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On Powers of Polynomials

Rodney Coleman, Laurent Zwald

Laboratoire Jean Kuntzmann

Domaine Universitaire de Saint-Martin-d’Hères, France.

Abstract

The aim of this short note is to show that, under certain conditions, when the coefficients of a

power of a polynomial over a field lie in a subfield, then the coefficients of the polynomial itself lie in

the subfield.

Let K be a field and k a subfield of K. If P (X) ∈ K[X ], m ∈ N∗ and Pm(X) ∈ k[X ], then in general
we cannot say that P (X) ∈ k[X ]. For example, if P (X) = iX ∈ C[X ], then P 2(X) = −X2 ∈ Q[X ],
or if P (X) =

√
2 + 1√

2
X ∈ R[X ], then P 2(X) = 2 + 2X + 1

2X
2 ∈ Q[X ]. In both cases the square of

the polynomial P lies in a subfield of a field and the polynomial itself does not lie in this subfield. In
this note we will show that this cannot occur if the coefficients of the polynomial P (X) satisfy a certain
simple condition. To fix our ideas we will initially suppose that K = C and k = Q. Of course, if m = 1
there is nothing to prove, so we will suppose that this is not the case.

Let us write P (X) =
∑n

i=0 aiX
i, with the ai ∈ C. Using the multinomial theorem we obtain

Pm(X) =
∑

k0+k1+···+kn=m

(

m

k0, k1, . . . , kn

)

∏

0≤t≤n

(atX
t)kt ,

where
(

m

k0, k1, . . . , kn

)

=
m!

k0!k1! · · · kn!
.

We will write Q(X) = Pm(X) =
∑mn

j=0 bjX
j and at first suppose that a0 6= 0. Then the coefficient bs of

Xs ∈ Q(X) may be written

bs =
∑

ak0

0 ak1

1 · · · akn

n

(

m

k0, k1, . . . , kn

)

,

where

k1 + 2k2 + · · ·+ nkn = s (1)

k0 + k1 + k2 + · · ·+ kn = m. (2)

If s = 0, then from the above equations we obtain k0 = m and ki = 0 for i 6= 0, thus b0 = am0 .

If s = 1, then, from equation (1) , k1 = 1 and ki = 0 if i > 1. Now, using equation (2), we obtain
k0 = m− 1 and so b1 = mam−1

0 a1.

Now let us consider the case s = 2. From (1) ki = 0 if i > 2 and for (k1, k2) we have (0, 1) or (2, 0).
From (2) the corresponding values of k0 are m− 1 and m− 2. Hence we have

b2 = mam−1
0 a2 + am−2

0 a21

(

m

m− 2, 2

)

.
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Continuing, we now consider the case s = 3. From (1) we see that ki = 0 if i > 3 and for (k1, k2, k3)
we have (0, 0, 1), (1, 1, 0) or (3, 0, 0). Using (2) we obtain the corresponding values of k0, namely m− 1,
m− 2 or m− 3. Therefore

b3 = mam−1
0 a3 + am−2

0 a1a2

(

m

m− 2, 1, 1

)

+ am−3
0 a31

(

m

m− 3, 3

)

.

We now turn to the general case. One possibility for the ki’s is k0 = m − 1, ks = 1 and ki = 0 for
i 6= 0, s. This gives us the term mam−1

0 as. All other possibilities have ks = 0 which from (1) and (2)
above gives us

k1 + 2k2 + · · ·+ (s− 1)ks−1 = s (3)

k0 + k1 + k2 + · · ·+ ks−1 = m. (4)

We thus obtain

bs = mam−1
0 as +

∑

ak0

0 ak1

1 · · · aks−1

s−1

(

m

k0, k1, . . . , ks−1

)

,

where the sum is over the s-tuples (k0, k1, . . . , ks−1) satisifying equations (3) and (4) above. (In passing,
notice that in all the terms in the sum the power of a0 is strictly less than m− 1.)

