wpa
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and

mi=m+Vi&n) i=1....p
Let us write that W conjugates 71 to
Ti: &= mi, ni=X1, i=1,...p
We have ¥ o T} = 11 o ¥; that is
(10.53) ANVi—=UioTy =—fioW(&n) i=1,...,p,
(10.54) MW —VioTi = —gioVU(&n) i=1,...,p.

Since ¥ commutes with each S;, then U; pg = Vjop = 0 for (P,Q) ¢ R;. Let us find
an equation involving only the unknown U,, Uy, V}, U,, V;. By the reality conditions, they
determine U, V' completely.

Since the normalized mapping ¥ commutes with p, we have

Unro =Unprqy (P,Q) € Ry, Ustsypg =Usprq)y (P,Q) € Ress.,
(10.55) Vear = Uep@r),  (P,Q) €Re,
Vior = Vo), (P.Q) € Ruy Vits.op = Vspor), (PQ) € Rots, -
Let us combine the above identities with the (first two) normalizing conditions
Un.ro = —Un p(pq); (P,Q) € Ry,
Usts,.rg = —Us p(PQ), (P,Q) € Rots.,
Uerq = —vPUes.rq),  (PQ) € Re,
Vigr = =X ']\ Ujpq, (P,Q) €

Recall that ¥ belongs to the centralizer of S so that U; pg = VLQP =0 for (PQ) € R; and
all . We then immediately see that Uy, Uy, Usys,, Vi, Vs, Vsis, are 0.
We now use the two last conditions to determine U, V, and majorize them. By (I0.54)),

(I055) and (I0.46), we obtain
Ue PQ — VPQUE pe(QP) — —A {ge o \II}PQ
Using ([I0.3])), we obtain that, for (P, Q) € R.,

. {f’ &+Un) i=1....p

1

Ue,PQ = _§>\e{ge © \I]}PQu
as well as .

Veor = §VPQ)\e{ge oW}pg.
Therefore, we have

|Ve.opls |Ue,pql < C'l{ge o ¥}pgl-
In view of (AI2), we then have
wsym < Cgsym o \Ilsym = GJsym © (Isym + ¢sym)~

Therefore, 15y, is convergent at the origin and so is W.



111

(ii) Assume now that o = S, 7y = T}, 7o = T3 are linear. Suppose that ¥ linearizes the
{7;} and commutes with p. We decompose ¥ = ¥, W' with ¥; being normalized w.r.t.
S,T1,Ts, p and with ¥, being in the centralizer of S, T}, Ts, p. From (i), we know that ¥
is diagonal and ¥~'7;; ¥ = T};. We have

\Ifl_lTij\Ifl = \I]alﬂj\yo = fTU

Hence, W, linearizes the 7;; and is normalized w.r.t S, 717,75, p. Since ¥, ¥y commute with
S and p, so does V. Let us denote ¥ = W, and let us write & = I + (U, V).
We recall

& = Ajnj & =N+ fi5(6m)

T, 0, = Aflfi | - 0, = )\j_lfi +955(&,n) .
§ =8k k#]J § =&+ fi(&n), k#]
M =1 k#37, Me =M+ gi(&sn), Kk #J.

Since we have W o T; = 7; o ¥, we obtain the following relations

AjVj—UjoThy = —fjjoV

)\j_lUj — Vol =—gjjoV

Ug—=UpoTyyj=—fro¥, k#j

Vi=VioTyy=—gjo¥, k#j.

According to ([I0.I9), the left-hand side of the two first equations are zero. We shall use
the two last ones to obtain estimates. According to the normalizing conditions, we find
as above, that Uy, Us, Usis,, Vi, Vs, Vi, are 0. Thus we only have to show that U,, V, are
convergent.

In the second last identity in (I0.56]) with k& = e, let us compose on the right by all T};
with j # e. We have for j' # e and j # e,

lj'6 o le — lj'6 o le o le/ = _fj,e o \Il o le/ = fj,e o le/ 0] \Il

(10.56)

Repeating this for all 77, except for j = e and taking summation, we get

p
Ue_erTl_elole_{E fj,eo7'11"'07/'1\eo"'07'1i}O‘I’-
i=1

Here 7;. means that 7. is not included in composition if ¢ > e. Thus

P
erTle_UeOle_{E fj,eOTn"'Oﬂ\eO"'OTu}07'160\11-
i=1

Combining with the first identity in (I0.56) and eliminating U, o T}., we obtain
AVe—UcgoTy=fooU
for a convergent power series fe. The normalizing condition (I0.39) says that )\?_PUG, PQ =

—AVegp for (P, Q) € R.. We obtain

1 -
2)\e{f5 o \II}QP -<

1

o UeoThor, (PQ) € R

Ve.opr =
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If (P,Q) is not in R, the above still holds as V, gp = 0.

