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Convergence rate of the powers of an operator.
Applications to stochastic systems

Bernard Delyon *
June 4, 2014

Abstract

We extend the traditional operator theoretic approach for the study of dynamical systems in order to
handle the problem of non-geometric convergence. We show that the probabilistic treatment developed and
popularized under Richard Tweedie’s impulsion, can be placed into an operator framework in the spirit
of Yosida-Kakutani’s approach. General Theorems as well as specific results for Markov chains are given.
Application examples to general classes of Markov chains and dynamical systems are presented.

Keywords: Markov chains
AMS subject classification: 60J05

1 Introduction

This paper is mainly concerned with the asymptotical behaviour of homogeneous Markov chains, i.e. pro-
cesses of the form

Xnt1 = ¢(Xn, Un) (1)

where U, is an i.i.d. sequence and ¢ a certain function; the initial condition Xy is deterministic or random.
There exist essentially two different approaches for the analysis of the asymptotic behaviour of such systems:
the operator theoretic approach and the probabilistic approach. The first approach focuses on the properties
of the transition operator 1" defined as

Tf(x) = E[f (Xn41)|Xn = 2] = E[f(¢(z,Un))] = /f(@(%U))N(dU) (2)

where p is the distribution of U,,. The second is based on the fine study of the trajectories of X,,, especially
the recurrence properties. The most typical objective is to understand how the function

T" f(z) = E[f(Xn)[Xo = ] (3)

possibly converges to some limit, and at which rate. We know that this limit would be = (f), where 7 is the
invariant measure. This in particular allows to study arbitrary correlations

E[f(Xn)g(Xo)] = Elg(Xo)T" f(Xo)]. (4)
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In the case of dynamical systems, i.e. U,, = 0, there is no pointwise limit to (3) whereas (4) may converge;
this means that (3) converges actually in some weak sense. The problem can thus be summarized as: In
which sense does T f converges, for which functions f, and at which rate?

This paper deals with the first approach, although some fruitful ideas have been borrowed from the
second one, especially concerning the case where there is no spectral gap.

A huge amount of literature is concerned with both of these points of views. In this section, we shall first
give a sketch of the main ideas with typical examples of the simplest situations, and then we shall present
our plan of action.

1.1 The Yosida—Kakutani Theorem and the Ionescu-Tulcea—Marinescu Theo-
rem for quasi-compactness

It is well known that in the finite case (i.e. when X,, takes values in a finite state space), T is actually a
matrix, and when 7" converges, the rate is always geometric. It is given by p”, where p is the modulus of
the second eigenvalue T. The gap between 1 (first eigenvalue) and p, is the spectral gap. If the eigenvalue
1 is not simple or if other eigenvalues of modulus one are present, the asymptotic behaviour of 7™ is still
given by the eigenvalues of modulus one and their eigenspaces, up to a remainder of order p™. We present
now the classical operator approach in the case of a general state space, which may be seen as the infinite

dimensional extension of this matrix treatment. What is expected here is that for some norm |.| and any
function f with | f] < o0
7" f —=(f)l < Co"I I (5)

for some C' > 0 and 0 < p < 1. Examples are given below.

An operator T on a Banach space (E, |.]) is said quasi-compact if some power of T' can be written as
T =K+V (6)

where V' has spectral radius < 1 and K is compact. Quasi-compactness has been extensively studied [7].
The Yosida-Kakutani Theorem [18] says that if in addition the sequence |T%]| is bounded then E splits as
E = E.@ Ey where E. is the finite dimensional space generated by the eigenvectors with eigenvalues of
modulus 1, Ejy is closed with TEy C Ey and the restriction of T to Ey has spectral radius < 1. Denoting
by A, i = 1,...p the eigenvalues of T" with modulus one, by E; the corresponding eigenspaces, by P; the
projection on E; parallel @ ot Ej;, one has the equivalent formulation

P
T=) MPi+Q Q=TPR=RT (7)
i=1
where
Mal=-o =yl =1 ®
each P; is a |.|-continuous projection, with finite rank if s > 0 (9)
p
> P=1Id (10)
i=0
Q"] — 0. (12)

The last equation implies of course that |Q"| < Cp" for some C' > 0, 0 < p < 1; another consequence of
these equations is that for any £ > 1

p
T =3P+ Q. (13)

i=1



A decade later, Ionescu-Tulcea and Marinescu provided a Theorem [8, 10, 9] useful for checking that quasi-

compactness holds when |7"] is bounded!: it is assumed that there exists a weaker norm |.|| on E, for
which {T'f: f € E, |f] <1} is|.||-compact and in addition, for some vy < 1,c>0and k > 0, and all f € £
IT"F1 < ALF1+ el £ (14)

It turns out that conditions (6) and (14) have different natural domains of applications. For an illustrative
purpose, we give below two simple but typical examples concerning Markov chains. Namely, we show that
(6) is well suited for dealing with Harris chain with convergence in total variation of the distribution of the
variable, whereas (14) is more adapted to non necessarily irreducible chains where, on the other hand, the
transition has a contraction effect on the variable.

Example 1. We consider here a Markov chain on a measured space S, which satisfies a Doeblin condition
in the sense that there exists a positive measure v(dx) such that its transition kernel satisfies for all 2 € S

p(z, dy) > v(dy).

Then one can write

Tf(x) = / F(w)idy) + / £ (0) (. dy) — v(dy))

and (6) applies with | f| = ||f]|s, on the space E of bounded measurable functions, ||V || <1 —v(S). With
some extra effort, one can show that FE. is the one-dimensional space of constant functions. If 7 is the
invariant measure, one gets

17" f = =(f)] < Cp"I I (15)
or by duality, for any initial measure

1T —7||lrv < Cp™||ullrv

where ||.||7v is the total variation norm.

Example 2. Let us consider now a chain with the form
KXnt1 = ‘P(Xna Un)

where U, is an i.i.d. sequence with distribution p. Hence

Tf(x) = / £, w) ().

The function ¢ is supposed to satisfy adequate measurability assumptions and a uniform contraction property
on the metric space (5,d). Specifically, we assume that

p(z,u)) — oy, u)| < vd(z,y)
for some v < 1 and all z, y,u. In this case it is easy to check that (14) applies with

11l = 11flloo
LA = [1A1 + ]
@ fw)

In order to have the ||.||-compactness of B = {T'f : f € E, |f] < 1}, we assume that the state space is
compact. Convergence in total variation will not hold in general (e.g. the chain X, 11 = (X, + U,)/2,
U, ~ B(1,1/2)). But we still have geometric convergence for the stronger norm f — | f].

IThe point had been actually introduced much sooner by Doeblin and Fortet in [4], Eq.(2) and (3) p. 143, but in a more
specific context.



1.2 The probabilistic approach

Let us consider an irreducible aperiodic Markov chain with invariant measure 7. Interestingly, it appears
that in many situations, geometric convergence like (15) does not occur, but nevertheless for many f € E,
T™f — 7(f) converges exponentially fast to 0. In other words the convergence is not |.|-uniform, and
sometimes this convergence does not follow an exponential rate, but is slower. This situation has been
treated quite successfully with a very probabilistic approach, where the speed of convergence is related to
the integrability of recurrence times. The reference [13], and more specifically [11], deals with these situations.
Two key concepts are used: the i-irreducibility, and a drift condition for controlling moments of recurrence
times. A simple illustrative example of this absence of spectral gap is the following operator on (RY, ||.||s):

1
Tf(z) = 5(f(2) + f((z = 1)4), zeN.
corresponding to the following chain on N
Xn+1 == (Xn - n+1)+7 P(Un = O) = P(Un == 1) = %

The pointwise convergence T" f(x) — w(f) = f(0) is very fast, but this convergence is not uniform. In

particular this makes (15) impossible to occur with | f] = || f|lcc- A possible operator theoretical approach
is that one has for some weaker norm ||.||

17" f = 7(H)I < pul f1 (17)
for any f € F, and some fixed decreasing sequence p,,. The norm ||.|| introduced here has actually strong
connections with the one involved in the Ionescu Tulcea-Marinescu approach. The rate of decrease of p,
depends on the choice of ||.||. Notice that if in (17) the norms were equal, the convergence of p, to zero

would imply the geometric convergence; however, this is not the case any more when the norms are different.

1.3 Aim of the paper

The aim of this paper is to show that these ideas can be combined successfully and that they lead to an

operator theoretic approach where non geometric convergence is considered. The main feature of this theory

is to work simultaneously with two norms and to use this for measuring non geometric rates of convergence.
Our approach has essentially two steps: we first give conditions under which (7) to (11) hold with

1Q"fII < pul 1, pn — 0 (18)

instead of (12). This is the main objective of Section 2 (see Theorem 1). Notice that in this decomposition
the Banach space is (E, |.]), and the norm ||.|| only appears in (18); in particular nothing guarantees that
1Q™ f] tends to zero.

