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SAMPLING, INTERPOLATION AND RIESZ BASES IN SMALL FOCK SPACES

A. BARANOV, A. DUMONT, A. HARTMANN, K. KELLAY

Abstract. We give a complete description of Riesz bases of reproducing kernels in small
Fock spaces. This characterization is in the spirit of the well known Kadets–Ingham 1/4
theorem for Paley–Wiener spaces. Contrarily to the situation in Paley–Wiener spaces,
a link can be established between Riesz bases in the Hilbert case and corresponding
complete interpolating sequences in small Fock spaces with associated uniform norm.
These results allow to show that if a sequence has a density stricly different from the critical
one then either it can be completed or reduced to a complete interpolating sequence. In
particular, this allows to give necessary and sufficient conditions for interpolation or
sampling in terms of densities.

1. Introduction and main results.

Interpolation and sampling problems are well studied objects. Complete results for
corresponding sequences are known for broad classes of spaces of analytic functions.
We refer the reader to the monograph by Seip for an account on these problems [25]. Two
prominent examples here are the Fock spaces and the Bergman spaces. For these, inter-
polating and sampling sequences have been studied by Seip in the classical situation.
More general weights have been discussed in the 1990s by Berndtsson and Ortega-Cerdà
[3], Lyubarskii and Seip [15], and later Marco, Massaneda and Ortega-Cerdà [17]. More
recently, a series of results was obtained for "small" (i.e., with slowly growing weights)
versions of these spaces. In this case the geometric properties of sampling/interpolating
sequences change significantly. Seip showed that in small Bergman spaces, locally, inter-
polating sequences look like interpolating sequences in Hardy spaces [26]. In small Fock
spaces, Borichev and Lyubarskii recently exhibited Riesz bases of reproducing kernels
[6]. In this paper we will investigate further the situation of small Fock spacesF p

ϕ for the

weight ϕ(z) = α(log+ r)2. We focus on the Hilbert situation p = 2 and on the case p = ∞.
As it turns out, no density characterization can be expected for interpolation or sampling.
There are actually sequences which are simultaneously interpolating and sampling, also
called complete interpolating sequences. Note that complete interpolating sequences nec-
essarily have critical density (as defined below). We also provide sequences with critical
density which are neither interpolating nor sampling for p = 2,∞.
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The central result of this paper is a characterization of complete interpolating se-
quences when p = 2 which is in the spirit of the famous 1/4 Kadets–Ingham theorem
in the Paley–Wiener space and its more general version due to Avdonin [1]. A differ-
ent characterization using in particular a Muckenhoupt type condition and based on
different techniques is discussed by Belov, Mengestie and Seip for more general spaces
in [2]. The novelty of our approach is the use of a rather elementary Hilbert space
result, namely Bari’s Theorem, adapted to our situation. Moreover, we will show that,
surprisingly, the same characterization applies to complete interpolating sequences in
F ∞ϕ , the L∞-counterpart of the Fock space F 2

ϕ . From our characterization, we will also
deduce sufficient density conditions for interpolation and sampling.

We also would like to emphasize the connection between these spaces and the de
Branges spaces [7]. The complete interpolating sequence introduced by Borichev and
Lyubarskii in [6] defines a generating function G which, when p = 2, allows to identify
the Fock spaces we are interested in with the de Branges spaceH (G). Consequently, the
measure dx/|G(x)|2 is a sampling measure for our Fock spaces, which answers a question
raised in [19]. Note that in [18], the authors consider sampling and interpolation in the
class of de Branges spaces for which the phase function defines a doubling measure. Our
space corresponds to the situation when the phase function is locally but not globally
doubling so that their results apparently do not apply here. Still it can be observed that
these authors obtain a similar kind of density characterization as ours when p = 2 (at
least for real sequences they consider).

1.1. Definition of small Fock spaces. We now introduce the necessary notation. Let
ϕ(z) = α(log+ |z|)2, which is a subharmonic radial function with ϕ(r) ր +∞, r → +∞,
and define the associated Fock space,

F 2
ϕ =

{
f ∈ Hol(C) : ‖ f ‖2ϕ,2 :=

∫

C

| f (z)|2e−2ϕ(z)dm(z) < ∞
}
.

In [6] Borichev and Lyubarski have shown the existence of complete interpolating se-
quences in F 2

ϕ (i.e., simultaneously interpolating and sampling for F 2
ϕ , see precise defi-

nitions below).
The sequence they introduced will be the reference sequence for our considerations:

Γ = Γα = {e
n+1
2α eiθn}n≥0, θn ∈ R. (1)

In order to define sampling and interpolating sequences for F 2
ϕ , we consider first kz,

the reproducing kernel of F 2
ϕ :

〈 f ,kz〉F 2
ϕ
= f (z), f ∈ F 2

ϕ , z ∈ C.

According to [6, Lemma 2.7], the kernel admits the following estimate:

‖kz ‖2ϕ,2 = kz(z) ≍ e2ϕ(z)

1 + |z|2 , z ∈ C. (2)
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The sequence Λ ⊂ C is called sampling for F 2
ϕ if

‖ f ‖2ϕ,2 ≍ ‖ f ‖2ϕ,2,Λ :=
∑

λ∈Λ

| f (λ)|2
kλ(λ)

, f ∈ F 2
ϕ ,

and interpolating if for every v = (vλ)λ∈Λ ∈ ℓ2
ϕ,Λ

, i.e., ‖v‖ϕ,2,Λ < ∞, there exists f ∈ F 2
ϕ such

that

v = f |Λ.
Let kλ = kλ /‖kλ ‖ϕ,2 be the normalized reproducing kernel at λ. LetΛ ⊂ C. We say that
{kλ}λ∈Λ is a Riesz sequence in F 2

ϕ if for some C > 0 and for each finite sequence {aλ}, we
have

1

C

∑

λ∈Λ
|aλ|2 ≤

∥∥∥
∑

λ∈Λ
aλ kλ

∥∥∥2

2,ϕ
≤ C

∑

λ∈Λ
|aλ|2,

and a Riesz basis if it is also complete. It is well known that Λ is interpolating if and only
if {kλ}λ∈Λ is a Riesz sequence, and Λ is complete interpolating if and only if {kλ}λ∈Λ is a
Riesz basis in F 2

ϕ .

It should be mentioned that our case ϕ(r) = α(log+ r)2 corresponds to the critical
growth of the weight for which Riesz bases of reproducing kernels exist. Recall that,
by the results of Seip and Seip–Wallstén [22, 27] there are no complete interpolating
sequences for the classical Fock space (i.e., for ϕ(r) = r2). For more general (in particular,
rapidly growing) weights the same was shown in [5, 17, 15] (see also [25] as a general
source). Some examples of slowly growing weights such that no complete interpolating
sequences exist were given in [12]. Finally, Borichev and Lyubarskii [6, Theorem 2.5]
have shown that, under some regularity conditions, if (log+ r)2 ≪ ϕ(r) ≪ r2, then the
corresponding Fock space does not possess a Riesz basis of reproducing kernels. We
mention that there is no known weight for Bergman spaces for which there are Riesz
bases of reproducing kernels.

1.2. Description of complete interpolating sequences in F 2
ϕ . Our central result is a

characterization of complete interpolating sequences in terms of their deviation from
the sequence Γ = Γα defined in (1).

Before stating the theorem we need to define separation as in [17, 6]. Set

ρ(z) = (∆ϕ(z))−1/2,

where ∆ϕ(r) = ϕ′′(r) + ϕ′(r)/r, r > 0. We associate with ρ a “distance” (a semi-metric):

dρ(z,w) =
|z − w|

1 +min(ρ(z), ρ(w))
, z,w ∈ C.

Note that when z,w are in a fixed disk, this distance is comparable to Euclidean distance.
The sequence Λ ⊂ C is said to be dρ-separated if there is dΛ > 0 such that

inf{dρ(z,w) : z,w ∈ Λ, z , w} ≥ dΛ.
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In the specific situation ϕ(r) = α(log+ r)2, we have ρ(r) = r/
√

2α, r ≥ 1. Hence

dρ(z,w) =
√

2α
|z − w|√

2α +min(|z|, |w|)
.

In particular, for β < 1 and 0 , λ ∈ C the ball corresponding to this distance is given by

Dρ(λ, β) := {z ∈ C : dρ(z, λ) < β}.
When β is small, Dρ(λ, β) is comparable to a Euclidean disk D(λ, q|λ|) with a suitable
constant q depending on β. From this we deduce that Λ is dρ-separated if and only if
there exists c > 0 such that the Euclidean disks D(λ, c|λ|), λ ∈ Λ, are disjoint.

Theorem 1.1. Let α > 0, ϕ(r) = α(log+ r)2, let Γ = {γn}n≥0 = {e
n+1
2α }n≥0 and let Λ = {λn}n≥0

with λn = γneδneiθn , |λn| ≤ |λn+1|, θn ∈ R. Then {kλ}λ∈Λ is a Riesz basis for F 2
ϕ if and only if the

following three conditions hold.

(a) Λ is dρ-separated,
(b) (δn) ∈ ℓ∞,
(c) there exists N ≥ 1 and δ > 0 such that

sup
n

1

N

∣∣∣∣
n+N∑

k=n+1

δk

∣∣∣∣ ≤ δ <
1

4α
.

For N = 1, condition (c) of Theorem 1.1 becomes supn |δn| < 1/4, which resembles a
well-known stability result for complete interpolating sequences in the Paley–Wiener
space (equivalently, Riesz bases of exponentials) – the famous 1/4–Theorem due to In-
gham and Kadets (see, e.g., [11, 20]). Also, for arbitrary N, Avdonin considers the
sufficiency of that condition in the Paley–Wiener space [1]. However, there is an essen-
tial difference since complete interpolating sequences in the Paley–Wiener space can not
be described in terms of perturbations and more subtle characteristics (e.g., the Muck-
enhoupt condition) appear [11], while in the case of spaces of very slow growth such a
characterization turns out to be possible. As already mentioned, very close results were
obtained by Belov, Mengestie and Seip in [2] where the boundedness and invertibility
problem of a discrete Hilbert transform on lacunary sequences was solved. Though
Theorem 1.1 is not formally covered by the results stated in [2] (see Remark 3.1), it seems
that one can obtain our characterization using the methods of that paper. However, as
mentioned earlier, our proof being based on Bari’s theorem is essentially elementary.

As an immediate consequence of Theorem 1.1, the reader should note that if a sequence
{λn} is complete interpolating then any sequence {λneiθn} will be complete interpolating
(as is the case for Γα).