Indeed this is the key point, if U;pg # 0 then (P,Q) € R; so that pf™*% = p; and
pyt % =1, 0 # j. As we have observed and since j # h (j is actually e), this implies that
p; = q; + 1 and py = qp, £ # j,h. Since the hyperbolic A\, are of modulus one, we have
either [A\'=¢| = \.. Thus

1

2

1 =
{fe o \I]sym}PC}

Ue.pql = [Veop| < s {fe0 T}op < )

We obtain

Yon =< C (Faym © Uy + Yoym) -
Therefore, U, V, are convergent at the origin since they are majorized by a solution of an
analytic implicit function theorem. U

Remark 10.7. The results obtained so far in this section does not require that o has
distinct eigenvalues. To apply the results to the real manifolds, we impose it again as in
previous sections.

Theorem 10.8. Let M be a germ of analytic submanifold that is a third order perturba-
tion of a product quadric Q in C?. Suppose that M, i.e. its o, has n distinct eigenvalues.
Suppose that M is formally equivalent to the product quadric Q). Suppose that each hyper-
bolic component has an eigenvalue py which is either a root of unity or satisfies the Brjuno
condition (I11.32). Then M is holomorphically equivalent to the product quadric.

Proof. We first apply Theorem with Z = 0 ([Stol3]) that linearize simultaneously and
holomorphically the oy, ..., 0,. Note that the small divisor condition in this special case is
equivalent that each py, is either a root of unity or a Brjuno number. Then, we apply suc-
cessively the two assertions of Proposition [[0.6l Hence, in good holomorphic coordinates,
{m1,...,7p, p} are linear. Then, by Proposition 210, the manifold is holomorphically
equivalent to the quadric. U

We present two convergence proofs for Theorem [0.3} one is based on normalization for
each member of the family {oy,...,0,}, and another is based on simultaneous normaliza-
tion for the whole family. Besides the simultaneous linearization in a more general frame
work [Stol3] used above, the first approach by linearizing the family {oy,...,0,} one by
one is still valid. Here it is crucial that the linear maps of {0y, ...,0,} have a very simple
structure. Indeed, let ¢; be a holomorphic mapping that linearizes o;; the existence of such
a convergent ¢ is ensured [Riis02]. With the transformation by ¢, we may assume that
o1 is the linear S;. Let @2 be the unique holomorphic mapping that is normalized w.r.t. S,
and linearizes o,. Since gl and o, commute, we verify that glgbggl_ 1is normalized w.r.t.
Sg and linearizes oy. Then ¢, commutes with 31 and linearizes oy. Inductively, we find a
biholomorphic mapping that linearizes all o7, ..., 0,. The remaining argument is as in the
proof of the theorem.

11. EXISTENCE OF ATTACHED COMPLEX MANIFOLDS

We are interested in complex submanifolds K in C?? that intersect the real submanifold
M at the origin. Recall that M has real dimension 2p. Generically, the origin is an isolated
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intersection point if dim K = p. Let us consider the situation when the intersection has
dimension p. Without further restrictions, there are many such complex submanifolds; for
instance, we can take a p-dimensional totally real and real analytic submanifold K7 of M.
We then let K be the complexification of K;. To ensure the uniqueness or finiteness of the
complex submanifolds K, we therefore introduce the following.

Definition 11.1. Let M be a formal real submanifold of dimension 2p in C". We say that
a formal complex submanifold K is attached to M if K N M contains at least two germs of
totally real and formal submanifolds K7, K5 of dimension p that intersect transversally at
the origin. Such a pair { K7, K3} are called a pair of asymptotic formal submanifolds of M.

Before we present the details, let us describe the main steps to derive the results. We first
derive the results at the formal level. We then apply the results of [P6s86] and [Stol3]. The
proof of the co-existence of convergent and divergent attached submanifolds will rely on a
theorem of Poschel on stable invariant submanifolds and Siegel’s small divisor technique
used in the proof of the divergent normal form in section [l However, the argument for the
divergent part will be simpler.

We now describe the formal results. When p =1 and M has a non-resonant hyperbolic
complex tangent, it admits a unique attached formal holomorphic curve [KIi85]. When
p > 1, new situations arise. First, we show that there are obstructions to attach formal
submanifolds. However, the formal obstructions disappear when M admits the maximum
number of deck transformations and M is non-resonant. These two conditions allow us to
express M in an equivalent form (4. This equivalent form for M, which has not been
used so far, will play an essential role in our proof for p > 1.

We will consider a real submanifold M which is a higher order perturbation of a non-
resonant product quadrics. By adapting the proof of Klingenberg [KIi85] to the manifold M
#.4), we will show the existence of a unique attached formal submanifold for a prescribed
non-resonance condition. As in [KIi85], we also show that the complexification of K in M
is a pair of invariant formal submanifolds Ky, Ky of 0. Furthermore, K is convergent if and
only if Iy is convergent.

