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Abstract

We consider the solution of linear systems of equations Ax = b, with A a symmetric
positive-definite matrix in R

n×n, through Richardson-type iterations or, equivalently, the
minimization of convex quadratic functions (1/2)(Ax, x) − (b, x) with a gradient algorithm.
The use of step-sizes asymptotically distributed with the arcsine distribution on the spectrum
of A then yields an asymptotic rate of convergence after k < n iterations, k → ∞, that
coincides with that of the conjugate-gradient algorithm in the worst case. However, the
spectral bounds m and M are generally unknown and thus need to be estimated to allow the
construction of simple and cost-effective gradient algorithms with fast convergence. It is the
purpose of this paper to analyse the properties of estimators of m and M based on moments
of probability measures νk defined on the spectrum of A and generated by the algorithm
on its way towards the optimal solution. A precise analysis of the behavior of the rate of
convergence of the algorithm is also given. Two situations are considered: (i) the sequence of
step-sizes corresponds to i.i.d. random variables, (ii) they are generated through a dynamical
system (fractional parts of the golden ratio) producing a low-discrepancy sequence. In the
first case, properties of random walk can be used to prove the convergence of simple spectral
bound estimators based on the first moment of νk. The second option requires a more careful
choice of spectral bounds estimators but is shown to produce much less fluctuations for the
rate of convergence of the algorithm.
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jugate gradient; Fibonacci numbers
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1 Introduction and motivation

For {νk}∞k=0 a sequence of probability measures supported on a real interval [m,M ], the sequence

of first moments µ
(k)
1 =

∫ M
m t νk(dt) gives obvious estimators of m and M through

m̂k = min
j=0,...,k

µ
(j)
1 and M̂k = max

j=0,...,k
µ

(j)
1 . (1)

We consider the behavior of estimators (1) and their extensions defined below when νk are prob-
ability measures associated with a gradient algorithm for the minimization of a convex quadratic

function with matrix A ∈ R
n×n (symmetric positive-definite) and µ

(k)
1 = (Agk, gk)/(gk, gk), with

gk, the gradient at step k, obeying the recurrence equations

gk+1 = gk − γkAgk , k = 0, 1, 2 . . . (2)

Here, γk > 0 is the step-size at iteration k and is determined by some rule that charac-

terizes the algorithm. For instance, γk = 1/µ
(k)
1 for the Steepest Descent (SD) algorithm,

γk = (Agk, gk)/(A2gk, gk) for the method of Minimum Residues (MR), see [8], [18, p. 134],

and γk = 1/µ
(k−1)
1 for the method of Barzilai and Borwein [1]. The algorithms considered in

[3, 12, 20] rely on the generation of an infinite sequence of step-sizes γk (possibly random), such
that βk = 1/γk ∈ [m,M ] for all k, with m and M respectively the minimum and maximum
eigenvalues of A. As shown in [16], when the sequence {βk} is asymptotically distributed with
the arcsine density in [m,M ], then the asymptotic rate of convergence is competitive compared
to that of Conjugate Gradients (CG) [7], Conjugate Residuals (CR) [5, p.547], or other methods
based on Krylov spaces, like e.g. MINRES [11] (it coincides with that exhibited by CG and CR
in the worst case, in terms of choice of the starting point and locations of the n − 2 internal
eigenvalues of A in (m,M), when the algorithm is stopped before n iterations). Such algorithms,
with step-sizes generated externally, are simpler than CR and CG and thus of particular interest
in situations where n is so large that the algorithm is stopped well before n iterations (in partic-
ular, it is shown in [22] that for some sequences of step-sizes the number of scalar products to be
computed out of k iterations only grows as O(log k), see also Sect. 3.3 and 5). The generation
of suitable sequences of step-sizes γk requires, however, the knowledge of the spectral bounds m
and M . Since they are usually unknown, it is suggested in [22, 16] to estimate them through
the evaluation of moments of probability measures generated by the algorithm itself. It is the
purpose of this paper to analyse the asymptotic properties of the estimators (1) of the leading
eigenvalues of A. In particular, two situations will be considered: (i) the γk form a sequence of
i.i.d. random variables, (ii) they are constructed from a low discrepancy sequence. In addition, a
more precise analysis of the behavior of the rate of convergence of the algorithm than in [22, 16]
will be provided (Sect. 4).

2 A sequence of probability measures associated with a gradient

algorithm

Consider a linear system of equations
Ax = b , (3)

where x ∈ R
n is an unknown vector, A is a n × n symmetric positive-definite matrix such

that 0 < m = inf(z,z)=1(Az, z) < M = sup(z,z)=1(Az, z) < ∞ and b is a given vector in R
n.
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Equivalently, one may consider the minimization of the convex quadratic function

f(x) =
1

2
(Ax, x) − (b, x) . (4)

The gradient gk = Axk − b then corresponds to the (minus) residual of the system (3) at xk.
Richardson-like methods for solving (3) correspond to gradient algorithms for minimizing (4)
and obey to the following iterations

xk+1 = xk − γkgk , k = 0, 1, 2 . . . , (5)

where x0 ∈ R
n is a starting vector and γk > 0 is the step-size at iteration k. The methods to

be considered are of particular interest in situations where the dimension n can be very large
(it could even be infinite, with A a self-adjoint operator in a Hilbert space, but we shall restrict
the presentation to the finite dimensional situation) and we shall assume that n is much larger
than the number of iterations k∗ needed to achieve the precision required (formally, k∗ = o(n)
with k∗ → ∞ in asymptotic considerations).

The iterations (5) can be rewritten in terms of gradients gk, which gives (2), with g0 =
Ax0 − b ∈ R

n the initial gradient. We define the rate of convergence of the algorithm (5)
towards the solution at iteration j as

rj =
(gj+1, gj+1)

(gj , gj)
;

the rate of convergence after k iterations is then

Rk =

k−1∏

j=0

rj =
(gk, gk)

(g0, g0)
. (6)

Other convergence rates, which are asymptotically equivalent to rj (see [14, Th. 6]), can also
considered. In particular,

r′j =
f(xj+1) − f(x∗)

f(xj) − f(x∗)
=

(A−1gj+1, gj+1)

(A−1gj , gj)

is often used when minimizing a quadratic function (4), with x∗ = A−1b its minimizer.
The method of Steepest-Descent (SD) chooses γk in (5) that minimizes r′k and the method of

Minimum Residues (MR) chooses γk that minimizes rk, both are myopic and only look one-step
forward. The method of Conjugate Gradients (CG) minimizes

R′
k =

k−1∏

j=0

r′j =
f(xk) − f(x∗)

f(x0) − f(x∗)
=

(A−1gk, gk)

(A−1g0, g0)

with respect to the sequence γ0, γ1, . . . , γk−1 and the method of Conjugate Residuals (CR) does
the same with Rk; we shall denote RCR

k = minγ0,...,γk−1
Rk. Although CR minimizes Rk for all

k, for any k < n one may nevertheless have, in the worst case with respect to the starting point
x0 and eigenvalues λ2, . . . , λn−1, RCR

k = R∗
k, where

R∗
k =

(
R

k/2
∞ + R

−k/2
∞

2

)−2

= C−2
k

(
ρ + 1

ρ − 1

)
,
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with ρ = M/m the condition number of A, Ck(·) the k-th Chebyshev polynomial of the first
kind, Ck(t) = cos[k arccos(t)] = (1/2)[(t +

√
t2 − 1)k + (t −

√
t2 − 1)k], and

R∞ = lim
k→∞

(R∗
k)

1/k =

(√
ρ − 1

√
ρ + 1

)2

, (7)

see [4, 15]. Hence, although one regularly observes values of RCR
k that are significantly smaller

than R∗
k for k < n (and although RCR

n = 0, that is, the solution is found exactly in n iterations
in the exact arithmetic), for any k < n one has maxx0,A RCR

k = R∗
k, with (R∗

k)
1/k decreasing

monotonically to R∞ as k → ∞. As shown in [16], the same asymptotic rate R∞ can be obtained
when the sequence {βk} = {1/γk} is generated externally with some suitable distribution in
[m,M ]; see also Sect. 4.