1.3. Weighted Fock spaces with uniform norm. We also deal with the case p = ∞. The
corresponding weighted Fock space is defined by

F ∞ϕ =
{

f ∈ Hol(C) : ‖ f ‖ϕ,∞ := sup
z∈C
| f (z)|e−ϕ(z) < ∞

}
.
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A sequence Λ ⊂ C is called sampling for F ∞ϕ , if there exists L > 0 such that

‖ f ‖ϕ,∞ ≤ L‖ f ‖ϕ,∞,Λ := L sup
λ∈Λ
| f (λ)|e−ϕ(λ), f ∈ F ∞ϕ .

A sequence Λ is called interpolating for F ∞ϕ if for every sequence v = (vλ)λ∈Λ in ℓ∞
ϕ,Λ

,

i.e., such that ‖v‖ϕ,∞,Λ < ∞, there is a function f ∈ F ∞ϕ such that v = f |Λ.

It turns out that there exist complete interpolating sequences for F ∞ϕ (i.e., as in F 2
ϕ ,

simultaneously interpolating and sampling sequences for F ∞ϕ ), which differs in this
respect from most other known spaces of entire functions (e.g., complete interpolating
sequences exist for the Paley–Wiener space PW

p
a for 1 < p < ∞ [16], but not for p = ∞).

Our second main result is as follows:

Theorem 1.2. Let ϕ(r) = α(log+ r)2, α > 0. Then a sequence Λ is a complete interpolating
sequence forF ∞ϕ if and only if for some (any)λ ∈ Λ the sequenceΛ\{λ} is a complete interpolating

sequence for F 2
ϕ .

Thus, any complete interpolating sequence forF ∞ϕ is a small (in the sence of conditions

(a)–(c) of Theorem 1.1) perturbation of the sequence Γ̃ = Γ ∪ {1}.

We derive from Theorems 1.1 and 1.2 several density conditions for interpolation and
sampling in F p

ϕ , p = 2,∞. Before stating these results, we need some more notation.
Let A(r,R) be the annulus centered at the origin with inner and outer radii r and R:

A(r,R) := {z ∈ C : r ≤ |z| < R}. For a dρ-separated sequence Λ we define the lower and
upper densities respectively by

D−(Λ) = lim inf
R→+∞

lim inf
r→+∞

Card(Λ ∩A(r,Rr))

log R

and

D+(Λ) = lim sup
R→+∞

lim sup
r→+∞

Card(Λ ∩A(r,Rr))

log R
.

These densities do not change when we remove or add a finite number of points to Λ.

1.4. Density criteria for sampling and interpolation. As an application of our result on
Riesz bases Theorem 1.1 (as well as Theorem 1.2) we can show that each set with D+(Λ) <
2α (respectively D−(Λ) > 2α) can be completed (reduced) to a complete interpolating
sequence. More precisely:

Theorem 1.3. Let ϕ(r) = α(log+ r)2, let p = 2,∞, and let Λ be a dρ-separated sequence. Then

(i) if D+(Λ) < 2α, then Λ is a subset of some complete interpolating sequence in F p
ϕ ;

(ii) if D−(Λ) > 2α, then Λ contains a complete interpolating sequence in F p
ϕ .

This result, together with a classical comparison method by Ramanathan-Steger [17,
21], allows us to deduce our density results.

Theorem 1.4. (Sampling, p = ∞) Let ϕ(r) = α(log+ r)2, α > 0. Then
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(i) every dρ-separated sequence Λ with D−(Λ) > 2α, is a set of sampling for F ∞ϕ ;
(ii) if the sequence Λ is a set of sampling for F ∞ϕ then it contains a dρ-separated subsequence

Λ̃ with D−(Λ̃) ≥ 2α.

Theorem 1.5. (Sampling, p = 2) Let ϕ(r) = α(log+ r)2, α > 0. Then

(i) every dρ-separated sequence Λ with D−(Λ) > 2α, is a set of sampling for F 2
ϕ ;

(ii) if the sequence Λ is a set of sampling for F 2
ϕ , then it is a finite union of dρ-separated

subsequences and Λ contains a dρ-separated sequence Λ̃ such that D−(Λ̃) ≥ 2α.

Theorem 1.6. (Interpolation, p = 2,∞) Let ϕ(r) = α(log+ r)2, α > 0. Then

(i) every dρ-separated sequenceΛwith D+(Λ) < 2α is a set of interpolation forF p
ϕ , p = 2,∞;

(ii) if the sequence Λ is a set of interpolation for F p
ϕ , p = 2,∞, then it is a dρ-separated

sequence with D+(Λ) ≤ 2α.

In the case when the density is critical, i.e., D+(Λ) = D−(Λ) = 2α, any of the fol-
lowing situations may occur: a system my be complete interpolating, either complete
or interpolating, and, finally, neither complete nor interpolating (see Section 6 for the
corresponding examples). Thus, there are no density characterizations for sampling or
interpolating sequences for p = 2,∞.

The paper is organized as follows. In the next section, we present some elementary
results on sampling and interpolation in our spaces. Some of them follow from a Bern-
stein type inequality that we will also give in this section. It is an interesting remark that
we can consider our Fock spaces as subspaces of a suitable H∞ from which we deduce
that half-lines are sampling for p = ∞. Furthermore, we show that the lower density of
a zero sequence has to be less than or equal to the critical density. Sections 3 and 4 are
devoted to the proof of our main results (Theorems 1.1 and 1.2), from which we deduce
the density results on sampling and interpolation in Section 5. Examples of sequences of
critical density which are neither sampling nor interpolating are discussed in Section 6.
There we will also show that it is not possible to switch from an interpolating sequence to
a sampling sequence by adding one point without one of the sequences being complete
interpolating.

A final word on notation: A . B means that there is a constant C independent of the
relevant variables such that A ≤ CB. We write A ≍ B if both A . B and B . A.

Acknowledgements. Alexander Borichev has read the first draft of the paper and sug-
gested many simplifications and improvements. The authors are grateful to him and also
to Yurii Belov, Yuri Lyubarskii, Pascal Thomas and Kristian Seip, for helpful discussions.

2. Preliminary results

2.1. dρ-separated sequences. Recall that ϕ(r) = α(log+ r)2, and

dρ(z,w) =
√

2α
|z − w|√

2α +min(|z|, |w|)
.
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A central tool in our discussion is the following Bernstein type result whose proof can
be found in [5, Lemma 4.1].

Lemma 2.1. Let f be a holomorphic function.

(i) If ‖ f ‖ϕ,∞ = 1, then for every c > 0 there exists 0 < β < 1 such that whenever
| f (z0)|e−ϕ(z0) ≥ c for some z0 ∈ C, then for every z ∈ Dρ(z0, β) we have

| f (z)|e−ϕ(z) ≥ c

2
e−απ

2

.

(ii) There is β0 > 0, such that if 0 < β < β0, then for z ∈ C with dρ(z, z0) ≤ β we have

|| f (z)|e−ϕ(z) − | f (z0)|e−ϕ(z0)| . dρ(z, z0) max
Dρ(z0 ,β)

| f |e−ϕ.

(iii) | f (z)|e−ϕ(z)
.

1

|z|2
∫

Dρ(z,β)

| f (w)|e−ϕ(w)dm(w).

From Lemma 2.1 we can deduce the following immediate corollaries (proofs can be
found for instance in [10, Chapter 5] or [28, Chapter 4]).

Corollary 2.2. If Λ is sampling for F p
ϕ , p = 2,∞, then there exists a dρ-separated sequence

Λ̃ ⊂ Λ which is sampling for F p
ϕ .

Corollary 2.3. Every set of interpolation for F p
ϕ , p = 2,∞, is dρ-separated.

We also need a uniform control of the sampling constant for small perturbations.

Corollary 2.4. Let Λ = {λn} be a separated sampling sequence. Then there is a δ > 0 and C > 0

depending only on δ such that for every Λ̃ = {λ̃n} with dρ(λn, λ̃n) ≤ δ, we have

1

C
‖ f ‖2,ϕ . ‖ f |

Λ̃
‖2,ϕ,Λ̃.

Proof. First note that when dρ(λn, λ̃n) ≤ δ, then 1+ |λn|2 ≍ 1+ |λ̃n|2 (constants are uniform
for δ ≤ δ0). Now

‖ f ‖22,ϕ ≍
∑

n

(1 + |λn|2)| f (λn)|2e−2ϕ(λn)

≤
∑

n

(1 + |λn|2)| f (λ̃n)|2e−2ϕ(λ̃n) +
∑

n

(1 + |λn|2)
∣∣∣| f (λ̃n)|2e−2ϕ(λ̃n) − | f (λn)|2e−2ϕ(λn)

∣∣∣

.

∑

n

(1 + |λ̃n|2)| f (λ̃n)|2e−2ϕ(λ̃n) +
∑

n

(1 + |λn|2)dρ(λn, λ̃n) max
z∈Dρ(λn,δ)

| f (z)|2e−2ϕ(z),

where we have used Lemma 2.1 (constants only depend on δ). Let δ0 such that the disks
D(λn, δ0|λn|) are disjoint. Then, when δ > 0 is sufficiently small and z ∈ D(λn, δ|λn|),
every disk D(z, δ0|z|/2) is contained in D(λn, δ0|λn|). Now, by Lemma 2.1, for every
z ∈ D(λn, δ|λn|),

| f (z)|2e−2ϕ(z)
.

1

δ2
0
|z|2

∫

D(z,δ0|z|/2)

| f (w)|2e−2ϕ(w)dm(w) ≤ 1

δ2
0
|z|2

∫

D(λn,δ0|λn |)
| f (w)|2e−2ϕ(w)dm(w).
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Since dρ(z, λn) ≤ 2δ, we have 1 + |λn|2 ≍ 1 + |z|2, and hence

‖ f ‖22,ϕ .
∑

n

(1 + |λ̃n|2)| f (λ̃n)|2e−2ϕ(λ̃) + δ
∑

n

∫

Dρ(λn,2δ)

| f (w)|2e−2ϕ(w)dm(w),

where the constants only depend on δ. It remains to choose δ sufficiently small. �

Recall that Γ = Γα = {e
n+1
2α eiθn}n≥0, θn ∈ R, is a complete interpolating sequence for F 2

ϕ .
We will need the following simple estimates from [6].

Lemma 2.5. [6, Lemma 2.6]. Let ϕ(r) = α(log+ r)2 and Γ = Γα. The product

G(z) =
∏

γ∈Γ

(
1 − z

γ

)

converges uniformly on compact sets in C and satisfies

|G(z)| ≍ eϕ(z) dist(z, Γ)

1 + |z|3/2 , z ∈ C,

where the constants are independent of the choice of θn. Here dist(z, Γ) denotes the Euclidean
distance between z and Γ. Also

|G′(γ)| ≍ eϕ(γ)

1 + |γ|3/2 , γ ∈ Γ.

Lemma 2.6. Let Λ ⊂ C. Then

‖ f ‖2,ϕ,Λ ≤ c(Λ)‖ f ‖2,ϕ, f ∈ F 2
ϕ , (3)

if and only if Λ is a finite union of dρ-separated subsets.