Let us first recall the values of the Bishop invariants. The types of the invariants play
an important role for the existence and the convergence of attached formal complex sub-

manifolds. From (8:34), and (3:30), we recall that

1 1 1
(11.1) 7€:W7 Th = N+ %:T)\S_za
(11.2) 0<ve<1/2, v >1/2, ~,€(1/2,00)+1i(0,00), Ysts. =1—7,.
As in Lemma [3.2] we normalize
(11.3) A>T al=1, A>T A =,
(11.4) arg \p, € (0,7/2), arg)s € (0,7/2).
Recall that p; = A?. By (ILT]), we have
(11.5) v = T fjuj)z, J=ehi W = f;S)Q-

We first verify the following.
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Lemma 11.2. Let v;, \; be given by (ILI)-(I14). Let p; = )\?. Assume that juy, py?, ...,

pn ' are distinct. Then

737 7}%) 75784-8* 9 78754-5*
are distinct p numbers. The latter is equivalent to 71, ...,7, being distinct.

Proof. Note that 27! +z and 27! decrease strictly on (0,1). So 42, ~2 are distinct. We also
have

7873—1—3* ="7s — ’}/52
If a,b are complex numbers, then a — a? = b — b? if and only if @ = b or a + b = 1. Since

7, 1s not real, then 7, are different from 72 and ~3. For any distinct complex numbers
ay,ay in (0,00) +i(1/2,00). We have 1 — ay # 1 — aq, aj, az. The lemma is proved. O

Let us first investigate the numbers of pairs of formal asymptotic submanifolds and
attached formal submanifolds.

Lemma 11.3. Let M be a formal submanifold that is a third order perturbation of a product
quadric QQ in C?. Assume that the associated S of Q has distinct eigenvalues

K1y e eey Hps /1’1_17"'7/1’;1'

(1) If M admits an attached formal submanifold, its CR singularity has no elliptic
component.

(ii) If Q has no elliptic components, then Q has at least 2" pairs of asymptotic
totally real and real analytic submanifolds and all of them are contained in a single
attached complex submanifold.

(731) There is no formal submanifold attached to

+5.—1

M z3 = (Zl + 2’}/121)2 + (ZQ + 2’)/222)3, 24 = (22 -+ 2’}/222)2.

Here M has a hyperbolic complex tangent at the origin.
(1v) Assume that M has no elliptic component and it admits the mazimum number of
formal deck transformations. Let

(11.6) v=pte = (u1's - p7), € =FE1,  €gps, = 6
Suppose that
(11.7) AT VQeEN?, QI >0, 1<j<p.

Then M admits a unique pair of asymptotic formal submanifolds Ky, Ky such that
each K; is defined by 2’ = p;(2') for a formal anti-holomorphic involution p; and
the linear part of py ‘7, has eigenvalues vy, . . ., V. In particular, if (IL7) holds for
each v of the form (LB) then M admits exactly 2"F5<=1 pairs of asymptotic formal
submanifolds.

Proof. (i) Let M be defined by
“p+j = Qj(zlazl) + Hj(zl>§/)a 1<j<p

where H;(z',2') = O(]Z'|*) and each @ is quadratic. Let {K7, K2} be a pair of asymptotic
formal submanifolds of M. We know that K;, Ky are tangent to M at the origin. Let
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K] be the projection of K; onto the z’-subspace. Since TyM is a p-dimensional complex
subspace, then K7, K} are still totally real. Let K’ be defined by

K. Z=AZ+R(), AA=1 R(Z)=0(2)

such that pi(z') := AZ + R(Z') defines anti-holomorphic formal involutions. Let K, be

the (formal) fixed-point set of the anti-holomorphic involution py(z') = A7 + R(2') with
R(2') = O(2). Then K, K, intersect transversally at the origin if and only if

det(A — A) #0.

Let us define holomorphic mappings

pz(zl) = pi(zl)a i=1,2.

Then K is given by
Zg-i-j = Qj(zlﬁpi(zl))+Hj(zlapi(zl))> =12, j=1,...,p.