Section 3 is concerned with geometric convergence, i.e. p, = Cp™. Specifically Theorem 3 shows how the
Yoshida-Kakutani and Ionescu Tulcea-Marinescu approaches can be combined into a single statement. This
allows an easy treatment of chains having an irreducible component and another component behaving like
Example 2 above.

Section 4 is concerned with sub-geometric convergence. Theorem 7 proposes a way to estimate the decay
rate of the sequence p,,.

General theorems concerning Markov chains and examples are given throughout the paper in order to
point out that this approach is very versatile for the study of a large class of dynamical systems, in particular
for irreducible as well as for non-irreducible Markov chains.



2 General results

In the whole paper, we shall consider an operator T on a vector space (F, |.]) endowed with another norm
[I.ll. We shall denote by By, B the unit balls for these norms:

Bo={feB:|f] <1}, (19)
B={feE:1fl <1}. (20)

We shall work under the following assumptions

(A0) (E,].]) is a Banach space, B is complete for the metric induced by |.||, and for some Cj
VfeE, |fll<Colfl. (21)

(A1) The number Cr = sup,, | T™] is finite.

(E,||.]]) is typically not complete. For instance one can have E = Cy,(R), | f| = || f]|oc and || f|| = sup, Jﬁi)‘L
Theorem 1. If in addition to (A0) and (A1), T is a sum of two operators
T=K+V (22)
both |.|-continuous and ||.||-continuous, which satisfy for some Cx > 0 and for any n and any f € E
KT"KB is ||.||-totally bounded, (23)
Vel <e.lfl, e, =0, (24)
> IEVH] < o0, (25)
k>0
IKfI < Crlfl, (26)

then (7) to (11) and (18) hold true.
If T is |.|-continuous and ||.||-continuous, and T* satisfies the assumptions above for some k > 0, then
(7) to (11) and (18) hold true.

The proof is postponed to Appendix A. This proof utilizes the more general Theorem 10 stated in Section A.1,
and is based on an extensive use of the identity:

=TT -V)V' 4 V=Y T KV 4 v (27)
i=1 i=1

Very coarsely the assumptions imply that for any sequence fi, € B, the sequence T* fy, is ||.||-totally bounded.
This allows us to prove that E is the direct sum of two |.]-closed, T-stable spaces

E={f:|T"f| = 0} & {f : liminf | f — T"f|| = 0} = Eo & E.. (28)

Next we prove that F. is finite dimensional (by proving that its unit ball is compact) with a basis of
eigenvectors. The projection Py of Equation (7) is then the projection on Ej parallel to E..

Application to Markov chains. We shall consider a measurable space (5, %) with a measurable weight
function v > 1 and we adopt the following notation

”f”v: Hf/UHoo (29)

We denote by E the Banach space of bounded measurable functions on (S,.%). We recall that a transition
operator on (S,.%#) is a function (z,A) — T(z, A) such that for any x € S, A — T(z, A) is a probability
measure, and for any A € #, x — T(z, A) is measurable.



Theorem 2. Let T be a Markov transition operator:
TN = [ F)T e dy).
Yy

Assume that for some set Ky and some ¢, > 0

Tv(z) <v(z) —cy, Vo & Ko (30)
Tv is bounded on Ky (31)

and that there exists another kernel K(x,dy) such that 0 < K(x,dy) < T(xz,dy), and such that for some
e > 0, and some non-negative measure v one has

K(I,S) 25, VYV EKO
K(z,5)=0, Vz¢Ky

A~ A~~~
w W
w N
= D D =

K flleo <v(lf]), VfeE 34

v(v) < 0. 35
Set

L1 =11flls (36)

1A= 11l (37)

Then Theorem 1 applies with K and V =T — K. In particular Equations (7) to (11) and (18) hold true.
If in addition there is no measurable set A such that x — T(x,A) is a non-trivial indicator function?
then there exist a measure m and a sequence p, — 0 such that for any f € E

1T f = 7()llo < pall flloo- (38)

The proof of this consequence of Theorem 1 is postponed to Appendix B.

REMARK. Equation (30) is known as the "drift condition" (cf Theorem 11.0.1 of [13] or Proposition 5.10
in [14]). Equations (32) to (35) are reminiscent of the T-chain property (cf [13] Theorem 6.0.1), used to
check the irreducibility assumption (cf. [13] p. 87). However, the Feller property is not required here.
Equation (33) is not a restriction, since cancelling K outside K does not affect the other assumptions. The
essential difficulty with the present assumptions is that the set Ky has to be the same in (30) and in (32).
Notice however that the sets K satisfying assumptions (32) and (33) are stable by finite union.

Example. Consider the Markov chain on R defined by

Xn+1 =X, +1+ Xr?Wn-i-l

where W, is an i.i.d. sequence of non-zero centred random variables with values in [—1, 1], with a non zero
absolutely continuous component. In addition, we assume that

1/2<a<l.
Take
v(z) =aP +1
for some p < 1 which will be chosen later as 2(1 — «)). Then

Tv(x) =1+ E[(x + 1+ 2*W1)P].

2This would mean that 1x,e4 would be a deterministic non-constant function of the initial state Xg.



By the second order Taylor formula applied to the function v in the neighbourhood of = + 1, there exist a
random number 0 < 6 < 1 such that

p(1—p)

Tv(z) =14+ (z+ 1) — 5

22B[(xz + 1 + 02°W,)P 2 W3
1_
<14+ (zx+1)P- wxm(m +1—z%)P 202

where o2 is the variance of W;. Taking p = 2(1 — «), we have 0 < p < 1 and

p(1—p) z 2o,
T <l+4+(z+1)P - ( ) o
v(z) < (x ) 7 1 .

1—
<1+2P - QGZ for x large enough.

Equation (30) is satisfied for some interval K = [0, M]. Equation (31) is obvious. In order to check Equations
(32) to (35), notice that if the absolutely continuous component of W; has a density > ¢ on a subset A of
[—1, 1] with positive measure, K (z,dy) can be taken as e\(A) times the distribution of z 4 14 z*W;, where
W, has density 14/A(A), v is some multiple of the uniform measure on [0, M + M* + 1]. Therefore theorem
applies. In order to get (38) it remains to prove that T14 = 15 is impossible unless B=R or B={. If B
is non trivial one can find two sequences z,, and y,, having the same limit such that x,, € B and y,, ¢ B. The
relation 71 4 = 15 would mean that for each n, the distributions of z,, + 1 + 20W; and y, + 1 + yoW; are
mutually singular (supported on A and A°¢), which is impossible for n large because W7 has an absolutely
continuous component. As a consequence, B is necessarily trivial and (38) holds.
Notice that nevertheless E[X,] = E[X] + n.

3 Geometric convergence: Quasi-compactness

In this section, we give a theorem which encompasses both Yosida-Kakutani and Ionescu-Tulcea-Marinescu
Theorems, and present an application to Markov chains which mixes both kinds of situations presented
above. A specific application to autoregressive processes with Markov switching is finally studied. We recall
that B denotes the unit closed ball for the norm |.].

Theorem 3. Let T be an operator on (E,|.|) satisfying (A0), (A1) and

(A2) T is ||.||-continuous. For some ||.||-totally bounded set Kg, v <1,¢>0 and g >0

T'BCcvB+ Kg (39)
[T <~ALf1+cllf]- (40)

Then Equations (7) to (12) hold.

Like Theorem 1, this theorem is a consequence of the general Theorem 10 stated in Section A.1; its proof is
postponed to Appendix C.

The following theorem may seem very general and unclear for the applications. We should point out that
we intend to bridge a continuum over two extreme cases: the convergence of the Markov chain in Wasserstein
distance and the convergence in total variation. This will be exemplified in Theorem 6.

Let us just mention that [.] below is typically a Lipschitz norm like in Equation (16), and that the
restriction to sets S, in (45) to (47) allows to get more local assumptions (i.e. less uniformity). The theorem
says that if locally T' can be lower bounded by an operator with nice properties, then quasi-compactness
holds.



Theorem 4. Let (S,d) be a metric space and A its Borel o-field. We assume that is given a continuous
function v(x) > 1 on S such that for any A > 0, {x : v(z) < A} is compact. Consider a vector space E of
HB-measurable functions defined on S containing compactly supported Lipschitz functions. On E is defined a
semi-norm f +— [f] and we set for any function f on S':

LA =111+ (11,
/()]

11 = sup S (42)

We assume that (E, |.]) is a Banach space and that (A0) holds.
Let T be a Markov transition operator defined on E. We assume the existence of 0 < vp,7v, < 1 and
cy > 0 such that

[Tl <wlfl, feE, (43)
Tu(z) < yv(x) + cy. (44)

(41)

We assume the existence of functions eq > 0 and cq > 0, and for any x € S, the existence of a non-negative
kernel K, (y,dz) and a neighbourhood S, of x, such that for any y € S, and f € E,

K, (y,dz) < T(y,dz), (45)
K. (y,5) > eq(w), (46)
|K.f(y) — Ko f(x)] < calz,y)[f]. (47)

Moreover the function cq(.,.) is assumed to be bounded on compact subsets of S x S, and e4(x) is positive
and satisfies

lim  gq(x)v(z) = +oo, (48)
v(z)—00

vV A, v(mw)lgA ea(z) > 0. (49)

Then Theorem 8 holds with a pair of norms (|.1’,]|.]I') respectively equivalent to |.| and ||.||. In particular,

if the constant functions are the only eigenvectors of T with an eigenvalue of modulus 1, there exist C' > 0,
0 < p <1 and a probability measure m such that for any f € E,

I7(HL=T"f] < Cp"l ] (50)
and 7(v) < oo.