From (2), the gradient gk after k iterations can be written as

gk = Pk(A)g0 , (8)

where Pk denotes the polynomial Pk(A) = (I − γk−1A)(I − γk−2A) . . . (I − γ0A) .
Let m = λ1 ≤ . . . ≤ λn = M be the eigenvalues of A and {q1, . . . , qn} be the set of

corresponding orthonormal eigenvectors (we assume that no information is available about the
eigenvalues λi and eigenvectors qi, i = 1, . . . , n, and that the condition number M/m may be
large). When decomposing the initial vector g0 in the basis {q1, . . . , qn} as g0 =

∑n
i=1 αiqi , (8)

implies

gk =
n∑

i=1

αiPk(λi)qi (9)

for all k ≥ 1. The squared L2-norm of g0 is ‖g0‖2 = (g0, g0) =
∑n

i=1 α2
i and the squared L2-norm

of gk is thus ‖gk‖2 = (gk, gk) =
∑n

i=1 α2
i P

2
k (λi) . The convergence rate (6) after k iterations is

then given by

Rk =

n∑
i=1

α2
i P

2
k (λi)

n∑
i=1

α2
i

=

n∑

i=1

p
(0)
i P 2

k (λi) ,

where p
(0)
i = α2

i

/ n∑
j=1

α2
j ≥ 0 and

∑n
i=1 p

(0)
i = 1.

Without loss of generality all α2
i can be assumed to be strictly positive. Indeed, if αi = 0 for

some i then the matrix A =
∑n

j=1 λjqjq
⊤
j can be replaced with Ã =

∑
j 6=i λjqjq

⊤
j ; the equality

αi = 0 would mean that (Ax0, qi) = (b, qi) (and therefore (Axk, qi) = (b, qi) for all k).
From (9), (gk, qi) = αiPk(λi). We define

p
(k)
i =

(gk, qi)
2

(gk, gk)
=

α2
i P

2
k (λi)∑n

j=1 α2
jP

2
k (λj)

and interpret this as a mass at λi. Then, the measure νk defined by its masses νk(λi) = p
(k)
i at

λ = λi (i = 1, . . . , n) characterizes the normalized vector gk/‖gk‖ (up to the signs of the (gk, qi),

which are irrelevant for analyzing the behavior of the algorithm). For any real α, define µ
(k)
α as

the α-th moment of the probability measure νk:

µ(k)
α = µα(νk) =

n∑

i=1

λα
i p

(k)
i =

(Aαgk, gk)

(gk, gk)
. (10)
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Using the basic iteration (2), we obtain the following updating formula which expresses the
measure νk+1 through the measure νk:

p
(k+1)
i = νk+1(λi) =

α2
i P

2
k+1(λi)

(gk+1, gk+1)
=

α2
i (1 − γkλi)

2P 2
k (λi)

(gk+1, gk+1)
=

(1 − γkλi)
2p

(k)
i

rk
, i = 1, . . . , n , (11)

where k ≥ 0 and

rk =
(gk+1, gk+1)

(gk, gk)
=

(gk, gk) − 2γk(Agk, gk) + γ2
k(A2gk, gk)

(gk, gk)
= 1 − 2γkµ

(k)
1 + γ2

kµ
(k)
2 . (12)

3 Estimation of the leading eigenvalues of A

3.1 Defining the estimators

Take any probability measure ν on [m, M ] with 0 < m < M < ∞ and denote by µα its moment

of order α, µα = µα(ν) =
∫ M
m tα ν(dt) (so that µα(νk) is defined by (10)). The Cauchy-Schwarz

inequality implies µα+2µα ≥ (µα+1)
2 for any α . Moreover, t(M − t) ≥ 0 for all t ∈ [m,M ] so

that
∫ M
m tα(M − t) ν(dt) = Mµα − µα+1 ≥ 0; that is, µα+1/µα ≤ M . Similarly, m ≤ µα+1/µα.

We thus obtain the following chain of inequalities

m ≤ µ
(k)
1 ≤ µ

(k)
2

µ
(k)
1

≤ µ
(k)
3

µ
(k)
2

≤ µ
(k)
4

µ
(k)
3

≤ · · · ≤ M , (13)

which are valid for all k = 0, 1, . . . ; note that µ
(k)
0 = 1 for all k.

In what follows we shall restrict our attention to the estimators of m and M defined by

m̂k = min
j=0,...,k

µ
(j)
1 , M̂

(i)
k = max

j=0,...,k
µ

(j)
i /µ

(j)
i−1 , i ≥ 1 . (14)

According to (13), the larger i in M̂
(i)
k the more precise the estimation of M , which has a signif-

icant influence on the behavior of the algorithm, see [22]. Calculating high order moments has
some computational cost, however, and a compromise must be made. The algorithm presented
in Sect. 5 uses i = 4.

Let {αk} denote a sequence in [−1, 1] with asymptotic distribution function Fα(·) symmetric
with respect to zero (different types of sequences will be considered below). We shall consider

algorithms defined as follows: we initiate (5) by two SD iterations with γk = 1/µ
(k)
1 , or two MR

iterations with γk = µ
(k)
1 /µ

(k)
2 ; for each subsequent iteration the inverse step-size βk = 1/γk is

obtained by rescaling the k-th element αk of the sequence {αk} into [m̂k, M̂k], that is,

βk = αk(M̂k − m̂k)/2 + (M̂k + m̂k)/2 . (15)

The assumption that the βk are generated by symmetric pairs in [m,M ], that is, β2j+1 =
M + m − β2j , is used in [16] to derive the expression for the asymptotic convergence rate R of

the algorithm, R = limk→∞ R
1/k
k ; see also Sect. 4. This is why we shall also consider the case

when (15) is replaced by

{
β2j = αj(M̂2j − m̂2j)/2 + (M̂2j + m̂2j)/2 ,

β2j+1 = −αj(M̂2j+1 − m̂2j+1)/2 + (M̂2j+1 + m̂2j+1)/2 .
(16)
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As shown in [22], using the largest β first in a pair (β2j , β2j+1) permits to improve the mono-
tonicity of the algorithm (5). We shall thus also consider the case when

{
β2j = |αj |(M̂2j − m̂2j)/2 + (M̂2j + m̂2j)/2 ,

β2j+1 = −|αj |(M̂2j+1 − m̂2j+1)/2 + (M̂2j+1 + m̂2j+1)/2 ,
(17)

Lemma 1 below shows that (m̂k+M̂k)/2 converges to (m+M)/2 so that the symmetry condition
with respect to (m + M)/2 will be asymptotically satisfied.