Proof. IfΛ is a finite union of dρ-separated subsets, then (3) follows from Lemma 2.1 (iii).
In the opposite direction, let Γ and G be as in Lemma 2.5, and put

Gγ(z) =
G(z)

(z − γ)G′(γ)

eϕ(γ)

γ
.

Then

|Gγ(z)| ≍ |γ|1/2
1 + |z|3/2 eϕ(z) dist(z, Γ)

|z − γ| .

The function Gγ belongs to F 2
ϕ and supγ ‖Gγ‖2,ϕ . 1 (see [6, Proof of Theorem 2.5]).

Hence, by Lemma 2.5, we have

1 & ‖Gγ‖2,ϕ & ‖Gγ‖2,ϕ,Λ ≥
∑

λ∈Λ∩Dρ(γ,β)

|Gγ(λ)|2e−2ϕ(λ)(1 + |λ|2)

≥ c Card(Λ ∩Dρ(γ, β))

(note that dist(λ, Γ) ≍ |λ − γ| since Γ is separated and we can choose β such that Dρ(γ, β)
stays sufficiently far from Γ \ {γ}). So

sup
γ∈Γ

Card(Λ ∩Dρ(γ, β)) < ∞
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for arbitrary real numbers θn (we can pick β such that that Dρ(γ, β) covers Cwhen γ runs
through Γ and θn through R). Hence Λ is a finite union of dρ-separated sequence. �

Lemma 2.7. If Λ is dρ-separated and sampling for F ∞
(1+ε)ϕ

for some ε > 0, then Λ is sampling

for F 2
ϕ .

Proof. We are going to use the same Beurling duality argument as in [17, Theorem 36]
(see also [4, pp. 348-358], [23, pp.36-37]). Let

F ∞,0ϕ =
{

f ∈ F ∞ϕ : lim
|z|→∞

| f (z)|e−(1+ε)ϕ(z) = 0
}
.

By the sampling property, the operator family Tz : { f (λ)}λ∈Λ 7−→ e−(1+ε)ϕ(z) f (z), z ∈ C, is

uniformly bounded from { f |Λ : f ∈ F ∞,0ϕ } ⊂ c0 to C. Hence, by duality, there exists a
family (g(z, λ))λ∈Λ such that

e−(1+ε)ϕ(z) f (z) =
∑

λ∈Λ
e−(1+ε)ϕ(λ) f (λ)g(z, λ), f ∈ F ∞,0

(1+ε)ϕ
.

and supz

∑
λ |g(z, λ)| < ∞. Let now Γ = Γεα = {e

n+1
2αε eiθn}, and consider the function G ∈ F ∞εϕ

of Lemma 2.5 vanishing on Γ. When e
n+1
2αε ≤ |z| ≤ e

n+2
2αε , let γz = e

n+2
2αε eiθn , so that

e−1/(2αε) ≤ |z/γz| ≤ 1.

Set

Pz(w) =
G(w)

(w − γz)G′(γz)

w2

z2
.

For w ∈ Cwe have

|Pz(w)| ≍ eε(ϕ(w)−ϕ(γz)) |w|1/2
|z|1/2

dist(w, Γ)

|w − γz|
. eε(ϕ(w)−ϕ(z)) |w|1/2

|z|1/2
dist(w, Γ)

|w − γz|
. (4)

Given f ∈ F 2
ϕ , by Lemma 2.1 (iii) and (4) we have w 7→ f (w)Pz(w) ∈ F ∞,0

(1+ε)ϕ
and hence

e−(1+ε)ϕ(z) f (z)Pz(z) =
∑

λ∈Λ
e−(1+ε)ϕ(λ) f (λ)Pz(λ)g(z, λ).

Since |Pz(z)| ≍ 1, again by (4) we obtain that

| f (z)|e−ϕ(z)
.

∑

λ∈Λ
| f (λ)|e−ϕ(λ) |λ|1/2

|z|1/2
dist(λ, Γ)

|λ − γz|
|g(z, λ)|.
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Since
∑
λ |g(z, λ)| < ∞, Hölder’s inequality and (2) give us that

| f (z)|2e−2ϕ(z)
.

(∑

λ∈Λ
| f (λ)|2e−2ϕ(λ) |λ|

|z|
dist(λ, Γ)2

|λ − γz|2
)(∑

λ∈Λ
|g(z, λ)|2

)

.

(∑

λ∈Λ

| f (λ)|2
kλ(λ)

1

|λz|
dist(λ, Γ)2

|λ − γz|2
)(∑

λ∈Λ
|g(z, λ)|

)2

.

∑

λ∈Λ

| f (λ)|2
kλ(λ)

1

|λz|
dist(λ, Γ)2

|λ − γz|2
. (5)

It remains to verify that

I(λ) =
1

|λ|

∫

C

dist(λ, Γ)2

|λ − γz|2|z|
dm(z) < ∞ (6)

uniformly in λ, since by (5), we then obtain the sampling inequality

‖ f ‖22,ϕ . sup
λ

I(λ)‖ f ‖22,ϕ,Λ.

We will now show (6). Since dist(λ, Γ) ≤ |λ − γz| and |γz| ≍ |z|, we have

1

|λ|

∫

z: |γz|<2|λ|

dist(λ, Γ)2

|λ − γz|2|z|
dm(z) .

1

|λ|

∫

|z|.|λ|

1

|z|dm(z) . 1.

If |γz| ≥ 2|λ|, then |λ − γz| ≥ |γz|/2 ≍ |z| and dist(λ, Γ) . |λ|, so that
∫

z: 2|λ|≤|γz |

1

|λ||z|
dist(λ, Γ)2

|λ − γz|2
dm(z) . |λ|

∫

|λ|.|z|

1

|z|3 dm(z) . 1.

Hence (6) is established and the proof is complete. �

2.2. De Branges spaces. In order to investigate the Hilbertian counterpart of the above
result we will identify the Fock space with a de Branges space. Let G be the generating
function associated with the sequence Γ defined by (1) with θn = −π/2. Recall that the
de Branges space associated with G (see [7]) is given by

H (G) := { f entire : f/G ∈ H2(C+) and f ∗/G ∈ H2(C+)},

where f ∗(z) = f (z̄) and H2(C+) stands for the standard Hardy space. The spaceH (G) is
normed by

‖ f ‖2H(G)
:=

∫

R

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx, f ∈ H (G).

We have the following result.

Proposition 2.8. The space F 2
ϕ is a de Branges space: F 2

ϕ =H (G).
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Proof. We know that the normalized reproducing kernels {kγ}γ∈Γ = {kγ /‖kγ ‖ϕ,2}γ∈Γ form
a Riesz basis in F 2

ϕ . Then the biorthogonal family

‖kγ ‖ϕ,2
G′(γ)

· G(z)

z − γ , γ ∈ Γ,

is a Riesz basis in F 2
ϕ . By formula (2) and the estimate for |G′(γ)| in Lemma 2.5 we

conclude that the above biorthogonal system is of the form aγ|γ|1/2 · G(z)/(z − γ), where
|aγ| ≍ 1. Hence, any function f in the space F 2

ϕ can be written as

f (z) =
∑

γ∈Γ
cγ|γ|1/2 ·

G(z)

z − γ, (7)

where {cγ} ∈ ℓ2 and ‖ f ‖ϕ,2 ≍ ‖{cγ}‖ℓ2 . Writing for simplicity γn = −iyn, we have

f (z)

G(z)
=

∑

n

cny1/2
n

z + iyn
,

and the series converges in the Hardy space H2 = H2(C+), since γ satisfies the Carleson
condition and so is an H2-interpolating sequence. Analogously, if we put Θ = G∗/G, we
get

f ∗(z)

G(z)
=

∑

n

cny1/2
n

Θ(z)

z − iyn

,

again the series converges in H2, sinceΘ is an interpolating Blaschke product (with zeros
iyn). We conclude that f/G and f ∗/G are in H2. Conversely, any function inH (G) can be
written as a series of the form (7), since the functions (Imγ)1/2G(z)/(z − γ) form a Riesz
basis inH (G) whenever the zero set of G is an interpolating sequence. �

It is also possible to have the comparison with the integral over the positive or negative
rays.

Corollary 2.9. Let G be the generating function of the sequence (1) with θn = −π/2. Then the
measure dx/|G(x)|2 is sampling on R+, R− or R for F 2

ϕ : for every f ∈ F 2
ϕ ,

‖ f ‖2ϕ,2 ≍
∫

R+

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx ≍
∫

R−

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx ≍
∫

R

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx.

This answers a question appearing in equation (4.3.1) in [19].

Proof. Since ‖ f ‖ϕ,2 ≍
∫
R

∣∣∣∣∣
f (x)
G(x)

∣∣∣∣∣
2

dx, it is sufficient to prove that

∫

R

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx .

∫

R+

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx.
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The sequence Γ given by (1) (with θn = 0) is sampling, and hence, according to Corollary

2.4 there exists δ > 0 and C depending only on δ such that for every perturbation Γ̃ of Γ
with dρ(γn, γ̃n) ≤ δ we have

1

C
‖ f ‖ϕ,2 ≤ ‖ f ‖ϕ,2,̃Γ.

Consider now the sequence Λ = {λn}n≥0 such that λn > γn and dρ(γn, λn) = δ. We set
In = [γn, λn), n ≥ 0. Clearly, the intervals In are disjoint if δ is sufficiently small. By the
mean value theorem, there exists xn ∈ In such that

∫

In

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx = |In| ×
∣∣∣∣∣

f (xn)

G(xn)

∣∣∣∣∣
2

.

It is also clear that |In| ≍ 1 + xn. Since xn ∈ R+, using the estimate in Lemma 2.5 and
taking into account that dist(xn,−iΓ) ≍ 1 + xn, we get

∫

R+

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx ≥
∑

n≥0

∫

In

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx ≍
∑

n≥0

(1 + xn)

∣∣∣∣∣
f (xn)

G(xn)

∣∣∣∣∣
2

≍
∑

n≥0

| f (xn)|2(1 + x2
n)e−2ϕ(xn) ≍

∑

n≥0

| f (xn)|2
kxn(xn)

.

Since dρ(xn, γn) ≤ δ, the sequence Γ̃ := {xn}n≥0 is sampling for F 2
ϕ , and we get

∫

R+

∣∣∣∣∣
f (x)

G(x)

∣∣∣∣∣
2

dx & ‖ f ‖ϕ,2,̃Γ ≥
1

C
‖ f ‖ϕ,2.

�

The following result shows that we have a similar situation in F ∞ϕ .

Proposition 2.10. Every half-line starting from the origin is sampling for F ∞ϕ .

