
HAL Id: hal-01001828
https://hal.science/hal-01001828

Submitted on 5 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Solution to the Network Reconstruction
Problem

Fabio Morbidi, Alain Kibangou

To cite this version:
Fabio Morbidi, Alain Kibangou. A Distributed Solution to the Network Reconstruction Problem.
Systems and Control Letters, 2014, 70, pp.85-91. �10.1016/j.sysconle.2014.05.008�. �hal-01001828�

https://hal.science/hal-01001828
https://hal.archives-ouvertes.fr


A Distributed Solution to the Network

Reconstruction Problem

Fabio Morbidi⋆ a, Alain Y. Kibangou b

aInria, NeCS team, 655 Avenue de l’Europe, 38334 Montbonnot Saint Martin, France.
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Abstract

It has been recently shown in [1] that by collecting noise-contaminated time series generated by a coupled-oscillator system
at each node of a network, it is possible to robustly reconstruct its topology, i.e. determine the graph Laplacian. Restricting
ourselves to linear consensus dynamics over undirected communication networks, in this paper we introduce a new dynamic
average consensus least-squares algorithm to locally estimate these time series at each node, thus making the reconstruction
process fully distributed and more easily applicable in the real world. We also propose a novel efficient method for separating
the off-diagonal entries of the reconstructed Laplacian, and examine several concepts related to the trace of the dynamic
correlation matrix of the coupled single integrators, which is a distinctive element of our network reconstruction method.
The theory is illustrated with examples from computer, power and transportation systems.
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1 Introduction

In graph theory the “basic inverse problem” consists
in determining the topology of a graph from its adja-
cency spectrum [2]. It is well known that: i) graphs with
few distinct eigenvalues tend to have some kind of reg-
ularity; ii) cospectral graphs have the same number of
closed walks of a given length; iii) there exist cospec-
tral graphs which are not isomorphic. Therefore, the
adjacency (and analogously the Laplacian) spectrum of
a graph is not sufficient, in general, to unambiguously
identify the graph topology.
Recently, the interest in the basic inverse problem has
been revitalized by several works in the control and
mathematical physics literatures, dealing with the re-
construction of the topology of a network of dynamical
systems (this is also sometimes referred to as network
“identification” or “exploration” problem). Uncovering
the relationship between dynamics and network struc-
ture has indeed relevant applications in biology (bio-
chemical, neural and ecological networks), finance, com-
puter science (Internet and World Wide Web), trans-
portation (delivery and distribution networks), and elec-
trical engineering (power grids).
In [3], the interaction geometry among a known num-
ber of agents adopting (weighted) consensus-type algo-
rithms for their coordination, is reconstructed using a
grounding procedure inspired by experimental biology,
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called “node knockout” (see also [4]), while in [5] the
consensus matrix is determined from its eigenstructure
estimated in a distributed fashion.
Stochastic methods have lately emerged as powerful al-
ternatives to the deterministic ones in [3–5]: the main
idea here is to reconstruct the network topology from
noise-contaminated time series collected at each node
of the graph. Noise is ubiquitous, e.g., in biological net-
works and relying on such a natural variability as a non-
invasive network-identification tool appears extremely
promising [6]. Several stochastic reconstructionmethods
have been proposed in the recent literature. In [7], the
topology of a directed weighted network of LTI systems
is estimated via power spectral analysis, while in [8] the
authors formulate the problem of network reconstruc-
tion as a compressing sensing problem.Other approaches
have exploited the sparsity of the network and used
the Bayesian information criterion to measure the graph
structure from stationary time series [9] or optimization-
based methods [10]: however, although the sparsity as-
sumption is well justified in some applications (e.g. in
biological networks), it may lead to poor results in other
cases as shown in [11]. More related to the standard
system-identification literature is the work in [6], where
the authors formulated the network reconstruction prob-
lem as a variant of the spectral factorization problem,
and [12] where the classical “direct method” of closed-
loop identification is utilized. However, in these works
unknown noise sources are applied only to the states
that are measured, which is an unrealistic assumption in
many applications. Finally, in [1], an interesting connec-
tion between dynamic correlation and topology in noisy
coupled-oscillator networks (where the noise magnitude
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Fig. 1. Distributed network reconstruction: node i must re-
construct the topology of the network G by only exchanging
information with its set of neighbors N (i) (red nodes).