The proof is postponed to Appendix D. We use Theorem 3 with ¢ = 1. The idea is to set

n

Kf(x) = 0:i(x)K,, f(:)

i=1

where 601, .. .0, is a partition of the unity of a large portion of the space, each x; being a point of the support
of 0;. Clearly K(B) is compact. It remains to prove that |[|[(T'— K) f|| < ||| (which implies (39)) and that
(40) holds true.

We shall consider two examples, one where [f] = 0 and we get geometric convergence in ||.|| norm (which,
by duality, corresponds to geometric weighted total variation convergence for the distribution of the Markov
chain), and another case where [.] plays an important role.



Application to geometric total variation convergence. In the case [f] = 0, the kernel K,(y,dz)
should not depend on y, and we get the following corollary:

Corollary 5. (WEIGHTED LOCAL DOEBLIN CONDITION) Let (S, d) be a metric space and % its Borel o-field.
We assume that is given a continuous function v(z) > 1 on S such that for any A > 0, {z : v(z) < A} is
compact. Consider a vector space E of B-measurable functions defined on S containing compactly supported
Lipschitz functions. We set for any function f on S:

flz

171 = sup L0
v ()

We assume that (E, |.]) is a Banach space and that (A0) holds.

Let T be a Markov transition operator defined on E. We assume the existence of 0 < 7, <1 and ¢, > 0
such that

Tu(z) < yv(x) + cy. (52)

We assume the existence of a function ¢4 > 0, and for any x € S of a non-negative kernel K,(dz) and a
neighbourhood S, of x, such that

(51)

Ko(dz) <T(y,dz), y€ S, (53)
Ko (9) = ea(x). (54)
The function e4(x) is positive and satisfies
lim eq(z)v(z) = (55)
v(w)— 00
VA, v(r;l)igA eq(x) > 0. (56)

Then Equations (7) to (12) hold. In particular, if the constant functions are the only eigenvectors of T with
an eigenvalue of modulus 1, there exist C > 0, 0 < p < 1 and a probability measure w such that for any
[ €E,

I=(f) =T"fl < Cp"I I (57)
and w(v) < co.
In many cases e4(z) = 1/2 will do the job, but in the following example the situation is more complicated:

Xp1 = 1X, .With probz?t.)ility 1—p(X,)
V., with probability p(X,,)

where V,, is an i.i.d. sequence and p is a positive continuous function of x; V,, can be constant. We see that
only the second type of transition contributes to the convergence in total variation, even if V,, = 0, this is
why we shall need p(x) not to be too small. Let us assume that for some 0 < a < 1

E[|[V,]?] < o0
lim p(x)|z|® = +o0
T—00
p is positive and continuous
then Equations (52) to (56) are clearly satisfied with
v(z) =|z|*+1
Ko (f) = 3p(x)B[f (V)]
ea(z) = 3p()
Se ={y: p(y) > p(x)/2}

and the exponential convergence holds. Notice that the continuity of p is far from being necessary since what
we need is only that S, is a neighbourhood of z, and that the minimum of p on any bounded set is > 0.



Application to functional autoregressive processes with Markov switching. We consider the
following mixed Markov process (I,,, X,,) € S where S = {1,...s} x R¢:

P(Liy1 = jlIn=1) =pij, 1<40,j<s (58)
Xnt1 = O‘(In)@(Xn) + (I, Vi) (59)

where « is a matrix valued measurable function, ¢ and v are vector valued measurable functions, and V,, is
an independent i.i.d. sequence. In other words

Tf(i,x) =Y puELf(k, ali)e(x) + (i, 1)),
k

If for all ¢ the variable v (i,V;) has a density, we can apply Corollary 5 at the price of extra reasonable
assumptions because (53) and (54) would be satisfied for some kernel K, independent of y (the continuity
of ¢ is important here); our point is to deal with singular measures. As in [2], Th.1.4, we have made efforts
to have conditions which allow for non-contracting values for «, as can one see in Equation (61):

Theorem 6. Consider the Markov chain defined by (58) and (59). We assume that the chain I,, is irreducible
and aperiodic with invariant measure w on its finite state space, and that for some g > 0

o(y) = p(2)] < |y = 2 (60)
> milog(la@)) <0 (61)
sup E[[¢(i, V1)]7] < +o0 (62)
where ||.|| is the usual matriz norm and |.| the euclidean norm. Then Theorem 4 applies and (50) holds with
the norm
r_ |f<Z,I>—f(Z7.’L‘/>| |f(2,l')|
UE = e P e

for n small enough. This implies that for any realization (I, X,,) of the chain at time n with an arbitrary
initial distribution, one can find a coupling with a pair (I', X') having the stationary distribution, such that

P(I, #I') + E[| Xy — X'|"] < Cp" (1 + E[|Xo[")).

Proof. We will choose

1= S wlsle (7= sup LD =)

v(i,z) = |7 1
(@), (5, 9)) = Lizg + [z = yl".

for some constants v; and A(7) which will be specified later. Concerning K and the neighbourhoods S; , we
simply set:

K=T
Six = {i} x RY

In that case (45) and (46) are obvious (g4 = 1), and (47) will be a consequence of (43). The technical part
is to prove that (43) and (44) hold true. We now focus on (44). We first note that since

Xotr = all)((X0) = 2(0)) + (a(L)p(0) + ¥(Ln, Vi) )

10



we can assume that ¢(0) = 0. Unsurprisingly, the contraction property (44) is related to the rate at which
the product of «(Ij)’s converges to zero, this one being itself controlled by the speed at which the law of
large numbers acts on the sums of log(||a(I)]|)’s. This uses classically the Poisson equation: Since the chain
I,, is irreducible aperiodic on a finite state space, there exists a unique (up to a constant) solution A to the
Poisson equation

ENI) o = 4] = A@) = 1(@) + =(1), 1(i) = log([la(d)]])

(it is simply A = Y22, (T§ — m)l where Ty = (psj)1<i,j<s is the transition operator of the chain I,,). The
process

Zn — |Xn|868)\(1")
satisfies, thanks to (59) ,(60), and ©(0) = 0:

Znir < (la(L)[He(Xn)| + [ (I, Vo) )7 i)
< L)[[° | X |74 4 | (L,, V)72 Umet)
— ZneE{IOg () FXATn+1)—=A(In)} + 65>‘(In+1)|w(_[n7 Vn)|6

And since the factor of ¢ is bounded, we have for some ¢
Zoir < Zu (1 e(MEer) = MEn) + log o)) + ) + 0 (L, V)|

BlZya| 7] < 20 (1 -+ en(D) + cs?) + P20 sup lju(i, 13) [,

where .%,, stand for the o-field o(I;, X;,0 < i < n). Hence, if we take ¢ < ¢ such that en(l) + c£? < 0, we
obtain (44). Concerning (43):

I71(6.9) = TG0 < 3 pacBlF (. idolo) + 006 V1) = f(ka(iholo) + 9610
< o) = (@) Sl
(711 < @ Sl
STl < 3 villal)"pal .

7 i,k
We see that if we can find v such that

Vi, > llal)"vipir < v (63)

then Equation (43) will be satisfied. To this aim, we define

v=m+n Z(’ﬂ'.l — n(l)m)P*
E>1

with the notation

(m.0)(i) = ml(3).
Set 7; = ||a(2)]|"; since

i =14nl(i) + O(n?)
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we get

v =7+n Z(ﬂ'.l — 7()m)P* 4+ nr.l 4+ O(n?)
E>1

hence

vrP=mn+nY (rl—x(l)m)P* +yr(l) + O(n?)
k>1

=v+nr(l) + O(n?).

This equation implies that for ) small enough, Equation (63) is satisfied. In particular we shall impose n < e.
We have now proved (43) to (48).

As a byproduct, Equation (43) implies that any eigenfunction f, with associated eigenvalue |\| = 1, does
not depend on x, and consequently, since I, is irreducible, f is necessarily constant.