Proof. Pick f ∈ F ∞ϕ with ‖ f ‖ϕ = 1. Define

F(z) = f (z)e−α(Log z)2

,

cutting the plane at the positive real axis. Then F is an analytic function in C \ R+∗ .
Moreover,

|F(z)| = | f (z)|e−α(log2 |z|−(arg z)2) ≍ | f (z)|e−α(log |z|)2

. (8)

Hence F ∈ H∞(C \R+∗ ) implying that

sup
z∈C
| f (z)|e−α(log+ |z|)2 ≍ sup

z∈C\R+∗
|F(z)| = sup

z∈R+
|F(z)| = ‖ f ‖ϕ,∞,R+ ,

which proves the claim. �
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2.3. Density results.

Lemma 2.11. If Λ is dρ-separated then D−(Λ) ≤ D+(Λ) < ∞.

Proof. As already mentioned in the beginning of Section 2, when Λ is dρ-separated, then
there exists c such that the Euclidean disks D(λ, c|λ|), λ ∈ Λ, are disjoint. A standard
argument, based for instance on the consideration of the Euclidean area ofA(x,Rx) and
that of the disks D(λ, c|λ|), λ ∈ Λ ∩ A(x,Rx), shows that this implies in particular that
for fixed η > 0 every annulusA(x, ηx) contains a uniformly bounded number of points
of Λ (this number depends on η):

Card(Λ ∩A(x, ηx)) ≤M, x > 0.

Suppose now that R > R0 and r > r0 with R0, r0 big enough. Let N be the least integer
such that rηN ≥ rR so that N ≍ log R/ log η. Then

Card(Λ ∩A(r,Rr)) =
∑

λ∈Λ∩A(r,Rr)

1 ≤
N∑

n=1

Card(Λ ∩A(rηn−1, rηn)) .
M

log η
log R.

�

Proposition 2.12. If Λ is a zero sequence for F ∞ϕ then

lim inf
R→+∞

Card(Λ ∩D(0,R))

log R
≤ 2α. (9)

Proof. Suppose there is a function g that vanishes on Λwith

lim inf
R→+∞

Card(Λ ∩D(0,R))

log R
> 2α. (10)

Assuming g(0) , 0 (otherwise divide by a suitable power of z which does not change
the other zeros of g and gives a function still in F ∞ϕ ), Jensen’s formula yields for every
R > 0,

∑

λ∈Λ:|λ|<R

log
R

|λ| =
1

2π

∫ 2π

0

log |g(Reiθ)| dθ − log |g(0)| ≤ α(log R)2 + C.

Denote now by ng(R) the number of zeros of g in D(0,R). Then

∑

λ∈Λ:|λ|<R

log
R

|λ| =
∫ R

0

ng(t)

t
dt.

From (10) we deduce that for ε > 0 small enough there exists R0 > 0 such that for every
R ≥ R0,

ng(R) = Card(Λ ∩D(0,R)) ≥ 2α(1 + ε) log R.

Then for every R ≥ R0,

∑

λ∈Λ:|λ|<R

log
R

|λ| ≥
∫ R

R0

ng(t)

t
dt ≥ 2α(1 + ε)

∫ R

R0

log t

t
dt ≥ 2α(1 + ε)

(
(log R)2

2
− (log R0)2

2

)
.
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It follows that
α(1 + ε)

(
(log R)2 − (log R0)2

)
≤ α(log R)2 + C

which is impossible when R is big. �

We may deduce the following corollary.

Corollary 2.13. If Λ satisfies (9) then D−(Λ) ≤ 2α.

Proof. By contraposition, suppose that D−(Λ) > 2α. Then there are R0 and r0 such that
for every R > R0 and r > r0 we have

Card(Λ ∩A(r,Rr))

log R
≥ 2(1 + ε)α,

for a suitable fixed ε. Set η = max(R0, r0) and let x = ηN+κ ∈ [ηN, ηN+1) (κ ∈ [0, 1)) be big,
then

Card(Λ ∩D(0, x))

log x
≥

∑N−1
k=1 Card(Λ ∩A(ηk, ηk+1))

log x

≥
2(1 + ε)α(N − 1) log η

(N + κ) log η
−→ 2(1 + ε)α, N→∞,

i.e., Λ does not satisfy (9). �

The two preceding results together team up in:

Corollary 2.14. If Λ is a zero sequence for F ∞ϕ , then D−(Λ) ≤ 2α.

3. Proof of the result on Riesz bases

“⇐=”: We use Bari’s Theorem [20, p. 132]. As in the introduction, let kλ be the
reproducing kernel of F 2

ϕ and let kλ = kλ /‖kλ ‖ϕ,2 be the normalized kernel at λ. Let F
be an entire function with simple zeros at each λ ∈ Λ,

F(z) :=
∏

n≥0

(
1 − z

λn

)
, z ∈ C,

and set

gλ(z) =
F(z)

F′(λ)(z − λ)
‖kλ ‖ϕ,2, z ∈ C.

If the functions gλ are in F 2
ϕ , then the family {gλ}λ∈Λ is biorthogonal to KΛ := {kλ}λ∈Λ.

Hence to show that KΛ is Riesz basis it suffices to prove

(i) F/(· − λ) ∈ F 2
ϕ for λ ∈ Λ;

(ii) KΛ is complete :
∨{kλ, λ ∈ Λ} = F 2

ϕ ;

(iii)
∑

λ∈Λ

∣∣∣〈 f ,kλ〉
∣∣∣2 . ‖ f ‖2ϕ,2;

(iv)
∑

λ∈Λ

∣∣∣〈 f , gλ〉
∣∣∣2 . ‖ f ‖2ϕ,2.
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To prove (i), let |z| = et with |λn−1| ≤ |z| ≤ |λn| and suppose that dist(z,Λ) = |z − λn−1|.
Let m ∈N be such that

m

2α
− 1

4α
≤ t <

m

2α
+

1

4α
.

Then, since |λn| = γneδn ≍ γm by the above, and δm is uniformly bounded, we have that
|m − n| is uniformly bounded in |z|, and log |λs| − t is bounded uniformly in z and s
between m and n. We use that for dρ-separated sequences the behavior of the function F
is essentially given by the first n terms. We have

log |F(z)| =
∑

0≤k≤n−2

log
|z|
|λk|
+ log |1 − z

λn−1
| +O(1) (11)

=
∑

0≤k≤n−1

(
t − k + 1

2α

)
+ log dist(z,Λ) − t −

∑

0≤k≤n−1

δk +O(1)

=
∑

0≤k≤m−1

(
t − k + 1

2α

)
+ log dist(z,Λ) − t −

∑

0≤k≤m−1

δk +O(1)

= mt − m(m + 1)

4α
−

∑

0≤k≤m−1

δk + log dist(z,Λ) − t +O(1)

= αt2 − 3

2
t + log dist(z,Λ) −

∑

0≤k≤m−1

δk +O(1), t→∞.

Next, if m = lN + r, 0 ≤ r < N, then

∣∣∣∣
m−1∑

k=0

δk

∣∣∣∣ ≤
l−1∑

j=0

∣∣∣∣
N−1∑

i=0

δ jN+i

∣∣∣∣ +
∣∣∣∣

r−1∑

i=0

δlN+i

∣∣∣∣ ≤ lNδ +O(1) = 2αδt +O(1). (12)

Therefore, for some η > 0,

eϕ(z) dist(z,Λ)

(1 + |z|)2−η . |F(z)| . eϕ(z) dist(z,Λ)

(1 + |z|)1+η
, z ∈ C. (13)

This proves (i).
Next we pass to property (iii). By assumption, Λ is dρ-separated, and so by Lemma

2.1 we have ∑

λ∈Λ

∣∣∣〈 f ,kλ〉
∣∣∣2 =

∑

λ∈Λ

| f (λ)|2
‖kλ ‖2ϕ,2

. ‖ f ‖2ϕ,2.

Let us turn to (ii). By Lemma 2.5 we have

|G(z)| ≍ eϕ(z) dist(z,Λ)

1 + |z|3/2 , z ∈ C.

If f ∈ F 2
ϕ , then by Lemma 2.1 (iii), | f (z)| = o(eϕ(z)/(1 + |z|)) and so

| f (z)/G(z)| = o
(

1 +
√
|z|

dist(z, Γ)

)
, z ∈ C. (14)
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Let |z| = et and let n be such that

n

2α
− 1

4α
≤ t <

n

2α
+

1

4α
.

If we denote by k(n) the integer such that the point λk(n) ∈ Λ is the closest to z, then,
by condition (b), |k(n) − n| is uniformly bounded. Hence, keeping in mind that Λ is
separated and |λm| ≍ |z|, |m − n| ≤ |k(n) − n|, we have

|F(z)| ≍
k(n)∏

k=1

∣∣∣∣∣1 −
z

λk

∣∣∣∣∣ ≍
dist(z,Λ)

|z|

n−1∏

k=1

|z|
|λk|
. (15)

Thus,

|F(z)|
|G(z)| ≍

∏n−1
k=0 |z/λk|∏n−1
k=0 |z/γk|

· dist(z,Λ)

dist(z, Γ)
≍ exp


−

n−1∑

k=0

δk




dist(z,Λ)

dist(z, Γ)
.

As in (12), and recalling that |m−n| is uniformly bounded, we have |∑n−1
k=0 δk| ≤ 2αδt+O(1),

where 2αδ < 1/2. Therefore,

1

|z|2αδ
dist(z,Λ)

dist(z, Γ)
.
|F(z)|
|G(z)| , z < Γ.

If z is dρ-far from Λ, we have dist(z,Λ)/|z|2αδ ≍ |z|1−2αδ >>
√
|z| so that with (14) in mind

we see that F < F 2
ϕ . Now, if KΛ is not complete, then there exists a nonzero f ∈ F 2

ϕ

vanishing on Λ. So f = FS for some entire function S, and

|S(z)| =
∣∣∣∣∣
f (z)

F(z)

∣∣∣∣∣ =
∣∣∣∣∣

f (z)

G(z)

G(z)

F(z)

∣∣∣∣∣ = o
(
1 + |z|1/2+2αδ

dist(z,Λ)

)
.

Now, for every R > 0, we can find a closed contour CR surrounding D(0,R) which is
dρ-separated from Λ (and not meeting Γ). We have maxz∈CR

|S(z)| = o(1), R→ ∞, so that
sup|z|≤R |S(z)| = o(R), and hence S vanishes identically, which is impossible. Statement
(ii) is proved.

It remains to show (iv). Let us estimate F(γm) and F′(λn). As above, we only need to
consider the terms k ≤ n − 1. By (15),

|F(γm)| ≍ dist(γm,Λ)

γm

∏

0≤k≤m−1

γm

|λk|
(16)

and

|F′(λn)| ≍ 1

|λn|
∏

0≤k≤n−1

∣∣∣∣∣
λn

λk

∣∣∣∣∣ . (17)

Since the family {kγ}γ∈Γ is a Riesz basis, we can write

f =
∑

m≥0

am kγm , (am)m≥0 ∈ ℓ2,
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and the sum in (iv) becomes

∑

n≥0

∣∣∣∣∣
∑

m≥0

am

F(γm)

F′(λn)(γm − λn)
·
‖kλn ‖ϕ,2
‖kγm ‖ϕ,2︸                            ︷︷                            ︸

An,m

∣∣∣∣∣
2

.