is known) has been unveiled. The reconstruction algo-
rithm originally proposed in [1] has been recently im-
proved in [13] by defining a different thresholding mech-
anism based on the largest eigenvalue of the Laplacian
matrix estimated in a distributed fashion. However, all
the aforementioned stochastic approaches are central-
ized or semi-centralized (as [13]), since they require the
knowledge of time series at each node of the network,
and thus impractical for real-world applications.
This paper builds upon [1] and extends it in several
new directions. In particular, the original contributions
of this work are threefold:

• The approach in [1] is made fully distributed by lever-
aging a new dynamic average consensus least-squares
algorithm for the local estimation of the noisy time se-
ries at each node of the graph. In this way, each node is
able to infer the topology of the overall undirected net-
work (cf. Fig. 1): to the best of our knowledge, together
with [5], this is the only completely-decentralized re-
construction algorithm available in the literature for
networks of dynamical systems. An original stability
analysis of the proposed dynamic average consensus
least-squares estimator is also performed.

• A new robust and effective mechanism for separating
the −1 and 0 off-diagonal entries of the reconstructed
graph Laplacian is proposed. The method is based
on κ-means clustering [14] and it is simpler than the
thresholding criteria utilized in [1, 13].

• Interesting connections are shown between the trace of
the dynamic correlation matrix of the coupled single-
integrator nodes (which plays a crucial role in our re-
construction mechanism), the total effective resistance
of the network [15], and the H2 norm of noisy reduced
consensus dynamics [16, 17].

Note that the distributed network-reconstruction algo-
rithm proposed in this paper may represent a valid al-
ternative (at least at small scales) to “web crawlers” for
the World Wide Web and to “traceroute sampling” for
the Internet, where there does not exist a vantage point
with complete information about the overall structure
of the system. Moreover, it may be useful for probing
the structure of dynamically-changing networks, e.g.
road networks, where links can appear/disappear over
time because of accidents or works on the carriageway.
The rest of this paper is organized as follows. Sect. 2
presents some backgroundmaterial. Themain theoretical
results of the work are introduced in Sect. 3 and Sect. 4,

and the theory is illustrated with numerical simulations
on realistic networks in Sect. 5. Finally, Sect. 6 summa-
rizes the main contributions of the paper and outlines
some promising future research directions.

2 Preliminaries

In this section we recall some notions of algebraic graph
theory and robust control, and introduce the notation.
Let G = (V , E) be an undirected graph (or network),
where V = {1, . . . , n} is the set of nodes and E the set
of links. N (i) will indicate the set of nodes adjacent to
node i in the graph G. All graphs in this paper are finite,
connected, with no self-loops and multiple links.
The adjacency matrix A = [aij ] of graph G is an n× n
matrix defined as

aij =

{
1 if {i, j} ∈ E ,

0 otherwise.

The Laplacian matrix L = [ℓij ] of graph G is an n × n
symmetric positive semidefinite matrix defined as L =
D − A where D = diag(A1) is the degree matrix and
1 is a column vector of n ones. From this definition,
it follows that:

ℓij =

⎧
⎪⎨
⎪⎩

∑n
j=1 aij if i = j,

−1 if {i, j} ∈ E , i, j ∈ {1, . . . , n},

0 otherwise.

Let L† be the (Moore-Penrose) pseudoinverse of the
Laplacian matrix, J = 1

n 11
T the n × n (rank one) av-

eraging matrix, and In the n×n identity matrix. Then,
we have that

L† L = In − J, (1)

which is the projection matrix onto the image of L [15].
From (1), it can be verified that:

L† = (L + J)−1 − J, (2)

and that

trace(L†) =

n∑

i=2

1

λi(L)
, (3)

where 0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L) are the ordered
eigenvalues of L [15]. Note that L† inherits from L the
property of being symmetric and positive semidefinite.
Moreover, L† and L share the same null space.

The H2 norm of a general LTI system ẋ = Ax + Bu,
y = Ex, withA Hurwitz, is given by (trace(EXET ))1/2

where the positive semidefinite matrix X (the controlla-
bility Gramian) solves the algebraic Lyapunov equation
AX+XAT +BBT = 0. In addition, if the pair (A,B)
is controllable, X is positive definite.