The two equations agree, if and only if
(11.8) (', 7 (2) + Hj(, 71 (2) = Qi (2, 5,(2)) + H; (', 7,(+)), 1<j<p.
Recall that

Qj(Z,,E) = (Zj + 2’)/]'5]')2, j =€, h;

QS(Z/,E/) = (2545, T 273-1-3*55)2,

Qsts, (Z/,E/) = (zs + 2”)/323—1—3*)2-

Let us first find necessary conditions on the linear parts of p; for (ILL8) to be solvable. Let
w' = Az and @' = Az'. Comparing the quadratic terms in (L8] for i = 1,2, we see that
(Zj + 27jwj)2 = (Zj + 2’)/]'1I)j)2,

(Zoys, + 2’75+s*w8)2 = (2545, T 273—1—8*7178)27
(ZS + 278ws+8*)2 = (Zs + 2’7571}5—1-5*)2'

Here v515, =1 —7,, by (IL2). For each j, w; # w;. Otherwise, the fixed points of p; and
p2 do not intersect transversally. Therefore, the above 3 identities can be written as

zj + 2v5w; = —(z5 4 295w;),
Zots, T 2Veqs,Ws = _(zs+s* + 2’754—3*7173),

Zs + 2’}/51115_,_5* - _(Zs + 278ws+s*)-

In the matrix form, we get A = —y~* — A with

Y. 0 0 0
(9 7% 0 O
TTlo 0 0 4,
0 0 7, O
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Here 7, =1I,, —7,, . Let us express in block matrices

Ae*e* Ae*h* Ae*s* Ae* (254)

Ah*e* Ah*h* Ah*s* Ah* (254)

As*e* As*h* As*s* AS*(2S*)
Asye, A@son, A@sos. A@s)@s)

A —

where the diagonal block matrices are of sizes e, X e,, hy X hy, S, X 84, and s, X s, respectively.

When AA =1, for AA = I we need v '+ A+~"A5F = 0. Recall that 77,...,72 . are
real and distinct. It is easy to see that A.,,, =0, Ap,., =0, and A.,.,, Ap,», are diagonal.
Also,

(11.9) Ace. +Acc. =" Apn +A5 =7,

In block matrices, we obtain

(11.10) v AjesYs. = —Ajs., Yol Aa)i¥; = —Asji

(11.11) Vi A s, = —Ajosys Vel AV = — A

(11.12) Vol As)@s) Vs, = ~Assr Vo AesTs, = —Aui(zs) = Vars
(11.13) Yol As 2575, = —A@s)s. — Vol Vol Ao T, = —Apses):

In the first 4 equations, we have j = e,, h,. Note that the last two equations are of the

form (I1.12)).

By Lemma[IT.2] we know that 2, v7, and 7,7,,,, are distinct. Thus, Aj,, = Ajp,), =0
and A,,; = A,,); = 0 for j = e,, h,. Since .7, is different from all v,1,,7,, then
As*s* = A(2S*)(2S*) = 0 while As*(2s*)a A(2s*)s*
(1114> Ae*e*Ke*e* = 17 Ah*h*Kh*h* = 17 As*(2s*)K(2s*)s* =L

Combining the first identities in (IT.9) and (I1.14]), we know that the diagonal eth element
a. of A, ., must satisfy

are diagonal. Now AA = I implies that

20, =7, ', al=1.
Since 0 < 7. < 1/2, there is no such solution a. if e, > 0. We have verified (i).

Note that v, ' = A, + A, with |y,| = 1. For the hyperbolic components, by the second
identities in (IT.9) and (I1.14]), one set of solutions is given by

A —1
Ah*h* = _)\h* Ah*h* = _>‘h* .

For the complex components, we use A, (2:,)A(2,,)s, = I and multiply both sides of the
second identity in (ITIZ) by A, (2s,)- The (s — s,)th diagonal element a, must satisfy

as(as +5;1) +3;
By the last identity in (I1L.H), we get
al + (1 —T,)as + i, = 0.
Hence, a; = —1 or a; = —fi,. We get one set of solutions
A2s,ys, = — 1, A, 25 = 1L,

Afsys. = =15 Ass) = s,

7, =0.
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There are exactly 2"++s+=1 solutions for A, A since we can only determine the pairs

{Ah*h*7A‘h*h*}7 {AS*(zs*)7AS*(2S*)}’

Note that
(11.15) A'A = diag v,
(11.16) v=pe = (17 147, e? =1, Vs =7,

where there are 2"+ 75~1 distinct combinations. Thus, we get exactly 2"+~ pairs { K}, K2}

€ €

of asymptotic linear submanifolds indexed by € = (e1,. .., €s,45,) with €§ = 1 for the prod-
uct quadric. We may restrict to ¢ = 1. The attached formal submanifolds associated to
these linear asymptotic submanifolds are unique and it is given by

Zprn = (1 — 4%%)'2}2”
Rp+s = (1 - 2'73-1—5*)22?4.5*,
Rptsts. = (1 - 278)2Z§'

This finishes the proof of (ii).
(iii). Let us continue the computation for the perturbations. We have determined linear
parts of antiholomorphic involutions p;. We expand components of R(z') as

Ri(Z) =) Rix(¥), 1<j<p.
k=2

Here R, are homogeneous terms of degree k. We expand f%j analogously. Suppose that
terms of order up to £k —1 in R;, R; have been determined. For the hyperbolic components,
we need to solve the equations

(1117) 4\/ 1-— 47}2Lzh(Rh;k(Z/) + Rh;k(zl)) =,

where the right-hand side has been determined. Indeed, let us compute the (k + 1)-jet of

(I1.8). We obtain
(1= 290))%22 +2(1 = 2950) 2 Ry = (1 — 29507 1)2%22 +2(1 — 2950 )z R + R

where R is polynomial that depends on éj;l, R;, 1 < k. Since (1—-2v;\;) = —(1— 2%-)\;1),
we obtain (ITLIT).