3.2 Consistency of m̂k and M̂k

The estimators m̂k and M̂k satisfy the following asymptotic symmetry property.

Lemma 1 Assume that in algorithm (5) βk = 1/γk is generated according to one of the rules

(15), (16) or (17), with m̂k and M̂k = M̂
(i)
k given by (14) for all k for some i ≥ 1 and {αk}

having an asymptotic distribution function Fα(·) in [−1, 1] symmetric with respect to zero. Then
we have

M − M∞ = m∞ − m ≥ 0 , (18)

where m∞ = limk→∞ m̂k and M∞ = limk→∞ M̂k.

The proof, based on establishing a contradiction if we assume that the symmetry condition
(18) is violated, is given in Sect. 6.

To obtain a more precise characterization of the limiting behaviors of m̂k and M̂k we shall
make use of the following property, shown in [16].

Theorem 1 Set βk = 1/γk (k = 0, 1, . . .) and assume that βk > 0 and βk /∈ {m,M} for all k
and that the sequence {βk} has an asymptotic distribution function Fβ(·) which is supported on
an interval [m′,M ′] with 0 < m′ ≤ M ′ < ∞. Suppose, moreover, that this limiting distribution
satisfies

∫
log(t − λ)2 dFβ(t) < max

{∫
log(M − t)2 dFβ(t) ,

∫
log(t − m)2 dFβ(t)

}
, (19)

for all λ ∈ (m,M). Then the algorithm (5) associated with the sequence {βk} is such that
lim

k→∞
νk(λi) = 0 for all i = 2, . . . , n − 1. Furthermore, there exist constants C > 0, k0 > 0 and

0 ≤ θ < 1 such that
∑n−1

i=2 νk(λi) ≤ Cθk for k > k0.

The main condition in Th. 1 is (19); it implies that the ratio P 2
k (λ)/(P 2

k (m)+P 2
k (M)) tends

to 0 (as k → ∞) exponentially fast for any λ ∈ (m,M). It means that once the attraction of the
sequence {νk} to the set of measures supported at m and M is obtained, i.e. νk(m)+νk(M) → 1,
it is roughly enough to consider the behavior obtained for two-point measures.

Remark 1 The attraction of the sequence {νk} to the set of measures supported at m and M

does not imply that m̂k → m and M̂k → M . Indeed, consider the case when the sequence of

step-sizes is self-generated by the algorithm itself. For instance, for SD we have βk = µ
(k)
1 for

all k and the limiting measure for {βk} is the two-point measure allocating weights 1/2 at z and
M + m − z for some z ∈ (m,M). The condition (19) is then equivalent to z belonging to the
stability interval defined in [13, 14], see [16], and m∞ and M∞ satisfy (18) but do not coincide
with m and M .
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Remark 2 When the βk are generated by (16) or (17), then, under the conditions of Lemma 1,
they asymptotically satisfy β2j+1 = M + m − β2j. When ν2j is a two-point measure supported

at m and M , we then have ν2j+2 = ν2j. Additionally to Th. 1, p
(2j)
1 tends to a constant p∞ as

j → ∞, with p∞ depending on the starting measure ν0 ( i.e., on the starting point x0) and on
the spectrum of A.

We first consider the case when the αk used to generate the step-sizes γk = 1/βk via (15)
are i.i.d. with a suitable distribution.

Theorem 2 Assume that in algorithm (5) βk = 1/γk satisfies (15) with m̂k and M̂k = M̂
(i)
k

given by (14) for all k for some i ≥ 1 and that the αk are i.i.d. in [−1, 1] with a distribution
function Fα(·) symmetric with respect to zero. Assume, moreover, that

∫
log(t − u)2 dFα(t) <

∫
log(1 − t)2 dFα(t) < ∞ for all u ∈ (−1, 1) (20)

and that Fα(1− x) < 1 for any x > 0. Then, m∞ = limk→∞ m̂k = m and M∞ = limk→∞ M̂k =
M almost surely.

The proof is given in Section 6. The idea is roughly as follows. In view of Th. 1, the
asymptotic behavior of the measures νk is very similar to the behavior of measures ν̃k which use
the same updating formulas but are supported on the two-point set {m,M}. However, for this
sequence of two-point measures ν̃k the sequence of random variables log ν̃k(m)− log(1− ν̃k(m))
is a random walk and therefore the values ν̃k(m) approach 0 and 1 (with any fixed precision)
infinitely often. This implies that the sequence of first moments of ν̃k gets arbitrarily close to m
and M infinitely often. The same occurs for the original sequence of measures νk (proving this
requires some technicalities).

As shown in the next theorem, when using M̂k = M̂
(i)
k with i ≥ 2 we do not have to use i.i.d.

αk to obtain m∞ = m and M∞ = M . Moreover, the sequence {βk} can be generated by (16) or
(17).

Theorem 3 Assume that in algorithm (5) the βk = 1/γk are generated according to one of the
rules (15), (16) or (17), with {αk} having an asymptotic distribution function Fα(·) in [−1, 1]

symmetric with respect to zero, and that m̂k and M̂k = M̂
(i)
k are given by (14) for all k for some

i ≥ 2. Assume, moreover, that Fα(·) satisfies (20) and that Fα(1− x) < 1 for any x > 0. Then,

m∞ = limk→∞ m̂k = m and M∞ = limk→∞ M̂k = M .

The proof is given in Section 6. The proof of Th. 2 must be modified since, when the αi

are not randomly generated, we cannot be sure to have simultaneously a large value of βk and

a small value of µ
(k)
1 , see part (ii) of the proof of Th. 2. As a consequence, i = 1 does not

guarantee the convergence of m̂k and M̂k = M̂
(i)
k to respectively m and M and we now have to

use a more precise estimator of M with i > 1.

When the αk are i.i.d., the result of Th. 3 holds almost surely. The theorem also cov-
ers the case where {αk} is a deterministic sequence, for instance generated via a dynami-
cal system, which permits to obtain sequences of rates rk much less erratic than when us-
ing random step-sizes, see Sect. 4. Notice that the proof of Th. 3 does not apply when

M̂k = M̂
(1)
k = maxj=0,...,k µ

(j)
1 (although simulations seem to indicate consistency of m̂k and

M̂k = M̂
(1)
k when (15) or (16) is used, see [16]).
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3.3 Controlling the number of updates for m̂k and M̂k

The calculations of µ
(k)
1 and µ

(k)
2 /µ

(k)
1 require the evaluation of several inner products in R

n;

therefore, by minimizing the number of iterations where m̂k or M̂k are updated we can reduce
the computational cost of the algorithm. Updates of m̂k and M̂k in the situation of Th. 2 or
Th. 3 can be stimulated by the convergence of the measure νk to the set of measures supported
at m and M and by the fact that, on the route to this set of two-point measures, νk can fluctuate
between measures supported at m (when m̂k + M̂k > m + M) and measures supported at M

(when m̂k + M̂k < m + M). On the other hand, iterations where m̂k (resp. M̂k) has a good
chance to get significantly updated are those for which the next measure νk+1 will be close to
the delta measure at m (resp. at M). This may happen in particular when βk is the smallest
(resp. largest) among all βj , j ≤ k. It can be related to record moments for the αj and we

shall thus consider the situation where updates of m̂k or M̂k are allowed only at those iterations
where αj is a new record.