Notation: |S | will denote the cardinality of the set S ,
∅ the empty set, Re(z) and |z| the real part and mod-
ulus of the complex number z, respectively, ⊗ the Kro-
necker product, blkdiag(·) a block-diagonal matrix, E[ · ]
the expectation operator, ‖ · ‖2 the Euclidean norm of
a vector and ‖ · ‖L2

the total energy or L2 norm of a
vector-valued signal.
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3 Problem formulation

For the reader’s convenience we briefly review here the
main results in [1], which form the basis for our subse-
quent developments. We will start with a general for-
mulation dealing with directed graphs, and then we will
specialize our results to undirected networks with cou-
pled single-integrator node dynamics.
Consider a directed network of n nonidentical coupled
oscillators where xi ∈ IRm, i ∈ {1, . . . , n}, denotes the
state variable of the i-th oscillator and xi(0) the initial
state. In the presence of noise, the dynamics of the whole
oscillator system can be expressed as

ẋi = Fi(xi) − γ

n∑

j=1

ℓij H(xj) + ηi, (4)

where Fi : IR
m → IRm is the intrinsic dynamics of the

i-th oscillator, H : IRm → IRm is the coupling function
of the oscillators, γ > 0 is the coupling strength, and
ηi ∈ IRm is the zero-mean white noise with covariance
matrix Qi associated with the i-th oscillator. We will
assume that xi(0) and ηi are uncorrelated for any i ∈
{1, . . . , n}, and that ηi and ηj are uncorrelated for any
i �= j, i, j ∈ {1, . . . , n}. Note that (4) encompasses sev-
eral well-known coupled-oscillator systems, such as Ku-
ramoto phase oscillators and Rössler dynamics. Let xi
be the counterpart of xi in the absence of noise and ξi a
small perturbation. Then we can write xi = xi + ξi and
plugging it in (4), we obtain the variational equation

ξ̇i = J [Fi(xi)] ξi − γ

n∑

j=1

ℓij J [H(xj)] ξj + ηi,

where J [Fi(·)] and J [H(·)] are the m × m Jaco-
bian matrices of Fi and H, respectively. Now, let
ξ = [ξT1 , . . . , ξ

T
n ]

T ∈ IRmn be the deviation vector,
η = [ηT

1 , . . . ,η
T
n ]

T ∈ IRmn the noise vector, and

C �
1

T

∫ T

0

ξ(t) ξT (t) dt, (5)

the dynamic correlation matrix of the oscillators, where
[0, T] is the (long) time interval in which the time aver-
age is performed. We then have that:

0 =
d

dt

[
1

T

∫ T

0

ξ(t) ξT (t) dt

]
= MC+CMT

+
1

T

∫ T

0

η(t) ξT (t) dt+
1

T

∫ T

0

ξ(t)ηT (t) dt,

(6)

with M = J [F(x)] − γ L ⊗ J [H(x)] where J [F(x)] =
blkdiag(J [F1(x1)], . . . , J [Fn(xn)]) andx = [xT

1 , . . . ,x
T
n ]

T

∈ IRmn. Assuming that M is Hurwitz, after few alge-
braic manipulations we can rewrite (6) as

MC + CMT + 2Q = 0, (7)

where Q = blkdiag(Q1, . . . ,Qn). Note that (7), an
algebraic Lyapunov equation in the unknown C, reveals

a general relationship between the dynamic correla-
tion matrix C and the Laplacian L in the presence of
noise with covariance matrix Q. It is well known that if
M is Hurwitz and Q positive semidefinite, the unique
solution of (7) is positive semidefinite and it has the
representation:

C = 2

∫ ∞

0

eM t Q eM
T t dt. (8)

If we assume thatM = MT andQ = σ2

2 Imn, σ > 0, the
integral in (8) can be explicitly computed and we obtain

C = σ2

2 M−1. If we further assume a linear coupling
between the oscillators, i.e. J [H(·)] = Imn, no intrinsic
dynamics, i.e. Fi(·) = 0 for all i, and one-dimensional
state variables, i.e. m = 1, we find the following simple
formula relating the dynamic correlation matrix C to
the Laplacian L:

C =
σ2

2 γ
L†. (9)

Note that this corresponds to the case of nodes with cou-
pled single-integrator dynamics driven by white noise,
communicating over an undirected graph G, i.e. to the
noisy consensus dynamics

ẋ = − γ Lx + η, (10)

where x = [x1, . . . , xn]
T ∈ IRn and η ∈ IRn. This sim-

plified yet meaningful scenario will be considered in the
rest of this paper. Henceforth, we also assume that the
number n of nodes of G is known. Note that from (9),
we obtain

L =
σ2

2 γ
C† =

[ 2 γ

σ2
C + J

]−1

− J, (11)

where the second equality follows from (2). We then
see that the entire network structure, embodied in the
Laplacian matrix L, can be extracted from the knowl-
edge of noise-corrupted time series. In fact, recalling the
definition of ξ, the dynamic correlation matrix can be
computed as

C =
1

T

∫ T

0

(x(t)− x(t)1)(x(t) − x(t)1)Tdt,

where

x(t) =
1

n

n∑

i=1

xi(t) =
1

n
1
Tx(t).