When p > 1, the system of equations (I1.17) cannot be solved even formally, unless the
right-hand side is divisible by z,. When p = 1, the equation (II.I7) is clearly solvable.
In fact, under the non-resonant condition on p;, the formal anti-holomorphic involutions
{p1, p2} can be uniquely determined.

Let us keep the above notation and compute for the example stated in (iii). We need to
solve

(Zl + 2’)/11211)2 + (2’2 + 2’}/21212)3 = (Zl + 2’)/11111)2 + (22 + 2’721112)3,
(ZQ + 2’)/2@)2)2 = (22 + 2’}/211)2)2.
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Again 10y — wy cannot be identically zero. Thus Wy = —wy — 5 '25. Then we need to solve
(Zl + 2’)/11111)2 = (Zl -+ 271w1)2 + 2(2’2 + 27211}2)3.

By (ii), we know that w; = A\12; + Ry (2') and we = Ayzp + Ra(2') with R;(2") = O(2). Also
Wy = M2 + Rl( ") and Wy = Apzy + Rg(z’ ). Comparing the cubic terms implies that z
must divide 2(1 4 299A2)3235, which is a contradiction.

(iv) For a general M, following Klingenberg [KIi85] we reformulate the problem by con-
sidering the following equations

h(zl) = Q(Z,’ﬁi(zl)) + H(Zl>pi(zl))a =12,
W @) =1(@:(2), 2) + H(p,(?),#), i=1,2
Here h, h*, p; are unknowns. Initially, we only require that p,, p, be arbitrary biholomorphic
maps, except their linear parts match with 2’ — Az’ and 2/ — Az’. This will ensure that
the solutions p; are unique and they are involutions.
As demonstrated in (iii), in general there is no formal submanifold attached to M. We

now assume that M admits the maximum number of deck transformation. By Lemma
and Proposition 2.10] we know that in suitable holomorphic coordinates, M is given by

Rp+j = (Z bjh(zh + 27h§h) + Z bjs(zs + 27558-‘,-8*)
h s

2
+ Z bj(s+s*)(zs+s* + 2754-5*55) + Ej(z>z)) , 1<7<p.

Here (b;),) is invertible and FE;(z,Z) = O(2). This special form, which has not played
significant roles until now, will allow us removing the obstruction to formal solutions p;.

For the proof of our result, we will restrict (b;;) to be the identity matrix. Let M be
defined by

Zpn = (20 + 2% + E5(2,7))?,
Zprs = (25 + 27sZsrs, + Eprs(2,2))?,
Zptsts, = (Zsts, T 2Ys+5.%s T Eprste. (2, z/>>2-
We fix linear parts of p; such that
() =47 + R(Z), p(?) = A7 + R(Z).

For ¢ = 1,2 we then need to solve w, w from

(11.18) 2+ 29Pi + En(2, 1) = (—1)" fa,
(11.19) 2+ 2YsPigrs, T Bprs(2,7;) = (=1)'fs,
(11.20) Zoton T 29515, Pis + Eprars (2,7) = (=1) fosan,
(11.21) 292 + P, + En(pi, 2) = (=1)' £ (),
(11.22) X Zsts. + Pis + Eprs (01, 2) = (1) f2(5)),
(11.23) Wsrs?s + Pisps, + Eprots. (0 7) = (=1) 15, (7:)
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Suppose that we have already determined terms of R;, f%j, fj, f} of order < k. We have
n(Z)=AY+R(?), p'(Z)=A"" - A'R(ATYY),

where the terms in R’ — R of order k depend only on terms of R of order < k. Recall that

A~'A = diagv is given by (II.15). For terms of order k, by eliminating f;, [, we therefore

need to solve

(11.24) Rio+ Rig =

where the dots denote terms which have been determined. We compose from right in the
last 3 identities for i = 1 (resp. i = 2) by ;' (resp p,'). From the new identities, we
obtain o

ATTRAT)+ATTRATY ) =
Recall that the linear part of A~'A is diag v with v := v.. Thus we need to solve ([1.24)
and .

Vj_le,Q + I/QRLQ = .

The equation admits a unique solution as
(11.25) WA, QeN?, QI >1, 1<j<p.