For any sequence {zk} = z0, z1, z2 . . . define the two sequences or record moments {Lmin
j } =

{Lmin
j }[{zk}] and {Lmax

j } = {Lmax
j }[{zk}] by Lmin

0 = Lmax
0 = 0 and, for all j ≥ 0,

Lmin
j+1 = min{k > Lmin

j : zk < zLmin
j

} , Lmax
j+1 = min{k > Lmax

j : zk > zLmax
j

} .

We also define the numbers of lower and upper record moments, respectively δmin
j = δmin

j [{zk}]
and δmax

j = δmax
j [{zk}], by

δmin
j = #{i ≥ 0 : Lmin

i ≤ j} = 1 + max{i ≥ 0 : Lmin
i ≤ j} ,

δmax
j = #{i ≥ 0 : Lmax

i ≤ j} = 1 + max{i ≥ 0 : Lmax
i ≤ j} .

For any k, denote by β̄k the value obtained when m and M are substituted for m̂k and M̂k in
(15), (16) or (17). The record moments for {β̄k} then coincide with those for {αj}, but those for

βk may differ since in general m̂k +M̂k 6= m+M . However, due to Lemma 1, the dissimilarity is
asymptotically negligible. When (15) is used, upper (resp. lower) record moments for β̄k coincide
with upper (resp. lower) record moments for αk; when (16) or (17) is used, records for β̄k arrive
in pairs, records for β̄2j and β̄2j+1 being associated with a αj that becomes new record (either
lower or upper).

3.3.1 {αk} forms an i.i.d. sequence of random variables

When the αk are i.i.d., the numbers of lower and upper record moments δmin
j [{αk}] and δmax

j [{αk}]
satisfy δmin

j / log j → 1 and δmax
j / log j → 1 almost surely, see [2, p. 258]. Therefore, when we

use (15), δmin
j [{β̄k}]/ log j → 1 and δmax

j [{β̄k}]/ log j → 1, whereas δmin
j [{β̄k}]/ log j → 2 and

δmax
j [{β̄k}]/ log j → 2 when we use (16) or (17).

3.3.2 {αk} is constructed from a low discrepancy sequence

Consider in particular the sequence given by αk = cos(πuk) for all k ≥ 0, with uk = (k + 1)ϕ
mod 1 (the fractional part of (k + 1)ϕ), where ϕ = (

√
5 + 1)/2 ≃ 1.61803 . . . is the golden ratio

(note that the sequence {uk} can equivalently be constructed through the dynamical system
u0 = ϕ−1, uk+1 = (uk +ϕ) mod 1, k ≥ 0). This construction is motivated by the associated rate
of convergence of the algorithm, see Sect. 4. The corresponding sequences of record moments are
{Lmin

j }[{αk}] = {0, 1, 4, 12, 33, . . .} and {Lmax
j }[{αk}] = {0, 2, 7, 20, 54, . . .}. Denote {FN}∞N=1 =
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{1, 1, 2, 3, 5, 8, 13, 21, 34 . . .} the sequence of Fibonacci numbers, with exact expression FN =
(ϕN − (−1/ϕ)N )/

√
5. {Lmin

j } and {Lmax
j } can then be expressed in terms of the Fibonacci

numbers Fj as follows: Lmin
j = F2j+1 − 1, Lmax

j = F2j+2 − 1 for j = 0, 1, . . . This directly follows
from the following two classical results of the theory of Diophantine approximations: (i) for the
sequence {kζ mod 1}, with any irrational ζ, the successive minimal and maximal values occur
when k = q in the denominator of a convergent p/q for ζ in the standard continued fraction
expansion of ζ, see [19]; (ii) the convergents of ζ = ϕ− 1 are Fj/Fj+1 for j > 1. The number of
upper record moments for {αj} is then δmax

k [{αj}] = 1 + max{j : F2j+2 − 1 ≤ k} = 1 + max{j :
F2j+2 ≤ k + 1}. Similar to Proposition 7 in [22] we can show that for all k > 1 we have the
inequalities C0 log k − 1 < δk < C0 log k + 1 with C0 = 1/[2 log(ϕ)] ≃ 1.039. This yields the
asymptotic relation δk = C0 log k + O(1) as k → ∞.

When we use (15), the sequence of record moments for {β̄k} is the same as for {αk}. If we
use (17), then the sequences of record moments for β̄k are {Lmin

j }[{β̄k}] = {0, 1, 3, 5, 9, 15, . . .}
and {Lmax

j }[{β̄k}] = {0, 2, 4, 8, 14, . . .}, with Lmin
j+1 = Lmax

j + 1 for j = 0, 1, . . . and, in terms of
Fibonacci numbers, Lmax

j = 2(Fj+2−1) for j = 0, 1, . . . The number δk of upper record moments

for {β̄j} thus satisfies δk/ log k → 2C0 = 1/ log(ϕ) ≃ 2.078 as k → ∞; the same is obviously
true for the number of lower record moments. If we use (16), the sequences of record moments
for β̄k are {Lmin

j }[{β̄k}] = {0, 3, 4, 9, 14, 25 . . .} and {Lmax
j }[{β̄k}] = {0, 1, 2, 5, 8, 15, 24, . . .}; that

is, in terms of Fibonacci numbers, Lmax
j = 2(Fj+1 − 1) if j is even and Lmax

j = 2Fj+1 − 1 if j is

odd, Lmin
j = 2(Fj+2 − 1) if j is even and Lmax

j = 2Fj+2 − 1 if j is odd. The numbers of upper
and lower record moments satisfy again δk/ log k → 1/ log(ϕ) ≃ 2.078 as k → ∞.