It remains to check that the matrix [An,m] defines a bounded operator in ℓ2.
It follows from (16), (17) and (2) that

|An,m| ≍
dist(γm,Λ)

|γm − λn|
· γ

m
m

|λn|n
·



∏

0≤k≤n−1

|λk|

 ·




∏

0≤k≤m−1

|λk|



−1

· eα(log |λn |)2−α(log γm)2

=
dist(γm,Λ)

|γm − λn|
ec(n,m),

where

c(n,m) =
m(m + 1)

2α
−

(n + 1

2α
+ δn

)
n −

m−1∑

k=0

(k + 1

2α
+ δk

)

−
n−1∑

k=0

(k + 1

2α
+ δk

)
+ α

(n + 1

2α
+ δn

)2

− (m + 1)2

4α

= −m − n

4α
+

n−1∑

k=0

δk −
m−1∑

k=0

δk +O(1).

By condition (b) there exists M such that |γm−λn| ≍ |λn|when n > m+M, |γm−λn| ≍ |γm|
when m > n +N, and |γm| ≍ |λn| for |m − n| ≤M.

• Let |m− n| ≤M. Then it is clear that |An,n| . 1 with a bound independent of n and m.

• If m > n +M, then

|An,m| ≍
dist(γm,Λ)

γm
exp

(
− m − n

4α
+

m−1∑

k=n

δk +O(1)
)
.

• If n > m +M, then |γm − λn| ≍ |λn| and so

|An,m| ≍
dist(γm,Λ)

γm
· γm

|λn|
· exp

(n −m

4α
+

n−1∑

k=m

δk +O(1)
)

≍ dist(γm,Λ)

γm
· exp

(
− n −m

4α
+

n−1∑

k=m

δk +O(1)
)
,

since γm/|λn| ≍ exp
(

m−n
2α

)
.
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Thus,

|An,m| ≍
dist(γm,Λ)

γm

exp
(
− |m − n|

4α
+

n−1∑

k=m

δk +O(1)
)
, (18)

where the sum is taken with negative sign if m > n. It follows from (c) that |An,m| .
exp(−δ|n−m|) for some δ > 0, and so the matrix [An,m] defines a bounded operator in ℓ2.
Statement (iv) is proved.

“=⇒”:
(a) By Corollary 2.3, Λ is dρ-separated.

(b) Suppose that (δn) < ℓ∞. Then there exists an infinite subsequence of indicesN = {nk}
such that for each k there exists mk such that dρ(λnk

, γmk
) . 1, but |nk −mk| → ∞ as k→∞.

Passing possibly to another subsequence (also denoted byλnk
to not overcharge notation)

we can suppose that this subsequence is in an angle. Now, sinceF 2
ϕ is rotation invariant,

{eiθλn} is also a complete interpolating sequence for anyθ ∈ R for which the subsequence
(λnk

)k is dρ separated from Γ. Thus, we may assume without loss of generality that

dρ(λnk
, Γ) ≍ 1,

that is, |λnk
− γ| ≥ c|λnk

|, γ ∈ Γ (with constants independent of k) and also that

dρ(γmk
,Λ) ≍ 1.

To simplify the notations we write n and m in place of nk and mk,
Now let us consider

An,m = 〈gλn ,kγm〉 =
F(γm)

F′(λn)(γm − λn)
·
‖kλn ‖ϕ,2
‖kγm ‖ϕ,2

.

Observe that we have assumed conditions (a) and (c) which ensure that gλ ∈ F 2
ϕ (cf.

proof of (i) in Bari’s theorem in the beginning of this section). As in (16)–(17) and taking
into account that dist(γm,Λ) ≍ γm,

|F(γm)| ≍ γn
m

|λ0λ1 . . . λn−1|
.

Analogously,

|F′(λn)| ≍ |λn|n−1

|λ0λ1 . . . λn−1|
.

Thus, using the estimate (2) for the norm of the reproducing kernel as well as the
estimates γm ≍ |λn| ≍ |γm − λn|, we get

|An,m| ≍
γn

m

|λn|n
eα(log2 |λn |−log2 γm).
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Note that logγm =
m+1
2α

and log |λn| = n+1
2α
+ δn. Let us write |λn| = γmeδnm with |δnm| . 1.

Hence exp(n+1
2α
+ δn) = exp(m+1

2α
+ δnm) and so

n −m

2α
= −δn + δnm. (19)

Without loss of generality, let δn → +∞. Moreover, we may assume that δnm > 1.
Otherwise, we may replace m by m−m0 for some sufficiently large m0 that can be chosen
to be independent of k. (If δn → −∞ then we may assume that δnm > 1. Otherwise, we
may replace m by m +m0 for some sufficiently large m0)

Then by (19) we have

log |An,m| = n
m + 1

2α
− n

(n + 1

2α
+ δn

)
− (m + 1)2

4α
+ α

(n + 1

2α
+ δn

)2

+O(1)

= − (n −m)2

4α
+

n −m

2α
+ δn + αδ

2
n +O(1)

= 2αδnδmn +O(1)

Thus, |An,m| & e2αδnδnm . Repeating this estimate for each k (note that all asymptotic es-
timates ≍ and & hold uniformly with respect to k) we conclude that limk→∞ |Ank,mk

| = ∞.
Since Am,n = (gλn ,kγm), we conclude that ‖gλnk

‖ϕ,2 → ∞, k → ∞, and so {kλ}λ∈Λ is not
uniformly minimal (in particular, it is not a Riesz basis).

(c) Given N, set

sup
n

1

N

∣∣∣∣
n+N∑

k=n+1

δk

∣∣∣∣ =
1

4α
+ εN. (20)

Since we already have shown that (δn) is bounded, the sequence (εN) is bounded. If for
some N we have εN < 0, then (c) is proved. Assuming the converse, we have εN ≥ 0.

Replacing, if necessary, Λ by eiθΛwe may assume that dist(γm,Λ) ≍ γm.
Suppose first that there is a subsequence (Nl) such that εNl

is bounded from below by
ε > 0. Then there exists nl such that

1

Nl

∣∣∣∣
nl+Nl∑

k=nl+1

δk

∣∣∣∣ ≥
1

4α
+ εNl

/2 ≥ 1

4α
+ ε/2.

It follows from (18) that the sum |Anl,nl+Nl
| + |Anl+Nl,nl

| is unbounded and so a fortiori the
matrix [An,m].

Suppose now that (εN) is a sequence of positive numbers tending to zero. Then for
every N there exists nN such that

∣∣∣∣
nN+N∑

k=nN+1

δk

∣∣∣∣ ≥ N
( 1

4α
+ εN

)
− 1
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By definition
∣∣∣∣

nN+K∑

k=nN+1

δk

∣∣∣∣ ≤ K
( 1

4α
+ εK

)

for every 1 ≤ K ≤ N. Then

∣∣∣∣
nN+N∑

k=nN+K+1

δk

∣∣∣∣ ≥
N − K

4α
+NεN − KεK − 1. (21)

Two cases may occur.
Case (1): If (NεN) has a subsequence which tends to +∞, then for fixed K and N in this

subsequence, the expression NεN −KεK is positive and unbounded. Thus, again by (18),
the sum of matrix entries |AM+K,M+N | + |AM+N,M+K| is unbounded and so the matrix [An,m]
can not define a bounded operator in ℓ2.

Case (2): Assume that the sequence (NεN) is bounded. If there exist arbitrarily large

N such that
∑nN+N

k=nN+1
δk > 0 then for these values of N and every 1 ≤ K ≤ N we have by

(21)
nN+N∑

k=nN+K+1

δk ≥
N − K

4α
+NεN − KεK − 1.

Hence, by (18),

|AnN+N,nN+K+1| ≍ exp
( nN+N∑

k=nN+K+1

δk −
N − K

4α

)
≍ 1.

Analogously, if there exist arbitrarily large N such that
∑nN+N

k=nN+1
δk < 0, then by (21) for

1 ≤ K ≤ N we have
nN+N−K∑

k=nN+1

δk ≤ −
N − K

4α
+O(1),

and so, by (18),

|AnN+1,nN+N−K| ≍ exp
(
− N − K

4α
−

nN+N−K∑

k=nN+1

δk

)
≍ 1.

In each of these two situations we conclude that the matrix [An,m] has an increasing
number of entries in one line which are bounded away from zero, and, thus, cannot
define a bounded operator. �

Remark 3.1. Now we compare in more detail Theorem 1.1 with the results of Belov,
Mengestie and Seip [2]. By Proposition 2.8 (see formula (7)) any function f ∈ F 2

ϕ may be
represented as

f (z) = G(z)
∑

γ∈Γ

cγ|γ|1/2
z − γ ,
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where (cγ)γ∈Γ ∈ ℓ2 and ‖ f ‖ϕ,2 ≍ ‖(cγ)‖ℓ2 . Thus, the space F 2
ϕ is a special case of the spaces

H (Γ, v) introduced in [2, Section 2] and which consist of entire functions of the form

f (z) = G(z)
∑

γ∈Γ

cγv
1/2
γ

z − γ . The space F 2
ϕ corresponds to the choice of weights vn = |γn| (we

write vn in place of vγn).
In [2, Theorems 5.1, 5.2] a description of Riesz bases in the spacesH (Γ, v) was obtained

under two additional restrictions:

either vn = o
(∑

k<n

vk

)
or

vn

|γn|2
= o

(∑

k>n

vk

|γk|2
)

(22)

as n → ∞. The criteria in [2] are also of the perturbative nature and are very close to
our result. However, for the choice of the weight vn = |γn| neither of the conditions in
(22) is satisfied. Thus, the results stated in [2] do not cover Theorem 1.1. It seems very
probable that Theorem 1.1 can be proved using the powerful methods developed in [2]
(in particular, Theorem 1.3), however our feeling is that such a proof will not be shorter
and more transparent than the one presented in this section.

4. Complete interpolating sequences in F ∞ϕ
In this section we prove Theorem 1.2. The proof is in many ways similar to the proof

of Theorem 1.1. Put

Γ̃ = Γ ∪ {γ̃} = {γn}n≥0 ∪ {γ̃},
where Γ = Γα = {e

n+1
2α eiθn}n≥0 is our reference sequence (1) and γ̃ < Γ.

Proposition 4.1. The sequence Γ̃ is a complete interpolating sequence for F ∞ϕ for any γ̃ ∈ C \Γ.