This shows that R; g, R; o are uniquely determined.
To verify that p; are involutions, we compose by 7; ' from right in (ITIS)-(I1.20), and
we apply complex conjugate to the coefficients of the new identities. This results in (IT.2T])-

(IL.23) in which (p;, f7) are replaced by ((p;)~!, f;). We can also start with (IT.21)-(I1.23)
and apply the same procedure to get (ILI8)-(IL.20), in which (p;, f;) are replaced by
((7;)~", f;). By the uniqueness of the solutions, we conclude that (7,)~! = p; as both sides

have the same linear part. We now have (p;)~'(z') = pi(2’). Hence Z’ = p;(p:(2)) = p2(2').
This shows that each p; is an involution. U

We remark that given complex numbers

Hiseeos Bhyy  Bhydds ooy Bhytsey  Bhotsits = ﬂf_b}-}-s
with |u,| = 1. Let v = . be given by (II1.6]). The set of v that violate (I1.7) is contained
in the union of the sets defined by 19 = z/j_l. Here Q € NP, |Q| > 1 and 1 < j < p. For
each @, 7, the above equations define an algebraic set of codimension at least 1 in the space
(Sl)h* x O,
We now can prove the following theorem.

Theorem 11.4. Let M be a higher order perturbation of a product quadric. Assume that
in (§,m) coordinates, its associated o has a linear part given by the diagonal matriz with
diagonal entries ..., [y, i, ... 1, . Let v = v, be of the form (III0) and satisfy
([II25). Then M admits a unique pair of asymptotic submanifold {K§, K§} such that the
complezification of K in M is an invariant formal submanifold H. of o that is tangent to

(11.26) He=( N te=0)n( N tw=0})

Furthermore, the complezification of K§ equals m1H..
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Proof. We will follow Klingenberg’s approach for p = 1, by using the deck transformations.
Here we assume that M admits the maximum number of deck transformations. Suppose
that K is an attached formal complex submanifold which intersects with M at two totally
real formal submanifolds Ky, K5. We first embed K; U K5 into M as M is embedded into
M. Let K; be the complexification of K; in M. Since p fixes K; pointwise, then pkC; = ;.

We want to show that 71 (K1) = Ks; thus K; is invariant under o. Recall that ; is
defined by

(11.27) p,(2)=w'.
On K1, by (ITIR) and (II20) we have L(2/,w') + E(z',w') = —f(2'). The latter defines a
complex submanifold of dimension p. Thus it must be ;. On M,
(ij (Z/v w/) + Ej(zlv w/)>2 = Zp+j
are invariant by 7. Thus each L;(2',w') 4+ E;(2',w') is either invariant or skew-invariant by
71. Computing the linear part, we conclude that they are all skew-invariant by 7;. Hence
71 (K1) is defined by
Lz w') + E(Z,w') = f(&),

which is the defining equations for Ks.

Finally, if IC; is convergent, then (I1.27)) implies that p; is convergent. Hence Kj, the
fixed point set of pp, is convergent. O

We now study the convergence of attached formal submanifolds. Let us first recall a
theorem of Poschel [P&s86]. Let v and € be as in (IT.I6). Define

_ : : P p_ -1 }
w,,(k:) 1<\P|IS%1]"I,IP€NP 1212'1%3 {|V VZ|’ |V Vi | .

Suppose that
log w,, (2%)
(11.28) -y — <.
Then the unique invariant formal submanifold of ¢ that is tangent to the H. defined by

(IT.26)) is convergent.

We now obtain a consequence of Theorem [I1.4] and Poschel’s theorem.

Theorem 11.5. Let M be a higher order perturbation of a product quadric. Suppose that M
admits the maximum number of deck transformations. Assume that the CR singularity of M
has no elliptic components. Let v = . be given by (IL16). Assume that v = (u$, ..., ')
satisfy (IL28). Then M admits an attached complex submanifold.

Since the eigenvalues of o are special, we verify that the condition (IL28]) can be satisfied.
Let us first prove Proposition [[LT1] by considering the case when the complex tangent
has pure complex type. Then condition (I1.28) always holds if v, . . ., i, satisty the weaker
non-resonance condition (IT.25). Indeed, in this case, the eigenvalues of ¢ are
Hs;  Hso+s = ﬁs_la Hp+s = ,us_lv Hpts.ts = M-

Recall that 1 < s < s, and p = 2s,. We may assume that |us| > 1. We take
(11.29) Vs = s, Vsis, = Mg
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Assume that
VQ_V]'#(L QENP, |Q|>1a 1§]§p
Under the condition (IT.29), we can find a positive integer r such that
min {|v1|", ..., || "} > max {|w], ..., |v|}.