Since x(t)− x(t)1 = (In − J)x(t), we can rewrite equa-
tion (11) as

L =
[ 2 γ

σ2
(In − J)CR (In − J) + J

]−1

− J, (12)

where

CR =
1

T

∫ T

0

x(t)xT (t) dt. (13)

Since the integral in (13) cannot be analytically com-
puted in practice, assuming S discrete observations in
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the time interval [0, T], we can approximate CR as

CR ≃
1

S

S−1∑

k=0

x(k)xT (k). (14)

Note that in order to compute the right-hand side
of equation (14), we need to know the time series
{xi(0), xi(1), . . . , xi(S− 1)} at each node of the graph.
This means that in its present form, the network recon-
struction algorithm relies on global information and it
is thus centralized.
Next, we will introduce a practical method to separate
the off-diagonal entries of the reconstructed Laplacian
(Sect. 3.1), and highlight parallels between the trace of
the dynamic correlation matrix C and concepts from
other fields (Sect. 3.2). In Sect. 4, we will finally present
a consensus-based least-squares estimation algorithm
in order to make the reconstruction process fully dis-
tributed and computationally treatable: in this way, by
only interacting with its neighbors, each node will be
able to locally and efficiently estimate the topology of
the overall network.

3.1 Separation of the off-diagonal entries of the recon-
structed Laplacian

Fig. 2 shows the distribution of the off-diagonal entries

of matrix σ2

2γC
† for a social network with 62 nodes and

159 links [18], obtained by simulating system (10) with
γ = 1 and σ2 = 2 for 2000 seconds from a random ini-
tial condition. The distribution has one peak centered
at −1, corresponding to the existent links in the net-
work and the other centered at 0, corresponding to the
zero elements of L. Note that if L were perfectly recon-

structed from σ2

2γC
†, the two peaks would be sharp verti-

cal lines. Since this does not occur in practice, a thresh-
old needs to be determined to separate the two peaks
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Fig. 2. Distribution of the off-diagonal entries of matrix σ2

2γ
C

†

for a network with 62 nodes [18]. We set γ = 1, σ2 = 2 and
run (10) for 2000 seconds.

Algorithm 1 : κ-means clustering

1: [Initialization]: Randomly draw the centers µκ(0),
κ ∈ {1, 2}, from {c1, c2, . . . , cn(n−1)}.

2: for q ∈ {0, 1, . . . ,N− 1} do
3: [Assignment step (Forgy)]: Assign each ch to

the cluster Sκ(q) whose center µκ(q) is closest
(in the squared Euclidean-distance sense) to ch.

4: [Update step]: For κ ∈ {1, 2}, update the centers
µκ(q) as

µκ(q + 1) =
1

|Sκ(q)|

∑

ch ∈Sκ(q)

ch.

5: end for

and distinguish the existent from the nonexistent links.
An analytical procedure was proposed in [1] for finding
such a threshold: however, it is neither immediate, nor
appears well-physically motivated. On the other hand,
the thresholding mechanism in [13], which is based on
the largest eigenvalue of the graph Laplacian, is not de-
scribed in sufficient detail so that it can be replicated
herein.
As a simple yet effective alternative to the threshold-
ing methods in [1, 13], in this paper we propose to use

κ-means clustering [14]. Let c = [ch] ∈ IRn(n−1) be the

vector of off-diagonal entries of σ2

2γ C† listed in the natu-

ral order. In our case, the clustering problem amounts to
partition the entries of c into two clusters S1, S2 where
S1 is relative to the −1 values and S2 to the 0 values
(S1 ∩ S2 = ∅, S1 ∪ S2 = {c1, c2, . . . , cn(n−1)}), so as
to minimize the squared distortion:

min
S1,S2, µ1,µ2

∑

κ∈{1,2}

∑

ch ∈ Sκ

1

2

∣∣ch − µκ

∣∣2,

where µκ is the center of cluster Sκ, κ ∈ {1, 2}. This
combinatorial optimization problem is nonconvex and
exhaustive search for the optimal clusters is intractable.
This intractability motivates low-complexity heuristics
such as the κ-means algorithm. The algorithm uses an
iterative refinement technique: in fact, it alternates be-
tween minimizing the squared distortion over {S1, S2}
(assignment step) and {µ1, µ2} (update step), see
Algorithm 1. The algorithm has converged when the
assignments no longer change. Since both the steps op-
timize the squared distortion and there only exists a
finite number of assignments, the algorithm must con-
verge to a (local) minimum after N < ∞ steps. Once
convergence has been achieved, the Laplacian matrix
can be recovered, for h ∈ {1, . . . , n(n − 1)}, i �= j,
i, j ∈ {1, . . . , n}, as