Proof. Let G̃(z) =
∏
γ∈Γ̃(1 − z/γ), that is G̃(z) = (1 − z/γ̃)G(z) where G is the associated

function of Lemma 2.5 vanishing exactly on Γ (without loss of generality assume that
γ̃ , 0). For every sequence v = (vγ)γ∈Γ̃ with ‖v‖∞,ϕ,̃Γ < ∞, we construct the corresponding

interpolating function and estimate its norm:

fv(z) =
∑

γ∈Γ̃

vγ
G̃(z)

G̃′(γ)(z − γ)
.

By the estimates of Lemma 2.5 we have, for any z ∈ C,

| fv(z)| .
∑

γ∈Γ̃

|vγ|eϕ(z) dist(z, Γ̃)

1 + |z|3/2 ·
|z|
γ
· 1 + |γ|3/2

eϕ(γ)|z − γ|

. eϕ(z)‖v‖∞,ϕ,̃Γ
∑

γ∈Γ̃

dist(z, Γ̃)

|z − γ|
1 + γ1/2

1 + |z|1/2 . ‖v‖ϕ,∞,̃Γe
ϕ(z),
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and we deduce that Γ̃ is an interpolating sequence for which we can construct a linear
operator of interpolation.

We now show that Γ̃ is a uniqueness sequence. For this, let f ∈ F ∞ϕ vanish on Γ̃.

Consider the holomorphic function g = f/G̃. Then, again by Lemma 2.5,

|g(z)| . 1 + |z|1/2

dist(z, Γ̃)

and, by the maximum modulus principle, g = 0.

As a conclusion the sequence Γ̃ is an interpolating sequence which is also a uniqueness
sequence and thus a sampling sequence. �

Proof of Theorem 1.2. Let Λ = (λn)n≥0 be a sequence of complex numbers tending to in-
finity, with |λn| ≤ |λn+1|. As before, we write λn = γneδneiθn , θn ∈ R, n ≥ 0. Now let

Λ̃ = Λ ∪ {λ̃}. We can also write Λ̃ = (λn)n≥−1 with λ−1 = λ̃, and analogously for Γ̃.

To prove Theorem 1.2 we need to show that Λ̃ is a complete interpolating sequence
for F ∞ϕ if and only ifΛ is complete interpolating for F 2

ϕ , that is,Λ satisfies the conditions
(a)–(c) of Theorem 1.1.

Λ is complete interpolating for F 2
ϕ =⇒ Λ̃ is a complete interpolating sequence for F ∞ϕ .

By Theorem 1.1, Λ satisfies the conditions (a)–(c). Hence, the infinite product F̃(z) =∏
λ∈Λ̃(1 − z/λ) converges uniformly on compact sets and, by (13), there exists η > 0 such

that

eϕ(z) dist(z, Λ̃)

(1 + |z|)1−η . |F̃(z)| . eϕ(z) dist(z, Λ̃)

(1 + |z|)η , z ∈ C.

Thus, F̃ < F ∞ϕ , while F̃/(·−λ) ∈ F ∞ϕ , λ ∈ Λ̃. Also, if F̃g ∈ F ∞ϕ , then |g(z)| . |z|1−η/dist(z, Λ̃),

whence g ≡ 0. Thus, Λ̃ is a uniqueness set for F ∞ϕ .

It remains to show that Λ̃ is an interpolating sequence for F ∞ϕ . Let (vn)n≥0 be a finite
sequence and put

fv(z) =
∑

n

vn

F̃(z)

F̃′(λn)(z − λn)
.

Since we already know that Γ̃ is a sampling sequence for F ∞ϕ , we have

‖ fv‖ϕ,∞ ≍ sup
γm∈Γ̃

e−ϕ(γm)

∣∣∣∣∣
∑

n

vn

F̃(γm)

F̃′(λn)(γm − λn)

∣∣∣∣∣

= sup
γm∈Γ̃

∣∣∣∣
∑

n

vne−ϕ(λn)Bn,m

∣∣∣∣,
(23)
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where

Bn,m = eϕ(λn)−ϕ(γm)
F̃(γm)

F̃′(λn)(γm − λn)
.

Note that |F̃(γm)| ≍ γm|F(γm)| and |F̃′(λn)| ≍ |λnF′(λn)|, and so

|Bn,m| = eϕ(λn)−ϕ(γm)|An,m| ·
γm

|λn|
·
‖kγm ‖ϕ,2
‖kλn ‖ϕ,2

≍ |An,m|,

where An,m are defined in the previous section. By (18) and (c), |An,m| . exp(−δ|n − m|)
for some δ > 0. Hence,

‖ fv‖ϕ,∞ ≤ ‖v‖ϕ,∞,Λ̃ sup
γm∈Γ̃

∑

λn∈Λ̃

|Bn,m| . ‖v‖ϕ,∞,Λ̃,

so that an interpolating function fv exists for every finitely supported sequence v with
uniform control depending on ‖v‖ϕ,∞,Λ̃. It remains to apply a normal family argument

to show that such an interpolating function fv exists for arbitrary v with ‖v‖ϕ,∞,Λ̃ < ∞.

Λ̃ is a complete interpolating sequence for F ∞ϕ =⇒ Λ is complete interpolating for F 2
ϕ .

We need to show that the sequenceΛ satisfies the conditions (a)–(c). By Corollary 2.3,Λ
is dρ-separated. Also, if the sequence (δn) is unbounded, then, as in the proof of necessity
part of Theorem 1.1, there exists a subsequence |Ank,mk

| → ∞. Since |Ank,mk
| ≍ |Bnk,mk

|, it
follows from (23) that the interpolation operator is unbounded (choose the data vλ = eϕ(λ)

for λ = λnk
and vλ = 0 otherwise).

It remains to prove (c). As in Section 3 define εN by (20). If the sequence NεN is
unbounded then again there exists a subsequence |Ank,mk

| → ∞. Finally, if the sequence
NεN is bounded, then, analogously to the proof of (c) in Section 3 we can show that there
exist arbitrary large N, mN and nN such that for 1 ≤ K ≤ N we have |BnN+K,mN

| ≍ |AnN+K,mN
| &

1. It is clear from (23) that in this case the interpolation operator is unbounded (choose
the data vne−ϕ(λn) ∈ ℓ∞ such that vne−ϕ(λn)Bn,mN

≍ |Bn,mN
| for nN + 1 ≤ n ≤ nN +N). �

5. Proof of the density results

5.1. Sufficient conditions. First we deduce the sufficient conditions of Theorems 1.4–1.6
from Theorems 1.1 and 1.2.

These conditions follow immediately from Theorem 1.3 which we recall and prove
here.

Theorem. Let ϕ(r) = α(log+ r)2, let p = 2,∞, and let Λ be a dρ-separated sequence. Then

(i) if D+(Λ) < 2α, then Λ is a subset of some complete interpolating sequence in F p
ϕ ;

(ii) if D−(Λ) > 2α, then Λ contains a complete interpolating sequence in F p
ϕ .

We give a proof for the case p = 2; the proof for the case p = ∞ is completely analogous.
To simplify the notations, we choose α = 1/2. Recall that with our choice of α the set
Γ = {γn} = {en}n∈N becomes a complete interpolating sequence for the space.
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Proof of (i). It follows from the condition D+(Λ) < 1 that for sufficiently large M > 0,
every annulus

Am =
{
z : eMm+ 1

2 < |z| < eM(m+1)+ 1
2

}
, m ≥ 0,

contains at most M − 1 points from Λ. Fix such M. Furthermore, there exists an η > 0
such that each Am contains an annulus Bm of width ηwhich contains no points of Λ.

Our goal is to add some sequence Λ′ to Λ so that the new sequence Λ ∪ Λ′ could be
written as γneδneiθn and for some N we would have

sup
n

1

N

∣∣∣∣
n+N∑

k=n

δk

∣∣∣∣ ≤ δ <
1

4α
=

1

2
. (24)

Let us denote the points from Λ ∩ Am by λm
1
, . . . , λm

lm
(we of course assume that λl are

ordered so that the modulus is nondecreasing), and let us associate with each of them
some point from Γ ∩ Am. E.g., let us write

λm
l = eMm+leδMm+leiθMm+l , 1 ≤ l ≤ lm.

In each annulus Am we still have at least one point from Γ ∩ Am to which nothing is
associated.

We now take a large number N (the choice will be specified later) and consider the
groups of the annuli Am, namely put

Ãk =

kN+N⋃

m=kN+1

Am, k ≥ 0.

Now in the whole group of annuli Ãk there are at least N free points of Γ to which we
need to assign some element of the sequence Λ′ that we want to construct. We will do
this in such a way that for any k we have

∣∣∣∣∣
(kN+N+1)M∑

n=(kN+1)M+1

δn

∣∣∣∣∣ ≤ CM, (25)

for some absolute constant C whence for sufficiently large N, (24) will be satisfied. Thus,
from now on, k will be fixed.

We use an idea from the paper [24] by Seip. The points of Λ′ ∩ Ãm will be chosen
within the annuli Bm (of the width η). Note that we can even put all missing points in
one annulus Bm, if we want, and still have ρ-separation, but, of course, the separation
constant will depend on η, M and N and may be rather small. Let us consider all
possible sequences Λ′ ⊂ ∪kN+N

m=kN+1
Bm with separation constants uniformly bounded away

from zero, and let us write the elements of Λ ∪ Λ′ as γneδneiθn . Note that for any m and
n =Mm + 1, . . . ,Mm + lm the values δn are already fixed. Moreover, since for these n the
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corresponding λ-s are in the same annulus Am we have |δn| ≤M, whence

−M2N ≤
kN+N∑

m=kN+1

Mm+lm∑

n=Mm+1

δn ≤M2N.

Now assume that we chose all the points of Λ′ in the annulus BkN+1 (the smallest of all
Bm in our group). Then for

kNM + jM + lkN+ j + 1 < n ≤ kNM + ( j + 1)M, 2 ≤ j ≤ N − 1,

we have

δn ≤ −( j − 1)M,

whence (using the fact that we have at least N free indices in each Am)

N−1∑

j=2

kNM+( j+1)M∑

n=kNM+ jM+lkN+ j+1

δn ≤ −
N−1∑

j=2

( j − 1)MN ≤ −MN2

3
,

when N is sufficiently large. Thus, with this choice of Λ′ we have

(kN+N+1)M∑

n=(kN+1)M+1

δn ≤ −
MN2

3
+O(M2N) < 0,

if N ≫M.
Analogously, if we choose all the points ofΛ′ in the annulus BkN+N (the largest of all Bm

in our group), we will have δn ≥ (N−2− j)M for kNM+ jM+lkN+ j+1 < n ≤ kNM+( j+1)M,
0 ≤ j ≤ N − 3, whence

(kN+N+1)M∑

n=(kN+1)M+1

δn ≥
MN2

3
−O(M2N) > 0.