Theorem 4 applies and (50) holds with

11 =sup D +1+Zm

Since by irreducibility, v; > 0 for all ¢, this norm is equivalent to

G ) — £y
N =sp e T8 Ty

This norm is also equivalent to | f]’ because, on the one hand, < ¢, and on the other hand

Fl)] o 1FGr) — £.0)] + 1f(.0)

<
a1 = 5 EEE!
) — £(i0
g Sup |f(z7‘r> f(l7 )‘ +Sup|f(l,0)|
iz || i
< N(f)-
By the duality properties of the Wasserstein distance (cf [17] Theorem 5.10 and Equation (5.11))
inf  P(L A1)+ ElX, — X'V = sup  Elf(In, Xa) — F(I', X))
In, 0", Xpn, X' f Lipschitz

where the infimum is taken over all the pairs of random variables (I, X’) and (I, X,,) having respectively
the stationary distribution and the chain distribution at time n, and f is 1-Lipschitz w.r.t. the distance d.
The expectation in the right-hand side is just E[(Q™ f) (1o, Xo)], which is smaller than Cp"™(1+ E[| Xo|"]). O

4 Subgeometric rates

In the rest of the paper, we shall find conditions under which the rate of convergence of V" to 0 will give us
an insight about the rate of convergence of Q" to 0. We set for any operator S on E

[S]|zo = sup [|Sf]|
lrl<1

[Sllor = sup [SfI.
IflI<1

12



With this convention, one has

IOV < Ul zollVloe

UV < [[Ullog V]| zo-
We shall consider positive rate sequences «,, n > 1, satisfying the conditions (R1) to (R3) below. For
instance, sequences like o, = (n+1)7P, p > 1, or ay, = exp —/n, or oy, = (n + 1)7*(log(n + 1)) =2 satisfy

these assumptions (notice that the first part of (R2) holds if x — log«, is convex). These sequences make
it easy to solve some recursive equations (cf. Appendix F).

Theorem 7. Let (A0) be satisfied and T be a |.|- and ||.||-continuous operator on E satisfying (A1),
Equations (7) to (11) and (18). Let o, be a sequence satisfying

(R1) n+— a, is decreasing

Opt1 . . .
(R2) n— —* is increasing and converges to 1
(879

(R3) Zo‘i < 0.

Q
n>1 2n

We assume that T can be rewritten as T = K +V with

||Vk||E0 < Ciag, k>0, (64)
IKVkI < CQOéka k> 0, (65)
IKQF] -0 as k— x (66)

(Equations (65) and (66) are clearly satisfied if (64) and (26) hold true). Then one has for some C' > 0 and
alln >0

Q"m0 < C Y on.

k>n
If in addition sup,, | T"|| < oo, then
1Q"[| 2o < Can. (67)

The proof is based on (27) and on the key result of Proposition 12. It is postponed to Appendix E.

REMARKS. 1/ If Theorem 1 is used for checking the assumptions, there is no need to check (25), which
is automatically satisfied thanks to (24), (26) and the summability of a,, (consequence of (R1) and (R3)).
2/ Condition (R2) excludes geometric rates. The theorem is indeed wrong in this case: For example in the
finite dimensional case, Theorem 1 holds with V' = 0, and (67) only holds with some geometric rate.

Application to Markov chains. We consider here the Markov chain of Theorem 2 but (30) is strength-
ened as

To(x) <v(x) —0(v(x), =¢ Ko (68)

for some function 6, e.g. 8(u) = u?, 0 < ¢ < 1. Our goal here is to use this information for bounding the
sequence py, in (38).

We need a preparatory lemma which will be essential for working with (68); the point of this lemma is
to bring out a function ¢ which satisfies (71), is significantly larger than ((z) = = and that can be easily
iterated (Equation (70) implies ¢ (z) = v (=1 (¢ (x) 4 n)):

13



Lemma 8. Let 6 be a non-decreasing non-negative concave differentiable function on [0, +00) with a deriva-
tive which tends to zero at infinity, and define for x > 0

ro1
Y(x) = / —dy 69
(x) ) (69)

¢(z) = p D (%(x) +1). (70)
We assume that v is finite and tends to infinity. Let 61 > 0 be such that for x > 6,

O(z) < .

Then ( is concave and for x > 64
((z —6(x)) <= (71)
The proof is postponed to Appendix G.

Theorem 9. Let all the assumptions and notations of Theorem 2 hold and assume that (30) is strengthened
as

Tu(z) <wv(z) —0(v(z)), =x¢ Ko (72)

for some concave function 6 satisfying the assumptions of Lemma 8 with 61 = min,(v(z)). In addition we
assume that ming>g,  — 0(x) > 0 and that the sequence

1
T YT w)
(v is given by (69)) satisfies the conditions (R1) to (R3) of Theorem 7. Then for some ¢ > 0 and any
bounded measurable function f

s | S| <l =Y (73)
z k>n
7 (1Q" 1) < ca - (79

The proof is postponed to Appendix H.
We find the following matchings between drift function and rates

log(t+1)2 | ~n~t(logn)=2 | ~ (logn)™*

t,0<qg<1| ~n/0-9), ~ /(=)

Applications of this kind of result in the field of Markov chains are not uncommon. For example in [11]
(Example

Xn+1 = (Xn + Wn+1)+

where W, is an i.i.d. sequence with E[W;] < 0. Under the assumption that there exists an integer m > 2
such that

EW] < o0

14



they prove that the drift condition (72) is satisfied with
() = (z+1)"

Oz)=2% a=——.

In Theorem 3.6 they state that for any z, sup| ;. <1 |Q"f(z)| = o(n~*/(!=%)), which is somewhat interme-
diary between (73) and (74). On this example, we clearly see the interpretation of the difference of rates
between (73) and (74): if the initial state Xy = xo is very large, it takes a long time to come back to the
invariant measure (this time is certainly proportional to zp), but if the initial state is drawn from 7, it won’t
be large and the convergence rate is increased.

They also give an application to Monte Carlo Markov Chains. We would like now to convince the reader
that Theorem 7 can also be applied to dynamical systems.

Application to dynamical systems. Consider the following application defined on [0, 1]

U(m):{ x(14+2727) 0<z<1/2 (75)

20 — 1 1/2<z<1
where 0 < v < 1 is fixed, and the corresponding operator

Tf(z) = f(v(x)). (76)

We are interested in the asymptotics of T™. There exists an extensive literature on the subject [12, 6] and
the result we are going to present here, Equation (80), is already known [19]; our point is to give a new and
direct proof of this estimate which plays a key role in the obtainment of central limit theorems (through
the Gordin-Liverani Theorem), and which is known to be optimal [16]. Notice that this proof does not
require any explicit assumption on the invariant measure (see Equation (5.2) in [12]). We detail only here
the example (75) but it will appear clearly that the following development extends to many other cases.
Nevertheless, we feel that such extensions fall beyond the scope of this paper.
For any integrable function f on [0, 1], we set

x 1
Fo) = [ st -af, F= [ sea
0 0
We start with the following identity which we prove below:

71(e) = (v Floa) + (- (v0))
— Vi) + K f(x)

F(U(x))) (77)

where the prime denotes in the whole present section the a.c. part of the distributional derivative. We
shall take E = L ([0, 1]):

A1 =1 fllse-

In order to prove (77), note that v'(z) "1 F(v(z)) is clearly Lipschitz because F(v(z)) cancels at the discon-
tinuity point of v/, implying that this function as well as its distributional derivative belongs to E with

(@) F ) = fo@) - 7+ (0@ ) F)

which proves (77). We obtain also by induction on n that

Vi sG) = (@) o) (75)
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where v, is the n-th iterate of v. In order to prove this, notice that v/,(z) ! F(v,(x)) being Lipschitz, it is
the integral of its derivative and (78) leads to

+1 reoan=1( 1 \—1 ! / -1 !
Vi () = (V@) 7 (10T F @) 0@) = (hia (@) Fona (@) -
On the other hand, it is proved by induction in appendix I that
ol (@) > eynt Vo, (@) (79)

with ¢; = (27 — 1)1/7. Hence, if we consider the norm || f|| = || [; f(t)dt| o, we are led to

V£l = llvn (@)™ F (n (@)l

<otz () o

<tV sup o / F)ldy
0

0<z<1
< tnTf

Because B = {f € E : | f] <1} is ||.||-compact (F is 1-Lipschitz if f € B), the assumptions of Theorem 1 and
of Theorem 7 are all satisfied (but here || 7] is not bounded). Thanks to classical distortion arguments (see
for instance [19] Theorem 1), one knows that 7" admits a unique absolutely continuous invariant probability
measure, which is ergodic and mixing. In particular, there is no nontrivial eigenfunction for any eigenvalue
of modulus 1 and we can conclude that

1T f = ()l < Cn* 7 £ (80)

A  Proof of Theorem 1

The proof of Theorem 1 requires two preliminary results which are the subject of the forthcoming section.

A.1 Asymptotically almost periodic powers of an operator

Theorem 10 below gives conditions under which, in some sense, the powers of an operator 7' can be rewritten

T"=> X'P,+T"P,

i>1

where each P; is a projection, P;P; = 0, i # j, and T"F, tends to zero in some sense. However, if each
term of the series will be well defined (eigenspace and eigenvalue), the series may fail to converge, as in the
case of almost periodic sequences; but since the set of points x for which P,z = 0 except for a finite number
of indices 7 will appear to be dense, the series y ., A P,z will converge at least on a dense subspace of E.
Lemma, 11 will give a condition under which there is only a fimite number of non zero \;’s.