Example 1 We set n = 800, m = 1 and M = 1000, the eigenvalues of A are uniformly
distributed in [m,M ] and b = Ac in (3, 4) with c uniformly distributed on the unit n-dimensional
sphere Sn. We apply the gradient iterations (5) with x0 uniformly distributed on Sn; the first

two iterations correspond to the method of minimum residues with γk = µ
(k)
1 /µ

(k)
2 , k = 0, 1, and

the subsequent iterations use {γk} = {1/βk}, where the βk are generated via (17) using the low
discrepancy sequence {αk} above: αk = cos(π[(k + 1)ϕ mod 1]) for all k ≥ 0. We compare the

behaviors of two estimators of m and M . The first one corresponds to m̂k and M̂
(4)
k given by

(14), the second to

m̃2j+1 = min
j∈Lα

µ
(2j+1)
1 and M̃2j+2 = max

j∈Lα

µ
(2j+2)
4

µ
(2j+2)
3

, (21)

where Lα = {Lmin
j }[{αk}]

⋃{Lmax
j }[{αk}] denotes the sequence of lower and upper record mo-

ments for {αk}. This construction is motivated by the fact that when αj becomes a new (lower

or upper) record, then β2j+1 is large and µ
(2j+1)
1 has a good chance to be small, while β2j+2 is

small and µ
(2j+2)
4 /µ

(2j+2)
3 has a good chance to be large. The precision of the estimation of m

and M given by the two estimators is compared in Fig. 1a. Figure 1b indicates the number of
record moments for {αk} together with the number of iterations where m̃k and M̃k are updated.

One may notice that both m̃2j+1 and M̃2j+2 are updated each time αj is a new record.

4 Fluctuations of the sequence of convergence rates

When νk is a two-point measure supported at m and M , applying two successive iterations (11)
with βk+1 = M + m − βk yields νk+2 = νk, with the product of rates rkrk+1 not depending on

9
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Figure 1: (a) Evolution of log10(M − M̂k) and log10(m̂k − m) with m̂k and M̂k = M̂
(4)
k given

by (14), respectively in dotted and dash-dotted lines, and evolution of log10(M − M̃k) and

log10(m̃k − m) with m̃k and M̃k given by (21), respectively in solid and dashes lines. (b)
Number of record moments δmax

k [{αj}] (hexagrams) and δmin
k [{αj}] (circles) as functions of k,

the number of iterations where m̃k and M̃k are updated are indicated respectively by stars and
dots, the solid line corresponds to (log k)/[2 log(ϕ)] ≃ 1.039 log k.

the particular measure νk, rkrk+1 = R2
2(βk), where

R2(β) =
(M − β)(β − m)

β(M + m − β)
.

This is the key-point used in [16] to prove the following.

Theorem 4 Assume that the conditions of Th. 1 are satisfied and that, moreover, the βk are
generated by symmetric pairs for large k; that is, β2j+1 = M + m − β2j for all j ≥ j0, with
β2j ∈ [m + ε,M − ε] for some ε ∈ (0, (M − m)/2). Then,

lim
k→∞

1

k
log Rk =

∫
log

∣∣∣∣
(M − t) (t − m)

t (m + M − t)

∣∣∣∣ dFβ(t) =

∫
log

(t − m)2

t2
dFβ(t) , (22)

where Rk is defined by (6).

Th. 4 applies in particular when Fβ(·) has the arcsine density fǫ(·) on [m + ǫ,M − ǫ],

fǫ(β) =
1

π
√

(β − m − ǫ)(M − ǫ − β)
,

with ǫ < (M − m)/2. In that case, as k → ∞,

R
1/k
k → Rarcsine,ǫ = exp

{∫ M−ǫ

m+ǫ
log

(β − m)2

β2
fǫ(β) dβ

}

=

(
M − m + 2

√
ǫ(M − m − ǫ)

M + m + 2
√

(M − ǫ)(m + ǫ)

)2

(23)

= R∞(1 + 4
√

ǫ(M − m)) + O(ǫ) , ǫ → 0 ,
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with R∞ given by (7), see [16]. In the rest of the section we are interested in the extension of

Th. 4 to the case where the βk are generated by (16) or (17) with estimated m̂k and M̂k and to

the fluctuations of R
1/k
k along its way to its limiting value.

The fact that in (16, 17) m̂k and M̂k are estimated brings a slight difference with Th. 4 in
terms of asymptotic rate of convergence. This difference is marginal, however, as shown in the
next theorem.

Theorem 5 Assume that in algorithm (5) the βk are generated by pairs as in (16) or (17), with

m̂k and M̂k = M̂
(i)
k given by (14) for all k for some i ≥ 2, and that the αj have an asymptotic

distribution function Fα(·) in [−1 + δ, 1 − δ], 0 < δ < 1/2, symmetric with respect to zero and
satisfying (20) and Fα(1 − δ − x) < 1 for any x > 0. Then the result (22) of Th. 4 remains
valid, with Fβ(·) a rescaled version of Fα(·) in some interval [m + ǫ′, M − ǫ′], that is,

dFβ(t) =
2

M − m − 2ǫ′
dFα

(
2t − m − M

M − m − 2ǫ′

)
, (24)

where ǫ′ satisfies
δ(M − m)/2 ≤ ǫ′ ≤

√
M(

√
M +

√
m)δ/2 + O(δ2) . (25)

The proof is given in Sect. 6. The fact that the αk now lie in [−1+ δ, 1− δ] with δ > 0 makes
it necessary to slightly modify the proof of Th. 3.

Consider now the fluctuations of the asymptotic convergence rate around its limiting value.
Suppose that m and M are perfectly estimated, so that β2j+1 = M + m − β2j in (16, 17), with
the β2j having a distribution Fβ(·) satisfying the condition in Th. 4. Since the βk are exactly
symmetric in [m,M ], we can take δ1 = 0 in the proof of Th. 5, so that

log[R2(β2j)] − Bθ2j <
1

2
log(r2jr2j+1) < log[R2(β2j)] + Bθ2j

for some B > 0 and j > j1 large enough, which gives

∣∣∣∣∣∣
1

2
log

(
R2i

R2j1

)
−

i−1∑

j=j1

log[R2(β2j)]

∣∣∣∣∣∣
<

∞∑

j=0

Bθ2j =
B

1 − θ
,

with θ as in Th. 1. Define

Lα =

∫
log[R2(t)] dFβ(t) =

∫
log

(
1 + t

t + M+m
M−m

)2

dFα(t) ,

Vα =

∫ 
log

(
1 + t

t + M+m
M−m

)2

− Lα




2

dFα(t) .

(Note that both quantities are well defined when Fα(·) is concentrated on [−1+ δ, 1− δ], δ > 0.)
When the αk are i.i.d. with the distribution Fα(·), we have, for i → ∞,

1

i
log

√
R2i

a.s.→ Lα ,
√

i

(
log

√
R2i

i
− Lα

)
d→ ξ ∼ N (0, Vα) ,

11



and
R

1/2i
2i

a.s.→ exp(Lα) ,
√

i
(
R

1/2i
2i − exp(Lα)

)
d→ ξ ∼ N (0, Vα exp(2Lα)) .

Moreover, from the law of the iterated logarithm,

lim sup
i→∞

log
√

R2i − iLα√
2iVα

√
log log i

= 1 a.s. and lim inf
i→∞

log
√

R2i − iLα√
2iVα

√
log log i

= −1 a.s. ,

implying that, for any ε > 0,

R
1/2i
2i > exp

[
Lα +

(1 − ε)
√

2Vα log log i√
i

]
(26)

infinitely often (a.s.), and thus indicating that the fluctuations of the normalized convergence

rate R
1/2i
2i are unavoidably large.

