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Abstract: We analyze the modulation instability spectrum in a varying dispersion optical fiber 
as a function of the dispersion oscillation amplitude, and predict a novel sideband splitting into 
different sub-sidebands for relatively large dispersion oscillations. 
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1. Introduction 
Modulation instability (MI) has been widely investigated in various fields of physics, e.g., plasma, 
hydrodynamics and optics. MI leads to the emergence and amplification of gain sidebands in the spectrum of an 
initially intense continuous wave. MI  has been demonstrated in fibers with anomalous group-velocity dispersion 
(GVD), and in normal dispersion fibers with fourth order dispersion, birefringence or multimode coupling. More 
recently, renewed experimental and theoretical interest in the MI process has been stimulated by using fibers 
with a longitudinal and periodic modulation of the GVD [1]. Indeed, thanks to parametric resonance induced by 
the periodic variation of GVD, scalar MI sidebands can emerge even in the normal average GVD regime of a 
dispersion-oscillating fiber (DOF) [2]. Recent experiments confirmed resonant MI in microstructure DOF around 
1 m [1], and in non-microstructure, highly nonlinear DOF at telecom wavelengths [3]. 

So far, the role of the amplitude of GVD oscillations has been largely overlooked. In this contribution, we 
present a systematic study of the various sidebands which are numerically observed at the output of a DOF as the 
amplitude of the dispersion variations grows larger. We unveil the emergence of new sidebands as well as their 
splitting in sub-sidebands. We are able to provide an analytical description of these effects based on the 
formalism of [1]. 

2.  Situation under investigation 
We numerically consider the evolution of a cw with an average power of 0.75 W in an optical single-mode 
optical fiber with a longitudinal periodic variation of its GVD. The evolution of the optical field can be described 
by the nonlinear Schrödinger equation that includes both Kerr nonlinearity   and a second-order GVD 2(z) 
which varies with distance according to 2(z) =2av + 2amp sin(2z/), with 2av , 2amp and  being the average 
dispersion, the amplitude of the dispersion variation and the spatial period respectively. We consider here a fiber 
with  = 2 /W/km, = 1 km and 2av = -0.5 ps/km/nm. 

In this situation, MI gives rise to quasi-phase-matched (QPM) sidebands, whose central frequency p and 
gain Gp after a propagation length L can be analytically predicted by the formulas [1, 2] 
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where p = 1,2,3 …is the QPM sideband order, and Jp is the Bessel function of order p. 
 

3.  Influence of the amplitude of dispersion fluctuation 
We investigate the influence of the amplitude of dispersion fluctuations 2amp on the spectrum recorded after 12 
spatial periods. Results are summarized in Fig. 1(a): as can be seen, the output spectrum and the detailed 
structure of the MI sidebands exhibit significant changes as the amplitude of GVD oscillations grows larger. 
 

 
Fig. 1. (a) Evolution of the output spectra according to the amplitude of the dispersion fluctuation. (b)  Details of the spectra for 2amp = 0.5 ps/km/nm, 1.7 ps/km/nm and 3.7 ps/km/nm. Vertical dashed lines represent the predictions from Eq. (1). 
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For a 0.5 ps/km/nm (subplot b1) GVD oscillation amplitude, we observe the generation of a set of unequally 
spaced and narrow spectral sidebands whose positions are in qualitative agreement with the analytical 
predictions of Eq. (1) (see dashed vertical lines). For increasing GVD oscillation amplitudes (1.7 ps/km/nm, 
subplot b2), we first notice that some spectral lines (for example lines corresponding to p = 2 or p = 5) have 
disappeared, in agreement with Eq. 1 [1]. To the opposite, we also point out the development of a set of regularly 
spaced sidebands with a broader bandwidth. This feature is linked to four wave mixing between the pump wave 
and the first QPM sideband and further cascading of the process, as experimentally demonstrated in [3].  

For an even higher dispersion oscillation amplitude, e.g., 3.7 ps/km/nm (subplot b3), we observe instead of a 
single gain sideband, the unexpected emergence of a pair of sidebands around the frequency 1. As our model is 
scalar and it does not take into account higher order terms of dispersion, these new sidebands cannot be linked to 
fourth-order dispersion induced MI  or to vectorial four-wave mixing processes. We have also checked these new 
sidebands cannot be explained through the mixing between the various other bands. 
 

 

Fig. 2. (a) Evolution of MI gain at the wavelength predicted by Eq. (1) for the first and second QPM sidebands. (b) Magnification of the 
spectral region around 1 according to the amplitude of the dispersion fluctuations. Numerical results (b1) are compared with analytical 
results (b2) predicted by Eq. (2). Blue dashed vertical lines indicate the frequency 1. (c) Output spectrum for 2amp =  3.7  ps/km/nm  
obtained from numerical simulations (black line) and from Eq. (2) (grey line).   
 

We have studied more precisely the evolution of the gain occurring at the wavelengths predicted by Eq. (1). The 
corresponding results are summarized on Fig 2(a), and demonstrate an excellent agreement between the 
analytical predictions of Eq. (1) with the gain evaluated from numerical simulations for 1 and 2. The most 
important conclusion here is that the observation of two sidebands either side of the frequency 1  in Fig 1b3 
does not question the validity of the analytical predictions of Eq. (1). 
In order to better understand the emergence of the two neighboring sidebands, we have plotted a magnification 
of the first QPM sideband as obtained from numerical simulations (see Fig. 2(b1)), that we may compare with 
the following analytical expression (Fig 2(b2)), which is an extension of Eq. 1, that was originally aimed at 
describing the gain at the QPM frequency only 
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As shown in panel 2(b2), we can see that Eq. 2 provides an interesting insight in the existence of the two 
sidebands from either side of the wavelength 1 : despite the use of Eq. 2 is not strictly rigorous, it qualitatively 
reproduces the structure of the first MI band. Indeed, as also illustrated in subplot 2(c), which compares the 
structure of the gain around 1, the analytical expression (2) reproduces the inner slope of the two sidebands. 

4.  Conclusion  
We predicted the splitting of QPM MI sidebands into two sub-sidebands in a DOF with large-amplitude 
dispersion oscillations. The existence of these two sidebands does not violate existing analytical predictions, and 
a link can be made with the parameters leading to an expected vanishing gain at the central resonant sideband 
frequency. The two sub-sidebands that emerge in the vicinity of the central QPM frequency can be qualitatively 
well reproduced by extending the analytical discrete resonant gain spectrum into a continuum of frequencies. 
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