It is easy to see that |u” — ;| > ¢ for some positive constant and all Q € N? with |Q| > 1.
Hence (I1.28) holds. We have proved Proposition [L.T1]

We now consider the general case by showing that the set of {u, ,us+s*,ﬂ;}s*} that
satisfy (I1.28) for some choice of v has the full measure. Without loss of generality, we
may assume that |uy, 15| > 1. Thus we list the eigenvalues of o as

Bp,  Hg,s ﬂ’sw /'l'—h*a i:l’s*? I’l’—s*
with
My, = (:U’lv oo 7:uh*)7 M, = (:U’h*-‘rlv <o nu’h*-l-s*)u l]'s* = (ﬁ}:*l-H’ oo 7H}:*1+5*>’
We take (v1,...,1p) = (W, s, Iy, ). We first note that there are only finitely many
Ry, ..., R; € N?* such that
|(Vnosts - 1p) ] < 2C,, O, :i=max{|v1],...,|vl}.

Denote by {b1,...,bss,q} the set of numbers:

Vj(Vh*-i-la"'va)_Riv Vj_l(yh*-‘rlv”'vyp

with h, < j < pand 1 <i <d. Let S,, be the set of p, € (S')" satisfying the Siegel
condition

)

C
11.30 i P bl |\l =, f =t > ———,
(11.30) min {|pef, = b k. = sl i = 1} 2 G

for P € N and |P| > 2. One can verify that, U%_,S,, has the full measure on (S*)" for
a fixed set of {b;}.

We take any i, 41, .., f4p such that

(sl lpl)? # il VQ € NP7, |Q| > 1.
We then take (u1, ..., pus,) € (S1)" satisfying (I1.30). We have
C
(11.31) W' —vj| > —" PecN" |P|l>2
T p)hm

To verify it, we write P = (P', P") with P’ € N If P” # R; for 1 < i < d, we have
|vf — v;| > C., which satisfies (IL31)). Suppose that P” = R;. Then for j > h, we have
: C’
P Ri| o P

— v > yee ey Vp) | min e ) = b > ———.
o o 2 ) o) = b} 2

Suppose that 1 < j < h,. If P” #£ 0, we have

|VP - Vj| > min(|:uh*+1|> sy |:up|) -1

This gives us (IT31). Suppose now that P” = 0. Then we get (IL3I]) immediately. We
have verified (II.31]) for all cases.
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We have proved that the non-resonant product quadric has a unique attached complex
submanifold. Let us first show that the unique complex submanifolds attached to the
product quadric may split into two attached submanifolds after a perturbation. In fact, a
stronger result hods; it could split into a divergent attached submanifold and a convergent
one simultaneously.

Proposition 11.6. There is a non-resonant 4-dimensional real analytic submanifolds M
that has pure complex type and admits a convergent attached submanifold and a divergent
one too.

Proof. By Proposition [L.T1], it suffice to show the existence of a divergent attached sub-
manifold. The proof is an application of small divisors, as shown in previous divergent
result. However, the proof is much simple. We will be brief.
Consider
M 3 = (Zl + 2’}/152 + G,(leg))2, 24 = (22 + 2’}/251)2.
Here a is holomorphic in 2129 and a(0) = a/(0) = 0. By (ILIS) for i = 1,2, we eliminate
f1 to obtain

2/71R1 + 2/71R1 _'_ Q(lez) =,
Ry 0Py 07, + Ry +a((2122) 07y (21, 22)) = - - .

Here the right-hand sides depend on coefficients of lower orders. Thus for @ = (k, k), we
have )
ar — (pfy ) rag + exn

Ry =

(Msﬁs_1>k —1
Here ey, depends only on coefficients of a; with j < k. We will choose a; as follows.
If |exx| > 1, we choose ar = 0. If |egx| < 1, we choose an a; such that |ax| = 1 and
lar, — (pafi; H)*a,| = 2. In both cases, we obtain
1
|Ripe| >
| (i )E =1

We can find 1 such that 0 < |(ui;")F — 1] < & for a sequence of integer k = k; — oc.
Furthermore, p177; ! is not a root of unity and |p:| # 1. This shows that R; is divergent. [

Remark 11.7. It is plausible that there are 2"+~ attached formal complex submanifolds
to a generic M that is a higher order perturbation of non-resonant product quadric and
has the maximum number of deck transformations.

To study the existence of convergence of all attached formal manifolds, we use the fol-
lowing theorem in [Stol3] to conclude simultaneous convergence of all attached formal
submanifolds. In fact the conclusion is much more stronger. Here we recall the technique
of linearization of o on the resonant ideal, i.e. the ideal generated by &im1, ..., {np.