Let us say a few words concerning Assumptions (B1) and (B2) below, since they are the key assumptions
and may appear somehow complicated; it is easily shown that under these assumptions, for any x € F the
sequence T™x has ||.||-compact closure. These assumptions are essentially used to prove the total boundedness
of the sequence (17"),~¢ for a certain norm (Step 1 of the proof of Theorem 10). These assumptions are
reminiscent of that of the De Leeuw-Glicksberg theorem [3], but here we consider ||.||-total boundedness
rather than |.|-weak total boundedness (which is actually not a weaker assumption).

For the statement of this theorem, we refer to the equations (19) to (21)

Theorem 10. Let T be a continuous operator on the Banach space (E,|.|) satisfying assumptions (A0),
(A1) and
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(B1) The sequence T™ is uniformly ||.||-equicontinuous on |.|-bounded sets in the following sense:

lim sup||T"z|| =0 81
m s 77 (s1)

(B2) T™B is asymptotically ||.||-totally bounded in the following sense: There exist a sequence of finite sets
K, C E, and a sequence €, — 0 such that for anyn >0

T"B C K,, +¢,Bp. (82)

Then the following facts hold true: The space E is the direct sum of two |.|-closed spaces

E={z:||T"z|| - 0} @ {z : liminf ||z — T"z| = 0} = Ey, ® E.. (83)

The projection P. on E, parallel to Ey satisfies | P.] < Cr. There exist a non-negative sequence p,, converging
to 0 such that

IT"z|| < pnlzl, x€Ey, n>0. (84)

The space E, of the finite linear combinations of eigenvectors with eigenvalue of modulus one is ||.||-dense
n F..

The set A of these eigenvalues is at most countable, and for each A\ € A there exists a continuous projection
Py, on the corresponding eigenspace parallel to the others and to Ey. It satisfies | Px] < Cr and

n—1
: 1 —irpi
HILH;O | Prz — - ;:0 A'T'z|| =0, z€kE. (85)

There exists a sequence k; such that the projection P, on E. satisfies

lim sup || Pz — T*z|| = 0. (86)

1—=00 B

The unit ball of E., BN E,, is ||.||-totally bounded.
If the integer powers of T' extend to a ||.||-Co-semi-group (T*);>0, i.e.

Vrx € E, lim|T'z—=x||=0 (87)
t—0

the space E. is generated by the vectors x such that for some wy, Ttz = etz for any t > 0.

Proof. Step 1: The non-negative powers of T form a totally bounded set for the distance

d(f,9) = sup [[f(z) —g(z)]

l=l<1

on bounded functions on B. Any limit point of its closure is a continuous operator on (E,|.|), with norm
< Cr.

We start with a simple modification of K, in order to imbed it in C7B. Fix n > 0, denote by yi,1 <
k < N, the points of K,, choose arbitrary N,, points z; € T™B such that ||z, — yr|| < &, and define
K, = {zr,1 < k < N,}. Assumption (B2) is still satisfied with K,, but &, is now two times larger; in
addition K,, C CrB.

Hence there exist two functions u,, and v,, such that for |z] <1

T'e = up(z) + vp(2), un(z) € K,
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and
Fix n large; for any p:

T*" Py = CrT™(Cy ' TPupy () + T Pu, ()
= Orun (Co TPuy () + Cro, (Cp TPy, (x)) + TP, ()
= ap(z) + Bp(z) + ().

The set of functions {a,(.),p > 0} has at most N'» elements; clearly ||3,(z)|| < 2Cre,; and Assumption
(B1) with Equation (88) implies that ||, (z)|| < 9, for all p > 0 and some sequence 7, — 0. We have just
proved that the set {7, k > 2n} can be covered with N d-balls of radius 2Cre,, + 7,,; hence {T*, k > 0}
is totally bounded for the distance d.

For any x € B, the sequence T"x belongs to Cr B, hence any ||.|-cluster point of this sequence belongs
to CrB (because of (A0)), and the continuity follows.

Step 2: For any limits d(T*,U) — 0 and d(T"*,V) — 0, one has d(T% T UV) — 0 if min(j, k) — +oo.
In particular UV = VU and for any third similar limit operator W, dWU,WV) < Crd(U,V).
One has indeed:
AT+ UV < d(T%H, T V) + d(T% V,UV)
< sup{||T% x| : ||z|| < d(T*,V), |lz] <2Cr}+d(T*,U)|V].

The second term obviously converges to zero, and the first one also because of Assumption (B1). For the
last assertion

dWU,WV)=dUW,VW) <d(U,V)|W].

Step 3: Proof of Equations (83) and (86).

Let ny be a sequence such that 7™ d-converges to some limit S. We can assume that ny — ng_; — oo.
From the sequence nj, —nj_1 one can extract a sequence p; = ny, +1 —ng, such that 7% and TPi~! d-converge
to some limit P. and R. Set m; = ny,.

S =d-limT™itPi = SP,.
Since p; — oo, there exists ¢; — oo such that P. = d-lim7™*% and we get
P. = d-limT™ T% = d-lim ST% = d-lim P.ST% = PZ.

P. is a projection on P.E and Equation (86) holds. We shall prove now that P.F is indeed E. and that (83)
holds true.

Clearly P.E C E.. On the other hand, for any « € E. there exists a sequence ry such that ||z —
T x||. converges to 0. We can assume that r; > py and that d(T7 P+ U) — 0 for some U; in particular
d(T™,P.U) — 0. Hence x = P.Ux € P.E. Finally P.E = E.. The null space of P, clearly contains Fy. On
the other hand for any point © ¢ Ey, there exists a sequence 7 such that |T7+z|| > ¢ and T"+~P* d-converges
to some limit V; the bound |V P.z| > € leads to P.x # 0. This implies by contradiction that any point of
the null space of P, belongs to Ey; hence the null space of P, is Eg and E = Fy ® E..

The bound on the norm of P, is a consequence of the last point of Step 1.

Step 4: T is one-to-one on E.. The powers of T on E. generate a compact G group of operators on E. with
the distance

de(f,9) = sup  [|f(z) — g(2)]-

z|<1,2€E,
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Since TP. = P.T and P. = TR = RT (R is defined in Step 3), E. is T-stable and R is its inverse on E..
The monoid generated by the powers of T'

G ={T",n > 0}.

is a group since we have seen that R € G. The continuity of the multiplication on G comes from Step 2, and
the compactness from Step 1.

Step 5: By is ||.||-dense in E.. Properties of Py.

Each character x on G is uniquely determined by the value of x(T'), because of the definition of G and
X(T™) = X(T)".

For any eigenvalue A of T with modulus 1, there exists a unique character x such that x(7") = A which
can be defined as follows: pick an eigenvector z, a ||.||-continuous linear form u such that u(z) = 1 and set
X(S) = u(Sz); x is indeed a character since it is d.-continuous with x(7™) = x(7T")"; in particular since the
set of characters of a compact group is at most countable, there is at most a countable number of eigenvalues
of modulus one.

In order to show now that for any character x, x(T') is an eigenvalue we proceed as follows. Let u be the
Haar measure on G, consider a character x on G and define

@y = [ ()7 5u(as). (89)

(as a continuous function on G, f(S) = S is the uniform limit of simple functions (by compactness) and this
integral is well defined with the usual properties, cf [5] II1.2). If = is a x(7')-eigenvector then the relation
T"x = x(T™)x extends to G as Sz = x(S)z, and clearly Q,z = z.

The invariance of p implies that for U € G:

Qx = / X(SU)ISUp(dS) = x(U) 1 UQy. (90)
G

In particular, taking U = T, for any z € E, Q,x is 0 or an eigenvector with eigenvalue x(7"). In addition
integrating this expression w.r.t. u(dU) we get that @, is a projector. If @, is non-zero, @, is thus a
projector on the x(7')-eigenspace. If @), = 0, for any ||.||-continuous linear form « on E and y € E, one has

/G X(8) u(Sy)u(dS) = 0.

The Fourier transform of S — u(Sy) being 0, this d.-continuous function is itself 0. Hence u(Sy) = 0 for
any such v and y and any S € G, which is impossible. Hence @, is non-zero, x(T) is an eigenvalue, an Q,
is a projection whose range is the x(7T')-eigenspace.

In summary, there is a one-to-one correspondence between characters and eigenvalues with modulus one,
defined by A = x(T'), and @, is a projector whose range is exactly the eigenspace.

Since | S| < Cr we have |Q, | < Cr, and since by (89) they commute, @, is a projector parallel to the
other eigenspaces.

In order to show that E, is ||.|-dense in E., consider a ||.||-continuous linear form w such that u(z) =0
for any eigenvector x, then for any y € E., S — u(Sy) is d.-continuous and for any character x one has

/G X(8) " u(Sy)u(dS) = u(Qy(y)) = 0.