Suppose now that {αk} is constructed from a low-discrepancy sequence, as in Sect. 3.3. Then

∣∣∣∣∣∣
1

i − j1

i−1∑

j=j1

log[R2(β2j)] − Lα

∣∣∣∣∣∣
< Cα

log i

i

for some large enough j1 (see the proof of Th. 5) and some constant Cα depending on the
sequence considered, see, e.g., [10]. Therefore, in that case the normalized convergence rate

satisfies R
1/2i
2i / exp(Lα) < iCα/i and shows much less fluctuations on its route to its limiting

value exp(Lα) than when the αk are i.i.d. random variables. Indeed, denoting D2i the difference

R
1/2i
2i − exp(Lα), we have

(D2i)i.i.d.

|(D2i)LDS |
>

exp
[

(1−ε)
√

2Vα log log i√
i

]
− 1

iCα/i − 1
i.o. a.s. for any ε > 0

where the right-hand side behaves like c
√

i log log i/ log i as i → ∞ (c = (1 − ε)
√

2Vα/Cα).
This justifies the preference given to low discrepancy sequences over random sequences in the
algorithms presented in [22]. One of them is summarized in Sect. 5.

Example 2 We consider the same problem as in Sect. 3.3 (we take now x0 = (105, 1, 1, . . . , 1)⊤

to slow down convergence and better illustrate the different behaviors for the two types of step-

size sequences). The βk are generated by (17) with m̂k and M̂k = M̂
(4)
k given by (14). Figure 2

shows R
1/2i
2i as a function of i for the cases when {αk} is the low discrepancy sequence given by

αk = cos(π[(k+1)ϕ mod 1]) for all k ≥ 0 and when {αk} is a sequence of i.i.d. random variables
having the arcsine distribution; both sequences are generated on [−1 + δ; 1− δ] with δ = 0.005.

5 Prototype algorithm and simulation results

The estimation of the spectral bounds m and M via (21) permits to construct a gradient al-
gorithm which is quite parsimonious in terms of number of computations of inner products.

In order to avoid using multiplications by A when calculating µ
(k)
1 and µ

(k)
4 /µ

(k)
3 , the following

recursions are used:

µ
(k)
1 =

(Agk, gk)

(gk, gk)
= βk

[
1 − (gk, gk+1)

(gk, gk)

]
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Figure 2: Rate R
1/2i
2i as a function of i for αk = cos(π[(k + 1)ϕ mod 1]) for all k ≥ 0 (solid line)

and for {αk} a random i.i.d. sequence having the arcsine distribution (dash-dotted line). The
dashed line indicates the bound Rarcsine,ǫ′ given by (23) with ǫ′ = δ(M −m)/2 (δ = 5 · 10−3), see
(25); the dotted line denotes the right-hand side of (26).

and

µ
(k−1)
4

µ
(k−1)
3

=
(A2gk−1, A

2gk−1)

(A2gk−1, Agk−1)
= βk−1 + βk

(βk(gk+1 − gk) + βk−1(gk−1 − gk), gk+1 − gk)

(βk(gk+1 − gk) + βk−1(gk−1 − gk), gk−1 − gk)
,

which can easily be derived from (2). We generate the βk = 1/γk according to (17) using the low
discrepancy sequence αk = cos(π[(k + 1)ϕ mod 1]) for all k ≥ 0. The construction (17) tends to
favor the estimation of m against that of M , see [22], which results in the concentration of νk

at M . From (12), the convergence is monotonic at step k (i.e., rk < 1) when βk > µ
(k)
2 /(2µ

(k)
1 ).

When νk gets close to the delta measure at M , this ratio becomes close to M/2 when M/m
is large, and the monotonicity condition is violated frequently (approximately every second
iteration). In the algorithm proposed below this is avoided by forcing νk to become concentrated

at m rather than M , the monotonicity property rk < 1 being always satisfied when µ
(k)
2 /(2µ

(k)
1 )

is close to m/2 since βk is larger than m̂k > m. This can be achieved by using a step with large βk

when νk−1 becomes close to the delta measure at M . In practice, we simply use βk = M̂k when
we observe M̂k > M̂k−1. The algorithm is summarized below; its MATLAB implementation
is available at http://www.i3s.unice.fr/~pronzato/Matlab/goldenArcsineQ.m. We define
vj = ϕ(j + 1) mod 1 and, for j = 0, 1, . . . we set

zj =(1+cos(πuj))/2, where u2j =min{vj , 1−vj}, u2j+1 =max{vj , 1−vj} .

Algorithm

Stage I (initialization)

I.1 Choose x0 and compute g0 = Ax0 − b.

I.2 Choose ǫ > 0 used in the stopping rule.

I.3 Set Lmax = {2Fi+2 − 2 : i = 0, 1, . . .} = {0, 2, 4, 8, 14, . . .}.
I.4 For k = 0 and 1, set xk+1 = xk − (1/βk)gk and gk+1 = Axk+1 − b,

where βk = (Agk, Agk)/(Agk, gk).
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I.5 Set m̂2 = min{β0, β1} and M̂1 = M̂2 = max{β0, β1}.
I.6 Set k = 2 and j = 0.

Stage II (iterations)

II.1 If M̂k > M̂k−1 then set βk = M̂k. Otherwise set βk = m̂k+(M̂k−m̂k)zj and j ← j+1.

II.2 Set xk+1 = xk − (1/βk)gk and gk+1 = Axk+1 − b.

II.3 If j−2 ∈ Lmax then compute

m̂k+1 = min{m̂k, µ
(k)
1 }, M̂k+1 = max{M̂k, µ

(k−1)
4 /µ

(k−1)
3 },

and check the stopping rule (gk, gk) ≤ ǫ. Otherwise set m̂k+1 = m̂k, M̂k+1 = M̂k.

II.4 Set k ← k + 1 and return to Step II.1.

The stopping rule used by the algorithm is simply (gk, gk) < ǫ for some given ǫ. The value
of (gk, gk) is available for k such that j − 2 ∈ Lmax, at such iterations we can thus check the

condition (gk, gk) < ǫ directly. Since M̂k/m̂k provides an under-estimate for ρ, and hence and
under-estimate for R∞ given by (7), we can thus estimate the number of iterations still remaining
to achieve the required precision. The proposed algorithm only requires one matrix-vector
multiplication per iteration (used to calculate the gradient gk = Axk − b), like other gradient
methods and Krylov-space based algorithms, in particular CR and CG. When A is sparse, the
computation of inner products also contributes significantly to the total computational cost;
when using parallel computing with distributed memory machines, it may even yield the main
contribution to the efficiency loss, see [21, Sect. 4.4]. The standard formulation of CG (and also
CR) requires the computation of two inner products per iteration (some sophisticated versions
of CG compute these two inner products in parallel, at the possible expense of a slight increase
of storage and maybe reduced numerical stability, see for instance [9, 17]). The prototype
algorithm above requires the computation of four inner products in the initial two iterations
and then four inner products (possibly computed in parallel) each time the estimates m̂k and

M̂k are updated. This is done when j − 2 ∈ L. Therefore, the total number of inner products
computed within k + 1 steps of the proposed algorithm is equal to Nk = 4 + 4δj where j = j(k)
is defined by the algorithm and δj satisfies δj = log j/ log(ϕ) + O(1) as j → ∞. This and the
fact that k/j(k) → 1 as k → ∞ imply that the number of inner products computed within k +1
steps is approximately 4 + 4 log k/ log ϕ ≃ 4 + 8.31 log k.