Finally, note that if two choices of Λ′ coincide up to one point which is in some Bm for
one choice and which is in Bm+1 for the other choice, then the corresponding sums

(kN+N+1)M∑

n=(kN+1)M+1

δn

considered for these two choices of Λ′ will differ by at most 2M. Since the two config-
urations of Λ′ described above may be obtained from the other by changing only one
point and moving it to a neighboring annulus Bn, we conclude that there exists some
intermediate choice of Λ′ with the property (25) (with C = 2). �

Proof of (ii). The idea is the same and so we may omit some details. Let M,N be as above,
but now we assume that each Am contains at least M+ 1 points for some fixed M. Let us
assume that N ≫M and choose j0 ∈N so that 3 j0M < N ≤ 3( j0 + 1)M.
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For j0 ≤ j ≤ N − j0 and kNM+ jM+ 1 ≤ n ≤ kNM+ ( j+ 1)M we choose in an arbitrary
way λn ∈ Λ ∩A j and write them as

γneδneiθn .

Then |δn| ≤M and

−(N − 2)M2 ≤
N− j0∑

j= j0

kNM+( j+1)M∑

n=kNM+ jM+1

δn ≤ (N − 2)M2.

Note that we did not assign any point from Λ to n-s in the first and in the last interval,
namely, for kNM + 1 ≤ n ≤ kNM + j0M and for kNM + (N − j0)M + 1 ≤ n ≤ kNM +NM.

Recall that we still have N free points of Λ in each Am. Now consider two choices of
λn for these values of n. For the first choice let us assign some points λn ∈ Λ ∩ A j to
kNM + jM + 1 ≤ n ≤ kNM + ( j + 1)M and N − j0 ≤ j ≤ N − 1. However, for kNM + 1 ≤
n ≤ kNM + j0M let us choose j0M points λn in ∪ j>2N/3A j. This is possible, since we have
at least N/3 > j0M free points from Λ in ∪ j>2N/3A j. Then, for kNM+ 1 ≤ n ≤ kNM+ j0M,
we have

δn ≤ −
MN

3
,

and hence,
(kN+N+1)M∑

n=(kN+1)M+1

δn =

j0−1∑

j=0

kNM+( j+1)M∑

n=kNM+ jM+1

δn +

N−1∑

j= j0

kNM+( j+1)M∑

n=kNM+ jM+1

δn

≤ − j0M2N

3
+O(M2N) < 0.

Analogously, choosing the points λn ∈ Λ∩A j for kNM+ jM+ 1 ≤ n ≤ kNM+ ( j+ 1)M
and 0 ≤ j ≤ j0 − 1, and taking λn in ∪ j<N/3A j for kNM + (N − j0)M + 1 ≤ n ≤ kNM +NM,
we see that the corresponding sum of δn is positive.

The proof is completed as in (i): each configurationΛn may be obtained from the other
by changing exactly on point at each step, and, moreover, these points can be chosen at
the distance (with respect to the logarithm) at most 2M. Thus, the corresponding sum
will be at most 4M for some choice of {λn} ⊂ Λ. �

5.2. Necessary conditions for sampling/interpolation, p = 2,∞, Theorems 1.4, 1.5 and
1.6. To obtain the necessary conditions for the sequence to be sampling/interpolating, we
use the technique developed by Ramanathan and Steger [21, 17]. We follow the scheme
of proof proposed in [17, Lemma 40] and concentrate mainly on the places where the
proofs differ.

Lemma 5.1. Let ε > 0. AssumeΛ to be interpolating forF p

(1−ε)ϕ, p = 2,∞, andS to be sampling

for F 2
ϕ and dρ-separated. Then for small δ > 0 we have for sufficiently big R,

(1 − δ2) Card(Λ ∩A(x,Rx)) ≤ Card(S ∩A(δx,Rx/δ)).
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Proof. Let p = 2. Since Λ is interpolating for F 2
(1−ε)ϕ, for every λ ∈ Λ there exists

fλ ∈ F 2
(1−ε)ϕ, such that fλ(λ) = 1, fλ|Λ\{λ} = 0 and ‖ fλ‖(1−ε)ϕ,2 . |λ|e−(1−ε)ϕ(λ). By (2),

| fλ(z)| = |〈 fλ,kz〉| . e(1−ε)(ϕ(z)−ϕ(λ)) |λ|/(1 + |z|). (26)

Let G be the function from Lemma 2.5 associated to Γ := Γεα = {e
n+1
2εα eiθn : n ≥ 0}, and let

γλ ∈ Γ be a point such that dist(λ, Γ) = |λ − γλ|. Then |λ| ≍ γλ. With an appropriate
choice of θn we can assume that dρ(Λ, Γ) > 0. Define

κ(z, λ) :=



fλ(z)
G(z)

z − γλ
λ − γλ
G(λ)

z
λ
‖kλ ‖ϕ,2 if z ∈ C \ {γλ},

G′(λ)
λ − γλ
G(λ)

‖kλ ‖ϕ,2 if z = γλ.

By construction, κ(·, λ) ∈ F 2
ϕ , λ ∈ Λ, and the system {κ(·, λ)}λ∈Λ is biorthogonal to {kλ}λ∈Λ.

Moreover ‖κ(·, λ)‖ϕ,2 is uniformly bounded. To verify this, it suffices to estimate this norm
on the Borichev–Lyubarskii sampling sequence Γα with dist(γ, Γεα) ≍ |γ|, γ ∈ Γα, using
Lemma 2.5 and (26):

‖κ(·, λ)‖2ϕ,2 ≍
∑

γ∈Γα

|κ(γ, λ)|2e−2ϕ(γ)(1 + |γ|2)

≍
∑

γ∈Γα

| fλ(γ)|2 e2εϕ(γ) dist2(γ, Γεα)

(1 + |γ|3)|γ − γλ|2
|λ − γλ|2(1 + |λ|3)

e2εϕ(λ) dist2(λ, Γεα)
×

∣∣∣∣
γ

λ

∣∣∣∣
2 e2ϕ(λ)

1 + |λ|2 e−2ϕ(γ)(1 + |γ|2)

.

∑

γ∈Γα

dist2(γ, Γεα)

|γ − γλ|2
1 + |λ|
1 + |γ| .

∑

γ∈Γα,|γ|≤|λ|

1 + |γ|
1 + |λ| +

∑

γ∈Γα,|γ|>|λ|

1 + |λ|
1 + |γ| . (27)

Both sums are majorized by the sum of a geometric progression, and, hence, are uni-
formly bounded.

Let now {̃k(·, s)s∈S} be the dual frame (see, for example, [8]) for {ks /‖ks ‖ϕ,2}s∈S in F 2
ϕ .

Consider the following finite dimensional subspaces of F 2
ϕ :

WS = {̃k(·, s) : s ∈ S ∩A(δx,Rx/δ)} and WΛ = {κ(·, λ) : λ ∈ Λ ∩A(x,Rx)}.
We define PS and PΛ as the orthogonal projections of F 2

ϕ onto WS and WΛ, respectively.
Consider the operator T = PΛPS defined from WΛ to WΛ. Clearly

tr(T) ≤ rankPS ≤ Card(S ∩A(δx,Rx/δ)).

Since (PΛ kλ)λ is biorthogonal to (κ(·, µ))µ∈Λ∩A(x,Rx) in WΛ, we have

tr(T) =
∑

λ∈Λ∩A(x,Rx)

〈Tκ(·, λ),PΛkλ〉.

Hence, since 〈Tκ(·, λ),PΛkλ〉 = 〈κ(·, λ) + (PS − Id)κ(·, λ),PΛkλ〉, we also get

tr(T) ≥ Card(Λ ∩A(x,Rx))[1 − sup
λ

‖PS(κ(·, λ)) − κ(·, λ)‖ϕ,2]
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It remains to verify that ‖PS(κ(·, λ))−κ(·, λ)‖ϕ,2 are small for sufficiently small δ indepen-
dently of λ. By Lemma 2.5 we have

|κ(s, λ)|2
‖ks ‖2ϕ,2

.
|λ|

1 + |s|
dist(s, Γεα)

2

|s − γλ|2
. (28)

Since S is sampling and dρ-separated, and since λ ∈ A(x,Rx), we have, using also
|λ| ≍ |γλ|,

‖PS(κ(·, λ)) − κ(·, λ)‖ϕ,2 .
∑

s<A(δx,Rx/δ)

|κ(s, λ)|2
‖ks ‖2ϕ,2

.

∑

s<A(δx,Rx/δ)

|γλ|
1 + |s|

dist(s, Γεα)
2

|s − γλ|2

.

∑

|s|≤|γλ|, s<A(δx,Rx/δ)

|s|
|γλ|
+

∑

|s|≥|γλ|, s<A(δx,Rx/δ)

|γλ|
|s| .

For R big enough, we can suppose γλ ∈ A(x,Rx). Since S is separated, each annulus
Ak :=A(2k, 2k+1) contains a uniformly bounded number of points ofS. Let M be an upper
bound of these numbers. Let N,K be such that 2N ≤ δx ≤ 2N+1 and 2K ≤ Rx/δ ≤ 2K+1.
Then an estimate analogous to the above yields:

∑

|s|≤|γλ|, s<A(δx,Rx/δ)

|s|
|γλ|

.
1

|γλ|

N∑

k=1

∑

s∈Ak

|s| . M2N

|γλ|
. δ,

∑

|s|≥|γλ|, s<A(δx,Rx/δ)

|γλ|
|s| . |γλ|

∑

k≥K

∑

s∈Ak

1

|s| .
M|γλ|

2K
. δ,

and we are done.
Now let p = ∞. Since Λ is interpolating for F ∞

(1−ε)ϕ, then for every λ ∈ Λ, there

exists fλ ∈ F ∞(1−ε)ϕ, such that fλ(λ) = 1, fλ|Λ\{λ} = 0 and ‖ fλ‖(1−ε)ϕ,∞ . e−(1−ε)ϕ(λ), i.e.,

| fλ(z)| . e(1−ε)(ϕ(z)−ϕ(λ)). Set

κ(z, λ) = fλ(z)
G(z)

z − γλ
λ − γλ
G(λ)

‖kλ ‖ϕ,2, z ∈ C.

(Observe that we do not need the factor z/λ in this case.) As in (27) it can be shown that
κ(·, λ) is in F 2

ϕ with uniformly bounded norms. Again by Lemma 2.5 we have (28) and

applying the same arguments as above (note that S is again assumed sampling in F 2
ϕ ),

we get our result. �

•Let us first deduce from this lemma the necessary condition for sampling in Theorem
1.5 (p = 2). Suppose that Λ is a sampling sequence for F 2

ϕ . By Corollary 2.2 and Lemma
2.6, Λ is a finite union of dρ-separated subsets and contains a dρ-separated subset Λ∗
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which is also a sampling set for F 2
ϕ . Let Γ = Γ(1−ε)α = {e

n+1
2(1−ε)α eiθn : n ≥ 0} for some ε > 0.