The Fourier transform of S — u(Sy) being 0, this continuous function is itself 0. Hence u(y) = 0. E, is
||l.||-dense in E.. The projection Py is finally well defined on E by setting Pxz = Q, )z if * € E. and
Pyx =0if x € E.
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We now prove (85). This equation holds on Ey and E,. Set

1 n—1
Pyn=— A
A,n n Z AT
=0
For any = € E. we can pick out y € F,, such that ||z — y|| < & and get

[1Pxq% = Prnzll < [[Prg( = y)ll + [|1Pan(z =yl + [1Prgy — Prnyll
< 2sup IT"(@ = )| + [[1Prqy — Prayll

Since this quantity can be made smaller than 3¢ by taking n and ¢ large, this proves that Py 4z is a ||.||-Cauchy
sequence, and its limit Pyx satisfies (85). Since for all z € E, | Py ,z| < Crlz| and ||Py 2 — Pxz| — 0,
Assumption (A0) implies that | Pyz| < Crlz].

Step 6: Equation (84).

Using a sequence py, such that d(T?*, P.) = a;, — 0, we obtain ||T?*z|| < oy, for x € BN Ey. For n > py,
large, one can write ||T"z| < ||TP*(T" P*z)|| < Croy. This implies (84).

Step 7: B, = E.N B is ||.||-totally bounded.
Using the same sequence py we get with (82)
B, C (P, —TP*)B,+ T?*B. C ayBy + K, + ¢;, Bo.
This means that B, is ||.|-totally bounded.
Step 8: Case of semi-group T*.

We can carry on Steps 1 to 4 with ¢ € Ry instead of n € N. The group G is now G = {T%,s > 0}. In
equation (90) we take U = T" and we obtain that y = P, is a vector such that Ty = x(7")y. In particular
if y # 0 we have x(T%%") = x(T%)x(T"), and on the other hand assumption (87) implies that the function
t — ||T*y| is continuous, and so is t — x(T"); hence x(T") = €™ for some w € R. O

The following lemma gives a condition for checking that E. is finite dimensional. This could be checked
specifically on examples but we shall see in Theorem 1 that this holds naturally in general situations; in
addition, this finite dimensionality assumption is very important in Theorem 7.

Lemma 11. If in addition to (A0) and (A1), T is ||.||-continuous and satisfies the following assumption

(BY’) There exists two sequences 1, — 0 and n,, , — 0 (as min(n,p) — 00), such that for any n,p >0
T"(BNp ' By) C nnBo+1,,B,
then (B1) is also satisfied. If (B2) is also satisfied, then (7) to (11) hold true and

||an|| < pnll‘la pn — 0. (91)

Proof. We start with (B1). We have to prove that any sequence z, of B such that ||z,| — 0 satisfies
sup,,so | T"xp|| — 0. Without loss of generality, we can assume that ||z,|| < 1/p. One has

1T x| < nn + n;L7pCO‘
Since on the other hand

1T 2p ]| < Tl
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we have for any ng
sup ||[T"x,| < max(n, + 7., ,Co) + 1 max ||T]|™
n>0 pit = n>ng ™p p n<no

which can be made arbitrarily small by taking ng large first and then by increasing p.

Let us prove now that E. is finite-dimensional. It suffices to prove that B. = FE. N B is |.|-totally
bounded; since we already know that E. N B is ||.||-totally bounded, it suffices to prove that |.] and |.||
induce the same topology on B.. Notice first that if z € F and ||z — 2, || — 0 then

lz] < lim |, |
n

because of (A0) (the inequality is obviously true if |z,| is not bounded). Let z € BN E.. We want to
prove that |z| can be made arbitrarily small by taking ||z|| small enough. Consider an integer p such that
|z|| < p~!. There exists a sequence ny, such that ||z — T™* x| tends to zero. Thanks to (B1’), there exist
ur € By and v € B such that

mn !
T™x = Nny Uk + Ny pVk-
Since ||z — T™ x + 1y, uk| tends to zero, using the previous remark:

| =] S@IT"’“w—nnkukl :@Mék,pvﬁ S@ﬂ;k,p

which can be made arbitrarily small by taking p large. Hence |.| and |.|| are topologically equivalent on E..
and the compactness holds.

Now that E. is finite dimensional, Equations (7) to (11) and (91) are an immediate rewording of the
conclusion of Theorem 10 (notice that p, has changed from equation (84) by a factor | P]). O

A.2 Proof of Theorem 1
Let us recall the identity (27)

T — iTnfz(T o V)Vi71 + V= iTnfiKvifl + vr.

i=1 i=1

In particular, Assumption (A1) together with (25) implies that the sequence | V™| is bounded by a constant
Cy, and KV"KB is |.|-totally bounded. We set a,, = |KV"| and ay, = > o, ;. Let x € E, for any
0<k<n:

[T = Vv™z] <Y |7 KV g

=1
k . n '
<CrY KV Tzl +Cr Y KV la)
i=1 i=k+1

k

< CrCx Y |V a| + Craglal
=1

< cllzl| + Craxlzx].

In particular if x € B N p~ !By one has

1(T" — V™z| < min (C—k + C’To_zk).
k<n \' D
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This implies (B1’) where n;l,p is the right hand side of the previous equation and 7, = ¢),. We proceed now
with (82):
™ — Z Ti—lKvn—i +yn
i=1
_ Z(Z T]—lsz—_]—l + Vz—l)Kvn—z +yn
i=1 j=1
= Y TITRVIEITIRVTIL Y VIRV vn
1<j<i<n i=1

=A,+ B, +C,.

The set A, B is ||.||-totally bounded; on the other hand

C,B+ B,BC (¢, + Z an—i€;_1)Bo.
i=1

The sum tends to zero as n tends to infinity and this leads finally to (82).

We turn now to the last assertion. If T* satisfies (B1) and (B2) and T'is |.|-continuous and ||. -continuous,
clearly T also satisfies (B1) and (B2). Theorem 10 applies to T'. Since any eigenvector of T' associated with
an eigenvalue of modulus one is an eigenvector of T* associated with an eigenvalue of modulus one, E. is
finite dimensional, and (7) to (11) and (18) hold.

B Proof of Theorem 2

(A0) is clearly satisfied. In addition T is a |.]-contraction, and (A1) holds true. Up to a replacement of v
with v/e,, we can assume that ¢, = 1. Since T'1 = 1, Equations (30), (31) and (32) imply

Vo<Tv<v—14clg, (92)

V1<1-—elg, (93)
for some ¢ > 0. Combining these equations, we obtain that the function ¥ = v + ¢/e satisfies

Vo<ov-—1. (94)

Multiplying (94) by V* and summing, up we obtain
n—1
Vo4 Y VR <. (95)
k=0
Equation (26) is obvious from (34) and (35) and Equation (25) is a consequence of (95) and (35) since

|KV™] = |KV™]|| < v(V™1). For (24) notice that V"1 is a decreasing sequence of functions, because
V1 <1, hence:

S|

n—1
1
Vi< =Y VRI<
‘”,;) <

and (24) holds. Tt remains to prove the compactness of KT?K. Notice first that in the assumptions we can
replace v with v defined as

p(f) = 27 w(T'f),

i>0
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which makes T continuous on L;(7) with norm < 2. Second, notice that 7(7) < oo, that is (35) still
holds. Equation (34) implies that the measure 1(g) = [ g(x,y) K (z, dy)v(dz) is absolutely continuous w.r.t.
p(dx) ® v(dy), and let p(x,y) be its density; if ¢ has the form g(z,y) = h(z)f(y), one has

/ W) (y)p(e, 9)7(dz)o(dy) = / () (K ) ()i (der)

hence one has for any bounded measurable function f and for v-a.e. z,

Kf(x) = / Fp(e,y)o(dy).

The function p can be approximated in L, (¥ ® ) as
pa9) = Y @) + o), [ lollotdn)otdy) < e
i=1

This finite rank approximation implies that KB is totally bounded in L; (7). By continuity, the same
property holds for TP K B. Next, Equation (34) implies that KT? K B is totally bounded in (F,].]). The
assumptions of Theorem 1 are thus satisfied.

To obtain (38), it remains to prove that the space E. is one dimensional. For this, let n; be a sequence
such that A* — ), for each eigenvalue \; with modulus 1, and denote by P. the projector on E. parallel to
Ey. Then ||T™ f — TP.f|| converges to 0 for any f € E. Hence TP, is a Markov transition operator with
the same one-modulus eigenvectors as 7. It is compact on E and if there exists more than one eigenvector,
one can find two non trivial measurable sets A and B such that TP.14 = 15 ([15] CH.6 §3, Th.3.7). Notice
now that the function f = P.14 satisfies 0 < f <1 and by Jensen’s inequality

T(f") =z (Tf)" =1p.

On the other hand, since f™ < f, we have T(f™) < Tf = 1p, and we obtain that T(f") = 15 for all n > 0;
letting n tend to infinity, we get

T(1-1) = 1.