ℓ̂ij =

⎧
⎨
⎩

−1 if ch ∈ S1(N− 1),

0 if ch ∈ S2(N− 1),

and ℓ̂ii =
∑n

j=1,j �=i |ℓ̂ij |, i ∈ {1, . . . , n}.
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3.2 Physical interpretations of the correlation matrix

3.2.1 Effective graph resistance

Assume the graph G is seen as an electrical circuit, where
a link corresponds to a unit resistor. The effective resis-
tance between a pair of nodes i and j, is the electrical
resistance measured across nodes i and j. The total ef-
fective resistance, Rtot, is defined as the sum of the ef-
fective resistance between all distinct pairs of nodes of
G [15]. It has been shown (see, e.g., [15, Sect. 2.5]) that
Rtot depends on the spectrum of the graph Laplacian as

Rtot = n

n∑

i=2

1

λi(L)
.

Hence, by recalling (3), we obtain the following concise
formula relating the total effective resistance and the
dynamic correlation matrix C

Rtot =
2 γ n

σ2
trace(C).

3.2.2 Consensus robustness and the H2 norm

Since system (10) is only marginally stable in the noise-
free case, let us restrict to the dynamics on span(1)⊥,
i.e. on the subspace of IRn orthogonal to the subspace

spanned by 1. Let the matrix Θ ∈ IR(n−1)×n be such
that Θ1 = 0, ΘΘT = In−1 and define r � Θx. By dif-
ferentiating r with respect to time, we obtain:

ṙ = − γ L∗r+Θη, (15)

where L∗ = ΘLΘT is the reduced Laplacian matrix
(note thatL∗ has the same eigenvalues ofL except for the
zero eigenvalue). Let us assume that the output equation
of system (15) is

y = In−1 r, (16)

then we get the following result (for the proof the reader
is referred to [17, Lemma 2]).

Proposition 1 Let the undirected graph G be connected
and σ2 = 1. The H2 norm of system (15)-(16) is

H =

(
n∑

i=2

1

2 γ λi(L)

)1/2

= (trace(C))1/2. �

Let us now define Σ(t) � E[r(t) rT(t)]. Note that H
in Prop. 1 coincides with the measure of robustness to
white-noise inputs of system (15) considered in [17]

H � lim
t→∞

E[‖r(t)‖2] = lim
t→∞

(trace(Σ(t)))1/2.

This definition of robustness corresponds to the steady-
state least-mean-square deviation introduced in [16] for
discrete-time consensus dynamics: a related H2 norm-
based notion quantifying the deviation from consensus,
is called (first-order) network coherence in [19].
Finally, under the same assumptions of Prop. 1, we have
the following geometric interpretation of matrix C in
relation to the properties of the controllability Gramian
(2 γ L∗)−1 of system (15), cf. [20, Th. 6.18].

Proposition 2 (Reachable set with bounded noise)
The closure of the set of all the states of system (15)
reachable from r(0) = 0 with noise bounded as

‖η‖2L2
�

∫ ∞

0

ηT (t)η(t) dt ≤ 1,

is given by the ellipsoid

T =
{
r : pT r ≤ (pTΘCΘTp)1/2, ∀p ∈ IRn−1

}
. �

In other words, Prop. 2 says that the points in the state
space of system (15) that can be reached using an ex-
citation with total energy one, are given by an ellipsoid
determined by C.

