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The aim of this short note is to show that, under certain conditions, when the coefficients of a power of a polynomial over a field lie in a subfield, then the coefficients of the polynomial itself lie in the subfield.

Let K be a field and k a subfield of K. If P (X) ∈ K[X], m ∈ N * and P m (X) ∈ k[X], then in general we cannot say that P (X) ∈ k[X]. For example, if

P (X) = iX ∈ C[X], then P 2 (X) = -X 2 ∈ Q[X], or if P (X) = √ 2 + 1 √ 2 X ∈ R[X], then P 2 (X) = 2 + 2X + 1 2 X 2 ∈ Q[X].
In both cases the square of the polynomial P lies in a subfield of a field and the polynomial itself does not lie in this subfield. In this note we will show that this cannot occur if the coefficients of the polynomial P (X) satisfy a certain simple condition. To fix our ideas we will initially suppose that K = C and k = Q. Of course, if m = 1 there is nothing to prove, so we will suppose that this is not the case.

Let us write P (X) = n i=0 a i X i , with the a i ∈ C. Using the multinomial theorem we obtain

P m (X) = k0+k1+•••+kn=m m k 0 , k 1 , . . . , k n 0≤t≤n (a t X t ) kt , where m k 0 , k 1 , . . . , k n = m! k 0 !k 1 ! • • • k n ! .
We will write Q(X) = P m (X) = mn j=0 b j X j and at first suppose that a 0 = 0. Then the coefficient b s of X s ∈ Q(X) may be written

b s = a k0 0 a k1 1 • • • a kn n m k 0 , k 1 , . . . , k n ,
where

k 1 + 2k 2 + • • • + nk n = s (1) 
k 0 + k 1 + k 2 + • • • + k n = m. (2) 
If s = 0, then from the above equations we obtain k 0 = m and k i = 0 for i = 0, thus b 0 = a m 0 .

If s = 1, then, from equation (1) , k 1 = 1 and k i = 0 if i > 1. Now, using equation (2), we obtain k 0 = m -1 and so b 1 = ma m-1 0 a 1 . Now let us consider the case s = 2. From (1) k i = 0 if i > 2 and for (k 1 , k 2 ) we have (0, 1) or (2, 0). From (2) the corresponding values of k 0 are m -1 and m -2. Hence we have

b 2 = ma m-1 0 a 2 + a m-2 0 a 2 1 m m -2, 2
.

Continuing, we now consider the case s = 3. From (1) we see that k i = 0 if i > 3 and for (k 1 , k 2 , k 3 ) we have (0, 0, 1), (1, 1, 0) or (3, 0, 0). Using (2) we obtain the corresponding values of k 0 , namely m -1, m -2 or m -3. Therefore -3, 3 .

b 3 = ma m-1 0 a 3 + a m-2 0 a 1 a 2 m m -2, 1, 1 + a m-3 0 a 3 1 m m
We now turn to the general case. One possibility for the k i 's is k 0 = m -1, k s = 1 and k i = 0 for i = 0, s. This gives us the term ma m-1 0 a s . All other possibilities have k s = 0 which from (1) and ( 2) above gives us

k 1 + 2k 2 + • • • + (s -1)k s-1 = s
(3)

k 0 + k 1 + k 2 + • • • + k s-1 = m. (4) 
We thus obtain

b s = ma m-1 0 a s + a k0 0 a k1 1 • • • a ks-1 s-1 m k 0 , k 1 , . . . , k s-1 ,
where the sum is over the s-tuples (k 0 , k 1 , . . . , k s-1 ) satisifying equations ( 3) and (4) above. (In passing, notice that in all the terms in the sum the power of a 0 is strictly less than m -1.)