Simulation results

Example 3 In this artificial example, A is diagonal with m = 1, M = 1000, n = 1000
and b = Ac with c random (uniformly distributed on the unit n-dimensional sphere Sn). We
consider two configurations for the eigenvalues of A and starting point x0. In the first case, the
n eigenvalues are uniformly distributed in [m,M ] and x0 is random (uniformly distributed on
Sn). The second configuration corresponds to the worst-case situation for n − 1 steps of the
Conjugate Residual (CR) algorithm: the eigenvalues are

λi = (M + m)/2 + (M − m)/2 cos[π(i − 1)/(n − 1)] for i = 1, . . . , n

and x0 is such that the α2
i in the decomposition (9) are proportional to τ2

1 = 1/2λ1, τ2
j = 1/λj

for j = 2, . . . , n − 1 and τ2
n = 1/2λn, see [15] for details. Figures 3(a) and 3(b) present the

evolution of log10 ‖gk‖ as a function of k for the algorithm above (Alg) and the CR algorithm
in the two configurations respectively. Since CR is optimal for Rk given by (6), our method is
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not competitive in this respect. On the other hand, the evolution of log10 ‖gk‖ as a function of
the number of inner products computed is plotted in Figures 3(c) and 3(d), showing the gain in
complexity of the proposed algorithm compared to CR.
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Figure 3: log10 ‖gk‖ as a function of k (top), log10 ‖gk‖ against the number of inner products
computed (bottom) in Example 3. The eigenvalues of A are uniformly distributed in [m,M ] =
[1, 1 000] in (a) and (c); (b) and (d) correspond to the worst-case situation for the CR algorithm.

Example 4 A is given by the matrix NOS5 from http://math.nist.gov/MatrixMarket/; it
is sparse, with dimension n = 468 and N = 5 172 non-zero elements only, its structure is shown
in Figure 4 (left). Its condition number approximately equals 1.1 · 104.

Example 5 A is given by the matrix 1138 BUS from http://math.nist.gov/MatrixMarket/;
this matrix is also sparse and symmetric positive-definite with n = 1 138 and N = 4 054 non-zero
elements, see Figure 4 (right). Its condition number approximately equals 1.5277 · 105.

We set b = Ac, c and x0 are uniformly distributed on Sn. Figure 5 presents the evolution of
log10 ‖gk‖ against the number inner products in Examples 2 and 3, computed for the algorithm
above (Alg) and the CR algorithm. The reduced complexity of the proposed algorithm compared
to CR is manifest.
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Figure 4: Non-zero elements of A in Examples 4 (left) and 5 (right).
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Figure 5: log10 ‖gk‖ against the number of inner products computed in Examples 4 (left) and 5
(right).

6 Proofs

Proof of Lemma 1.

Since {m̂k} forms a non-increasing sequence bounded from below by m, m̂k → m∞ as k → ∞ for some m∞ ≥ m.

Similarly, M̂k → M∞ for some M∞ ≤ M . Denote ǫ1 = m∞ − m, ǫ2 = M − M∞, ǫ1, ǫ2 ≥ 0. Suppose that
0 ≤ ǫ1 < ǫ2. Then, the asymptotic distribution of the sequence {βk} is biased towards m. From (11), the sequence

{νk} tends to concentrate at M so that M̂k → M as k → ∞, implying ǫ2 = 0, which contradicts the assumption
0 ≤ ǫ1 < ǫ2. Similarly, the assumption ǫ1 > ǫ2 ≥ 0 leads to a contradiction; therefore, M − M∞ = m∞ − m.

Proof of Th. 2.

From Lemma 1, m∞ = m + ǫ and M∞ = M − ǫ for some ǫ ≥ 0. Assuming that ǫ > 0, we show that this leads
to a contradiction. The proof is in two steps. In (i) we show that m̂k is repeatedly updated; in (ii) we show that
this implies m∞ = m and thus ǫ = 0.
(i) We have from (11)

p
(k+1)
1

p
(k+1)
d

=
(βk − m)2

(M − βk)2
p
(k)
1

p
(k)
d

.

When βk satisfies (15) with Fα(·) satisfying (20) and ǫ > 0, then (19) is satisfied so that p
(k)
d = 1− p

(k)
1 − δk with
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0 ≤ δk ≤ Dθk when k > k0 for some k0, D > 0 and 0 ≤ θ < 1. Denoting pk = p
(k)
1 , Qk = pk/(1 − pk), we get

Qk+1 =
pk+1

(1 − pk+1)
= Qk

(βk − m)2

(M − βk)2

1 − δk+1

1−pk+1

1 − δk

1−pk

. (27)

Since m + ǫ ≤ µ
(k)
1 ≤ M − ǫ for all k, we have

ǫ

M − m
− Bθk ≤ pk ≤ 1 − ǫ

M − m
+ Bθk

for some B > 0 when k > k0. Therefore, 1−pk > ǫ/[2(M−m)] for k large enough and, together with 0 ≤ δk ≤ Dθk,
(27) gives

log Qk+1 = log Qk + log

(
βk − m

M − βk

)2

+ ck ,

with |ck| < Cθk for all k larger than some k1, C = 4D(M − m)/ǫ. This implies that
∣∣∣∣∣∣
log

Qk+1

Qk1

−
k∑

j=k1

log

(
βj − m

M − βj

)2

∣∣∣∣∣∣
<

∞∑

j=0

Cθj <
C

1 − θ
. (28)

Denote

ξj = log

(
βj − m

M − βj

)2

.

Suppose that there is no update of m̂k and M̂k after some k2 and denote ǫm = m̂k2
− m, ǫM = M − M̂k2

. Then,
for j > k2, {ξj} forms a sequence of i.i.d. random variables and (28) indicates that, for k > k2, log Qk+1 − log Qk2

behaves like a random walk. The random variables ξj have mean

M(ǫm, ǫM ) =

∫
log

(
t + 1 + 2ǫm

M−m−ǫm−ǫM

1 + 2ǫM

M−m−ǫm−ǫM

− t

)2

.

From Lemma 1, ǫm = ǫM = ǫ. Since M(ǫ, ǫ) = 0, the random walk has no drift and we have lim supk→∞
log Qk =

− lim infk→∞ log Qk = ∞ a.s., which contradicts the assumption of no update of m̂k and M̂k after iteration k2.
(One may notice that ξ2j + ξ2j+1 = 0 when the βk are generated according to (16), so that the argument cannot
be used in that case.)

Suppose now that there is no update of m̂k for k > k2 and denote ǫm = m̂k2
− m. From the argument

above, M̂k is repeatedly updated, which, from Lemma 1, is only possible if ǫM,k = M − M̂k > ǫm. The ξj , for
j > k2, are now neither independent nor identically distributed, but IE(ξj |Fj−1) = M(ǫm, ǫM,j) < 0, with {Fj}
the sequence of σ-fields σ(α0, α1, . . . , αj). From (28), the sequence of log Qk+1 − log Qk2

, k > k2, thus forms a
supermartingale relative to {Fj}. Consider now Sk =

∑k

j=k2
ξj−IE(ξj |Fj−1), which forms a martingale sequence.