We have D−(Γ) = D+(Γ) = 2(1 − ε)α. By [6, Theorem 2.8], Γ is an interpolating sequence
for F 2

(1−ε)ϕ and the comparison Lemma 5.1 gives D−(Λ∗) ≥ 2α.

• The necessary condition for sampling in Theorem 1.4 (p = ∞) follows from Corollary
2.2, Lemma 2.7, and the necessary condition for sampling in Theorem 1.5.

•Next we consider the necessary condition for interpolation in Theorem 1.6. Consider

Γ = Γ(1+ε)α = {e
n+1

2(1+ε)α eiθn : n ≥ 0} for some ε > 0. We have D−(Γ) = D+(Γ) = 2(1+ε)α and by
[6, Theorem 2.8], Γ is a sampling sequence for F 2

(1+ε)ϕ
. If Λ is an interpolating sequence

for F p
ϕ , p = 2,∞, then by Lemma 5.1, comparing the densities between interpolating and

sampling sequences, we obtain D+(Λ) ≤ 2α.

6. Examples

In this section we give explicit examples of dρ-separated sequences of critical density

which are uniqueness sets for F p
ϕ but are neither sampling nor interpolating.

We will also show that it is not possible to switch from a sampling sequence to
an interpolating sequence by removing a point without one being already complete
interpolating.

For the first of these examples we will need a two-sided version of the function
from Lemma 2.5, which we estimate using essentially the same argument. As before,
ϕ(z) = a(log+ |z|)2, a > 0.

Lemma 6.1. Let a > 0 and consider Γ± = {−e
n
a eiθn , e

n
a eiθn}n≥1 =: {γn}n∈Z\{0}, where θn are

arbitrary real numbers. Then the infinite product

E(z) =
∏

γ∈Γ±

(
1 − z

γ

)

converges on every compact subset of C,

|E(z)| ≍ eϕ(z) dist(z, Γ±)

1 + |z|2 , z ∈ C, (29)

and

|E′(γ)| ≍ eϕ(γ)

|γ|2 , γ ∈ Γ
±.

Proof. For every t > 0 there exists a unique m such that

1

a

(
m − 1

2

)
≤ t <

1

a

(
m +

1

2

)
.
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We consider z with |z| = et. Then

log |E(z)| =
∑

1≤|k|≤m

log

∣∣∣∣∣1 −
z

γk

∣∣∣∣∣ +O(1)

=
∑

1≤|k|≤m−1

(
t − |k|

a

)
+ log dist(z, Γ) − t +O(1)

= 2(m − 1)t − 2

a

(m − 1)m

2
+ log dist(z, Γ±) − t +O(1)

= at2 − 2t + log dist(z, Γ±) +O(1),

which gives the first estimate. The second estimate can be immediately deduced from
the first. �

Example 6.2. Let Γ± be the sequence from Lemma 6.1. In view of Theorem 1.1, this
sequence cannot be complete interpolating for F 2

ϕ since the points γn, n < 0, are too far
from the reference sequence. Clearly, the upper and lower densities of this sequence are
equal to 2α. Let E be the function of Lemma 6.1. Hence the functions gn := E/E′(γn)(·−γn)
are in F ∞ϕ and F 2

ϕ .

Let us prove that it is neither sampling nor interpolating for F 2
ϕ .

Suppose first that it is sampling. Then for every finite sequence v = (vn)n∈Z\{0} ∈ ℓ2
ϕ,Γ±

the function fv =
∑

n vngn would interpolate v on Γ±, and by the sampling property of Γ±,

‖ fv‖2ϕ,2 ≍ ‖ fv|Γ±‖2ϕ,2,Γ± =
∑

n

|vn|2e−2ϕ(γn)(1 + |γn|2) = ‖v‖ϕ,2,Γ± .

In other words, the interpolation operator v 7−→ fv would be continuous from ℓ2
ϕ,Γ

to

F 2
ϕ , and the sequence would be interpolating. Since it was supposed sampling it would

thus be complete interpolating, and we would get a contradiction.
Suppose next that it is interpolating. Since the function E vanishes on Γ± and satisfies

(29), Γ± is a uniqueness sequence (see, for example, [9, Theorem 3]). Since it is also
interpolating, it is complete interpolating, and again we obtain a contradiction.

Example 6.3. Let Γ2 := Γ± ∪ {−1, 1} = {±en/α}n≥0 = {γn}n∈Z where Γ± is again the sequence
from Lemma 6.1 and γ−n = −γn. Then Γ2 is neither sampling nor interpolating for F ∞ϕ .
Clearly, by (29), Γ2 is a uniqueness set for F ∞ϕ .

Set E2(z) = (z2 − 1)E(z). Then, in view of (29), Γ2 is a uniqueness sequence for F ∞ϕ
and gγ = E2/E

′
2(γ)(· − γ) with γ ∈ Γ2 defines a function in F ∞ϕ . Next, let the family of

functions ( fn)n≥0 ∈ F ∞ϕ be given by

fn(z) =
∑

|γ|≤γn

εγgγ(z), z ∈ C,
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where εγ := e−i arg gγ(zn)eϕ(γ) and zn = iγn+1. We have

fn(zn) =
∑

|γ|≤γn

εγgγ(zn) =
∑

|γ|≤γn

eϕ(γ)|gγ(zn)| ≍ eϕ(zn)
∑

|γ|≤γn

dist(zn, Γ)

|zn − γ|
≍ neϕ(zn).

As a consequence, ‖ fn‖ϕ,∞ → ∞, while ‖ fn|Γ2
‖ϕ,∞,Γ2

= 1. Hence the sequence is not
sampling, and since it is uniqueness it can neither be interpolating (otherwise it would
be complete interpolating and hence sampling).

Next we give an example of a one-sided sequence of critical density which is neither
sampling nor interpolating for F 2

ϕ . Let 0 < δ < 1
2a

and let

Λ = {λn}n≥0 = {e
n+1
2a +δ}n≥0.

Then, by estimates analogous to Lemma 6.1, the generating function F of the sequence
Λ satisfies

|F(z)| ≍ eϕ(z) dist(z,Λ)

1 + |z|3/2+2aδ
, z ∈ C. (30)

It is clear that F ∈ F 2
ϕ if and only if δ > 1

4a
. Moreover, by Theorem 1.1, Λ is a complete

interpolating sequence for F 2
ϕ if 0 < δ < 1

4a
and Λ ∪ {1} is a complete interpolating

sequence if 1
4a
< δ < 1

2a
.

Example 6.4. If δ = 1
4a

, then Λ is neither sampling nor interpolating for F 2
ϕ . First, it

follows from (30) that Λ is a uniqueness set for F 2
ϕ . Indeed, if SF ∈ F 2

ϕ for an entire

function S, then S should be constant, but F < F 2
ϕ (a detailed proof can be found in [9,

Theorem 3]). Hence,Λ is not an interpolating sequence (otherwise, it would be complete
interpolating which is not true).

Assume now that Λ is sampling for F 2
ϕ . Then, by the stability result of Corollary 2.4,

the sequence

Λ̃ = {e n+1
2a +

1
4a+ε}n≥0

also is sampling for sufficiently small ε > 0. However, it follows from (30) that Λ̃ is the
zero set of some nontrivial function in F 2

ϕ , a contradiction.

As mentioned in the introduction we finish this section showing that it is not possible
to switch from a sampling sequence to an interpolating sequence by removing a point
without one being already complete interpolating.

Proposition 6.5. SupposeΛ is an interpolating sequence forF ∞ϕ andΛ∪{λ} is not interpolating
for a λ < Λ. Then Λ is complete interpolating for F ∞ϕ .

Proof. The assertion of the theorem is clearly true when Λ is complete interpolating.
Suppose now that Λ is an interpolating sequence which is not a uniqueness set. Then

there exists h vanishing on Λ and such that h(λ) = 1 which implies that Λ ∪ {λ} is
interpolating. �

Lemma 6.6. IfΛ is sampling forF ∞ϕ andΛ\{λ} is a zero set forF ∞ϕ , thenΛ\{λ} is interpolating.
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Proof. By assumption there exists a function f ∈ F ∞ϕ vanishing on Λ \ {λ}, and f (λ) = 1.
For µ ∈ Λ \ {λ} define the entire function

gµ(z) =


f (z)z − λ

z − µ if z , µ

f ′(µ)(µ − λ) if z = µ,

which is in F ∞ϕ . Clearly gµ vanishes on {λ} ∪Λ \ {µ}.
Pick now a finite sequence (vµ)µ,λ and set

fv(z) =
∑

µ,λ

vµ
gµ(z)

gµ(µ)
.

By construction fv ∈ F ∞ϕ as a finite sum of functions in F ∞ϕ , and fv interpolates vµ in
µ , λ. Let us estimate the norm of fv. Observe that fv(λ) = 0 since gµ(λ) = 0 for every
µ , λ. Using the fact that Λ is sampling we have

‖ fv‖ϕ,∞ ≍ sup
µ∈Λ
| fv(µ)|e−ϕ(µ) = sup

µ∈Λ\{λ}
| fv(µ)|e−ϕ(µ) = sup

µ∈Λ\{λ}
|vµ|e−ϕ(µ) = ‖v‖ϕ,∞,Λ\{λ}.

Hence we can define a bounded interpolation operator v 7−→ fv and Λ \ {λ} is an
interpolating sequence. �

Corollary 6.7. If Λ is sampling for F ∞ϕ and Λ \ {λ} is a zero set for F ∞ϕ , then Λ is complete
interpolating.

Proof. We already know from the preceding lemma that Λ \ {λ} is interpolating. Two
cases may occur. Either the sequence Λ is interpolating, in which case nothing has to be
proved, or Λ is not interpolating. In the latter case, Λ \ {λ} is interpolating and Λ is not,
so that from Proposition 6.5 we conclude that Λ \ {λ} is complete interpolating which is
impossible since Λ \ {λ} is a zero set. �

Corollary 6.8. If a sequence Λ is interpolating for F ∞ϕ and Λ ∪ {λ} is sampling for F ∞ϕ , then
either Λ or Λ ∪ {λ} is complete interpolating.

The reader might have noticed that these last results work in a quite general setting.
In particular, if there are no complete interpolating sequences in such a general space,
then it is not possible to switch from an interpolating sequence to a sampling sequence
by adding a sole point.
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A. Hartmann & K. Kellay, IMB, Université Bordeaux I, 351 cours de la Liberation, 33405 Talence,
France

E-mail address: Andreas.Hartmann@math.u-bordeaux1.fr
E-mail address: kkellay@math.u-bordeaux1.fr