Lemma 1 If b j ∈ Q for all j, then ma m-1 0 a i ∈ Q for all i ≥ 1.
proof We use an induction argument. As b 1 = ma m-1 0 a 1 , the statement is true for s = 1. We now suppose that the statement is true up to a given s and consider the case s + 1. We have

b s+1 = ma m-1 0 a s+1 + a k0 0 a k1 1 • • • a ks s m k 0 , k 1 , . . . , k s ,
where

k 1 + 2k 2 + • • • + sk s = s + 1 (5) k 0 + k 1 + k 2 + • • • + k s = m. (6) 
We can write

a k0 0 a k1 1 • • • a ks s = a k0 0 (ma m-1 0 a 1 ) k1 • • • (ma m-1 0 a s ) ks m k1+•••+ks a (m-1)(k1+•••+ks) 0 = (ma m-1 0 a 1 ) k1 • • • (ma m-1 0 a s ) ks m k1+•••+ks a (m-1)(k1+•••+ks-1)-k0 0 = (ma m-1 0 a 1 ) k1 • • • (ma m-1 0 a s ) ks m k1+•••+ks a m(k1+•••+ks-1) 0 . As a m 0 = b 0 ∈ Q and ma m-1 0 a i ∈ Q, for i = 1, . . . , s, by hypothesis, we have a k0 0 a k1 1 • • • a ks s ∈ Q. However, b s+1 ∈ Q, so ma m-1 0 a s+1 ∈ Q. This finishes the induction step. ✷
We can now prove our first result on powers of polynomials.

Theorem 1 Let P (X) ∈ C[X] and m ∈ N * and suppose that Q

(X) = P m (X) ∈ Q[X]. If there is a coefficient a s of P (X) such that a s ∈ Q * , then P (X) ∈ Q(X].
proof Let us first suppose that a 0 = 0. We will show that a 0 ∈ Q * . If s = 0, then there is nothing to prove, so let us suppose that s = 0. From what we have just seen, if

P (X) = n i=0 a i X i , then a m 0 ∈ Q and ma m-1 0 a i ∈ Q for i = 1, . . . , n. Now a 0 ma s = a m 0 ma m-1 0 a s ∈ Q =⇒ a 0 ∈ Q * , because a s ∈ Q * . Now suppose that i = 0, s. Then ma m-1 0 a i ∈ Q, a 0 ∈ Q * =⇒ a i ∈ Q. Thus P (X) ∈ Q[X].
To finish we consider the case where the coefficient a 0 = 0. If a u is the first non-zero coefficient, then we may write P (X) = X u P 1 (X), with P 1 (X) = n-u i=0 c i X i and c i = a i+u . Then P m (X) = X um P m 1 (X) and applying the above argument to P 1 (X) gives us the desired result. ✷ It is not difficult to generalize the result we have proved to a more general situation.

Theorem 2 Let k be a subfield of a field K and m ∈ N * . If the polynomial

P (X) ∈ K[X] is such that Q(X) = P m (X) ∈ k[X]
and there is a coefficient of P (X), which belongs to k * , then

P (X) ∈ k[X].
proof If k is of characteristic 0, or of characteristic p > 0 and m is not a multiple of p, then we may use an argument analogous to that used in the preceding theorem. Suppose now that k has characteristic p > 0 and m = p α m ′ , with α ≥ 1 and (p, m ′ ) = 1. First we notice that

P m (X) = (P p α (X)) m ′ = P m ′ (X p α ). Hence P m ′ (X p α ) ∈ k[X]. However, if P (X) = n i=0 a i X i , then P (X p α ) = n i=0 a i X p α i = np α j=0 c j X j , with c j = a i for j = p α i, i = 0, . . . , n 0 otherwise . 
If we write P 1 (X) = np α j=0 c j X j , then P m ′ 1 (X) ∈ k[X] and one of the coefficients c j belongs to k * ; also, m ′ is not a multiple of p. We thus deduce that P 1 (X) ∈ k[X]. This completes the proof. ✷

Corollary 1 Let k be a subfield of a field K and m ∈ N * . If the polynomial P (X) ∈ K[X] is monic and such that Q(X) = P m (X) ∈ k[X], then P (X) ∈ k[X].

We might be tempted to generalize Corollary 1 to products of distinct polynomials, i.e., if P 1 (X), . . . , P s (X) ∈ C[X], each having a coefficient in Q, and P 1 (X) • • • P s (X) ∈ Q[X], then P i (X) ∈ Q[X] for all i. However, it is easy to find a counterexample; for instance, if P 1 (X) = -i + X and P 2 (X) = i + X, then P 1 (X)P 2 (X) = 1 + X

2 ∈ Z[X] ⊂ Q[X].