4 Distributed network-state estimation

As aforementioned, in this section we will present a
consensus-based strategy in order to make the recon-
struction procedure described in Sect. 3 fully distributed.
To this end, let us introduce the following measurement
equation for node i in the network G:

yi(k) = Ei x(k), k ∈ {0, 1, . . . , S− 1},

where Ei ∈ {0, 1}(|N (i)|+1)×n is a selection matrix
(the number of observations S is assumed to be known
a priori by each node). In other words, at time in-
stant k ∈ {0, 1, . . . , S−1}, node imeasures its own state
xi(k) (the first component of vector yi(k)), and the
state xj(k) of j ∈ N (i). By collecting the measurements
of all the agents at time k, we obtain y(k) = Ex(k),
k ∈ {0, 1, . . . , S − 1}, where y = [yT

1 , . . . ,y
T
n ]

T and
E = [ET

1 , . . . ,E
T
n ]

T . If the columns of E are linearly
independent (i.e. ETE is invertible), then the least-
squares estimate of x(k) is

x̂(k) = E† y(k) = (ETE)−1 ET y(k)

=
[ 1

n

n∑

i=1

ET
i Ei

]−1 [ 1

n

n∑

i=1

ET
i yi(k)

]
.

(17)

Note that the two quantities inside the square brackets
in (17), can be computed in a distributed fashion using
consensus-based algorithms. Let us then assume that
node i maintains a matrix Pi ∈ IRn×n and a vector
zi ∈ IRn, and executes the following iterations for h ∈
{0, 1, . . . , D − 1}, D > 1,

Pi(h+ 1) = Pi(h) + ς
∑

j ∈N (i)

(Pj(h)−Pi(h)), (18a)

zi(h+ 1) = zi(h) + ς
∑

j ∈N (i)

(zj(h)− zi(h)), (18b)

which are respectively initialized with Pi(0) = ET
i Ei,

zi(0) = ET
i yi(k), i ∈ {1, . . . , n}. If the step size

ς ∈ (0, 1) satisfies the condition 1 ς < 2/λn(L),

1 Note that the knowledge of the largest eigenvalue of the
Laplacian, λn(L), entails the knowledge of the topology of
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cf. [22, Lemma 8.1], then lim
h→∞

Pi(h) =
1
n

∑n
i=1 ET

i Ei,

lim
h→∞

zi(h) = 1
n

∑n
i=1 ET

i yi(k), and node i asymptot-

ically obtains an estimate x̂(i) of vector x at time k
according to:

x̂(i)(k) = lim
h→∞

P−1
i (h) zi(h). (19)

Node i can then compute its local estimate Ĉ
(i)
R ofCR as

Ĉ
(i)
R =

1

S

S−1∑

k=0

x̂(i)(k) (x̂(i)(k))T ,

and eventually obtain an estimate of the Laplacian ma-
trix via equation (12) and the application of κ-means
clustering. Note that the iterates Pi(h) may not be in-
vertible for all values of h: hence, estimate (19) at node i
can only be computed once Pi(h) becomes nonsingular.
We also observe here that differently from the itera-
tions in (18a), which have to be performed only once,
the iterations in (18b) must be executed at each time
instant k ∈ {0, 1, . . . , S− 1}, which is computationally
demanding, especially for large networks. In order to
reduce the computational load, we can replace (18b)
with a dynamic average consensus estimator which
tracks the average of all the nodes’ inputs ET

i yi(k) for
k ∈ {0, 1, . . . , S− 1}. Because of its attractive robust-
ness properties, we will make use of the discrete-time
version of the PI dynamic average consensus estimator
introduced in [23]:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zi(k + 1) = (1− ε α) zi(k) + εKP

∑

j ∈N (i)

(zj(k)− zi(k))

− εKI

∑

j ∈N (i)

(wj(k)−wi(k)) + ε αET
i yi(k),

wi(k + 1) = wi(k) + εKI

∑

j ∈N (i)

(zj(k)− zi(k)),

(20)
where zi is node i’s estimate of the average of all
the nodes’ inputs, wi is an internal estimator state,
KP , KI > 0 are estimator gains, ε > 0 is the step size,
and α > 0 is a parameter governing the rate at which
new information replaces old information in the dynamic
averaging process (the so-called “forgetting factor”).
Each node communicates its estimate zi and its internal-
estimator state wi to its neighbors in the network. Note
that differently from a static average consensus proto-
col, in (20) the inputs continually drive the estimator
and each zi(k) approximately tracks the true average

of ET
i yi(k). By defining z = [zT1 , . . . , z

T
n ]

T ∈ IRn2

and

w = [wT
1 , . . . ,w

T
n ]

T ∈ IRn2

, we can rewrite system (20)
in compact form as:
[
z(k + 1)

w(k + 1)

]
= (Γ⊗ In)

[
z(k)

w(k)

]
+

[
ε α In2

0

]
ETy(k),

(21)

the overall network by each node. However, it is well-known
that λn(L) ≤ n [21], and the upper bound n can be used by
each node to determine ς in (18).

where

Γ =

[
(1− ε α)In − εKp L εKIL

−εKIL In

]
.