C Proof of Theorem 3

We begin with the case ¢ = 1. Elementary inductions lead to

1772 < "Lzl + e T al| + e T 2] + .. + 4" e
< ylzl + ealla]. (96)

This may be improved as
n . k . k
IT72] < Ormin |T"] < Cr min (V| + cellz]]).
This implies (B1’) of Lemma 11 with n, = 0 and
r . k Ck
n,p = Cr 000 (v + 2)' (97)
We have similarly

T"BCA"B+~y""'Kg4+~"?TKg+---+T" 'Kp
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and this implies now (B2) in Theorem 10.
It remains to prove that @ (from Eq.(7)) has a spectral radius < 1. Notice that for any n > 0, Q™ =
T"=1(Q, this proves that Cg = sup,, |Q"] is finite. For any € B we have from (7), (96) and (18)

Q x

n+k _ n Mk n
z| = |T z| < (Co+ DT +—i—
Q"2 = 17" Q4] < (Co + DIT 7t

| <(Cq+ Dy,

with
k
1 Q" |
=—— < pi.
By choosing n and k large enough, this ensures that some power of @ is a |.|-contraction.
If now ¢ > 1, the operator T satisfies the assumptions for the case ¢ = 1, thus 77 satisfies (A1), (B1’)

and (B2). Since T is |.| and |.||-continuous, this clearly implies that T also satisfies these assumptions, by
writing 7" = T" % with 0 < r < q.

D Proof of Theorem 4

For the proof, we shall change ||.|| into
f_ @ (@) + A
11 =sup L, (o) = 22

for some constant A > 1 which will be chosen later, and | f] as

LAV =1£1" + alf]

for a small constant ¢, and prove that the assumptions of Theorem 3 are fulfilled. Notice that || f]| < | f]l’.
For any f € E, by the positivity of T and Equation (44),

v A v
7o) < 11T @) < o A

<1 (v @) + 155) (98)

hence
’ Cy ’
i1 < (14 S ) I (99)

T is ||.||'-continuous. In addition, Equation (44) implies that for any n > 0
Cy

11—,

hence || T"||" is bounded. Equation (43) with (99) implies (40) with v = 3, and ¢ = 1 4 ¢4/A. With (100),

it implies also that |T™]" is bounded. Thus (A0), (A1) and (40) are satisfied.

In order to prove that Theorem 3 applies, it remains to prove that (39) holds true. Each S, contains an
open neighbourhood O, of z. Consider Ay > 0 which will be chosen large enough later; if v(z) < Ay the set
Ol = 0, N{v < 2Ap} is still an open neighbourhood of x because v is continuous. Consider a finite sequence
(zi)1<i<s such that v(z;) < A and {v < Ag} C U0} . This is possible thanks to the compactness of
{v < Ap}. There exist 61(z),02(z),...,05+1(z) a locally Lipschitz partition of the unity of S such that the
support of each 6;, i < I, is contained in O, , and the support of 67,1 is contained in {x : v(x) > A} (see
[1] Th.2 p.10). We define ¢ = 1 — 041 which is 0 on {v > 244} and 1 on {v < Ag}. We split T'f as

T"o(x) < ypo() +

(100)

I

I
Tf(x) = <Z {Tf(z) —ep(@) Ky, f(:)} 0s(x) + Tf($)91+1(17)> +ep(@) ) Ko, f(2:)0i(x)

i=1

=Vf(x)+5f(z)
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Clearly, for | f] <1, Sf belongs to a fixed ||.]|-compact set because the sum is finite. We are going to show
that

[Vl <2l fl (101)

for some 2 < 1; this will imply (39). Notice that f — V f is not linear, but this does not matter. One has
VA <D +e) 1 f(ai)] 6]
i

<]+ el A1 (o) + co) [p6i]

K3

<wlfl+ecollfl's o= (Ao+eu) Y [#bi]. (102)

?

It is more complicated to bound ||V f||’. For ¢ < I and 6;(z) > 0 then = € S, and Equation (98) and (47)
imply that

Tf(x) —ep(w) Ka, f (i)

= |(1 = @) T (@)| + [0 (@) (T 1 () = Ka, f@)| + o) (Ko f (@) = Koo f(20)

/1

S ep(@)(T — Ko ) @S + el

< (1 —ep(@)) (yov(@) + ¢ + A)

where ¢y is the maximum of ¢4 on {¢ > 0}. Since ¢(x) > 0 implies v(x) < 24y, if we denote by vy the
maximum of 1 — g4 on {v < 24y} the second term can be bounded as

Tuv(x)+ A— Ky, (v+ A)(z) _ vv(x) + ey + 704

— K,V (x) <

< g0’ ()

with 4 = max(v,,v0 + ¢y /A). Notice that v4 < 1 as soon as A > ¢,/(1 — 7). Our bound becomes

Tf(2) — o) f )] < (1= (@) (00(@) + 0 + AL+ ena/ @I + crls]
If in this expression, p(z) < 1, then v(x) > Ay and
(1= (@) (1) + e + A) <yov(@) + ¢, + A
YolUb + €y + A
< (f;AO T ) (v(@) + 4)
Ao + ¢y + A
and if p(z) = 1:
(1= o) () + 6+ 4) < (1= ) (sup 2L (u(a) + 4)
—(1- g)(% +1)(v(@) + ).
In any case, we get
T f(x) = ep(@) Ky, f2i)] < nllfII'V'(2) + evall £'v'(z) + eci[f] (103)

with

'YUAO +e+ A Cy
= —_ (1 — 1+ — .
T max< AT A , ( 6)( +A>>
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In order to bound the factor of 6741 in the expression of V f, we notice that in the case where 6711 (z) > 0,
we have v(z) > Ap and

You(x) + ¢y + A
ol te t A

1+ A
v 1 - v A /
= (') + 2Ly

v - v A 1,1
(o + “E=2 )

e + A+ 1A 10
< 2R )
< llfl' (). (104)
Since (103) is true if 6;(x) > 0, and (104) holds if 8741 (z) > 0, we obtain for all x

V(@) <" @) I + evall £l () + eca [£]

Tf(x)] <

A

thus

VA < (m +eva)llfII" + eca[f] (105)
and combining (105) and (102) leads to

IVA +alV 1) < (1 +eva+ e ) I+ (am + 1) 1. (106)
In order to get (101) for some v2 < 1, we need simultaneously:

’Y'UAO+C'U+A
Ao+ A

1—|—%—6(1+%—’yd—60q)<1

(&
%—1—6—1<1.
q

+evqg +eqey < 1

In other words, it suffices that

AO _’YUAO —Cy
Ag+ A

Cy < 5A(1 — Y4 — coq)

€ (w + coq> <

c
6*1 <1l- Yo-
q
Remember that ~4 is a function of A and A, actually
1 — 4 = min (1 - Yo, UISHZIEO eqa(x) — cv/A> .

For some large value of Ay, we set A = A%, ¢ = (1 —v,)/(240),q = (1 — v4)/2co. The above conditions
become

(1_7’0)(14_7(1) AO_fY'UAO_C'u

4 1+ Ag
o < $(1=7)A0(1 = va)
(1 —y)eico
— 1=
Ao(1 = a) R
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Since by assumption (48) and (49), (1 — v4) Ao tends to infinity with Ay these equation are satisfied for Ay
large enough, as well as the condition A > ¢, /(1 — 70) that has been required before.

It remains to prove the last assertion. Since 1 is the only eigenvalue of modulus one and since its
multiplicity is one, there exists a linear form 7 on E such that (50) holds. This equation implies that for
fekr

()L =T"f] < Cp"I /I

hence

(NI < Sl;pllT’“H 171+ Cp" 1 f1-

Now we can let n tend to infinity and conclude that 7 is ||.||-continuous. This ||.||-continuous linear functional
defined on the set of compactly supported Lipschitz functions extends to a positive functional on C.(5), the
set of all compactly supported functions on S. By the Riesz Theorem, there exists a Borel measure p such
that «(f) = u(f) for any f € C.(95); since v is the increasing limit of a sequence of functions of C.(S),
we have m(v) = u(v) < co. Any f in E being the ||.||-limit of compactly supported Lipschitz functions, by
[|.||-continuity of m we obtain that =(f) = u(f), f € E.