Since we assume that ǫ > 0, the increments |ξj − IE(ξj |Fj−1)| are bounded and Sk/
√

k satisfies the central limit
theorem (see, e.g., [6]). This implies that lim infk→∞ log Qk = −∞ and therefore M∞ = M , which contradicts
the assumption of ǫ > 0. We have thus proved that m̂k is updated infinitely often.

(ii) Similarly to (i), m∞ = m+ ǫ and M∞ = M − ǫ with ǫ > 0, βk satisfying (15) with Fα(·) satisfying (20) imply

that (19) is satisfied. Denoting pk = p
(k)
1 , direct calculations using (11) and (12) give

pk+1 ≥
[
1 − 1 − pk

1 + 4pkωk

]
+ Dθk (29)

when k > k0, for some constants D ≤ 0 and 0 ≤ θ < 1, where ωk = ζk/(1−ζk)2 with ζk = [βk−(M +m)/2]/[(M−
m)/2] and βk ∈ (m + ǫ, M − ǫ) by construction. (Notice that the term within square brackets on the right-hand
side of (29) is an increasing function of both pk and βk.) The fact that Fα(1 − x) < 1 for any x > 0 implies that
lim supk→∞

βk = M − ǫ. We have shown in (i) that m̂k is updated infinitely often. Therefore, for any δ1, δ2 > 0,

there exists a subsequence {ji} such that βji
> M − ǫ − δ1 and µ

(ji)
1 < m + ǫ + δ2. For a two-point measure

supported at m and M , this second inequality implies pji
> (M − ǫ − m)/(M − m) − δ3, with δ3 → 0 as δ2 → 0.

Due to Th. 1, we thus have

pji
>

M − m − ǫ

M − m
− δ3 + Bθji

for some constant B ≤ 0 and all ji > k0. Together with (29), it gives

pji+1 >
(M − m − ǫ)3

(M − m)[(M − m)2 − 3ǫ(M − m − ǫ)]
− δ4 ,
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where δ4 can be made arbitrarily small by taking δ1, δ2 small enough and i large enough. This implies that

µ
(ji+1)
1 < m + ǫ + δ5 −

ǫ(M − m − ǫ)(M − m − 2ǫ)

(M − m)2 − 3ǫ(M − m − ǫ)
< m + ǫ

for δ1, δ2 small enough and i large enough, which contradicts m∞ = m + ǫ.

Proof of Th. 3.

The proof is similar to part (ii) of the proof of Th. 2. From Lemma 1, m∞ = m + ǫ and M∞ = M − ǫ for some
ǫ ≥ 0. Suppose that ǫ > 0. When βk satisfies one of the rules (15-17) with Fα(·) satisfying (20), then (19) is
satisfied which implies (29) for k > k0 and some constants D ≤ 0 and 0 ≤ θ < 1, where ωk = ζk/(1 − ζk)2 with
ζk = [βk − (M + m)/2]/[(M − m)/2] and βk ∈ (m + ǫ, M − ǫ) by construction. Since M∞ = M − ǫ, (13) implies

that µ
(k)
2 /µ

(k)
1 ≤ M − ǫ. For a two-point measure supported at m and M , this implies pk ≥ Mǫ/[(M −m)(m+ ǫ)];

in view of Th. 1, we thus have

pk ≥ Mǫ

(M − m)(m + ǫ)
+ Bθk (30)

for some constant B ≤ 0 and k > k0. Since Fα(1 − x) < 1 for any x > 0, lim supk→∞
βk = M − ǫ and, for any

δ1 > 0 and any k1, there exist some k > k1 such that βk > M − ǫ− δ1. In view of (29) and (30) this implies that

pk+1 ≥ M(M − m − ǫ)

(M − m)(M − ǫ)
− δ2

where δ2 can be made arbitrarily small by taking δ1 small enough and k1 large enough. This implies in turn that

µ
(k+1)
1 ≤ Mm

M − ǫ
+ δ3 = m + ǫ + δ3 −

ǫ(M − m − ǫ)

M − ǫ
< m + ǫ

for δ1 small enough and k1 large enough, which contradicts m∞ = m + ǫ with ǫ > 0.

Proof of Th. 5.

Following the same arguments as in the proof of Th. 3, (30) implies that µ
(k+1)
1 < m + ǫ for δ < δǫ and k large

enough, with

δǫ =
2ǫ(

√
Mm − m − ǫ)(M − m − ǫ)

[Mm − (m + ǫ)2](M − m − 2ǫ)
=

2ǫ
√

m(
√

M +
√

m)
+ O(ǫ2) .

From this we obtain that for small δ, 0 ≤ m∞ − m = M − M∞ ≤ √
m(

√
M +

√
m)δ/2 + O(δ2), so that the βk

are asymptotically distributed in [m + ǫ′, M − ǫ′] with ǫ′ satisfying (25). (Note that m + ǫ′′ ≤ βk ≤ M − ǫ′′ for
all k, with ǫ′′ = δ(M − m)/2.)

The conditions of Th. 1 are satisfied, so that
∑n−1

i=2 νk(λi) ≤ Cθk for k > 2j0 for some constants C > 0, j0 > 0
and 0 ≤ θ < 1. Also, accounting for the fact that the distribution of β2j is not exactly symmetric in [m, M ], for
any δ1 > 0 there exists some j1 such that for all j > j1, |r2jr2j+1 − R

2
2(β2j)| < δ1. Altogether, for j > j1 large

enough,
R

2
2(β2j) − Dθ2j − δ1 < r2jr2j+1 < R

2
2(β2j) + Dθ2j + δ1 (31)

for some D > 0. Since β2j , β2j+1 ∈ [m + ǫ′′, M − ǫ′′] for all k, R2(β2j) > R2(m + ǫ′′) = R2(M − ǫ′′) =
ǫ′′(M + m − ǫ′′)/[(m + ǫ′′)(M − ǫ′′)] > 0 and

2 log[R2(β2j)] − δ2 < log(r2jr2j+1) < 2 log[R2(β2j)] + δ2

for j > j1, where δ2 can be made arbitrarily small by taking j1 large enough. From the definition (6) of Rk, we
can thus write

1

2(i − j1)
log

(
R2i

R2j1

)
=

1

2(i − j1)

i−1∑

j=j1

log(r2jr2j+1) =
1

(i − j1)

i−1∑

j=j1

log[R2(β2j)] + C

with |C| < δ2/2. Therefore,

lim
k→∞

1

k
log Rk =

∫
log

(1 − α + 2ǫ′

M−m−2ǫ′
)(1 + α + 2ǫ′

M−m−2ǫ′
)

(
M+m

M−m−2ǫ′

)2

− α2

dFα(t)

for some ǫ′ satisfying (25), which can be written as (22) with Fβ(·) given by (24).
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