For the convenience of the reader, we state the result only for the family F' = {F3, ..., F;},
where F'is {o1,...,0,}, or a single mapping ¢. Recall that the linear part D = {D;: 1 <
i <} of Flis {S1,...,S,} or S. The matrix of D; is diagonal, which is denoted by diag y;
for u; = (i, .-, pin). Let Z be a monomial ideal on C™. Define

wi(D,T) :inf{{gazilm? — i) £0:[2<1QI <251 <5 <n,Q € N", 2 €I}
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where p& = piy - i Let {wip(D)}r>1 be the sequence of positive numbers defined by

wr(D) = inf{{gaz(lm? — i #0:|2<|QI <25 1<j5<n,Q¢€ N"} :
According to [Stol3], we say that the family D is diophantine (reps. on I), if

1 D 1 DT
(11.32) - Z Ogl;}i:() <00, (resp.— Z ng;—i’) < 00).

When D is reduced to one element and Z = {0}, this condition is Brjuno condition [Brj71]
Riis02]. Let CP denote the centralizer of the family D.
We now state the following theorem proved in [Stol3].

Theorem 11.8. Let Z be a monomial ideal on C™. Let F' be the above family of holomorphic
mappings. Assume that the family D is diophantine on Z. Suppose that there is a formal
mapping P satisfies the following:
(1) ® is tangent to the identity and has a zero projection on Cp U f", e. & =
(1, ...,D,) satisfy that ; ox%; =0 if 2% € T or 2%; € Cp.
(it) ®LF;® = D; modulo I for all i.
Then ® is convergent.

We apply the above theorem to ® in C¢(S, Resl) and ¢ which arises from a real analytic
submanifold which is a higher order perturbation of a non-resonant product quadric. Note
that Cg is contained in the resonant ideal and the condition on the projection (ii) of the
above theorem is satisfied by the unique normalized map that linearizes ¢ on 7.

As a corollary of the above theorem, we have the following result.

Corollary 11.9. Let Resl be the resonant ideal of S. Assume that o satisfies the diophan-
tine on L. Then o is holomorphically linearizable on Z. In particular, if {p1, ..., 1y} s
non-resonant in ZP, i.e. u® # 1 for all Q € ZP with |Q| > 0, then in suitable holomorphic
coordinates, the o is linear and diagonal on the (&, ..., &, Niyrs- - -+ Mi,)-Subspace for any

partition {iy,...,i,} ={1,...,p}.

As a consequence of Corollary [[1.9 and Theorem [I1.4] we obtain immediately Theo-
rem [[L.12] which we restate here in a stronger form.

Theorem 11.10. Let M be a third order perturbation of a product quadric. Suppose that
M admits the mazimum number of deck transformations and is non resonant. Suppose
that M has no elliptic component and that the eigenvalues of o satisfy diophantine con-
dition (IT.32), then all attached formal submanifolds are convergent. Moreover, and the
restrictions of o on these invariant submanifolds are simultaneously linearizable by a single
change of holomorphic coordinates of the ambient space.

As mentioned earlier, the eigenvalues of o are special. Let us verify that the set of u that
satisfy the diophantine condition (IT.32]) has the full measure. Recall that the resonant
ideal is generated by &y, ..., &m,. Suppose that 7@ is not in the ideal. Then p;q; = 0
and |p; — q;| = p; + ¢;. We need to consider non-zero small divisors of the form

ph plpt — o, 1<ji<p
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for (P,Q, R) € ZP. Let m be a positive number such that

_ 1 . _
@Bl — |l > 5 mingll, 1 1, Q@+ R|>m.
Let us define

Ws =TsVs, Ts=|phs|, fon =0, rHn=1.

Then we can write
P-Q RS T [ PR | Ps—Pi—qs+d. Ph=dh Ps+Pi—ds =4
S

Here P = (pn, ps, P.) and Q = (qn, gs, q¢%). We set

/ ! / / !
Ds—Ds—qs+qs _ . -1 Ph—qhn pPs+ps—qs—qs _ ., —1. R
”r; s =TT,V vy vgstls C=vpU

Note that |R| < |P|+|Q]| and |R| < |P| + |Q|. In view of
lpe® — 112 = (r — 1)? + rsin?(0/2) > Cmax{|r — 1%, |¢? — 1]}

we obtain
=@ — wil > C’rj_l max{|rj_1rRl -1}, |Vj_1VR — 1\} )

Now one can see that the set of u = {un, tih,ts, ﬂ,‘z*l ., that satisfies the diophantine
condition (IT.32) has the full measure.

Finally, we indicate a consequence of o being linear on the zero set of the resonant ideal.
In this case the solutions {p,,p,} to (ILIR)-(II.23) are linear and there are 2"++*+~1 pairs

{Pj1,Pj2} of solutions. Now (ILIS)-(IL23) imply that
E(Z,p\(2) = —E(Z,5,(?)), E(p\(¥),2") = —E(py(¥), 2").
The complex submanifold associated to {p;1, pio} then has the form
Kj: zppi = (Li(zlaﬁﬂ(zl)) + Ei(zl>ﬁj1(zl)))2> 1<:<p.

Of course, there are additional hidden symmetries in E for o to preserve the resonant
ideal. On the other hand, F can be quite general as shown by the algebraic example

(Example [5.6)).
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