E Proof of Theorem 7

Multiplying both sides of (27) by Py on the left and by Q7 on the right we get

n—1

Q"= Q"TKVTIQ+ REV"TIQT + RV Q. (107)

i=1

We consider first the simpler case when ||T"|| is bounded, say ||T"|| < c. In this case, considering a sequence
ny such that A\I'® converges to 1, for ¢ = 1,...p (this can be done by considering a converging subsequence
AT of A™ = (A*,... A}') and taking ny = maog — my,) Equation (13) implies that for any = € E

p
H S AP
=1

and letting & tend to infinity, thanks to (18):

b
i=1

Hence ||Py]| < 1+ cis finite, and Equation (107) leads directly to

| < Il + Q)

| < clle]l.

n—1

1Q™ 20 < Y 1Q" o KV QU + | Pol1Q NI KV [0 + [Pl 1QYHIV™ || 0

i=1

We plan to apply Proposition 12 of the Appendix with u,, = ||Q"||go and 8; = | KV ~1Q?] for some q large
enough. We remark that (112) is satisfied since

|KV'Q!| = |KV'TPy| < ;C2Cr| Pyl (108)

Because of the summability of «; (a consequence of (R1) and (R3)), and with the help of the Lebesgue
Dominated Convergence Theorem, Equation (113) will be satisfied for ¢ large enough if we can prove that
for any i > 0

lim |KV'Q?] = 0. (109)
q
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But this is easily obtained by induction on 4 since it is true for ¢ = 0 and for any i, > 0

| KViQ| = |KVIHT — K)Q‘]
< |KVTIQU + |[KVITTKQY
< |KVT'QU | + | KV IKQY.

Hence Proposition 12 applies and (67) holds.
If now ||| is not bounded we have to work slightly more on Equation (107). Consider

f(z)= H(l —z\;).

i=1

Since Equations (7) to (11) imply that 7™ = >~ A\? P, + PyQ™, n > 0 (this differs from (13) because we have
to take into account the case n = 0) we have f(T) = Pyf(Q). Hence after multiplication on the left by f(Q)
Equation (107) becomes

n—1
F@QQ™ =" f(QQ"KVITIQI+ f(T)KV™'Q" + f(T)V"Q*
i=1
thus
n—1
1F(@)Q™ g0 < D IA(@Q™ el KV QU + | f(T)KV" Q% o + | f(T)V" QY| go- (110)
i=1

Since || f(T)]| < oo, (108) implies that there exists a constant C such that
IF (T EV QY g0 + I F(T)V"Q7 o < Can
and we obtain, as before (because (108) and (109) still hold true) that

1F(@)Q"|ro < C'ay.

Set g(z) =1/f(2) = X.,509:z". The partial fraction decomposition of g implies that sup, |g;| < co. For any
n>0 B

1Q™ |20 < 1Q"9(Q)F(@)llzo < Y 11Q" ™ gx f(Q)llzo < suplgil Y Q" £(Q)llxo
k g k

hence

Q™ [g0 < C Y .

k>n

F Convolution of sequences

Proposition 12. Let (a,)n>1 be a positive sequence satisfying Assumptions (R1) to (R3) of Theorem 7, and
(Bi)i>1 be a non-negative sequence. Let q be a non-negative integer and (un)n>1 be a non-negative sequence
such that

n—1

Un+q < COan + Z Un—iﬂia n > 1 (]‘]‘1)

=1

28



for some Cy > 0. If

sup Be 00, (112)
Ko

d i<l (113)
=1
then

supu—n < 0. (114)

n QOp

Proof. Set

Un
Up = —
Ap

*
v, = Sup vk
k<n
Qp

0, =

Aniq

Cpg =sup B
k Ok

then, for any i¢p and n > i

n—1

Un+q < C’(ﬁn + en Z Un—i

i=1 n

an—iﬂi

n—io io

PRt e . an—ifi e N\ i
< Coln + 007, Y O Y 0]

i=n—1ig i=ig i=1

nf’io

)
Oty — i O Qi
S
=1

Qn

QO

n—1
< Con + 007, Z ~ >
i=n—ig i=ig
10, NP
< Cof + 00}, Coio 2+ g7 (Cp Y 2 137 3,)
An =y Om i=1
where 6], tends to 1 (Assumption (R2)). By assumption (R2), for any 4, the sequence j — a;_;/a;, j > i is
decreasing, hence for i < n/2 one has
Qp—j Q;

<
Qi Qg

thus for 1 <ig <n

neio R 2 o 2
I LI L)
(a7 (a77% 25 — g

i=i0 i=i0 i=i0 1=10
and we get, for n > i

Untq < C" + 07, pv}

— a? B &
ST AT O

. 21
i=io
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where C’ depends on everything except on n. Since 6/, — 1 and iy can be chosen large enough to have p < 1,
this proves that for some ng >0 and 0 < p’ < 1

Vntq <C'+ o0, n>ng
In particular
Ungg <C'+p'vyy,, 1 >0,
By increasing C’ we even get
v, <C"+plvk, n>1
and since the r.h.s. is also an upper bound for vy, k < n (because v < v}), we get
v <C"+plvi, n>1

which proves that v,, is bounded.

O

G Proof of Lemma 8
The equation

V(@) = V) + 1
implies that {(z) > z. By differentiating this equation, we get

ORE (113)
and

¢a) = TN Z AT _ B () - 00) < 0.

We turn now Equation (71); since 1) is strictly increasing, (71) is equivalent to
Pz —0(z) +1 < ¢P(a)

but since 6 is non-decreasing

x

() — o — O(a)) = / i @dy > a@%@ .

H Proof of Theorem 9
We plan to apply Theorem 7 with

LA =1flloe
1= 111w

Clearly, since Theorem 2 applies, Equations (7) to (11) and (18) are satisfied. As in the proof of Theorem 2
we set V =T — K; we recall that K(z,5) = 01if z ¢ Koy (cf. the statement of Theorem 2). We have to
estimate ||V"||go. Recall that we have

Tv <v—0(v)+clg,
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for some ¢ > 0, and Equation (32) with the fact that K(x,S) =0 for « ¢ K, imply that
V1<1-elg,.

Combining these equations we get
Tv<v—0W)+AX1-V1), A= g

We define the functions ¢ and ¥ from 6 as in Lemma 8 and we set for z > 0

() = 0D () +n) = ((Cuor (@) (116)

The function (, is concave, as a composition of increasing concave functions. Using the Jensen inequality
and the concavity of (; we obtain

T(G()) < Gu(T)
< Gov — B(v) + A — AV1)
< Ge(v = 0(v) + A¢ (v = 0(v))(1 = V1)
< Ceo1(v) + ACL(60)(1 = V1), 6y = ziil(g x—0(x)

ZY1

the last inequality coming from the fact that ¢, is decreasing. Thus, since v > 6y,

VG (v) < TCr(v) = Cr(fo) K1
< Ge—1(v) = (Gr(0o) — Ak (60)) (1 — V). (117)
Differentiating (116) and using (115), we obtain
Ch(2) = CGra (o) s 0) = G s (o)
hence
Culoo) = ).

Since in addition ¢, (6p) tends to infinity and 6(z)/x tends to zero (6 is concave with a derivative which tends
to zero), the sequence ¢}, (60)/¢n(00) tends to 0. As a consequence, there exist ng such that A(j,(69)—Cr(6p) < 0
for k > ng, hence multiplying both sides of (117) by V*~! and summing up from 1 to n > ng, we get

Vi(Ga(v) <v+c

for some constant c. Since ¢, (z) > (=1 (n) we get
v—+c
Vrl< ————.
~ YD (n)

Theorem 7 applies and, in particular, we obtain (73).
For (74), we consider

LAl = = ([ f])-

Since |.| is unchanged, Equations (7) to (11), (65) and (66) are still satisfied, as well as (18) because
7(|f]) < || fllom(v). In addition ||T™| =1, and

C/
P (n)’
Theorem 7 still applies and we obtain (65).

V™[0 = =(V"1) <
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I Proof of Equation (79)
We shall prove that for 0 <z < 1

v (2)Y > 14 anv,(2)?, a=27—1. (118)
We recall that

o(z) = { s(1+227) 0<z<1/2 (119)

2z — 1 1/2<z<1

and that the prime sign stands for the right derivative. In the case n = 0 the inequality is obvious. In the
case n > 1, we assume by induction that (118) is satisfied and since v;, |(z) = v;,(z)v'(v,(2x))), valid for
n > 0, Equation (118) with n 4+ 1 will be implied by

(1 + anvy, () ") (v, (7)) > 14+ a(n + vy (x)?.
This has to be proved for n > 0. It suffices to show that for any 0 <y <1
(T4 any”)v'(y)” > 1+ a(n+ L)v(y)? (120)

(i.e. y = vy(x)). By linearity of both sides of (120) w.r.t. n, we only have to check this for n = 0, and
n — oo, that is

{ v'(y)Y > 1+ av(y)”

i (y) > v(y) (121)

(the first equation is (118) with n = 1). In the case y < 1/2 this is rewritten as

(I+(y+1)277)7 > 1+ ay”(1 +27y7)7
14+ (v +1)27%7 > 142797,

The second inequality is obvious. For the first one, since 2y < 1, setting z = 27y”, this holds if
1+ (y+1)2)>1+az

for 0 < z < 1. Since the difference of both sides is a concave function of z which vanishes at z = 0, and is
non negative at z = 1 (we recall that a = 27 — 1), the inequality is satisfied. In the case y > 1/2, (121) is

2V > 1+a(2y — 1)
20> 2y —1

which is obviously satisfied.
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