Lemma 1 If bj ∈ Q for all j, then mam−1
0 ai ∈ Q for all i ≥ 1.

proof We use an induction argument. As b1 = mam−1
0 a1, the statement is true for s = 1. We now

suppose that the statement is true up to a given s and consider the case s+ 1. We have

bs+1 = mam−1
0 as+1 +

∑

ak0

0 ak1

1 · · · aks

s

(

m

k0, k1, . . . , ks

)

,

where

k1 + 2k2 + · · ·+ sks = s+ 1 (5)

k0 + k1 + k2 + · · ·+ ks = m. (6)

We can write

ak0

0 ak1

1 · · · aks

s =
ak0

0 (mam−1
0 a1)

k1 · · · (mam−1
0 as)

ks

mk1+···+ksa
(m−1)(k1+···+ks)
0

=
(mam−1

0 a1)
k1 · · · (mam−1

0 as)
ks

mk1+···+ksa
(m−1)(k1+···+ks−1)−k0

0

=
(mam−1

0 a1)
k1 · · · (mam−1

0 as)
ks

mk1+···+ksa
m(k1+···+ks−1)
0

.

As am0 = b0 ∈ Q and mam−1
0 ai ∈ Q, for i = 1, . . . , s, by hypothesis, we have ak0

0 ak1

1 · · · aks

s ∈ Q. However,
bs+1 ∈ Q, so mam−1

0 as+1 ∈ Q. This finishes the induction step. ✷

We can now prove our first result on powers of polynomials.

Theorem 1 Let P (X) ∈ C[X ] and m ∈ N∗ and suppose that Q(X) = Pm(X) ∈ Q[X ]. If there is a

coefficient as of P (X) such that as ∈ Q∗, then P (X) ∈ Q(X ].

proof Let us first suppose that a0 6= 0. We will show that a0 ∈ Q∗. If s = 0, then there is nothing to
prove, so let us suppose that s 6= 0. From what we have just seen, if P (X) =

∑n

i=0 aiX
i, then am0 ∈ Q

and mam−1
0 ai ∈ Q for i = 1, . . . , n. Now

a0

mas
=

am0

mam−1
0 as

∈ Q =⇒ a0 ∈ Q∗,
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because as ∈ Q∗. Now suppose that i 6= 0, s. Then

mam−1
0 ai ∈ Q, a0 ∈ Q∗ =⇒ ai ∈ Q.

Thus P (X) ∈ Q[X ].
To finish we consider the case where the coefficient a0 = 0. If au is the first non-zero coefficient, then

we may write P (X) = XuP1(X), with P1(X) =
∑n−u

i=0 ciX
i and ci = ai+u. Then Pm(X) = XumPm

1 (X)
and applying the above argument to P1(X) gives us the desired result. ✷

It is not difficult to generalize the result we have proved to a more general situation.

Theorem 2 Let k be a subfield of a field K and m ∈ N∗. If the polynomial P (X) ∈ K[X ] is such that

Q(X) = Pm(X) ∈ k[X ] and there is a coefficient of P (X), which belongs to k∗, then P (X) ∈ k[X ].

proof If k is of characteristic 0, or of characteristic p > 0 and m is not a multiple of p, then we may use
an argument analogous to that used in the preceding theorem. Suppose now that k has characteristic
p > 0 and m = pαm′, with α ≥ 1 and (p,m′) = 1. First we notice that

Pm(X) = (P pα

(X))m
′

= Pm′

(Xpα

).

Hence Pm′

(Xpα

) ∈ k[X ]. However, if P (X) =
∑n

i=0 aiX
i, then

P (Xpα

) =

n
∑

i=0

aiX
pαi =

npα

∑

j=0

cjX
j,

with
cj =

{

ai for j = pαi, i = 0, . . . , n
0 otherwise

.

If we write P1(X) =
∑npα

j=0 cjX
j, then Pm′

1 (X) ∈ k[X ] and one of the coefficients cj belongs to k∗; also,
m′ is not a multiple of p. We thus deduce that P1(X) ∈ k[X ]. This completes the proof. ✷

Corollary 1 Let k be a subfield of a field K and m ∈ N∗. If the polynomial P (X) ∈ K[X ] is monic and

such that Q(X) = Pm(X) ∈ k[X ], then P (X) ∈ k[X ].

Wemight be tempted to generalize Corollary 1 to products of distinct polynomials, i.e., if P1(X), . . . , Ps(X) ∈
C[X ], each having a coefficient in Q, and P1(X) · · ·Ps(X) ∈ Q[X ], then Pi(X) ∈ Q[X ] for all i. How-
ever, it is easy to find a counterexample; for instance, if P1(X) = −i + X and P2(X) = i + X , then
P1(X)P2(X) = 1 +X2 ∈ Z[X ] ⊂ Q[X ].
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