The proof of the next proposition, which is not available
in the literature, is given in the Appendix.

Proposition 3 (Stability of the PI estimator)
The PI estimator (21) is stable if the step size

ε <
2Re(βi)

|βi|2
, ∀ i ∈ {2, . . . , n}, (22)

where

βi =
1

2

[
α−KP ζi ±

√
(α−KP ζi)2 − 4K2

I ζ
2
i

]
, (23)

and ζi, i ∈ {2, . . . , n}, is the i-th eigenvalue of −L. �

Remark 1 As the size of the network G increases, longer
time series are needed to get the same level of reconstruc-
tion accuracy (and, in general, to makePi(h) invertible):
in fact, the information takes more time to flow through
G and more communication rounds are necessary. On the
other hand, higher noise magnitude may reduce, in gen-
eral, the number of necessary consensus steps but also
increase the power dissipation at each node. Therefore,
computational complexity/energy consumption needs to
be weighted against reconstruction accuracy in practical
applications where available resources are at premium. ⋄

5 Numerical validation

Numerical simulations have been conducted with five
realistic networks in order to compare the performance of
the centralized and distributed network reconstruction
methods.

• Data and computer networks : A full binary tree is a
rooted tree in which every node other than the leaves
has two children [21]. Full binary trees are extensively
used to organize data in computer systems. In our sim-
ulations, we considered the “Full binary tree T4” which
has 4 levels (excluding the root node) and 31 nodes.
Hypercube networks [21] have found frequent applica-
tions in parallel processing (e.g. in massively-parallel
supercomputers). In this study, we chose the “Hyper-
cube Q4”, a regular network with 16 nodes.

• Electric power network : the “IEEE 9-bus” power sys-
tem consists of four generators (nodes from 1 to 4)
and five loads (nodes from 5 to 9), see [4].

• Transportation networks : the links of the network
“Road Grenoble” correspond to the major arterials
in the city of Grenoble in France, and the nodes to
27 road intersections (see Fig. 3(a)). The metro of
Lyon, “Metro Lyon”, in France, has a total of 4 lines
and 42 stations [24]. In this study, only the 6 termini
(black) and 4 transfer stations (white) are considered
as nodes (see Fig. 3(b)).

Following [1], the network-reconstruction performance
was quantified using the success rate of existing
and non-existing links (SREL, SRNL, respectively).
SREL (SRNL) is defined as the ratio of the number

6



Network # nodes # links SREL/SRNL Centralized SREL/SRNL Distributed (2 nodes) KP , KI , α, ε, D

Full binary tree T4 31 30 1.0000
/

1.0000 0.9167
/

0.9722, 0.8667
/

0.9733 60, 0.05, 3, 0.005, 2500

Hypercube Q4 16 32 1.0000
/

1.0000 0.9906
/

0.9977, 0.9127
/

0.9943 40, 0.05, 8, 0.005, 2000

IEEE 9-bus 9 9 1.0000
/

1.0000 0.9000
/

0.9630, 0.9667
/

0.9556 50, 0.05, 1.5, 0.005, 2000

Road Grenoble 27 42 0.9976
/

0.9997 0.7143
/

0.8829, 0.7071
/

0.8903 40, 0.05, 1.5, 0.003, 2000

Metro Lyon 10 10 1.0000
/

1.0000 0.7700
/

0.9971, 0.8000
/

0.9943 40, 0.05, 1.5, 0.005, 2000

Table 1
Success rate of existent and non-existent links (SREL/SRNL) with the centralized and distributed reconstruction methods for
five different network topologies. The results are the average of 10 trials, each one of 1000 seconds.
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Fig. 3. Examples: (a) Network of major arterials in the city of
Grenoble (image source: Google maps); (b) Simplified plan
of the metro of Lyon (www.tcl.fr).

of successfully predicted existent (nonexistent) links to
the total number of existent (nonexistent) links. In our
tests, the coupling strength γ was set to 1 and the noise
magnitude σ2 = 2. Random initial conditions x(0), and
z(0), w(0) were selected for system (10) and the PI es-
timator (21), respectively. κ-means clustering was used
in all cases for separating the off-diagonal entries of the
reconstructed Laplacian matrix, and it produced results
more consistent and repeatable than those of the thresh-
olding method in [1]. Table 1 reports the SREL/SRNL

obtained as the average of 10 trials of 1000 seconds
(ς = 0.1, S = 10000) for the centralized and distributed
algorithms, and the value of the parameters used in the
numerical tests (last column). In the distributed case,
we reported the SREL/SRNL of two adjacent nodes
drawn at random in the network: in most of the cases a
success rate greater than 0.9 was obtained. In order to
illustrate the performance of our dynamic average con-
sensus least-squares algorithm, Fig. 4 shows the time

evolution of xj (red) and x̂
(6)
j (black), j ∈ {1, 2, 3, 4}, ob-

tained via (18a) and (21), for the hypercube networkQ4
(note that node 6 is adjacent to node 3 but not to nodes
1, 2, 4). As it is evident from the figure, the estimated
state components satisfactorily track the true state.

6 Conclusions and future work

In this paper we have presented a fully distributed algo-
rithm for reconstructing the topology of an undirected
consensus network. Our approach consists in locally es-
timating the noise-corrupted network state by using a
distributed least-squares algorithm. We proposed a new
efficient method for separating the off-diagonal entries
of the reconstructed graph Laplacian based on κ-means
clustering, and offered some insight into the trace of the
dynamic correlation matrix of the coupled single inte-
grators. Numerical simulations performed on realistic
networks have demonstrated the effectiveness of our dis-
tributed reconstruction method.
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Fig. 4. Time evolution of xj (red) and x̂
(6)
j (black),

j ∈ {1, 2, 3, 4}, for the hypercube network Q4.
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In this paper, we have only dealt with the Boolean struc-
ture of a network (i.e. with the existence or nonexistence
of links between nodes). In future works, we would like
to extend the proposed method to recover the weights of
a network, and to estimate the directions of the links in
directed graphs.We are also going to explore othermeth-
ods for computing the sample covariancematrix in equa-
tion (14) in a distributed fashion (e.g. by estimating its
eigenvectors in a decentralized way), and to relax the as-
sumption of known noise magnitude. Finally, it is worth
pointing out that because of its computational complex-
ity, the proposed reconstruction algorithm is not appli-
cable, at present, to networks with hundreds or thou-
sands of nodes. In order to address this problem, we plan
to exploit the sparsity of large-scale real-world networks
for distributed least-squares estimation, and to leverage
the information coming from anchor or ancillary nodes
around the network.

Appendix

Lemma 1 Let A ∈ IRn×n and B ∈ IRm×m. Then the
eigenvalues of A ⊗ B are of the form λi(A)λj(B), i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}. �

Lemma 2 (Schur’s formula) Let A,B, C, D ∈
IRn×n. If A and C commute, i.e. AC = CA, then

det
[
A B

C D

]
= det(AD − CB). �

Proof of Proposition 3: Owing to Lemma 1, to prove
the statement we only need to study the eigenvalues of
matrix Γ, which are the roots of det(λI2n − Γ) = 0. If
we apply Lemma 2, we find that

det(λI2n − Γ) =

det
(
(λ− 1)[(λ− 1 + ε α) In + εKP L] + ε2 K2

I L
2
)
.

(24)
Note now that det(λIn +L) =

∏n
i=1 (λ− ζi) where ζi is

the i-th eigenvalue of −L with 0 = ζ1 > ζ2 ≥ . . . ≥ ζn.
By comparing (24) with this last equation, we see that
det(λI2n − Γ) =

∏n
i=1(λ

2 − (2 − εα + εKP ζi)λ + 1 −

εα + εKP ζi + ε2 K2
Iζ

2
i ) from which it follows that the

eigenvalues of Γ can be obtained by solving the equation
λ2−(2−ε α+εKP ζi)λ+1−ε α+εKP ζi+ε2K2

I ζ
2
i = 0.

Hence, if λ±
i are the eigenvalues of Γ associated with ζi,

we have that

λ±
i = 1−

ε

2

(
α−KP ζi ±

√
(α−KP ζi)2 − 4K2

I ζ
2
i

)
.

Note that λ+
1 = 1 − εα and λ−

1 = 1 since ζ1 = 0, and
that λ−

1 is the only eigenvalue of Γ having unitary mod-
ulus. Let us now define the complex number βi as in
equation (23) (notice that Re(βi) ≥ 0, ∀ i). Then for sys-
tem (21) to be stable, we must impose that |1−ε βi| < 1,
∀ i ∈ {2, . . . , n}, from which condition (22) follows. �
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